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1. Introdu
tion. Greedy bases attra
ted some attention in re
ent years; mostly, I think,due to the fa
t that they 
an be studied both from 
on
rete approximation theory pointof view and from an abstra
t Bana
h spa
e perspe
tive. Let (xn)n∈N be a semi-normalisedbasis in a Bana
h spa
e X. This means that (xn)n∈N is a S
hauder basis in some �xedorder (see [4℄) and is semi-normalised, i.e. 0 < infn∈N ‖xn‖ ≤ supn∈N ‖xn‖ < ∞. For anelement x ∈ X we de�ne the error of the best m-term approximation as follows:

σm(x) = inf
{∥

∥

∥
x −

∑

n∈A

αnxn

∥

∥

∥

}

where the inf is taken over all subsets A ⊂ N of 
ardinality at most m and all possibles
alars αn. We also de�ne the greedy approximation of x =
∑

n anxn ∈ X as
Gm(x) =

∑

n∈A

anxnwhere A ⊂ N is any set of 
ardinality m 
hosen in su
h a way that |an| ≥ |al| whenever
n ∈ A and l /∈ A. We say that a semi-normalised basis (xn)n∈N is greedy if there exists a
onstant C su
h that for all m = 1, 2, . . . and all x ∈ X we have

‖x − Gm(x)‖ ≤ Cσm(x).This notion evolved in the theory of non-linear approximation, see e.g. [10℄, [13℄. Let usre
all the followingDefinition 1 ([7℄). A basis (xn)n∈N in a Bana
h spa
e X is demo
rati
 if there existsa 
onstant C su
h that for all �nite sets A,B ⊂ N of the same 
ardinality we have
‖
∑

n∈A xn‖ ≤ C‖
∑

n∈B xn‖.2000 Mathemati
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t Classi�
ation: Primary 41A46; Se
ondary 46B15.This work was partially supported by the KBN grant 1 PO3A 038 27. The author gratefullya
knowledges the support from the Foundation for Polish S
ien
e.The paper is in �nal form and no version of it will be published elsewhere.
[385]



386 P. WOJTASZCZYKThe following 
hara
terisation of greedy bases was proved in [7℄.Theorem 1 ([7℄). A semi-normalised basis (xn)n∈N in a Bana
h spa
e X is greedy ifand only if it is a demo
rati
 and un
onditional basis.From this Theorem one easily obtains that if (xn)n∈N is a greedy basis and (λn)n∈Nis a sequen
e of numbers su
h that 0 < infn∈N |λn| ≤ supn∈N |λn| < ∞ then (λnxn)n∈Nis also a greedy basis.From the approximation theory point of view the main example of a greedy basis isa Haar system in Lp where 1 < p < ∞. Also good wavelet bases in Lp are greedy. For asurvey about greedy bases the reader may 
onsult [14℄.In this note we investigate if the Haar system is greedy in other rearrangement in-variant spa
es besides Lp. Surprisingly, the answer is no, see Theorem 2. In subsequentse
tions we investigate Lorentz spa
es Lp,q. First we 
hara
terise subsequen
es of theHaar system whi
h are greedy in Lp,q, see Theorem 3. We 
on
lude this note with someproperties of a greedy basis in L2,q if su
h a basis exists at all.2. The Haar system in rearrangement invariant spa
es. Let us re
all that arearrangement invariant spa
e is a Bana
h spa
e (X, ‖.‖) whose elements are (equivalen
e
lasses of) measurable fun
tions on measure spa
e (Ω, µ) satisfying:1. if x ∈ X and y is a measurable fun
tion su
h that |y(ω)| ≤ |x(ω)| µ-a.e. then y ∈ Xand ‖y‖ ≤ ‖x‖2. if x ∈ X and y has the same distribution as x (i.e. for all λ ∈ R, µ({ω ∈ Ω : x(ω)

< λ}) = µ({ω ∈ Ω : y(ω) < λ})) then y ∈ X and ‖x‖ = ‖y‖.Clearly the most natural examples of rearrangement invariant spa
es are Lp spa
es for
1 ≤ p ≤ ∞.In our proof we will need a variant of a basi
ally known Lemma whi
h will serve as atool to identify the right p.Lemma 1. Let ϕ be a 
ontinuous in
reasing fun
tion on [0, 1] su
h that ϕ(0) = 0 and forsome 0 < c ≤ C < ∞ and some ∆ > 1 we have

cϕ(∆−n)ϕ(∆n−N ) ≤ ϕ(∆−N ) ≤ Cϕ(∆n−N )ϕ(∆−n) (1)for all 0 ≤ n ≤ N . Then there exists α ≥ 0 and 
onstants 0 < a ≤ A < ∞ su
h that
atα ≤ ϕ(t) ≤ Atα for all t ∈ [0, 1]Proof. We write N = n + k and we get

cϕ(∆−n)ϕ(∆−k) ≤ ϕ(∆−n−k) ≤ Cϕ(∆−k)ϕ(∆−n).Indu
tively we get for arbitrary integer s

csϕ(∆−n)s ≤ ϕ(∆−ns) ≤ Csϕ(∆−n)s.Taking logarithms with the base ∆ we obtain
s log c + s log ϕ(∆−n) ≤ log ϕ(∆−ns) ≤ s log C + s log ϕ(∆−n)so

| log ϕ(∆−ns) − s log ϕ(∆−n)| ≤ sM



GREEDINESS OF THE HAAR SYSTEM 387where M = max{| log c|, | log C|}. This we rewrite as
∣

∣

∣

∣

log ϕ(∆−ns)

ns
− log ϕ(∆−n)

n

∣

∣

∣

∣

≤ M

n
.Thus for all natural n and m we obtain

∣

∣

∣

∣

log ϕ(∆−m)

m
− log ϕ(∆−n)

n

∣

∣

∣

∣

≤
∣

∣

∣

∣

log ϕ(∆−m)

m
− log ϕ(∆−mn)

mn

∣

∣

∣

∣

+

∣

∣

∣

∣

log ϕ(∆−mn)

mn
− log ϕ(∆−n)

n

∣

∣

∣

∣

(2)
≤ M

m
+

M

n
.This implies that the limit limn→∞ log ϕ(∆−n)/n exists; we denote it by β. If we pass tothe limit with n → ∞ in inequality (2) we get

∣

∣

∣

∣

log ϕ(∆−m)

m
− β

∣

∣

∣

∣

≤ M

mwhi
h we rewrite as
∣

∣

∣

∣

log
ϕ(∆−m)

∆βm

∣

∣

∣

∣

≤ Mwhi
h gives
c′∆βm ≤ ϕ(∆−m) ≤ C ′∆βmfor m = 1, 2, . . . . Sin
e ϕ is in
reasing we easily get

at−β ≤ ϕ(t) ≤ At−β .Sin
e 
learly β ≤ 0 we get the 
laim.Remark. Let us note that if the fun
tion ϕ is de�ned on [0,∞) and (1) holds for allintegers N then atα ≤ ϕ(t) ≤ Atα for all t > 0. To see this observe that by Lemma 1 wehave atα ≤ ϕ(t) ≤ Atα for all t ∈ [0, 1] and applying (1) for N = 0 and n = 1, 2, . . . weobtain ϕ(∆−n)ϕ(∆n) ∼ 
onst. so ϕ(∆n) ∼ (∆n)α. This shows our 
laim.This Lemma is basi
ally known, see [15℄ or [4, page 60℄.We will be interested in the Haar system on [0, 1]d whi
h is de�ned as follows. Firstwe de�ne two fun
tions on R

h0(t) = 1[0,1] =

{

1 when t ∈ [0, 1],

0 otherwise,and
h1(t) = 1[0,1/2) − 1[1/2,1] =















1 when t ∈ [0, 1/2),

−1 when t ∈ [1/2, 1],

0 otherwise.We de�ne E to be the set of all sequen
es ε = (ε1, . . . , εd) where εi = 0, 1 and ∑d
i=1 εi > 0.For ε ∈ E we de�ne

hε(t1, . . . , td) = hε1(t1) · · · · · hεd(td).



388 P. WOJTASZCZYKThe system hε
n,k(t) = hε(2nt − k) with ε ∈ E, n ∈ Z and k ∈ Z

d is a Haar waveletbasis in R
d, normalised in L∞. The same system for n = 0, 1, 2, . . . and k ∈ Ln =

{0, 1, . . . , 2n − 1}d and ε ∈ E with the 
onstant fun
tion added is a Haar system on
[0, 1]d. The important fa
t about both those systems is that |hε

n,k| is the 
hara
teristi
fun
tion of a dyadi
 square of sidelength 2−n so of measure 2−nd.Theorem 2. Let X be a rearrangement invariant spa
e on [0, 1]d. If the Haar systemnormalised in X is a greedy basis in X then X = Lp[0, 1]d for some 1 < p < ∞ (withequivalent norm).Proof. For 0 ≤ t ≤ 1 we de�ne ϕ(t) = ‖1A‖X where A ⊂ [0, 1]d is any set of measure t.Sin
e X is a rearrangement invariant spa
e it is really a fun
tion of t; it is 
learly anin
reasing fun
tion. Sin
e X 
annot equal L∞ (whi
h does not have any basis) we inferthat ϕ is 
ontinuous and ϕ(0) = 0. We 
an assume that ϕ(1) = 1.We de�ne Hε
n.k = (ϕ(2−nd))−1hε

n,k. It is a Haar system normalised in X. For ea
h
ε ∈ E we have

∥

∥

∥

2nd
−1

∑

k=0

Hε
n,k

∥

∥

∥
= ‖(ϕ(2−nd))−1

1[0,1]d‖ = (ϕ(2−nd))−1. (3)Analogously for N ≥ n we have
∥

∥

∥

2nd
−1

∑

k=0

Hε
N,k

∥

∥

∥
= ϕ(2(n−N)d)(ϕ(2−Nd))−1. (4)Sin
e the Haar basis is demo
rati
 we get 
onstants 0 < c ≤ C < ∞ su
h that

cϕ(2(n−N)d)(ϕ(2−Nd))−1 ≤ (ϕ(2−nd))−1 ≤ Cϕ(2(n−N)d)(ϕ(2−Nd))−1 (5)for all n ≤ N . From Lemma 1 applied for ∆ = 2d we infer that ϕ(t) ∼ t1/p for some
p > 0. Sin
e X is a Bana
h spa
e, from the triangle inequality we get 1 ≤ p < ∞. We willshow that ‖f‖X ∼ ‖f‖p for all f ∈ X. From the density argument it su�
es to 
onsiderfun
tions f ≥ 0 of the form

f =

N
∑

j=1

aj1Ijwhere Ij are disjoint and |Ij | = 2−sd for some s ∈ N. For su
h an f we 
an �nd g of theform
g =

N
∑

j=1

2kjd/p
1Ijwith kj ∈ Z su
h that g ≤ f ≤ 2d/pg. This implies that ‖g‖X ≤ ‖f‖X ≤ 2d/p‖g‖X and

‖g‖p ≤ ‖f‖p ≤ 2d/p‖g‖p. So it su�
es to 
he
k that ‖g‖X ∼ ‖g‖p. Now let us de�ne Kjto be disjoint dyadi
 
ubes of measure 2−sd. Sin
e both X and Lp are rearrangementinvariant we get ‖g‖ = ‖∑N
j=1 2kjd/p

1Kj
‖ for both norm in X and norm in Lp By ho-mogeneity we 
an additionally assume that kj ≥ s for j = 1, 2, . . . , N . Now we subdivideea
h 
ube Kj into 2(kj−s)d equal dyadi
 
ubes Kj,r ea
h of measure 2−kjd. Let hj,r denoteany Haar fun
tion hε

kj ,k whose support equals Kj,r multiplied by 2kjd/p. Those fun
tions



GREEDINESS OF THE HAAR SYSTEM 389are normalised in Lp and seminormalised in X. We put
x =

N
∑

j=1

2(kj−s)d

∑

r=1

hj,r. (6)One easily 
he
ks that |x| = |g| so ‖x‖X = ‖g‖X and ‖x‖p = ‖g‖p. But x is a sum of
M =

∑N
j=1 2(kj−s)d seminormalised in X Haar fun
tions. Sin
e the Haar basis is greedyin X from lemma 1 and (3) we infer that ‖x‖X ∼ M1/p. On the other hand

‖x‖p = ‖g‖p =
(

N
∑

j=1

2kjd|Ij |
)1/p

=
(

N
∑

j=1

2(kj−s)d
)1/p

∼ ‖x‖X . (7)Thus we 
on
lude that ‖.‖X and ‖.‖p are equivalent, whi
h means that X = Lp withequivalent norm. Sin
e the Haar system is an un
onditional basis in X, the 
ase p = 1 isnot possible (it is known that the Haar system is not un
onditional basis in L1 and eventhat L1 does not have any un
onditional basis, see [4℄), so we get 1 < p < ∞.Remark. Using the Remark after Lemma 1 the above proof shows that Theorem 2 alsoholds for symmetri
 spa
es on R
d.Remark. Observe that throughout most of this proof we use only the assumption that

‖
∑

A Hε
n,k‖ ∼ ‖

∑

B Hε
n,k‖ for sets A and B of Haar fun
tions with disjoint supports and

|A| = |B|. Natural modi�
ation of our argument shows that this assumption implies that
X = Lp with 1 ≤ p < ∞. Only to ex
lude L1 we have to use the Haar fun
tions withoverlapping supports.Remark. If Haar is one demo
rati
 in X on [0, 1] than X = L2[0, 1] with equivalentnorm. To see it observe that ‖h0+h1‖ = ‖21[0,1/2]‖ = 2ϕ(1/2) but also = ‖ϕ(1/2)−1h1,0+

ϕ(1/2)−1h1,1‖ = ϕ(1/2)−1. Comparing we get ϕ(1/2) = 1/
√

2. From (5) with c = C = 1we get indu
tively ϕ(2−2) = ϕ(2−1)2 et
. so ϕ(2−k) = (
√

2)−k whi
h gives ϕ(t) ∼
√

t.Mu
h attention was paid in re
ent years to wavelet bases on R and on R
d. Let usre
all (
f. [11℄, [2℄) that a fun
tion Φ ∈ L2(R) is a wavelet if the system Φn,k(x) :=

2n/2Φ(2nx − k) for n, k ∈ Z (
alled a wavelet basis) is an orthonormal basis in L2(R).The Haar system is one of su
h bases 
orresponding to the Haar wavelet h1. It is known(
f. [11, 2, 12℄) that many natural wavelet bases are un
onditional bases in Lp(R) for
1 < p < ∞ equivalent to the Haar system (i.e. the map Φn,k ↔ h1

n,k extends by linearityto an isomorphism of Lp(R)). We haveProposition 1. If there exists a wavelet basis (Φn,k)n,k∈Z equivalent to the Haar basisin Lp(R) for all p, 1 < p < ∞ and greedy in a rearrangement invariant spa
e X on Rthen X = Lp(R) for some 1 < p < ∞Proof. We know from [7℄ that a greedy basis is un
onditional so X has an un
onditionalbasis. This implies (see [9, Remark 9.6 and Theorem 1.e.4℄) that the Haar system isun
onditional in X and X is an interpolation spa
e between Lp1
(R) and Lp2

(R) for some
1 < p1 < p2 < ∞. Sin
e (Φn,k)n,k∈Z is equivalent to (h1

n,k)n,k∈Z in Lp1
(R) and Lp2

(R) weinfer that (Φn,k)n,k∈Z is equivalent to (h1
n,k)n,k∈Z in X. This gives that the Haar systemis greedy in X so by Theorem 2 we get that X = Lp(R) for some p, 1 < p < ∞.



390 P. WOJTASZCZYKRemark. There exists a natural 
onstru
tion (wavelet tensor) of a wavelet basis on
R

d, see [11℄. With obvious and trivial modi�
ation the above argument extends to themultivariate 
ase.3. Haar in Lorentz spa
es. It is generally the 
ase that the Haar system is the "best"basis in a rearrangement invariant spa
e. It is true for example that if a rearrangementinvariant spa
e X has an un
onditional basis then the Haar system is su
h a basis. Thissuggests the 
onje
ture that if a rearrangement invariant spa
e X has a greedy basisthen the Haar system is greedy so by Theorem 2 X equals Lp for some 1 < p < ∞.Unfortunately this is not true. There are examples of rearrangement invariant spa
eswith symmetri
, so also greedy, basis, see [3℄. Nevertheless we believe that "
lassi
al"rearrangement invariant spa
es do not have greedy bases (unless they are Lp-spa
es).In this se
tion we 
olle
t some remarks about Lorentz spa
es. We are unable to showthat Lp,q spa
es with p 6= q do not have greedy basis (although we 
onje
ture that thisis the 
ase) but our results below indi
ate that if su
h a basis exists it has to be verystrange.In this and subsequent se
tions we will 
onsider only spa
es on [0, 1] and the onedimensional Haar system h1
n,k whi
h to avoid supers
ripts we will denote by hn,k.Let us �rst re
all the de�nition and basi
 properties of a Lorentz spa
e Lp,q[0, 1],

1 ≤ p, q < ∞. For a measurable fun
tion f on [0, 1] by f∗ we denote its non-in
reasingrearrangement i.e. a non-in
reasing fun
tion on [0, 1] with the same distribution as |f(x)|.The spa
e Lp,q[0, 1] is the 
olle
tion of all (equivalen
e 
lasses of) measurable fun
tions
f on [0, 1] su
h that

‖f‖p,q =

(
∫ 1

0

f∗(x)qx
q

p
−1 dx

)1/q

< ∞ (8)For 1 ≤ q ≤ p the quantity ‖.‖p,q is a norm but for 1 < p < q the triangle inequality isnot satis�ed and ‖.‖p,q is only a quasi-norm. Nevertheless this quasi-norm is equivalent tothe norm. It is also 
lear that Lp,p = Lp. We have the following 
ontinuous embeddings:
Lp1,q1

[0, 1] ⊂ Lp1,q2
[0, 1] ⊂ Lp2,q3

[0, 1] (9)whenever q1 ≤ q2 and p1 > p2. It is also known that Lp,q[0, 1] has an un
onditionalbasis only when 1 < p < ∞ and 1 ≤ q < ∞. In su
h situation the Haar system is anun
onditional basis.First we want to 
he
k what subsequen
es of the Haar system are greedy in its spanin Lp,q norm.It follows from Proposition 8.10 from [3℄ and Lemma 2.1 from [1℄ that any un
ondi-tional basis in Lp,q[0, 1], 1 < p < ∞, 1 ≤ q < ∞ has a subsequen
e equivalent to the unitve
tor basis in ℓq. So we haveLemma 2. If (xn)∞n=1 is a greedy basis in Lp,q[0, 1], 1 < p < ∞, 1 ≤ q < ∞ then
‖∑

n∈A xn‖p,q ∼ |A|1/q.Our next aim is to exhibit su
h subsequen
es in the Haar system.Proposition 2. Let xn = 2n/phn,k(n) for n = 1, 2, . . . and 0 ≤ k(n) < 2n. The sequen
e
(xn)∞n=1 is in Lp,q[0, 1] equivalent to the unit ve
tor basis in ℓq.



GREEDINESS OF THE HAAR SYSTEM 391Proof. Let us �x a subsequen
e of the Haar system of the form hn,l(n) for n = 1, 2, . . .in su
h a way that supphn,l(n) = (2−n, 2−n+1) so those Haar fun
tions have disjointsupports. Using this sequen
e we de�ne operators Q and S on the Haar system as follows
Q(hn,j) =

{

hn,l(n) if (n, j) = (n, k(n)),

0 otherwise,and
S(hn,j) =

{

hn,k(n) if (n, j) = (n, l(n)),

0 otherwise.One easily 
he
ks and it is well known that both operators extend to 
ontinuous linearoperators on Lp[0, 1] for 1 < p < ∞ so by interpolation they are 
ontinuous on Lp,q[0, 1].This means that the sequen
e (xn)∞n=1 is equivalent to the sequen
e 2n/phn,l(n). In otherwords we 
an assume that xn has disjoint supports. For q ≤ p we have (below τ denotesthe measure preserving transformation on [0, 1])
∥

∥

∥

∞
∑

n=1

anxn

∥

∥

∥

q

p,q
≤

∥

∥

∥

∞
∑

n=1

an2n/phn,l(n)

∥

∥

∥

q

p,q

= sup
τ

∫ 1

0

∣

∣

∣

∞
∑

n=1

an2n/phn,l(n)(τ(t))
∣

∣

∣

q

t
q

p
−1 dt

= sup
τ

∞
∑

n=1

|an|q
∫ 1

0

|2n/phn,l(n))(τ(t))|qt
q

p
−1 dt

≤
∞
∑

n=1

|an|q sup
n

∫ 2−n

0

2nq/pt
q

p
−1 dt

=

∞
∑

n=1

|an|q.On the other hand we have
∥

∥

∥

∞
∑

n=1

anxn

∥

∥

∥

q

p,q
≥

∞
∑

n=1

|an|q2nq/p

∫ 2−n+1

2−n

t
q

p
−1 dt ≥ C

∞
∑

n=1

|an|q.The 
ase q > p follows by duality.Lemma 3. Let 0 < j1 < j2 < · · · < js ≤ 2n be a sequen
e of integers. Then
∥

∥

∥

s
∑

i=1

2n/phn,ji

∥

∥

∥

p,q
=

(

p

q

)1/q

s1/p.Proof. We have
∥

∥

∥

s
∑

i=1

2n/phn,ji

∥

∥

∥

p,q
= 2n/p‖1[0,s2−n]‖p,q = 2n/p

(
∫ s2−n

0

t
q

p
−1 dt

)1/q

= 2n/p

(

p

q
(s2−n)

q

p

)1/q

=

(

p

q

)1/q

s1/p.From the above we obtain



392 P. WOJTASZCZYKTheorem 3. If a subsequen
e of the Haar system is greedy (in its linear span) in Lp,q[0, 1]with p 6= q, 1 < p < ∞ and 1 ≤ q < ∞, then it is equivalent to the unit ve
tor basis in ℓq.Proof. From Proposition 2 we see that our subsequen
e of the Haar system has a sub-sequen
e equivalent to the unit ve
tor basis in ℓq so by demo
ra
y the sum of any Nelements of our subsequen
e has the norm ∼ N1/q. If we 
ompare this with Lemma 3 weinfer that there exists a natural number s su
h that for ea
h n our subsequen
e 
ontainsat most s elements from ea
h level of Haar fun
tions (hn,j)
2n

−1
j=0 . Applying Proposition 2on
e more we see that our subsequen
e is equivalent to the unit ve
tor basis in ℓq.Now we will de�ne generalised Haar systems on [0, 1]. Su
h systems were studied e.g.in [6℄. Let T = {tj}∞j=0 be a sequen
e of distin
t points from the interval [0, 1] whi
his dense in [0, 1] and su
h that t0 = 0 and t1 = 1. By l(tn) we mean the biggest ofthose points t0, t1, . . . , tn−1 whi
h are < tn and by r(tn) we mean the smallest of thosepoints t0, t1, . . . , tn−1 whi
h are > tn. The generalised Haar system 
orresponding to thesequen
e T is de�ned as follows: h1(t) = 1 and for n > 1 we put

hn(t) =















0 if t ≤ l(tn) or t ≥ r(tn),

(tn − l(tn))−1 if t ∈ (l(tn), tn),

−(r(tn) − tn)−1 if t ∈ (tn, r(tn)).It is known that ea
h generalised Haar system is an un
onditional and greedy basis in
Lp[0, 1] for 1 < p < ∞, see [6℄.Corollary 1. No generalised Haar system is greedy in Lp,q[0, 1] 1 < p < ∞ and 1 ≤
q < ∞, p 6= q.Proof. It was shown in [6, Theorem 3.2℄ that ea
h generalised Haar system is in Lpequivalent to a subsequen
e of the dyadi
 Haar system. The argument given there showsthat the map whi
h establishes the equivalen
e is the same for all p's with 1 < p < ∞.By interpolation it implies that the generalised Haar system in Lp,q[0, 1], 1 < p < ∞ and
1 ≤ q < ∞, p 6= q is equivalent to a subsequen
e of the dyadi
 Haar system in Lp,q[0, 1].By Theorem 3 it 
annot be greedy be
ause Lp,q is not isomorphi
 to ℓq.4. Greedy bases in Lorentz spa
es. In this se
tion we present some observationswhi
h suggest that if there exists a greedy basis in Lp,q[0, 1] with p 6= q than it has to berather strange. Sin
e our results are highly non
on
lusive we present them only for thesimplest 
hoi
e of parameters p, q. It is 
lear that our Propositions 3 and 4 hold for someother 
hoi
es of parameters.Proposition 3. No orthogonal system is a greedy basis in L2,q[0, 1] for 1 ≤ q < ∞,
q 6= 2.Lemma 4. Let (en)∞n=1 be a greedy basis in a Bana
h spa
e X su
h that ‖∑

n∈A en‖ ∼
|A|1/p for some p, 1 ≤ p < ∞. Then there are 
onstants 0 < c ≤ C su
h that

c‖(an)‖p,∞ ≤
∥

∥

∥

∞
∑

n=1

anen

∥

∥

∥
≤ C‖(an)‖p,1 (10)for all sequen
es of s
alars.
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ally known (see [8, Theorem 2.5.2℄ or [13, Theorem 3℄). Sin
e Iwas unable to �nd an exa
t referen
e the proof is given for the 
onvenien
e of the reader.Proof. Let us assume (to simplify the notation) that |an| ց 0 and put nk = |{n : |an| >

2−k}|. The right hand side inequality for p = 1 is obvious. For p > 1 we have
∥

∥

∥

∞
∑

n=1

anen

∥

∥

∥
≤ C

∑

k

2−k−1
∥

∥

∥

nk+1
∑

nk+1

en

∥

∥

∥

≤ C
∑

k

2−kn
1/p
k ≤ C

∑

k

2−k
nk
∑

s=1

s
1
p
−1

= C

∞
∑

s=1

s
1
p
−1

∑

k : nk>s

2−k ≤ C

∞
∑

s=1

s
1
p
−1|as|

≤ C‖(an)‖p,1.On the other hand for ea
h N

∥

∥

∥

∑

n

anen

∥

∥

∥
≥ C

∥

∥

∥
aN

N
∑

n=1

en

∥

∥

∥
≥ C|aN |N1/p

so ‖(an)‖p,∞ ≤ C‖
∑

n anen‖.Now we are ready for the proof of the Proposition. Let (fn)∞n=1 be an orthogonalsystem whi
h is a greedy basis in L2,q[0, 1] and ‖fn‖2,q = 1 for n = 1, 2, . . . Let us startwith the 
ase 1 ≤ q < 2 and �x r su
h that q < r < 2. We have the 
ommutative diagram
L2,q[0, 1]

id−−−−→ L2[0, 1]

α





y

x




Σ

ℓq,∞ −−−−→
id

ℓrwhere id denotes the identity embedding. For f =
∑

n anfn we put α(f) = (an)∞n=1. ByLemma 4 α is a 
ontinuous operator. We de�ne Σ((ξn)∞n=1) =
∑

∞

n=1 ξnfn. It is also a
ontinuous operator be
ause
∥

∥

∥

∞
∑

n=1

ξnfn

∥

∥

∥

2
=

√

√

√

√

∞
∑

n=1

|ξn|2‖fn‖2
2 ≤ C

√

√

√

√

∞
∑

n=1

|ξn|2‖fn‖2
2,q

≤ C

√

√

√

√

∞
∑

n=1

|ξn|2 ≤ C
(

∞
∑

n=1

|ξn|r
)1/r

.Clearly id = Σ ◦ id ◦α so it is a 
ommutative diagram. This however is impossible. It is awell known dire
t 
onsequen
e from the Khint
hin inequality that id : L2,q[0, 1] → L2[0, 1]is an isomorphism when restri
ted to the in�nite dimensional Hilbert spa
e R spanned bythe Radema
her fun
tions. This would imply that id◦α(R) is a subspa
e of ℓr isomorphi
to a Hilbert spa
e but it is known that no subspa
e of ℓr is isomorphi
 to an in�nitedimensional Hilbert spa
e. This 
ontradi
tion proves our 
laim.
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ase q > 2 we 
hoose r su
h that q > r > 2 and 
onsider a dual diagram
L2[0, 1]

id−−−−→ L2,q[0, 1]

α





y

x




Σ

ℓ2 −−−−→
id

ℓrwhere α and Σ are de�ned by the same formulas. Analogously we obtain that they are
ontinuous and that the diagram is 
ommutative. This leads to the 
ontradi
tion exa
tlyas before.Before we pro
eed let us introdu
e some notation. For given N = 1, 2, . . . let In =

[n−1
N , n

N ) for n = 1, 2, . . . , N . By CN we denote the spa
e of all fun
tion of the form
f =

∑N
n=1 an1In

.Lemma 5. For a fun
tion f ∈ CN and 1 < p < ∞ we have
C(log N)

1
p
−

1
q ‖f‖p,q ≤ ‖f‖p ≤ ‖f‖p,q if q < p (11)and

‖f‖p,q ≤ ‖f‖p ≤ C(log N)
1
p
−

1
q ‖f‖p,q if q > p (12)where 
onstants do not depend on f and N .Proof. Clearly ‖f‖p = N−1/p(

∑N
n=1 |an|p)1/p and easy 
al
ulation shows that

‖f‖p,q ∼ N−1/p
(

N
∑

n=1

|a∗

n|qn
q

p
−1

)1/p (13)where as usual |a∗

n| denotes the nonin
reasing rearrangement of (|an|)N
n=1. For q < p weuse Hölder's inequality to obtain

N
∑

n=1

|a∗

n|qn
q

p
−1 ≤

(

N
∑

n=1

|a∗

n|p
)q/p( N

∑

n=1

n( q

p
−1) p

p−q

)

p−q

p

= ‖f‖q
p

(

N
∑

n=1

n−1
)

p−q

p ≤ C‖f‖q
p(log N)

p−q

p . (14)From (13) and (14) we get (11). The inequality (12) is proved analogously.Now we are ready to prove our last observation.Proposition 4. Let (fn)∞n=1 be a greedy basis in L2,q[0, 1]. There exists a 
onstant C > 0su
h that if for some k and ea
h n = 1, 2, . . . , k we have fn ∈ CN(k), then N(k) ≥ exp k/C.Proof. We will 
onsider only the 
ase q < 2, the 
ase q > 2 is proved analogously. FromLemma 2 we infer that ‖∑k
n=1 ±fn‖2,q ∼ k1/q. It is a well known 
onsequen
e of theKhint
hine inequality that for any gn in L2 the average over all signs of ‖∑

n ±gn‖2 =
√

∑

n ‖gn‖2
2. So there exists a 
hoi
e of signs su
h that ‖∑k

n=1 ±fn‖2 ≤
√

∑k
n=1 ‖fn‖2

2.
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hoi
e of signs from (11) we get
k1/q ≤ C(lnN(k))

1
q
−

1
2

√

√

√

√

k
∑

n=1

‖fn‖2
2

≤ C(lnN(k))
1
q
−

1
2

√

√

√

√

k
∑

n=1

‖fn‖2
2,q

= Ck1/2(ln N(k))
1
q
−

1
2 .This immediately gives the 
laim.Remark. The above arguments 
arry over to the situation when CN is a subspa
e gen-erated by 
hara
teristi
 fun
tion of a partition of [0, 1] into N sets of measure ∼ N−1.This in parti
ular implies that if a greedy basis 
onsists of linear 
ombinations of Haarfun
tions, then in the best 
ase we need approximately n levels of the Haar fun
tions towrite �rst n elements of the basis.
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