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Abstra
t. We survey re
ent results on tra
tability of multivariate problems. We mainly re-stri
t ourselves to linear multivariate problems studied in the worst 
ase setting. Typi
al exam-ples in
lude multivariate integration and fun
tion approximation for weighted spa
es of smoothfun
tions.1. Introdu
tion. Multivariate problems for spa
es of fun
tions of d variables o

ur inmany appli
ations. In this paper we will mainly 
onsider linear multivariate problemssu
h as integration, fun
tion approximation, and, in general, approximation of linearoperators, see [30℄ for a survey up to 1999. The number d of variables for su
h problemsis sometimes in the hundreds or thousands as it is the 
ase for some problems in �nan
ialmathemati
s, see [45℄ and papers 
ited there.Tra
tability of linear multivariate problems has been intensively studied in re
entyears, see again [30℄. This 
on
ept is de�ned, see [58℄, in terms of the minimal number
n(ε, d) of fun
tion values or information evaluations needed to 
ompute an ε-approxima-tion in a given setting, ε ∈ (0, 1). In this paper we restri
t ourselves only to the worst
ase setting. Tra
tability means that n(ε, d) 
an be bounded by a polynomial in ε−1and d. Strong tra
tability means that n(ε, d) has a bound whi
h is independent of d andpolynomially dependent on ε−1.2000 Mathemati
s Subje
t Classi�
ation: 65J05, 68Q17, 41A65.The author was partially supported by the National S
ien
e Foundation under Grant DMS-0308713.The paper is in �nal form and no version of it will be published elsewhere.
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408 H. WOŹNIAKOWSKITra
tability of non-linear multivariate problems has been studied only for a few 
ases.Examples in
lude �xed points of 
ontra
tion mappings for e
onomi
al problems with dsometimes in the thousands, see [35℄, and quasilinear problems su
h as the solution ofpartial di�erential equations with arbitrary large d, see [54, 55℄.We stress that the minimal number n(ε, d) has been thoroughly studied for years inapproximation theory for a �xed d and varying ε. Many sharp estimates on the asymptoti
behavior of n(ε, d) are known as ε goes to zero. The essen
e of tra
tability is to study
n(ε, d) as a fun
tion of two variables ε−1 and d. Usually di�erent proof te
hniques arerequired to study tra
tability.The minimal number n(ε, d) is exponential in d for many multivariate problemsde�ned over 
lassi
al spa
es. The reason is that 
lassi
al spa
es are isotropi
 in thesense that all variables play the same role. By this we mean that if a fun
tion f be-longs to su
h a spa
e then the fun
tion g obtained from f by permuting variables,
g(x1, x2, . . . , xd) = f(xi1 , xi2 , . . . , xid

) for some permutation of indi
es (i1, i2, . . . , id), alsobelongs to the spa
e and has the same norm. The exponential dependen
e of n(ε, d) in dis often 
alled the 
urse of dimensionality, and leads to intra
tability.The �rst su
h an example was given by Bakhvalov in 1959, see [1℄, for multivariateintegration of r times 
ontinuously di�erentiable fun
tions. This is also the 
ase for mul-tivariate integration for tensor produ
t Sobolev spa
es for whi
h the worst 
ase errors
orrespond to the L2-dis
repan
y, see [31℄.There are, however, examples for whi
h we have tra
tability or even strong tra
tabilityalthough all variables play the same role. We present two su
h examples for multivariateintegration. The �rst example deals with the Sobolev 
lass of fun
tions with the L1norm for whi
h the worst 
ase errors 
orrespond to the star dis
repan
y. Then we havetra
tability as shown in [19℄. The se
ond example is for the reprodu
ing kernel Hilbertspa
e whose kernel 
orresponds to the isotropi
 Wiener measure. This spa
e has beenstudied by Ciesielski and Mol
han, see [6, 25℄. It turns out that for this spa
e we havestrong tra
tability as shown in [20℄.Despite these two examples, we typi
ally have the 
urse of dimensionality for isotropi
spa
es. To vanquish the 
urse of dimensionality, we need to treat variables of fun
tionswith diminishing importan
e. This leads to weighted spa
es of fun
tions in whi
h thein�uen
e of ea
h variable or a group of variables is moderated by the 
orrespondingweight.We 
onsider two types of weights. The �rst type is the produ
t weights in whi
hthe jth variable is moderated by a weight γj , see [36℄. We present ne
essary and suf-�
ient 
onditions on weights to obtain tra
tability or strong tra
tability for a numberof linear multivariate problems. Typi
ally, for Hilbert spa
es with tensor produ
t re-produ
ing kernels, strong tra
tability holds i� ∑∞
j=1 γj < ∞, and tra
tability holds i�

lim supd→∞

∑d
j=1 γj/ ln, d < ∞. For γj = 
onstant > 0 we obtain an isotropi
 spa
e andwe have intra
tability sin
e the tra
tability 
ondition is violated.The se
ond type of weights is �nite-order weights, see [10, 38, 51, 52℄. They appear inmany appli
ations in whi
h, although d is huge, fun
tions 
an be well approximated bysums of fun
tions that depend on groups of just a few variables. For �nite-order weights
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tability or even strong tra
tability of many linear or quasilinear multivariateproblems.Some tra
tability results are non-
onstru
tive. That is, we know that there are al-gorithms whi
h a
hieve tra
tability error bounds but we do not know how to 
onstru
tthem. This is the 
ase for the two tra
table examples of multivariate integration forisotropi
 spa
es whi
h we mentioned before. It is also the 
ase for multivariate problemsstudied in many initial papers on tra
tability.Today, there is an in
reasing stream of 
onstru
tive tra
tability results. In parti
-ular, for multivariate integration and fun
tion approximation tra
tability bounds 
anbe a
hieved by latti
e rules or shifted latti
e rules with generators 
omputed by the
omponent-by-
omponent algorithm, see [8, 9, 23, 37℄. For �nite-order weights, tra
tabil-ity bounds for multivariate integration 
an be a
hieved by well-known low dis
repan
ysequen
es su
h as Halton, Sobol and Niederreiter sequen
es, see [38℄. For linear multivari-ate problems, tra
tability bounds 
an be a
hieved by weighted Smolyak-type algorithms,see [49℄ for produ
t weights, and [52℄ for �nite-order weights.Tra
tability of multivariate problems has be
ome nowadays a popular resear
h areawith many results and still many open problems. We hope to show the ex
itement of thisarea by presenting a 
ouple of tra
tability results as well as a 
ouple of open problems.2. Examples of multivariate problems. We �rst illustrate the approa
h of this paperby a few examples of multivariate problems.
• Multivariate integration. This is probably the most popular 
omputational multi-variate problem whi
h o

urs in many applied �elds in
luding mathemati
al �nan
e.For d = 1, 2, . . . , let Dd be a Borel measurable set of R

d and ρd be a non-negativeintegrable fun
tion su
h that ∫

Dd
ρd(t) dt = 1. For a 
lass Fd of real integrable fun
tionsde�ned over Dd, the multivariate integration problem is de�ned as an approximation ofthe linear fun
tional INTd : Fd → R withINTd(f) =

∫

Dd

ρd(t)f(t) dt ∀ f ∈ Fd.The 
lass Fd des
ribes a priori knowledge about integrands f whi
h is usually givenby smoothness, 
onvexity or, in general, by known global properties of integrands. Westress that the number d of variables 
an be huge. For instan
e, in mathemati
al �nan
e,
d = 360 or more, see [45℄ and papers 
ited there. For path integration, formally d = ∞,and by a proper dis
retization we may have an arbitrarily large d, see [24, 32, 48℄.

• Multivariate fun
tion approximation. Let L2,ρd
(Dd) denote the spa
e of real squareintegrable fun
tions de�ned over the domain Dd, i.e., Dd ⊂ R

d and ∫

Dd
ρd(t)f

2(t) dt < ∞.For a 
lass Fd whi
h is a subset of L2,ρd
(Dd), the fun
tion approximation problem isde�ned as an approximation of the linear operator APPd : Fd → L2,ρd

(Dd) withAPPd(f) = f.Hen
e, APPd is the embedding operator. Again our emphasis is for large d.
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• Solution of partial di�erential equations. Consider the ellipti
 equation
−∆u + q u = gfor the interior of the domain Dd, with zero Diri
hlet or Neumann boundary 
onditions.Here ∆ is the Lapla
ian operator, and we are trying to approximate the variationalsolution u in the norm of the spa
e H1(Dd). The fun
tion f = (q, g) belongs to some
lass Fd. The partial di�erential equation operator is given by PDEd : Fd → H1(Dd)with PDEd(f) = u.We stress that this is a non-linear multivariate problem sin
e the solution u dependsnonlinearly on q. This problem is studied in [54, 55℄.

• S
hrödinger equation. Consider the S
hrödinger equation
i ~

∂ u

∂ t
= −∆u + f,for the interior of the domain Dd, with zero boundary and initial 
onditions. Here, where

i =
√
−1, and ~ is the Plan
k 
onstant. As before, f belongs to some 
lass Fd. TheS
hrödinger equation operator is given by Schrd(f) : Fd → L2,ρd

(Dd) with
Schrd(f) = u.We illustrate the S
hrödinger equation for f being a sum of Coulomb pair potentialsof the form

f(x) =
∑

1≤i<j≤m

1

(‖xi − xj‖2 + α)1/2
,where x = [x1, x2, . . . , xm] with xi ∈ R

3 and d = 3m. Here α > 0 to guarantee that f isa smooth fun
tion.This is the �rst example where we see that the fun
tion f has a spe
ial stru
ture.Namely, although f is a fun
tion of d variables, it is a sum of fun
tions depending only onsix variables. This 
orresponds to �nite-order weights. Approximations of su
h fun
tions
an be found in [52℄, whereas the S
hrödinger equation is studied in [56℄.3. Tra
tability. In this se
tion we de�ne linear multivariate problems and the notionof tra
tability.For d = 1, 2 . . . , 
onsider a 
ontinuous linear operator Sd : Fd → Gd a
ting betweennormed linear spa
es Fd and Gd. We assume that Fd is a spa
e of real fun
tions of dvariables, f : Dd → R with Dd ⊂ R
d. Our problem is to approximate elements Sdf byan algorithm An,d that uses at most n information evaluations about f . More pre
isely,

An,d(f) = φ(L1(f), L2(f), . . . , Ln(f)),where Li are 
ontinuous linear fun
tionals, and φ : R
n → Gd is an arbitrary mapping.In many 
ases, it is reasonable to assume that the fun
tionals Li are given by fun
tionvalues, Li(f) = f(xi) for some xi ∈ Dd. The fun
tionals Li 
an be taken adaptively,see [44℄. There are many results showing that under some assumptions on the spa
es Fdor Gd we may take a linear φ without loss of generality. The reader is referred to a re
entpaper [7℄ where this problem is thoroughly dis
ussed.



TRACTABILITY OF MULTIVARIATE PROBLEMS 411The error of the algorithm An,d is de�ned in the worst 
ase setting as
e(An,d) = sup

f∈Fd, ‖f‖≤1

‖Sdf − An,d(f)‖,where ‖f‖ denotes the norm of the spa
e Fd, and ‖Sdf − An,d(f)‖ denotes the norm ofthe spa
e Gd.For n = 0, we do not 
ompute any information evaluation about f , and A0,d(f) is a
onstant element of Gd. Due to linearity of Sd, it is easy to see that the 
hoi
e A0,d(f) = 0minimizes the error and
e(0) = ‖Sd‖is the operator norm of Sd. This is 
alled the initial error and 
an be a
hieved withoutsampling the fun
tion f .Our goal is to redu
e the initial error by a fa
tor ε. That is, we would like to �nd analgorithm An,d su
h that e(An,d) ≤ ε‖Sd‖. Clearly for ε ≥ 1, this problem is trivial sin
e

An,d = 0 is the solution. That is why we always assume that ε ∈ (0, 1). Obviously, wewould like to �nd su
h an algorithm An,d with the smallest possible n, sin
e n measuresthe 
ost of An,d. In fa
t, if An,d is linear then its 
ost is proportional to n making theminimization of n even more apparent. Let
n(ε, Sd) = min{n : ∃ An,d su
h that e(An,d) ≤ ε ‖Sd‖}be the minimal number1 of information evaluations needed to redu
e the initial errorby a fa
tor ε. We stress that we minimize over all permissible 
hoi
es of fun
tionals Liand all mappings φ whi
h form the algorithms An,d. We also adopt the 
onvention that

n(ε, Sd) = ∞ if the set of algorithms with error at most ε‖Sd‖ is empty.We are ready to de�ne the notion of tra
tability, see [58℄. We say that the problem
S = {Sd} is tra
table if there are non-negative numbers C, p, q su
h that

n(ε, Sd) ≤ C ε−p d q ∀ ε ∈ (0, 1) ∀d = 1, 2, . . . .We say that the problem S = {Sd} is strongly tra
table if the inequality above holds with
q = 0, i.e,

n(ε, Sd) ≤ C ε−p ∀ ε ∈ (0, 1) ∀ d = 1, 2, . . . .The in�mum of p satisfying the last inequality is 
alled the exponent of strong tra
tability.The study of the minimal number n(ε, Sd) is equivalent to the study of its inversewhi
h 
orresponds to the best error bound that 
an be a
hieved with n information evalu-ations. The latter problem has been intensively studied for many years in approximationtheory. It is impossible to 
ite all results on the asymptoti
 behavior of n(ε, Sd) for a�xed d and ε tending to zero. This stream of resear
h started with the pioneering workof Kolmogorov, Nikolskij, Sard, Bakhvalov and Tikhomirov already in 1950's.As already mentioned in the introdu
tion, the essen
e of tra
tability is to study
n(ε, Sd) as a fun
tion of two variables, ε−1 and d, and verify for whi
h multivariateproblems we 
an bound n(ε, Sd) by a polynomial in ε−1 and d. This usually requiresproof te
hniques di�erent than those used for the asymptoti
 behavior of n(ε, d) for a

1Sometimes, n(ε, Sd) is denoted by n(ε, d) as we did in the introdu
tion.



412 H. WOŹNIAKOWSKI�xed d. That is why tra
tability studies needed to revisit many 
lassi
al problems witha new emphasis on the dependen
e on d.The notion of strong tra
tability seems very demanding. It says that the minimalnumber of information evaluations has a bound independent of d. That is, no matterwhether d = 1 or d is huge, it is enough to 
ompute a polynomial number of informationevaluations in ε−1 to redu
e the initial error. We may therefore suspe
t that only trivialproblems 
an be strongly tra
table. As we shall see this is not the 
ase.We would like to add that the study of tra
tability was initiated as a way to under-stand very su

essful 
omputations for �nan
e problems done in 1990's. These 
omputa-tions were performed for multivariate integrals with d = 360, or even larger, by 
lassi
alQMC algorithms using Sobol, Faure and Niederreiter low dis
repan
y points. The 
om-putational results suggested that the error goes like n−1 independently of d, whi
h isequivalent to the presen
e of strong tra
tability with the exponent p = 1. The theory atthis time 
ould not explain this phenomenon. The detailed a

ount may be found in [45℄.4. Curse of dimensionality. In this se
tion we present examples of linear multivariateproblems that su�er the 
urse of dimensionality. That is, problems for whi
h n(ε, Sd)depends exponentially on d.
• Smooth fun
tions. De�ne Fd = Fd,r = Cr([0, 1]d) as the spa
e of r times 
ontinu-ously di�erentiable fun
tions with the norm

‖f‖ := max
|α|≤r

max
x∈[0,1]d

|Dαf(x)|,where α = [α1, α2, . . . , αd] with non-negative integer αj , |α| =
∑d

j=1 αj , and
Dαf(x) =

∂|α|f

∂α1x1∂α2x2 · · · ∂αdxd
(x).Let Sd be a multivariate integration, fun
tion approximation or partial di�erential equa-tion operator de�ned as in Se
tion 2 with Dd = [0, 1]d and ρd = 1. Then for a �xed d wehave

n(ε, Sd) = Θ(ε−d/r) as ε → 0.Here, if r = 0 then n(ε, Sd) = ∞ for small ε.For multivariate integration, this result was proved by Bakhvalov, see [1℄, for non-adaptive 
hoi
e of Li(f) = f(xi). Adaption does not help for this problem as proven bySmolyak, see [2℄, for a �xed n, and extended by Novak, see [27℄, for an adaptive 
hoi
e of
n. For multivariate fun
tion approximation, Bakvalov's proof te
hnique yields the sameresult for non-adaptive fun
tion values. For more general information evaluations, theresult follows from the knowledge of the 
orresponding Gelfand and Kolmogorov widths.Adaption 
an help at most by a fa
tor of two as proven in [14, 43℄. Details 
an be foundin [27, 44℄. For the partial di�erential equation problem, this was proved by Wers
hulz,see [53℄.Hen
e, as long as the smoothness r is �xed, the minimal number n(ε, Sd) is exponentialin d and therefore we have the 
urse of dimensionality.



TRACTABILITY OF MULTIVARIATE PROBLEMS 413Suppose now that r = r(d) is a fun
tion of d. Clearly, as long as d/r(d) is unbounded,the problems remain intra
table. Assume then that the sequen
e {d/r(d)} is bounded,say, by M . Then the minimal number n(ε, Sd) is of order ε−M . Still we 
annot 
laimtra
tability sin
e the fa
tors in the Theta notation depend on d. In fa
t, for all d = 1, 2, . . .there are some positive c1,d and c2,d su
h that
c1,d ε−d/r(d) ≤ n(ε, Sd) ≤ c2,d ε−d/r(d) ∀ ε ∈ (0, 1).If we 
he
k the proofs of these bounds then we 
on
lude that c1,d is exponentially smallin d whereas c2,d is exponentially large in d. Therefore, even if d/r(d) ≤ M then thelast estimate is too weak to 
laim tra
tability or intra
tability. This also implies that thestudy of tra
tability requires a di�erent proof te
hnique with mu
h more emphasis onthe dependen
e of d.This problem for multivariate integration has been studied in the master thesis of J. O.Wojtasz
zyk, see [57℄, where it was assumed that r takes the extreme value of in�nity. The
lass Fd,∞ 
ontains C∞([0, 1])d fun
tions and its unit ball 
ontains C∞([0, 1]d) fun
tionswith all partial derivatives bounded by 1. This seems like a very small 
lass. Let

e(n, INTd) = inf
An,d

e(An,d)denote the minimal error whi
h 
an be a
hieved by 
omputing n fun
tion values. Clearly,
e(n, INTd) ≤ 1 sin
e the error of the zero algorithm is 1. The main result of [57℄ is

lim
d→∞

e(n, INTd) = 1 ∀n.This obviously implies that multivariate integration in Fd,∞ is not strongly tra
table.Clearly, for all multivariate problems whi
h are at least as hard as multivariate integra-tion, strong tra
tability also does not hold. This is, in parti
ular, the 
ase for multivariatefun
tion approximation.It is an open problem whether multivariate integration in Fd,∞ is tra
table. A possibleway to show that it is not tra
table would be to prove that
lim

d→∞
e(d q, INTd) = 1 ∀ q = 1, 2, . . . .

• L2-Dis
repan
y. De�ne Fd = W 1,1,...,1
2 ([0, 1]d) as the Sobolev spa
e of real fun
tionsde�ned on [0, 1]d whi
h is the tensor produ
t of d 
opies of W 2

1 ([0, 1]), where W 2
1 ([0, 1]) isthe spa
e of absolutely 
ontinuous fun
tions whose �rst derivatives belong to L2([0, 1]).The spa
e Fd 
onsists of fun
tions whi
h are on
e di�erentiable with respe
t to all vari-ables, and the norm is given by

‖f‖2 := f2(1) +
∑

∅6=u⊂{1,2,...,d}

∫

[0,1]|u|

(

∂|u|

∂xu

f(xu, 1)

)2

dxu.Here, u is a non-empty subset of indi
es from {1, 2, . . . , d} and |u| denotes its 
ardinality.Therefore the sum above 
onsists of 2d − 1 terms. For a ve
tor x ∈ [0, 1]d, by xu we meanthe ve
tor from [0, 1]|u| 
ontaining the 
omponents of x whose indi
es are in u. By ∂xuand dxu we mean di�erentiation and integration with respe
t to variables xj for j ∈ u.Finally, by (xu, 1) we mean the ve
tor from [0, 1]d with all 
omponents whose indi
es arenot in u repla
ed by 1. Similarly, f(1) = f(1, 1 . . . 1).



414 H. WOŹNIAKOWSKILet Sdf = INTdf =
∫

[0,1]d
f(t) dt be the multivariate integration operator. Considera linear algorithm An,d(f) =

∑n
j=1 ajf(xj). Zaremba's identity, see [61℄, says that

Sdf − An,d(f) =
∑

∅6=u⊂{1,2,...,d}

(−1)|u|
∫

[0,1]|u|

dis
(xu, 1)
∂|u|

∂xu

f(xu, 1) dxu,where dis
 is the dis
repan
y whi
h is de�ned for x = [x1, x2, . . . , xd] ∈ [0, 1]d asdis
(x) = x1x2 · · ·xd −
n

∑

j=1

ajχ[0,x)(tj)with the 
hara
teristi
 fun
tion χ[0,x)(tj) = 1 if tj ∈ [0, x) and χ[0,x)(tj) = 0 if tj /∈ [0, x)for [0, x) = [0, x1) × [0, x2) × · · · × [0, xd).Zaremba's identity implies that the worst 
ase error of An,d is the same as the L2-dis
repan
y,
e(An,d) = dis
2({aj}, {tj}) :=

(

∑

∅6=u⊂{1,2,...,d}

∫

[0,1]|u|

dis
2(xu, 1) dxu

)1/2

,and the Koksma-Hlawka inequality says that
|Sdf − An,d(f)| ≤ dis
2({aj}, {tj}) ‖f‖ ∀ f ∈ Fd.Let dis
2(n, d) = inf

aj ,tj , j=1,2,...,n
dis
2({aj}, {tj})denote the minimal dis
repan
y, or equivalently, the minimal worst 
ase error of linearalgorithms2 that use n fun
tion values. For any d, there are positive numbers c1,d and

c2,d su
h that
c1,d

ln(d−1)/2 n

n
≤ dis
2(n, d) ≤ c2,d

ln(d−1)/2 n

n
.The lower bound was proved by Roth in 1954 for aj = n−1, see [33℄, and extended forarbitrary aj by Chen in 1985, see [3, 4℄. The upper bound was proved by Frolov and Rothin 1980 by a non-
onstru
tive argument, see [13, 34℄, and by Chen and Skriganov in 2002
onstru
tively, see [5℄.From the last estimate we 
on
lude that for any d,

n(ε, INTd) = Θ

(

1

ε

(

ln
1

ε

)(d−1)/2) as ε → 0.As for the previous example, we do not know mu
h about sharp estimates of c1,d and c2,dand therefore we 
annot 
on
lude tra
tability or intra
tability of this problem based onthese estimates.Tra
tability of this problem was studied in [30℄. First of all observe that the initialerror is
‖INTd‖ = dis
2(0, d) = (4/3)d/2,

2Non-linear algorithms and adaption do not help for this problem.



TRACTABILITY OF MULTIVARIATE PROBLEMS 415so it is exponentially large in d. This suggests that multivariate integration for this spa
e isnot properly s
aled for large d. For the minimal number n(ε, INTd) we have the followingestimates, see [30℄,
1.0463 d(1 + o(1)) ≤ n(ε, INTd) ≤ 1.125 dε−2 as d → ∞.Hen
e, we have an exponential dependen
e on d and therefore the 
urse of dimensionalityfor multivariate integration for W 1,1,...,1

2 ([0, 1]d).
• Linear tensor produ
t problems. We �rst de�ne a linear tensor produ
t problem. Let

Fd = F1 ⊗ F1 ⊗ · · · ⊗ F1, d times, be the tensor produ
t of a separable Hilbert spa
e F1.Similarly, we assume that the range spa
e Gd = G1⊗G1⊗· · ·⊗G1 for a separable Hilbertspa
e G1, and Sd = S1 ⊗ S1 ⊗ · · · ⊗ S1 for a 
ontinuous linear operator S1 : F1 → G1.We also assume that we 
an use arbitrary 
ontinuous linear fun
tionals as informationevaluations.Let W1 = S∗
1S1 : F1 → F1. We need to assume that the self adjoint non-negativede�nite operator W1 is 
ompa
t sin
e otherwise n(ε, S1) is in�nite for small ε, see e.g.,[44℄. Let {λj} be the sequen
e of non-in
reasing eigenvalues of W1, W1ζj = λjζj fororthonormal ζj from F1. The index j varies from 1 to dim(F1). If dim(F1) < ∞ thenwe formally set λj = 0 for j ≥ dim(F1) + 1. Clearly, the initial error is ‖Sd‖ = λd

1. It isknown, see e.g., [47℄, that the minimal number of information evaluations is
n(ε, Sd) =

∣

∣{[i1, i2, . . . , id] : ij ≥ 1 and λi1λi2 · · ·λid
> ε2λd

1 }
∣

∣and the algorithm
An(ε,Sd),d(f) =

∑

i1,i2,...,id : λi1
λi2

···λid
≤ε2λd

1

〈f, ζi1 ⊗ · · · ⊗ ζid
〉Fd

ζi1 ⊗ · · · ⊗ ζidhas the minimal worst 
ase error among all algorithms that use n information evaluationsand its error is at most ε‖Sd‖.Observe that for λ2 = 0, the problem Sd is trivial. Indeed, if additionally assume that
λ1 = 0 then Sd = 0 and n(ε, Sd) = 0, and if λ1 > 0 then Sd is a rank one operator and
n(ε, Sd) = 1 for all d.Assume then that λ2 > 0. Then for λ2 = λ1, i.e, when the largest eigenvalue of W1 isat least double, we have the 
urse of dimensionality sin
e n(1/2, Sd) ≥ 2d. For λ2 < λ1,we have intra
tability sin
e n(

√

λk
2/2, Sd) ≥

(

d
k

) for an arbitrary integer k and d ≥ k,see [47℄.In parti
ular, if S1f = APP1f and F1 ⊂ G1, we have intra
tability of multivariatefun
tion approximation for an arbitrary Fd with at least two dimensional spa
es F1.Hen
e, for F1 = W 1
2 ([0, 1]) we have intra
tability for multivariate fun
tion approximationfor the spa
es Fd = W 1,1,...,1

2 ([0, 1]d) 
onsidered in the previous example.5. Tra
tability for isotropi
 spa
es. In this se
tion we provide two examples ofisotropi
 spa
es for whi
h multivariate integration is tra
table or even strongly tra
table.
• Star dis
repan
y. We return to multivariate integration of the se
ond example ofthe previous se
tion for a spa
e of fun
tions whi
h di�ers from the previous spa
e by



416 H. WOŹNIAKOWSKI
hoosing a di�erent norm. Namely, we swit
h from the L2 norm to the L1 norm. That is,we now assume that Fd = W 1,1,...,1
1 ([0, 1]d) with the norm

‖f‖ := |f(1)| +
∑

∅6=u⊂{1,2,...,d}

∫

[0,1]|u|

∣

∣

∣

∣

∂|u|

∂xu

f(xu, 1)

∣

∣

∣

∣

dxu.The spa
e is isotropi
 sin
e all variables play the same role, and if f belongs to Fd and
g(x) = f(xi1 , xi2 , . . . , xid

) for some permutation (i1, i2, . . . , id) of indi
es (1, 2, . . . , d) then
g ∈ Fd and ‖g‖ = ‖f‖.Applying now Hölder's inequality to Zaremba's identity we 
on
lude that the worst
ase error of the algorithm An,d is now equal to the star dis
repan
y,

e(An,d) = dis
∞({aj}, {tj}) := sup
x∈[0,1]d

∣

∣

∣
x1x2 · · ·xd −

n
∑

j=1

ajχ[0,x)(tj)
∣

∣

∣
.Analogously, let dis
∞(n, d) = inf

aj ,tj j=1,2,...,n
dis
∞({aj}, {tj})denote the minimal star dis
repan
y, or equivalently, the minimal worst 
ase error oflinear algorithms3 that use n fun
tion values. Observe that now

‖INTd‖ = dis
∞(0, d) = 1 ∀ d = 1, 2, . . . .Hen
e, unlike the L2 norm 
ase, the multivariate integration problem is now properlynormalized. It is proved in [19℄ that there is a positive 
onstant C su
h that
n(ε, INTd) ≤ C d ε−2 ∀ ε ∈ (0, 1) ∀ d = 1, 2, . . . .The proof of this estimate is non-
onstru
tive and uses results from theory of empiri
alpro
esses and VC dimension.Hen
e, we have tra
tability of multivariate integration for W 1,1,...,1

1 ([0, 1]d). Further-more, the dependen
e on d in the last estimate is sharp. This means that multivariateintegration is not strongly tra
table.It is known, see e.g., [11, 26, 42℄, that for a �xed d the asymptoti
 dependen
e of theminimal number n(ε, INTd) is
n(ε, INTd) = O

(

(ln ε−1)d−1

ε

) as ε → 0.For d = 1, it is well known that n(ε, INT1) = Θ(ε−1). Therefore, n(ε, INTd) = Ω(ε−1).In fa
t, from the lower bound for L2-dis
repan
y, it follows that n(ε, INTd) =

Ω(ε−1(ln ε−1)(d−1)/2). Hen
e, ignoring the logarithmi
 fa
tors, the minimal number de-pends asymptoti
ally linearly on ε−1. Despite this asymptoti
 behavior, the authors of[19℄ 
onje
ture that any uniform estimate on n(ε, INTd), i.e., for all ε ∈ (0, 1) and d,whi
h depends polynomially on d must depend on ε−2, see [59℄ for more details. Lowerbounds on n(ε, INTd) 
an also be found in [21℄.
3Again non-linear algorithms and adaption do not help.
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• Isotropi
 Wiener kernel. We now take Fd = H(Kd) as the reprodu
ing kernelHilbert spa
e with the isotropi
 Wiener kernel,

Kd(x, y) = 1
2 (‖x‖2 + ‖y‖2 − ‖x − y‖2) ∀x, y ∈ R

dwith the Eu
lidean norm ‖x‖2 = (
∑d

j=1 x2
j )

1/2. This Hilbert spa
e was 
hara
terized byMol
han, see [25℄, for odd d, and by Ciesielski, see [6℄, for arbitrary d. The inner produ
tis given by
〈f, g〉Fd

= ad〈(−∆(d+1)/4f, (−∆)(d+1)/4g〉L2(RD)for f and g whi
h have �nite support, vanish at zero and are in�nitely many timesdi�erentiable, The 
onstant ad is known, ∆ is the Lapla
e operator, and for d + 1 notdivisible by 4, (−∆)(d+1)/4 is understood in the generalized sense, see [41℄.The reprodu
ing kernel Kd 
orresponds to the isotropi
 Wiener measure and is also
alled the Brownian motion in Lévy's sense.Consider multivariate integration with the Gaussian weight,INTd(f) =
1

(2π)d/2

∫

Rd

exp(−‖t‖2/2) f(t) dt ∀ f ∈ Fd.It is proved in [20℄ using a non-
onstru
tive argument that there is a positive number Csu
h that
n(ε, INTd) ≤ C ε−2 ∀ ε ∈ (0, 1) ∀ d = 1, 2, . . . .Furthermore, the exponent 2 of ε−1 is sharp due to [46℄. Hen
e, we have strong tra
tabilityof multivariate integration with the exponent of strong tra
tability equal to 2.6. Vanquishing the 
urse of dimensionality. The 
urse of dimensionality or in-tra
tability 
annot be broken by a more 
lever 
hoi
e of an algorithm sin
e it is theintrinsi
 property of the multivariate problem S = {Sd} in the worst 
ase setting. Theonly way to vanquish the 
urse of dimensionality or intra
tability is:

• Swit
h from the worst 
ase setting to a setting where the error and/or the 
ost ofan algorithm is de�ned in a less demanding way. For example, we 
an swit
h to:� the average 
ase setting in whi
h instead of taking the supremum of ‖Sd −
An,d(f)‖ we take an average of ‖Sd −An,d(f)‖ with respe
t to some probabilitymeasure on the spa
e Fd,� the probabilisti
 setting in whi
h we demand that ‖Sd − An,d‖ is small only forelements f from a subset of Fd whose measure is large,� the randomized setting in whi
h we allow randomized algorithms An,d(f, ω) forsome random element ω, and measure their performan
e by the expe
ted valuewith respe
t to ω and then taking the supremum with respe
t to f . The 
lassi
alMonte Carlo algorithm for multivariate integration is probably the most 
om-monly known randomized algorithm. It is well known that its randomized erroris bounded by ‖f‖L2,ρd

(Dd)/
√

n. Hen
e, if the L2-norms of fun
tions from theunit ball of Fd depend polynomially on d then we have tra
tability of multivari-ate integration in the randomized setting. Furthermore, if they do not depend
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tability. For example, take the �rst example ofSe
tion 4. Clearly, the L2-norms are now bounded by 1 and strong tra
tabilityholds. Hen
e, the 
urse of dimensionality present in the worst 
ase setting is eas-ily broken by swit
hing to the randomized setting and using the 
lassi
al MonteCarlo algorithm.� the quantum setting in whi
h quantum algorithms use vast parallelization. This isa new setting with a very interesting stream of work for dis
rete and 
ontinuousproblems in
luding multivariate integration and fun
tion approximation. Thereader interested in this setting is referred to papers of Heinri
h, Novak andothers, see e.g., [15, 16, 17, 18, 28, 29℄.
• To rede�ne the multivariate problems Sd : Fd → Gd by shrinking the spa
e Fd.This 
an be done still in the worst 
ase setting by using additional properties offun
tions. As we shall see this approa
h leads to weighted spa
es of fun
tions inwhi
h su

essive variables or, more generally, groups of variables are moderatedby 
orresponding weights. The major question is to �nd ne
essary and su�
ient
onditions on weights to guarantee tra
tability or strong tra
tability of multivariateproblems still in the worst 
ase setting.We restri
t ourselves in this paper only to show how tra
tability 
an be restored byusing weighted spa
es of fun
tions in the worst 
ase setting.6.1. Weighted reprodu
ing kernel Hilbert spa
es. Before we de�ne weighted reprodu
ingkernel Hilbert spa
es, we motivate our approa
h by the following example.Example (Weighted Sobolev spa
e). Consider the (unweighted) Sobolev spa
e Fd =

W 1,1,...,1
2 ([0, 1]d) as in the L2-dis
repan
y example of Se
tion 4. The spa
e W 1,1,...,1

2 ([0, 1]d)is the reprodu
ing kernel Hilbert spa
e with the kernel
Kd(x, y) =

d
∏

j=1

(1 + min(1 − xj , 1 − yj)).This spa
e is isotropi
 sin
e all variables play the same role, and, as we already know,multivariate integration and fun
tion approximation su�er from the 
urse of dimension-ality.Suppose that we know additionally that the su

essive variables play diminishing role.That is, the �rst variable x1 is more important than x2 whi
h in turn is more importantthan x3 on so on. This holds, for example, for �nan
e problems, where fun
tions dependin a de
reasing way on the su

essive variables, see [45℄ and papers 
ited there. This 
anbe modeled by introdu
ing the sequen
e of weights {γj}, with γ1 ≥ γ2 ≥ · · · ≥ 0, and by
onsidering the weighted Sobolev spa
e Fd = H(Kd,γ) de�ned as the reprodu
ing kernelHilbert spa
e with the kernel
Kd,γ(x, y) =

d
∏

j=1

(1 + γj min(1 − xj , 1 − yj)) .Note that for γ = 1, i.e., γj = 1 for all j, we have Kd,1 = Kd, and we return to the(unweighted) Sobolev spa
e W 1,1,...,1
2 ([0, 1]d).
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t is now given for f, g ∈ H(Kd,γ) by
〈f, g〉H(Kd,γ) = f(1)g(1) +

∑

∅6=u⊂{1,2,...,d}

1

γu

∫

[0,1]|u|

∂|u|

∂xu

f(xu, 1)
∂|u|

∂xu

g(xu, 1) dxu,where
γu =

∏

j∈u

γj .Observe that f ∈ H(Kd,γ) 
an be uniquely de
omposed as
f(x) =

∑

∅6=u⊂{1,2,...,d}

fu(xu)with fu ∈ H(Kd,u) and Kd,u(xu, yu) =
∏

j∈u
min(1 − xj , 1 − yj). For u = ∅ we have

f(x∅) = f(1).This de
omposition is an ANOVA-type de
omposition, see [12, 40℄. Its essen
e is that
f is de
omposed as a sum of fun
tions depending on groups of variables indexed bysubsets u. Furthermore, the importan
e of ea
h group of variables is measured by γusin
e

‖f‖2
H(Kd,γ) =

∑

∅6=u⊂{1,2,...,d}

γ−1
u

‖fu‖2
H(Kd,u)with the 
onvention that 0/0 := 0. For u 6= ∅, the fun
tions fu have the properties that

fu(xu) = 0 if at least one 
omponent of xu is 1, and
‖fu‖2

H(Kd,u) =

∫

[0,1]|u|

(

∂|u|

∂xu

fu(xu)

)2

dxu.If f lies in the unit ball of H(Kd,γ) then ‖fu‖H(Kd,u) ≤ γu. Hen
e, is γj is small then all
fu with j ∈ u have small norms. In this way, the weights moderate the 
ontributions of
fu's in the de
omposition of f from the unit ball of H(Kd,γ).We now 
omment on tra
tability of multivariate integration and fun
tion approxi-mation for the weighted Sobolev spa
e H(Kd,γ) It is known that strong tra
tability ofmultivariate integration and fun
tion approximation for H(Kd,γ) holds i�

∑

j=1

γj < ∞,and tra
tability holds i�
lim sup

d→∞

∑d
j=1 γj

ln d
< ∞,see [31, 36℄ for multivariate integration, and [50℄ for multivariate fun
tion approxima-tion.Based on this motivating example, we are ready to present weighted reprodu
ingkernel Hilbert spa
es of fun
tions of d variables, see [52℄. We start with d = 1. For aLebesgue measurable set D ⊂ R, let ρ : D → R+ be a Lebesgue integrable fun
tionsu
h that ∫

D
ρ(t) dt = 1. Let H(K) be a separable reprodu
ing kernel Hilbert spa
e ofunivariate fun
tions de�ned on D with the reprodu
ing kernel K : D × D → R. We
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onstant non-zero fun
tions do not belong to H(K). For simpli
ity, weassume that
A :=

∫

D2

ρ(x)ρ(y)K(x, y) dx dy > 0,

B :=

∫

D

ρ(x)K(x, x) dx < ∞.The �rst 
ondition A > 0 implies that the integration problem in H(K) is not trivialsin
e for INT1(f) =
∫

D
ρ(t)f(t) dt we have ‖INT1‖ = A. The se
ond 
ondition B < ∞implies that H(K) is 
ontinuously embedded into L2,ρ(D) sin
e ‖f‖L2,ρ(D) ≤ B‖f‖H(K).Obviously, 0 ≤ A ≤ B sin
e |K(x, y)| ≤

√

K(x, x)
√

K(y, y).For d ≥ 2, we take Dd = D × D × · · · × D, d times, and ρd(x) =
∏d

j=1 ρ(xj). Let
γ = {γd,u} be a sequen
e of non-negative numbers, 
alled weights, indexed by d and uwhi
h is an arbitrary subset of indi
es from the set {1, 2, . . . , d}. Thus for ea
h d we have
2d non-negative weights γd,u. For simpli
ity, we assume that γd,∅ > 0. Let Ud denote theset of nonempty subsets u with positive γd,u.Consider the weighted reprodu
ing kernel Hilbert spa
e H(Kd,γ) with the reprodu
ingkernel

Kd,γ(x, y) = γd,∅ +
∑

u∈Ud

γd,u

∏

j∈u

K(xj , yj) ∀x, y ∈ Dd.The spa
e H(Kd,γ) is a subset of L2,ρd
(Dd) and 
onsists of fun
tions de�ned on Dd whi
h
an be uniquely de
omposed as

f = f∅ +
∑

u∈Ud

fu = γd,∅f∅ +
∑

u∈Ud

γd,ufd,u,where fu = γd,ufd,u ∈ H(Kd,u) with the reprodu
ing kernel Kd,u(x, y) =
∏

j∈u K(xj , yj),
Kd,∅ = 1. Hen
e, fun
tions fu depend only on variables with indi
es from the subset u.In parti
ular, f∅ = 
onstant. For f, g ∈ H(Kd,γ) we have

〈f, g〉H(Kd,γ) = γd,∅fd,∅gd,∅ +
∑

u∈Ud

γd,u 〈fd,u, gd,u〉H(Kd,u) .This is a generalized ANOVA-type de
omposition,The weights γ = {γd,u} are 
alled produ
t weights if
γd,∅ = 1, γd,u =

∏

j∈u

γj ∀ d, u 6= ∅,for some non-negative numbers γj , see [10, 36℄.The weights γ = {γd,u} are 
alled �nite-order weights of order q∗ if
γd,u = 0 for all (d, u) with |u| > q∗,where q∗ is the smallest integer with this property, see [10, 38, 52℄.For produ
t weights, we have

Kd,γ(x, y) =

d
∏

j=1

(1 + γjK(xj , yj)) .
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e of the jth variable is moderated by the weight γj , whereas the importan
eof the group of variables indexed by u is moderated by ∏

j∈u
γj . As an example, observethat for D = [0, 1], ρ = 1, K(x, y) = min(1−x, 1− y), and for produ
t weights we obtain

H(Kd,γ) as the weighted Sobolev spa
e 
onsidered in the motivating example.For �nite-order weights with order q∗, ea
h fun
tion from H(Kd,γ) is a sum of fun
-tions whi
h depend on at most q∗ variables. Furthermore, ea
h group of at most q∗variables is moderated by the weight γd,u. As we already mentioned, this property holdsfor many multivariate problems in mathemati
al �nan
e and in physi
s.6.2. Linear tensor produ
ts problems for H(Kd,γ). Observe that H(Kd,γ) is a subsetof the spa
e H(Kd,1) with all weights γd,u = 1. That is why it is enough to de�ne amultivariate problem over H(Kd,1). Sin
e H(Kd,1) is the tensor produ
t of d 
opies of
H(1 + K) we �rst de�ne S1 : H(1 + K) → G1 as a 
ontinuous linear operator for aseparable Hilbert spa
e G1. Then for d ≥ 2, we take Sd : H(Kd,1) → Gd as the tensorprodu
t of S1 with Gd being the tensor produ
t of G1. In this way we obtain multivariateintegration for S1 = INT1 with G1 = R, and multivariate fun
tion approximation for
S1 = APP1 with G1 = L2,ρ1

(D).As in the third example of Se
tion 4, for a general S1 we denote W1 = S∗
1S1 :

H(1 + K) → H(1 + K) and denote its non-in
reasing eigenvalues by {λj} with the same
onvention that λj = 0 for j ≥ dim(H(1 + K)) + 1. For an arbitrary non-in
reasing andnon-negative sequen
e η = {ηj}, we say, as in [49℄, that pη is the sum-exponent of η if
pη = inf

{

α ≥ 0 :

∞
∑

j=1

ηα
j < ∞

}

,with pη = ∞ if the set of α's is empty.6.3. Tra
tability for produ
t weights. Tra
tability depends on the 
lass of permissibleinformation evaluations. Assume �rst that all 
ontinuous linear fun
tionals 
an be usedas information evaluations. Obviously, if λ2 = 0 then Sd is a 
ontinuous linear fun
tionaland strong tra
tability trivially holds sin
e n(ε, Sd) ∈ {0, 1}. Assume then λ2 > 0. Thefollowing theorem was proven in [49℄:
• Tra
tability is equivalent to strong tra
tability.
• Strong tra
tability holds i� the sum-exponents of λ = {λj} and γ = {γj} are �nite.If this holds then the exponent of strong tra
tability is

p = 2max(pλ, pγ).Observe that for all γj = 1 we have pγ = ∞ and any linear tensor produ
t problem isintra
table. This holds even if S1 is a rank two operator, i.e., λj = 0 for all j ≥ 3. Hen
e,to obtain tra
tability we must have the diminishing importan
e of su

essive variablessu
h that pγ < ∞. This means that the weights γj must behave like j−β for some positive
β. Obviously, sin
e pγ = 1/β the exponent of strong tra
tability is large for small β.The 
ondition pλ < ∞ is quite natural. Even for d = 1, the minimal number n(ε, S1)depends polynomially on ε−1 i� the eigenvalues λj behave like j−β for some positive β.Hen
e, the 
ompa
tness of S1 is enough to guarantee that n(ε, S1) is �nite but not enoughto guarantee tra
tability.
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uss the 
lass of information evaluations given by fun
tion values.In this 
ase, there are a number of di�erent results depending on 
ertain assumptionson the operator S1. We only mention that a typi
al result whi
h holds, in parti
ular, formultivariate integration and fun
tion approximation is that strong tra
tability holds i�
pλ < ∞ and

∞
∑

j=1

γj < ∞,whereas tra
tability is, in general, not equivalent to strong tra
tability, and holds i�
pλ < ∞ and

lim sup
d→∞

∑d
j=1 γj

ln d
< ∞.The reader interested in more spe
i�
 results, in the estimates on the exponents of ε−1and d, as well as in 
onstru
tive algorithms for whi
h tra
tability bounds hold is referredto a survey [30℄ and papers 
ited there.6.4. Tra
tability for �nite-order weights. Finite-order weights usually imply tra
tabilityor even strong tra
tability of linear multivariate problems, and the role of the number

d of variables is repla
ed by the order q∗ of �nite-order weights in tra
tability bounds.We illustrate this point for multivariate integration for whi
h an expli
it estimate on
n(ε, INTd) may be found in [52℄,

n(ε, INTd) ≤
(

B

A
b

)q∗

1

ε2
∀ ε ∈ (0, 1) ∀ d = 1, 2, . . . .Here, A and B are de�ned as in Subse
tion 6.1. Hen
e, we have strong tra
tability ofmultivariate integration.We stress that this estimate holds for arbitrary �nite-order weights of order q∗. Fur-thermore, the exponential dependen
e on q∗ present in this estimate is sharp for some�nite-order weights of order q∗.For some Hilbert spa
es H(K) it may happen that A = 0 and the last estimate 
annotbe applied. This holds, in parti
ular for the Korobov spa
e H(1 + K) with K(x, y) =

B2(|x−y|), for x, y ∈ [0, 1], where B2(t) = t2− t+ 1
6 is the Bernoulli polynomial of degree

2. The inner produ
t in this 
ase is 〈f, g〉 =
∫ 1

0
f(t)g(t) dt +

∫ 2

0
f ′(t)g′(t) dt. For A = 0,instead of strong tra
tability, we have tra
tability of multivariate integration, see [52℄.Similar bounds on n(ε, Sd) hold for multivariate fun
tion approximation and otherlinear multivariate problems. Roughly speaking, we always have tra
tability and under
ertain assumptions on �nite-order weights we have strong tra
tability, see again [52℄.Tra
tability for �nite-order weights has been also studied for quasilinear problemssu
h as partial di�erential equations in [54, 55, 56℄. The essen
e of these results is that�nite-order weights imply tra
tability of these non-linear problems.The tra
tability results for �nite-order weights whi
h we mentioned so far are obtainedby non-
onstru
tive arguments. There are also results with �semi-
onstru
tive� and fully
onstru
tive proofs. We now indi
ate a 
ouple of su
h results.
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ate a �semi-
onstru
tive� proof for tra
tability of multivariate integrationwith Dd = [0, 1]d, ρd = 1 and for the weighted Sobolev spa
e H(Kd,γ) with �nite-orderweights of order q∗ and with the univariate kernel K(x, y) = min(1−x, 1− y). As in [38℄,we 
onsider a shifted latti
e rule
An,d(f) =

1

n

n−1
∑

j=0

f

({

k

n
z + ∆

})

,where z ∈ {1, 2, . . . , n − 1}d is an integer ve
tor with d 
omponents 
omputed by theCBC (
omponent-by-
omponent) algorithm, and ∆ ∈ [0, 1)d is a shift ve
tor. Then forsome ∆, the shifted latti
e rule has error at most ε‖INTd‖ with
n ≤ Ca ε2/a d q∗(1−1/a) ∀ a ∈ [1, 2),see [38℄. Here, Ca is a positive number independent of ε and d.This is a �semi-
onstru
tive� proof sin
e we know how to 
onstru
t the generatingve
tor z of the latti
e rule, but we do not know how to 
onstru
t the shift ∆. We alsostress that z as well as ∆ depend on �nite-order weights.Note that for a 
lose to 2, the exponent of ε−1 is almost 1 whi
h is optimal, and theexponent of d is almost q∗/2. This implies tra
tability. On the other hand, if we take a = 1then the dependen
e on d disappears and the exponent of ε−1 is 2. This implies strongtra
tability. Hen
e, we have an interesting trade-o� sin
e we 
an improve the dependen
eon d at the expense of the dependen
e on ε−1.We now turn to a fully 
onstru
tive proof for the same problem with �nite-orderweights of order q∗. As an algorithm we now take a QMC algorithm

An,d(f) =
1

n

n
∑

j=1

f(tj)with {tj} given as one of the 
lassi
al low dis
repan
y sequen
es su
h as Halton, Nieder-reiter or Sobol, see [11, 26, 42℄. For example, take the Niederreiter sequen
e in base b,Then the algorithm An,d has error at most ε‖INTd‖ with
n ≤ Cδ ε−(1+δ) (d ln (d + b))

q∗(1+δ) ∀ δ > 0,see [38℄. Here, Cδ is a positive number independent of ε and d. Hen
e, modulo δ, wehave the best dependen
e on ε−1. We also stress that the Niederreiter sample points tjdo not depend on �nite-order weights. This estimate implies tra
tability but not strongtra
tability.Finally, we would like to mention 
onstru
tive proofs for general linear multivariateproblems presented in [52℄. The algorithms studied in these papers are WTP (weightedtensor produ
t) algorithms whi
h are modi�
ations of Smolyak's algorithm, see [39℄, forweighted spa
es of fun
tions. The WTP algorithms depends on �nite-order weights, andthe basi
 idea behind them is to use a proper tensor produ
t of known algorithms for theunivariate 
ase. Assume that the univariate problem 
an be solved with O(ε−p) fun
tionvalues or arbitrary information evaluations for some positive p. Then for arbitrary d ≥ 2,the WTP algorithm has error at most ε‖Sd‖ and uses n fun
tion values or arbitraryinformation evaluations su
h that
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n ≤ C ε−p d q∗

(ln(d/ε))q∗(p+1),for some positive C independent of ε and d. This implies tra
tability. In [52℄, thereare presented 
onditions on �nite-order weights for whi
h the WTP algorithm solves theproblem using n information evaluations polynomially dependent on ε−1 and independentof d. This implies strong tra
tability.6.5. Con
lusion. We 
on
lude this se
tion by the following points regarding tra
tability
onditions on weights:
• For linear multivariate problems de�ned over unweighted spa
es, γd,u = 1, we usu-ally have intra
tability or even the 
urse of dimensionality in the worst 
ase setting.
• We may restore tra
tability or even strong tra
tability by 
onsidering linear multi-variate problems over weighted spa
es in whi
h we 
an moderate the importan
e ofsu

essive variables or groups of variables.
• For produ
t weights, γj moderates the behavior of the jth variable. Typi
ally, if onlyfun
tion values are used, strong tra
tability holds i� ∑∞

j=1 γj < ∞, and tra
tabilityi� ∑d
j=1 γj is of order ln d. If we 
an use arbitrary 
ontinuous linear fun
tionals,then strong tra
tability is equivalent to tra
tability and holds i� ∑∞

j=1 γα
j < ∞ forsome positive α.

• For arbitrary �nite-order weights, we usually have tra
tability of linear multivariateproblems with an exponential dependen
e on the order of �nite-order weights.A
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