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1. Introduction. Greedy bases attracted some attention in recent years; mostly, I think,
due to the fact that they can be studied both from concrete approximation theory point
of view and from an abstract Banach space perspective. Let (z,,)nen be a semi-normalised
basis in a Banach space X. This means that (x,),en is a Schauder basis in some fixed
order (see [4]) and is semi-normalised, i.e. 0 < inf, ey ||| < sup,en ||Zn]] < co. For an
element x € X we define the error of the best m-term approximation as follows:

om(x) = inf{‘ T — neZAanmn }

where the inf is taken over all subsets A C N of cardinality at most m and all possible

scalars a;,. We also define the greedy approximation of v =} a,x, € X as
Gm(z) = Z GnTn,
neA
where A C N is any set of cardinality m chosen in such a way that |a,| > |a;| whenever
n € Aand ! ¢ A We say that a semi-normalised basis (z,,)nen is greedy if there exists a
constant C' such that for all m =1,2,... and all x € X we have

[ = G (2)[| < Com(x).
This notion evolved in the theory of non-linear approximation, see e.g. [10], [13]. Let us
recall the following

DEFINITION 1 ([7]). A basis (2, )nen in a Banach space X is democratic if there exists
a constant C such that for all finite sets A, B C N of the same cardinality we have

12 neaznll < Cl 3 0ep nll-

2000 Mathematics Subject Classification: Primary 41A46; Secondary 46B15.

This work was partially supported by the KBN grant 1 PO3A 038 27. The author gratefully
acknowledges the support from the Foundation for Polish Science.

The paper is in final form and no version of it will be published elsewhere.

(385]



386 P. WOJTASZCZYK

The following characterisation of greedy bases was proved in [7].

THEOREM 1 ([7]). A semi-normalised basis (Tp)nen in a Banach space X is greedy if
and only if it is a democratic and unconditional basis.

From this Theorem one easily obtains that if (x,)nen is a greedy basis and (A, )nen
is a sequence of numbers such that 0 < inf,en [An| < sup,en |An| < 00 then (An2y,)nen
is also a greedy basis.

From the approximation theory point of view the main example of a greedy basis is
a Haar system in L, where 1 < p < co. Also good wavelet bases in L, are greedy. For a
survey about greedy bases the reader may consult [14].

In this note we investigate if the Haar system is greedy in other rearrangement in-
variant spaces besides L,. Surprisingly, the answer is no, see Theorem 2. In subsequent
sections we investigate Lorentz spaces L, ,. First we characterise subsequences of the

Haar system which are greedy in L, ,, see Theorem 3. We conclude this note with some

P>
properties of a greedy basis in Ly 4 if such a basis exists at all.

2. The Haar system in rearrangement invariant spaces. Let us recall that a
rearrangement invariant space is a Banach space (X, ||.||) whose elements are (equivalence
classes of) measurable functions on measure space (€, 1) satisfying:

1. if z € X and y is a measurable function such that |y(w)| < |z(w)| p-a.e. then y € X
and [l < o]

2. if z € X and y has the same distribution as z (i.e. for all A € R, pu({w € @ : z(w)
<A = i{w €0 ¢ y(w) < AD) them y € X and 2] = Jyl.

Clearly the most natural examples of rearrangement invariant spaces are L, spaces for
1<p<oo

In our proof we will need a variant of a basically known Lemma which will serve as a
tool to identify the right p.

LEMMA 1. Let ¢ be a continuous increasing function on [0,1] such that ¢(0) = 0 and for
some 0 < ¢ < C < oo and some A > 1 we have

cp(AT)p(A"N) < p(ATN) < Cp(A"N)p(A™") (1)

for all 0 < n < N. Then there exists a« > 0 and constants 0 < a < A < oo such that
at® < p(t) < At“ for allt € [0,1]

Proof. We write N =n + k and we get
cp(ATM)P(ATF) S p(ATTE) < Cp(ATF)p(A™™).
Inductively we get for arbitrary integer s
(A7) < p(AT) < COp(AT)"
Taking logarithms with the base A we obtain
sloge+ slog p(A™") <logp(A™"*) < slog C + slog p(A™™)

SO
|log o(A™") — slogp(A™")| < sM
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where M = max{]|log¢|, |log C|}. This we rewrite as

log p(A7")  logp(A™")
ns n

M
=

<

Thus for all natural n and m we obtain

log p(A™™)  logp(A™")

m n
logp(A™™) _ logp(A™™)| | |logp(AT™") _ logp(A™") 2)
m mn mn n
M M
<=+
m n

This implies that the limit lim, . log @(A~™)/n exists; we denote it by (5. If we pass to
the limit with n — oo in inequality (2) we get

log p(A™™) _ﬂ‘ <M
m m
which we rewrite as
(A7)

which gives
C/Aﬁm < (P(A_m) < C/Aﬁm
for m =1,2,.... Since ¢ is increasing we easily get
at™? < p(t) < At7P.
Since clearly 8 < 0 we get the claim. =m
REMARK. Let us note that if the function ¢ is defined on [0,00) and (1) holds for all
integers N then at® < ¢(t) < At® for all t > 0. To see this observe that by Lemma 1 we

have at® < o(t) < At for all ¢ € [0,1] and applying (1) for N =0and n =1,2,... we
obtain p(A™")p(A™) ~ const. so @(A™) ~ (A™)*. This shows our claim.

This Lemma is basically known, see [15] or [4, page 60].
We will be interested in the Haar system on [0, 1]¢ which is defined as follows. First
we define two functions on R

1 whent € [0,1]
0 ) 4]y
PO = 1o = {O otherwise,

and
1 whent€0,1/2),
h'(t) = Ljp1/2) — Lj1j2,0) = § —1 when t € [1/2,1],

0 otherwise.

We define E to be the set of all sequences e = (e1,...,&4) whereg; = 0,1 and Zle g; > 0.
For € € E we define

RE(ty, ... ta) = h(t) - -+ h¥4 (tg).
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The system h;, ,(t) = h*(2"t — k) with ¢ € F, n € Z and k € 7% is a Haar wavelet
basis in RY, normalised in L.,. The same system for n = 0,1,2,... and k € L, =
{0,1,...,2" — 1}? and ¢ € E with the constant function added is a Haar system on
[0,1]¢. The important fact about both those systems is that |, 1| is the characteristic
function of a dyadic square of sidelength 2=" so of measure 2~

THEOREM 2. Let X be a rearrangement invariant space on [0, 1]d. If the Haar system
normalised in X is a greedy basis in X then X = L,[0,1]¢ for some 1 < p < oo (with
equivalent norm,).

Proof. For 0 <t < 1 we define ¢(t) = ||1a||x where A C [0,1]¢ is any set of measure ¢.
Since X is a rearrangement invariant space it is really a function of ¢; it is clearly an
increasing function. Since X cannot equal Lo, (which does not have any basis) we infer
that ¢ is continuous and ¢(0) = 0. We can assume that ¢(1) = 1.

We define H: , = (@(2_”d))_1h27k. It is a Haar system normalised in X. For each
€ € E we have

Til k|| = 1027 g yjall = (0(2774)) 7 (3)
k=0

Analogously for N > n we have

2%1 Je\hk _ @(Q(TL*N)d)((p(Qde))fl' (4)
k=0

Since the Haar basis is democratic we get constants 0 < ¢ < C < oo such that
cp(2U NN (p(27N)) T < (p(27) T < Cp2 TN (p(27N ) (5)

for all n < N. From Lemma 1 applied for A = 2¢ we infer that ¢(t) ~ t'/? for some
p > 0. Since X is a Banach space, from the triangle inequality we get 1 < p < co. We will
show that || f||x ~ || f]|, for all f € X. From the density argument it suffices to consider
functions f > 0 of the form

N
f=> il
j=1

where I; are disjoint and |I;| = 2754 for some s € N. For such an f we can find g of the

form
N

g = szjd/P]_Ij

j=1

with k; € Z such that g < f < 24/Pg. This implies that ||g|x < ||fllx < 2%?||g|x and
lglly < If]l, < 29/P|g]l,- So it suffices to check that ||g||x ~ [|g|l,- Now let us define K
to be disjoint dyadic cubes of measure 27°¢. Since both X and L, are rearrangement
invariant we get |lg]| = || Z;\le 2kid/P1 || for both norm in X and norm in L, By ho-
mogeneity we can additionally assume that k; > s for j = 1,2,..., N. Now we subdivide
each cube K into 2(F=%)¢ equal dyadic cubes K, each of measure 27%i%. Let b, denote
any Haar function hiwk whose support equals K , multiplied by 2kid/P Those functions
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are normalised in L, and seminormalised in X. We put

N o(kj—9)d
T=2> > bir (6)

j=1 r=1
One easily checks that |z| = |g| so ||z]|x = |lg]|x and ||z|, = ||g||,- But x is a sum of

M = Z;vzl 2(k;=9)d seminormalised in X Haar functions. Since the Haar basis is greedy
in X from lemma 1 and (3) we infer that ||z||x ~ M?. On the other hand

A k;d p z ks —sya) /P
ol = llgll, = (32 25%1551) © = (D 257) 7 ~ Jalx. (7)
j=1 j=1

Thus we conclude that |.||x and ||.||, are equivalent, which means that X = L, with
equivalent norm. Since the Haar system is an unconditional basis in X, the case p =1 is
not possible (it is known that the Haar system is not unconditional basis in L; and even
that Ly does not have any unconditional basis, see [4]), so we get 1 <p < co. =

REMARK. Using the Remark after Lemma 1 the above proof shows that Theorem 2 also
holds for symmetric spaces on RZ.

REMARK. Observe that throughout most of this proof we use only the assumption that
1224 Hy, il ~ 1 225 H, 1|l for sets A and B of Haar functions with disjoint supports and
|A| = | B|. Natural modification of our argument shows that this assumption implies that
X = L, with 1 < p < co. Only to exclude L; we have to use the Haar functions with
overlapping supports.

REMARK. If Haar is one democratic in X on [0,1] than X = L5[0,1] with equivalent
norm. To see it observe that [|h°+h'|| = [|21(9,1/9][| = 2¢(1/2) but also = ||¢(1/2) " hy o+
©(1/2)7 hy 1] = ¢(1/2)~1. Comparing we get (1/2) = 1/v/2. From (5) with c = C =1
we get inductively ¢(272) = (2712 etc. so p(27F) = (v/2)~* which gives ¢(t) ~ V1.

Much attention was paid in recent years to wavelet bases on R and on R%. Let us
recall (cf. [11], [2]) that a function ® € Lo(R) is a wavelet if the system @, x(z) :=
27/2®(2"x — k) for n,k € 7 (called a wavelet basis) is an orthonormal basis in Lo(R).
The Haar system is one of such bases corresponding to the Haar wavelet h'. It is known
(cf. [11, 2, 12]) that many natural wavelet bases are unconditional bases in L,(R) for
1 < p < oo equivalent to the Haar system (i.e. the map ®,, < h}l’k extends by linearity
to an isomorphism of L,(R)). We have

PROPOSITION 1. If there exists a wavelet basis (P, k)n kez equivalent to the Haar basis
in L,(R) for all p, 1 < p < oo and greedy in a rearrangement invariant space X on R
then X = L,(R) for some 1 < p < o0

Proof. We know from [7] that a greedy basis is unconditional so X has an unconditional
basis. This implies (see [9, Remark 9.6 and Theorem 1.e.4]) that the Haar system is
unconditional in X and X is an interpolation space between L, (R) and Ly, (R) for some
1 < p1 < p2 < 0. Since (P, 1 )n kez is equivalent to (h}hk)n,kez in L, (R) and Ly, (R) we
infer that (®, 1 )n kez is equivalent to (h}hk)n,kel in X. This gives that the Haar system
is greedy in X so by Theorem 2 we get that X = L,(R) for some p, 1 <p < oo. =
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REMARK. There exists a natural construction (wavelet tensor) of a wavelet basis on
R?, see [11]. With obvious and trivial modification the above argument extends to the
multivariate case.

3. Haar in Lorentz spaces. It is generally the case that the Haar system is the "best"
basis in a rearrangement invariant space. It is true for example that if a rearrangement
invariant space X has an unconditional basis then the Haar system is such a basis. This
suggests the conjecture that if a rearrangement invariant space X has a greedy basis
then the Haar system is greedy so by Theorem 2 X equals L, for some 1 < p < oo.
Unfortunately this is not true. There are examples of rearrangement invariant spaces
with symmetric, so also greedy, basis, see [3]. Nevertheless we believe that "classical"
rearrangement invariant spaces do not have greedy bases (unless they are L,-spaces).

In this section we collect some remarks about Lorentz spaces. We are unable to show
that L, , spaces with p # ¢ do not have greedy basis (although we conjecture that this
is the case) but our results below indicate that if such a basis exists it has to be very
strange.

In this and subsequent sections we will consider only spaces on [0,1] and the one
dimensional Haar system h}hk which to avoid superscripts we will denote by A, j.

Let us first recall the definition and basic properties of a Lorentz space L, 4[0, 1],
1 < p,q < oo. For a measurable function f on [0,1] by f* we denote its non-increasing
rearrangement i.e. a non-increasing function on [0, 1] with the same distribution as | f(z)].
The space L, 4[0,1] is the collection of all (equivalence classes of) measurable functions
f on [0,1] such that

1 . 1/q
||f||p,q( / f*(r)qwrlda?> < o0 ®)

For 1 < ¢ < p the quantity ||.||, 4 is a norm but for 1 < p < ¢ the triangle inequality is
not satisfied and ||.||,,4 is only a quasi-norm. Nevertheless this quasi-norm is equivalent to
the norm. It is also clear that L, , = L,. We have the following continuous embeddings:

Lpl,th [07 1] - LPMIz [07 1] - Lpz,!ls [07 1] (9)

whenever ¢; < ¢o and p; > po. It is also known that L, ,[0,1] has an unconditional
basis only when 1 < p < 0o and 1 < ¢ < co. In such situation the Haar system is an
unconditional basis.

First we want to check what subsequences of the Haar system are greedy in its span
in L, , norm.

It follows from Proposition 8.10 from [3] and Lemma 2.1 from [1] that any uncondi-
tional basis in L, 4[0,1], 1 < p < 00, 1 < ¢ < oo has a subsequence equivalent to the unit
vector basis in ¢;. So we have

LEMMA 2. If (2,)22, is a greedy basis in L, 4[0,1], 1 < p < 00, 1 < ¢ < oo then
> nea@nllpg ~ A9

Our next aim is to exhibit such subsequences in the Haar system.

PROPOSITION 2. Let x,, = 2"/phn7k(n) form=1,2,... and 0 < k(n) < 2™. The sequence
(@n)22y ts in Ly 4[0,1] equivalent to the unit vector basis in ly.
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Proof. Let us fix a subsequence of the Haar system of the form h,, ;) for n =1,2,...
in such a way that supph,, i) = (27™,27"*1) so those Haar functions have disjoint
supports. Using this sequence we define operators ) and S on the Haar system as follows

Qhny) = {hn’l(") if (n, ) = (n, k(n)),

0 otherwise,

and
S(hn ;) = {hn,k(n) if (n, ) = (n,1(n)),

0 otherwise.

One easily checks and it is well known that both operators extend to continuous linear
operators on L,[0, 1] for 1 < p < oo so by interpolation they are continuous on L, 4[0,1].
This means that the sequence (z,,)22; is equivalent to the sequence 2"/phn’l(n). In other
words we can assume that x,, has disjoint supports. For ¢ < p we have (below 7 denotes
the measure preserving transformation on [0, 1])

oo q oo

H § AnTn < H E anQn/phn,l(n)
— p.q —

n=1 n=1

q
p.q

1 oo
q g
= sup/ ‘ Z anQ"/phnvl(n) (T(t))‘ tr L dt
0 "p=1

T

oo 1
—sup Y fanl? / 1272 oy (r ()] 925
T n=1 0

o—m
< Z |an|qsup/ 2na/Pey =t gy
0

On the other hand we have

o0 q o0
H § :anzn > § :|an|Q2an/p/
n=1 P n=1 2

The case ¢ > p follows by duality. m

2—n,+1

o0
trtdt > C lan”.
n=1

LEMMA 3. Let 0 < j1 < jo < -+- < Js < 2™ be a sequence of integers. Then

s 1/q
H Z Qn/phn,ji — (p) s1/P.
=1 P, q

s2™ ™ .« 1/q
=2“/P||1[o,52n]np,q:z““’( [ dt)
p,q 0

1/q 1/q
— 2"/17(8( 2—71)5) — (E) R/ -
q q

From the above we obtain

Proof. We have

S
H > 2" Pha,
=1
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THEOREM 3. If a subsequence of the Haar system is greedy (in its linear span) in Ly, 4]0, 1]
withp #q, 1 <p < oo andl < g < oo, then it is equivalent to the unit vector basis in {g.

Proof. From Proposition 2 we see that our subsequence of the Haar system has a sub-
sequence equivalent to the unit vector basis in ¢; so by democracy the sum of any N
elements of our subsequence has the norm ~ N'/4. If we compare this with Lemma 3 we

infer that there exists a natural number s such that for each n our subsequence contains
2n—1
j=0

once more we see that our subsequence is equivalent to the unit vector basis in /;. »

at most s elements from each level of Haar functions (h,, ;) . Applying Proposition 2

Now we will define generalised Haar systems on [0, 1]. Such systems were studied e.g.
in [6]. Let 7 = {t;}32, be a sequence of distinct points from the interval [0, 1] which
is dense in [0,1] and such that tx = 0 and ¢; = 1. By I(¢,) we mean the biggest of
those points tg, t1,...,t,—1 which are < ¢,, and by r(¢,,) we mean the smallest of those
points tg, t1,...,t,_1 Which are > t,,. The generalised Haar system corresponding to the
sequence 7 is defined as follows: hq(t) =1 and for n > 1 we put

0 if t <I(t,) or t > r(ty,),
ha(t) = Q (tn = U(tn)) ™t if t € (I(ta), tn),
—(r(tn) — tn)™L it € (tn, 7 (tn)).

It is known that each generalised Haar system is an unconditional and greedy basis in
L,[0,1] for 1 < p < o0, see [6].

COROLLARY 1. No generalised Haar system is greedy in Ly 4[0,1] 1 < p < 0o and 1 <
q <00, p#q.

Proof. It was shown in [6, Theorem 3.2] that each generalised Haar system is in L,
equivalent to a subsequence of the dyadic Haar system. The argument given there shows
that the map which establishes the equivalence is the same for all p’s with 1 < p < oo.
By interpolation it implies that the generalised Haar system in L, 4[0,1], 1 < p < oo and
1 < g < o0, p#qis equivalent to a subsequence of the dyadic Haar system in L, ,4[0, 1].
By Theorem 3 it cannot be greedy because L, 4 is not isomorphic to ¢;. =

4. Greedy bases in Lorentz spaces. In this section we present some observations
which suggest that if there exists a greedy basis in L, 4[0, 1] with p # ¢ than it has to be
rather strange. Since our results are highly nonconclusive we present them only for the
simplest choice of parameters p, q. It is clear that our Propositions 3 and 4 hold for some
other choices of parameters.

PROPOSITION 3. No orthogonal system is a greedy basis in Lo 4[0,1] for 1 < ¢ < oo,

q7# 2

LEMMA 4. Let (e,)52, be a greedy basis in a Banach space X such that || Y 4 en| ~
\A|1/p for some p, 1 < p < co. Then there are constants 0 < ¢ < C such that
oo
ell (@)oo < || D2 anea| < Clltan) (10)
n=1

for all sequences of scalars.
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This Lemma is basically known (see [8, Theorem 2.5.2] or [13, Theorem 3|). Since I
was unable to find an exact reference the proof is given for the convenience of the reader.

Proof. Let us assume (to simplify the notation) that |a,| \, 0 and put n; = |[{n : |a,| >
27k1|. The right hand side inequality for p = 1 is obvious. For p > 1 we have

H ianen < C’ZQ*kAH il en
n=1 k ng+1
< C’ZQ*kni/p < C’ZQik nzks%_l
k k s=1

o0 o0
= C’Zs%*l Z 27k < C’Zs%*lms\
s=1 k:ng>s s=1
< Cll(an)llp,1-
On the other hand for each N
N
H Zanen > CHaN Zen > C\aN\Nl/p
n n=1

50 [[(@n)llpcc < Cl1 22, anenl|-

Now we are ready for the proof of the Proposition. Let (f,)2°; be an orthogonal
system which is a greedy basis in Ly 4[0,1] and || f]|2,; = 1 for n =1,2,... Let us start
with the case 1 < ¢ < 2 and fix r such that ¢ < r < 2. We have the commutative diagram

Ly gl0,1] —2— L,[0,1]

o E

lyoo — b
id
where id denotes the identity embedding. For f = )" a,f, we put a(f) = (an)32,. By

Lemma 4 « is a continuous operator. We define 3((£,)52,) = >, & fn. It is also a
continuous operator because

|32 ntal, = \[ D16l lsalE < O\ D 6Pl fulE
n=1 n=1 n=1

<o Slako(Ylr)”.
n=1 n=1

Clearly id = Y oid o« so it is a commutative diagram. This however is impossible. It is a
well known direct consequence from the Khintchin inequality that id : L 4[0,1] — L2[0,1]
is an isomorphism when restricted to the infinite dimensional Hilbert space R spanned by
the Rademacher functions. This would imply that ido«(R) is a subspace of ¢, isomorphic
to a Hilbert space but it is known that no subspace of ¢, is isomorphic to an infinite
dimensional Hilbert space. This contradiction proves our claim.
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For the case ¢ > 2 we choose r such that ¢ > r > 2 and consider a dual diagram

Ly[0,1] —2— L, ,[0,1]

al S
2 _ Y4

id "

where « and ¥ are defined by the same formulas. Analogously we obtain that they are
continuous and that the diagram is commutative. This leads to the contradiction exactly
as before. m

Before we proceed let us introduce some notation. For given N = 1,2,... let I, =

["7_17 +) for n = 1,2,...,N. By Cy we denote the space of all function of the form

f= 22[:1 anlr,.
LEMMA 5. For a function f € Cny and 1 < p < oo we have

Cog N)» =4 (| fllpg < I fllp < fllp.g fa<p (11)
and

1fllp.g < Ifllp < CQog N) 7~ | fllpq ifa>p (12)

where constants do not depend on f and N.

Proof. Clearly | fll, = N_l/p(zgzl lan|P)}/P and easy calculation shows that

N a 1/1’
1l ~ N7V Jagmnd ) (13)
n=1

where as usual |a}| denotes the nonincreasing rearrangement of (|a,|)_;. For ¢ < p we
use Holder’s inequality to obtain

N N a/p ; e
> la it < (Y fal) T (SonV)
n=1 n=1 n=1
N p—gq »
=1 (Snt) T < ClflEog ) (14)
n=1

From (13) and (14) we get (11). The inequality (12) is proved analogously. m
Now we are ready to prove our last observation.

PROPOSITION 4. Let (f,,)22, be a greedy basis in L 4]0, 1]. There ezxists a constant C > 0
such that if for some k and eachn = 1,2, ...,k we have f,, € Cy(), then N (k) > expk/C.

Proof. We will consider only the case g < 2, the case ¢ > 2 is proved analogously. From
Lemma 2 we infer that || E::1 tfnll2.g ~ k9. Tt is a well known consequence of the
Khintchine inequality that for any g, in Ly the average over all signs of |, £gnll2 =

V2 llgnl3- So there exists a choice of signs such that || 22:1 tfall2 < VZZ:l I frll3-
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For this choice of signs from (11) we get

1

k
kY1 < C(ln N(k))i—® lentI%

k
<CNE) T2 Y a3,
n=1

= CkY2(In N (k)i 2.

This immediately gives the claim. m

REMARK. The above arguments carry over to the situation when Cy is a subspace gen-

erated by characteristic function of a partition of [0,1] into N sets of measure ~ N~1.

This in particular implies that if a greedy basis consists of linear combinations of Haar

functions, then in the best case we need approximately n levels of the Haar functions to

write first n elements of the basis.

1]

[2]
[3]

4
/5
o
17
8
o

[10]

1]

12

113

[14]
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