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Abstract. We survey recent results on tractability of multivariate problems. We mainly re-
strict ourselves to linear multivariate problems studied in the worst case setting. Typical exam-
ples include multivariate integration and function approximation for weighted spaces of smooth
functions.

1. Introduction. Multivariate problems for spaces of functions of d variables occur in
many applications. In this paper we will mainly consider linear multivariate problems
such as integration, function approximation, and, in general, approximation of linear
operators, see [30] for a survey up to 1999. The number d of variables for such problems
is sometimes in the hundreds or thousands as it is the case for some problems in financial
mathematics, see [45] and papers cited there.

Tractability of linear multivariate problems has been intensively studied in recent
years, see again [30]. This concept is defined, see [58], in terms of the minimal number
n(e,d) of function values or information evaluations needed to compute an e-approxima-
tion in a given setting, £ € (0,1). In this paper we restrict ourselves only to the worst
case setting. Tractability means that n(e,d) can be bounded by a polynomial in ¢!
and d. Strong tractability means that n(e, d) has a bound which is independent of d and

polynomially dependent on ¢~ 1.
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Tractability of non-linear multivariate problems has been studied only for a few cases.
Examples include fixed points of contraction mappings for economical problems with d
sometimes in the thousands, see [35], and quasilinear problems such as the solution of
partial differential equations with arbitrary large d, see [54, 55].

We stress that the minimal number n(e, d) has been thoroughly studied for years in
approximation theory for a fixed d and varying €. Many sharp estimates on the asymptotic
behavior of n(e,d) are known as € goes to zero. The essence of tractability is to study
n(e,d) as a function of two variables ¢! and d. Usually different proof techniques are
required to study tractability.

The minimal number n(e,d) is exponential in d for many multivariate problems
defined over classical spaces. The reason is that classical spaces are isotropic in the
sense that all variables play the same role. By this we mean that if a function f be-
longs to such a space then the function g obtained from f by permuting variables,
g(x1, 29, ..., xq) = f(Ti), Tiy, ..., x;,) for some permutation of indices (i1, ia, . ..,iq), also
belongs to the space and has the same norm. The exponential dependence of n(e,d) in d
is often called the curse of dimensionality, and leads to intractability.

The first such an example was given by Bakhvalov in 1959, see [1], for multivariate
integration of r times continuously differentiable functions. This is also the case for mul-
tivariate integration for tensor product Sobolev spaces for which the worst case errors
correspond to the Ls-discrepancy, see [31].

There are, however, examples for which we have tractability or even strong tractability
although all variables play the same role. We present two such examples for multivariate
integration. The first example deals with the Sobolev class of functions with the L,
norm for which the worst case errors correspond to the star discrepancy. Then we have
tractability as shown in [19]. The second example is for the reproducing kernel Hilbert
space whose kernel corresponds to the isotropic Wiener measure. This space has been
studied by Ciesielski and Molchan, see [6, 25]. It turns out that for this space we have
strong tractability as shown in [20].

Despite these two examples, we typically have the curse of dimensionality for isotropic
spaces. To vanquish the curse of dimensionality, we need to treat variables of functions
with diminishing importance. This leads to weighted spaces of functions in which the
influence of each variable or a group of variables is moderated by the corresponding
weight.

We consider two types of weights. The first type is the product weights in which
the jth variable is moderated by a weight -;, see [36]. We present necessary and suf-
ficient conditions on weights to obtain tractability or strong tractability for a number
of linear multivariate problems. Typically, for Hilbert spaces with tensor product re-
producing kernels, strong tractability holds iff Z;’il v < oo, and tractability holds iff
limsup,_, - Z?Zl v;/1In,d < co. For v; = constant > 0 we obtain an isotropic space and
we have intractability since the tractability condition is violated.

The second type of weights is finite-order weights, see [10, 38, 51, 52]. They appear in
many applications in which, although d is huge, functions can be well approximated by
sums of functions that depend on groups of just a few variables. For finite-order weights
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we have tractability or even strong tractability of many linear or quasilinear multivariate
problems.

Some tractability results are non-constructive. That is, we know that there are al-
gorithms which achieve tractability error bounds but we do not know how to construct
them. This is the case for the two tractable examples of multivariate integration for
isotropic spaces which we mentioned before. It is also the case for multivariate problems
studied in many initial papers on tractability.

Today, there is an increasing stream of constructive tractability results. In partic-
ular, for multivariate integration and function approximation tractability bounds can
be achieved by lattice rules or shifted lattice rules with generators computed by the
component-by-component algorithm, see [8, 9, 23, 37]. For finite-order weights, tractabil-
ity bounds for multivariate integration can be achieved by well-known low discrepancy
sequences such as Halton, Sobol and Niederreiter sequences, see [38]. For linear multivari-
ate problems, tractability bounds can be achieved by weighted Smolyak-type algorithms,
see [49] for product weights, and [52] for finite-order weights.

Tractability of multivariate problems has become nowadays a popular research area
with many results and still many open problems. We hope to show the excitement of this
area by presenting a couple of tractability results as well as a couple of open problems.

2. Examples of multivariate problems. We first illustrate the approach of this paper
by a few examples of multivariate problems.

o Multivariate integration. This is probably the most popular computational multi-
variate problem which occurs in many applied fields including mathematical finance.

For d = 1,2,..., let Dy be a Borel measurable set of R? and p, be a non-negative
integrable function such that fDd p4(t) dt = 1. For a class Fy of real integrable functions
defined over Dg, the multivariate integration problem is defined as an approximation of
the linear functional INT, : Fy — R with

INT/(f) = [ paOf()dt Vi€ E
Dg
The class F,; describes a priori knowledge about integrands f which is usually given
by smoothness, convexity or, in general, by known global properties of integrands. We
stress that the number d of variables can be huge. For instance, in mathematical finance,
d = 360 or more, see [45] and papers cited there. For path integration, formally d = oo,
and by a proper discretization we may have an arbitrarily large d, see [24, 32, 48].

o Multivariate function approzimation. Let Ly ,,(Dg) denote the space of real square
integrable functions defined over the domain Dy, i.e., Dg C R? and Ip, Pd () f2(t) dt < .
For a class F; which is a subset of Ly ,,(Dg), the function approximation problem is
defined as an approximation of the linear operator APP, : Fy — Lo ,,(Dg4) with

APPy(f) = f.

Hence, APP, is the embedding operator. Again our emphasis is for large d.
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e Solution of partial differential equations. Consider the elliptic equation
—Au+qu =g

for the interior of the domain D, with zero Dirichlet or Neumann boundary conditions.
Here A is the Laplacian operator, and we are trying to approximate the variational
solution u in the norm of the space H!(D,). The function f = (q,g) belongs to some
class F;. The partial differential equation operator is given by PDE, : Fy — H'(Dy)
with

PDE,(f) = u.

We stress that this is a non-linear multivariate problem since the solution u depends
nonlinearly on ¢. This problem is studied in [54, 55].

e Schrodinger equation. Consider the Schrédinger equation

Ou
zhm =-Au+f,

for the interior of the domain Dg, with zero boundary and initial conditions. Here, where
i = +/—1, and h is the Planck constant. As before, f belongs to some class F;. The
Schrédinger equation operator is given by Schry(f) : Fy — Lo ,, (Dg) with

Schry(f) = w.

We illustrate the Schrédinger equation for f being a sum of Coulomb pair potentials

1
fo= 2 feaPrar

1<i<j<m

of the form

where © = [r1, %2, ..., 2y,] with z; € R® and d = 3m. Here a > 0 to guarantee that f is
a smooth function.

This is the first example where we see that the function f has a special structure.
Namely, although f is a function of d variables, it is a sum of functions depending only on
six variables. This corresponds to finite-order weights. Approximations of such functions
can be found in [52], whereas the Schrodinger equation is studied in [56].

3. Tractability. In this section we define linear multivariate problems and the notion
of tractability.

For d = 1,2..., consider a continuous linear operator Sy : Fy — G4 acting between
normed linear spaces Fy and G4. We assume that Fy is a space of real functions of d
variables, f : Dg — R with D; € R?. Our problem is to approximate elements Sy f by
an algorithm A, g that uses at most n information evaluations about f. More precisely,

An,d(f) = ¢(L1(f)7L2(f)7 cee 7Ln(f))a

where L; are continuous linear functionals, and ¢ : R® — Gy is an arbitrary mapping.
In many cases, it is reasonable to assume that the functionals L; are given by function
values, L;(f) = f(z;) for some x; € D,4. The functionals L; can be taken adaptively,
see [44]. There are many results showing that under some assumptions on the spaces Fy
or G4 we may take a linear ¢ without loss of generality. The reader is referred to a recent
paper [7] where this problem is thoroughly discussed.
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The error of the algorithm A, 4 is defined in the worst case setting as

e(Ana) = sup |Saf = Ana(f)l;
JeFa, | fIS1

where || f|| denotes the norm of the space Fy, and ||Sqf — Ap.q(f)| denotes the norm of
the space Gj.

For n = 0, we do not compute any information evaluation about f, and Ao q(f) is a
constant element of Gy4. Due to linearity of Sy, it is easy to see that the choice Ag 4(f) =0
minimizes the error and

e(0) = [|Sall

is the operator norm of S;. This is called the initial error and can be achieved without
sampling the function f.

Our goal is to reduce the initial error by a factor €. That is, we would like to find an
algorithm A,, 4 such that e(A,, q) < €||Sq||. Clearly for € > 1, this problem is trivial since
A, g = 0 is the solution. That is why we always assume that ¢ € (0,1). Obviously, we
would like to find such an algorithm A,, ; with the smallest possible n, since n measures
the cost of A, 4. In fact, if A, 4 is linear then its cost is proportional to n making the
minimization of n even more apparent. Let

n(e, Sq) = min{n : 3 A,, 4 such that e(4, q4) < | Sqll}

be the minimal number! of information evaluations needed to reduce the initial error
by a factor e. We stress that we minimize over all permissible choices of functionals L;
and all mappings ¢ which form the algorithms A,, 4. We also adopt the convention that
n(e, Sq) = oo if the set of algorithms with error at most €||S4|| is empty.

We are ready to define the notion of tractability, see [58]. We say that the problem
S = {S4} is tractable if there are non-negative numbers C, p, ¢ such that

n(e,Sq) < CePd1 Vee (0,1)Vd=1,2,....

We say that the problem S = {S;} is strongly tractable if the inequality above holds with
q =0, i.e,
n(e,Sq) < Ce™? Vee (0,1) Vd=1,2,....

The infimum of p satisfying the last inequality is called the exponent of strong tractability.

The study of the minimal number n(e, Sy) is equivalent to the study of its inverse
which corresponds to the best error bound that can be achieved with n information evalu-
ations. The latter problem has been intensively studied for many years in approximation
theory. It is impossible to cite all results on the asymptotic behavior of n(e, S;) for a
fixed d and € tending to zero. This stream of research started with the pioneering work
of Kolmogorov, Nikolskij, Sard, Bakhvalov and Tikhomirov already in 1950’s.

As already mentioned in the introduction, the essence of tractability is to study

1

n(e, Sq) as a function of two variables, e~! and d, and verify for which multivariate

1

problems we can bound n(e,Sg) by a polynomial in e~ and d. This usually requires

proof techniques different than those used for the asymptotic behavior of n(e,d) for a

!Sometimes, n(e, S4) is denoted by n(e,d) as we did in the introduction.
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fixed d. That is why tractability studies needed to revisit many classical problems with
a new emphasis on the dependence on d.

The notion of strong tractability seems very demanding. It says that the minimal
number of information evaluations has a bound independent of d. That is, no matter
whether d = 1 or d is huge, it is enough to compute a polynomial number of information
evaluations in ¢! to reduce the initial error. We may therefore suspect that only trivial
problems can be strongly tractable. As we shall see this is not the case.

We would like to add that the study of tractability was initiated as a way to under-
stand very successful computations for finance problems done in 1990’s. These computa-
tions were performed for multivariate integrals with d = 360, or even larger, by classical
QMC algorithms using Sobol, Faure and Niederreiter low discrepancy points. The com-
putational results suggested that the error goes like n~! independently of d, which is
equivalent to the presence of strong tractability with the exponent p = 1. The theory at
this time could not explain this phenomenon. The detailed account may be found in [45].

4. Curse of dimensionality. In this section we present examples of linear multivariate
problems that suffer the curse of dimensionality. That is, problems for which n(e, Sy)
depends exponentially on d.

e Smooth functions. Define Fy = F,;, = C"([0,1]?) as the space of r times continu-
ously differentiable functions with the norm

= ma a D“
£l == \Iiﬁiix?[lo’f' f(z)l,

. . d
where o = [, g, . . . , ] With non-negative integer «;, |a| = Zj:1 o, and

olel f

fo o3t 37160‘2.732 - aadxd

D f(x) =

Let S; be a multivariate integration, function approximation or partial differential equa-
tion operator defined as in Section 2 with Dy = [0,1]¢ and pg = 1. Then for a fixed d we
have

n(e, Sq) = O(e~4") as € — 0.

Here, if r = 0 then n(e, Sg) = oo for small €.

For multivariate integration, this result was proved by Bakhvalov, see [1], for non-
adaptive choice of L;(f) = f(x;). Adaption does not help for this problem as proven by
Smolyak, see [2], for a fixed n, and extended by Novak, see [27], for an adaptive choice of
n. For multivariate function approximation, Bakvalov’s proof technique yields the same
result for non-adaptive function values. For more general information evaluations, the
result follows from the knowledge of the corresponding Gelfand and Kolmogorov widths.
Adaption can help at most by a factor of two as proven in [14, 43]. Details can be found
in [27, 44]. For the partial differential equation problem, this was proved by Werschulz,
see [53].

Hence, as long as the smoothness r is fixed, the minimal number n(e, S;) is exponential
in d and therefore we have the curse of dimensionality.
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Suppose now that r = r(d) is a function of d. Clearly, as long as d/r(d) is unbounded,
the problems remain intractable. Assume then that the sequence {d/r(d)} is bounded,
say, by M. Then the minimal number n(e, Sy) is of order e~*. Still we cannot claim
tractability since the factors in the Theta notation depend on d. In fact, foralld = 1,2, ...
there are some positive ¢; g4 and ¢ 4 such that

€1,d g=d/r(d) < n(e, Sq) < 2,4 g d/r(d) Ve e (0,1).

If we check the proofs of these bounds then we conclude that c¢; 4 is exponentially small
in d whereas ¢z 4 is exponentially large in d. Therefore, even if d/r(d) < M then the
last estimate is too weak to claim tractability or intractability. This also implies that the
study of tractability requires a different proof technique with much more emphasis on
the dependence of d.

This problem for multivariate integration has been studied in the master thesis of J. O.
Wojtaszczyk, see [57], where it was assumed that r takes the extreme value of infinity. The
class Fy o contains C°°([0,1])¢ functions and its unit ball contains C°°([0, 1]¢) functions

with all partial derivatives bounded by 1. This seems like a very small class. Let

e(n, INTd) = fllnf e(An,d)
n,d

denote the minimal error which can be achieved by computing n function values. Clearly,
e(n,INTy) < 1 since the error of the zero algorithm is 1. The main result of [57] is

dlim e(n,INTy) =1 vn.

This obviously implies that multivariate integration in Fj ., is not strongly tractable.
Clearly, for all multivariate problems which are at least as hard as multivariate integra-
tion, strong tractability also does not hold. This is, in particular, the case for multivariate
function approximation.

It is an open problem whether multivariate integration in Fy o is tractable. A possible
way to show that it is not tractable would be to prove that

dlim e(d?,INTy) =1 Vg=1,2,....

e Ly-Discrepancy. Define Fy = W, "1 ([0,1]%) as the Sobolev space of real functions
defined on [0, 1]¢ which is the tensor product of d copies of W2([0, 1]), where WZ([0, 1]) is
the space of absolutely continuous functions whose first derivatives belong to Ly(]0, 1]).
The space Fy consists of functions which are once differentiable with respect to all vari-
ables, and the norm is given by

ol 2
1F12 = £2(1) + /[ . ( z xu,n) i,

@#uc{l 2,.
Here, u is a non-empty subset of indices from {1,2,...,d} and |u| denotes its cardinality.
Therefore the sum above consists of 2¢ — 1 terms. For a vector = € [0,1]%, by x, we mean
the vector from [0, 1]/ containing the components of = whose indices are in u. By 0z,
and dz, we mean differentiation and integration with respect to variables x; for j € u.

Finally, by (x,,1) we mean the vector from [0, 1]? with all components whose indices are
not in u replaced by 1. Similarly, f(1) = f(1,1...1).



414 H. WOZNIAKOWSKI

Let Sgf = INT,f = f[o 174 f(t) dt be the multivariate integration operator. Consider
a linear algorithm A, 4(f) = Z;'l:1 a; f(z;). Zaremba’s identity, see [61], says that

lul

Saf = Analf)= > (_1)lul/ disc(xu,1)37f(xu,1)dxu,

PAuC{1,2,....d} [0,1]1] u

where disc is the discrepancy which is defined for = = [x1,z2,...,24) € [0,1]¢ as
diSC(I) =T1T2 " "Tq — Z an[O,w) (tj)
j=1

with the characteristic function X[ ) (t;) = 1if t; € [0,2) and x[o)(t;) = 0 if t; & [0, 2)
for [0,2) = [0,21) X [0,22) X -+ x [0, 24).

Zaremba’s identity implies that the worst case error of A, 4 is the same as the Lo-
discrepancy,

1/2
() =disea(fas )= (% /[ e )
a7 10,

0#uc{1,2,...,
and the Koksma-Hlawka inequality says that

1Saf = Ana(f)] < disca({a;} {t; D IFI - V€ Fa.
Let
disce(n,d) = inf ) disca({a;}, {t;})

aj,tj, j=1,2,...,
denote the minimal discrepancy, or equivalently, the minimal worst case error of linear
algorithms? that use n function values. For any d, there are positive numbers c¢; 4 and

cg,q such that
ln(dfl)/2 n 1n(d71)/2 n

Cld——— <discz(n,d) < coq

The lower bound was proved by Roth in 1954 for a; = n™!, see [33], and extended for
arbitrary a; by Chen in 1985, see [3, 4]. The upper bound was proved by Frolov and Roth
in 1980 by a non-constructive argument, see [13, 34], and by Chen and Skriganov in 2002
constructively, see [5].

From the last estimate we conclude that for any d,

1 1 (d—1)/2
n(e,INTy) = @( <ln > > as € — 0.

€ €
As for the previous example, we do not know much about sharp estimates of ¢; 4 and ¢z 4
and therefore we cannot conclude tractability or intractability of this problem based on
these estimates.
Tractability of this problem was studied in [30]. First of all observe that the initial
€rror 18

|[INTy|| = disca(0,d) = (4/3)%2,

2Non-linear algorithms and adaption do not help for this problem.
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so it is exponentially large in d. This suggests that multivariate integration for this space is
not properly scaled for large d. For the minimal number n(e, INT;) we have the following
estimates, see [30],

1.0463%(1 4 0(1)) < n(e,INT,) < 1.125%72?  as d — oc.

Hence, we have an exponential dependence on d and therefore the curse of dimensionality
for multivariate integration for W, "' (]0,1]%).

e Linear tensor product problems. We first define a linear tensor product problem. Let
Fg=F®FN®--®F),dtmes, be the tensor product of a separable Hilbert space F}.
Similarly, we assume that the range space Gy = G1 ®G1 ®- - -® G for a separable Hilbert
space G, and S; = S1 ® S1 ® ---® S; for a continuous linear operator S; : F; — Gj.
We also assume that we can use arbitrary continuous linear functionals as information
evaluations.

Let Wi = 5751 : Fi — Fj. We need to assume that the self adjoint non-negative
definite operator W is compact since otherwise n(e, S1) is infinite for small €, see e.g.,
[44]. Let {\;} be the sequence of non-increasing eigenvalues of Wy, Wi(; = A;(; for
orthonormal (; from Fy. The index j varies from 1 to dim(F}). If dim(F;) < oo then
we formally set A\; = 0 for j > dim(F;) + 1. Clearly, the initial error is || Sy|| = A{. It is
known, see e.g., [47], that the minimal number of information evaluations is

TL(E,Sd)Z |{[i1,i2,...,id] : ij Zland /\i1>‘i2"')‘id > €2>\il}|
and the algorithm
Ape,sp.alf) = > (f,Gi @ ®Ciu)p, G @+ ® Gy

1,02,0000d 0 Aig Aig - Aiy <€2AE

has the minimal worst case error among all algorithms that use n information evaluations
and its error is at most ¢||S4]|.

Observe that for Ao = 0, the problem Sy is trivial. Indeed, if additionally assume that
A1 = 0 then S; = 0 and n(e, Sy) = 0, and if \; > 0 then Sy is a rank one operator and
n(e, Sq) =1 for all d.

Assume then that Ay > 0. Then for Ay = Ay, i.e, when the largest eigenvalue of W7 is
at least double, we have the curse of dimensionality since n(1/2, ;) > 2¢. For Ay < Ay,
we have intractability since n(\/A\5/2,S54) > (Z) for an arbitrary integer k and d > k,
see [47].

In particular, if S;f = APP;f and F; C G, we have intractability of multivariate
function approximation for an arbitrary Fy with at least two dimensional spaces Fj.
Hence, for F; = W}(]0,1]) we have intractability for multivariate function approximation

for the spaces Fy = W;’l""’l([O, 1]¢) considered in the previous example.

5. Tractability for isotropic spaces. In this section we provide two examples of
isotropic spaces for which multivariate integration is tractable or even strongly tractable.

e Star discrepancy. We return to multivariate integration of the second example of
the previous section for a space of functions which differs from the previous space by
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choosing a different norm. Namely, we switch from the Lo norm to the L; norm. That is,

we now assume that F; = W""([0,1]%) with the norm
vl

TESITIC RS DI R <= EY 7%
0#uC{L,2,...,a} 7 10T 0w

The space is isotropic since all variables play the same role, and if f belongs to Fy and
g(x) = f(xiy, Tiy, - . -, T4, ) for some permutation (i1, 42, ...,1q) of indices (1,2,...,d) then
g€ Fyand | = /]

Applying now Hélder’s inequality to Zaremba’s identity we conclude that the worst
case error of the algorithm A, 4 is now equal to the star discrepancy,

n
e(An,a) = disces ({a;}, {t;}) == ES[ISIi]d T1To T — Zan[O,r)(tj)
T s =1

Analogously, let
disceo(n,d) = inf discoo ({ay}, {t;})

aj,t; j=1,2,...,

denote the minimal star discrepancy, or equivalently, the minimal worst case error of
linear algorithms® that use n function values. Observe that now

INT4|| = discoo (0,d) = 1 vd=1,2,....

Hence, unlike the Lo norm case, the multivariate integration problem is now properly
normalized. It is proved in [19] that there is a positive constant C' such that

n(e,INTy) < Cde™? Vee(0,1) Vd=1,2,....

The proof of this estimate is non-constructive and uses results from theory of empirical
processes and VC dimension.

Hence, we have tractability of multivariate integration for Wll’l""’l([(), 1]4). Further-
more, the dependence on d in the last estimate is sharp. This means that multivariate
integration is not strongly tractable.

It is known, see e.g., [11, 26, 42|, that for a fixed d the asymptotic dependence of the
minimal number n(e,INT}) is

—1yd—1
n(e,INTy) = O(%) as e — 0.
For d = 1, it is well known that n(s,INT;) = ©(c~!). Therefore, n(,INTy) = Q(e71).
In fact, from the lower bound for Ls-discrepancy, it follows that n(e,INTy;) =
Q(e~(In e~ 1)(@=1/2). Hence, ignoring the logarithmic factors, the minimal number de-
pends asymptotically linearly on e~'. Despite this asymptotic behavior, the authors of
[19] conjecture that any uniform estimate on n(e,INTy), i.e., for all ¢ € (0,1) and d,
which depends polynomially on d must depend on 72, see [59] for more details. Lower
bounds on n(e,INT4) can also be found in [21].

3 Again non-linear algorithms and adaption do not help.
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o [sotropic Wiener kernel. We now take Fy; = H(K,) as the reproducing kernel
Hilbert space with the isotropic Wiener kernel,

Ka(z,y) = 5(lzll2 + llyllz = e —yll2) ~ Va,y e R?

with the Euclidean norm ||z = (Zd

=1 x?)l/Q. This Hilbert space was characterized by
Molchan, see [25], for odd d, and by Ciesielski, see [6], for arbitrary d. The inner product
is given by

(f, 9>Fd — ad((—A(d+1)/4f, (_A)(d+1)/4g>L2(RD)

for f and g which have finite support, vanish at zero and are infinitely many times
differentiable, The constant ay is known, A is the Laplace operator, and for d + 1 not
divisible by 4, (—A)(@+1/4 is understood in the generalized sense, see [41].

The reproducing kernel K; corresponds to the isotropic Wiener measure and is also
called the Brownian motion in Lévy’s sense.

Consider multivariate integration with the Gaussian weight,

1
——— | exp(—||t|[*/2) f(t)dt VY fE€EF,
oy [ w2 fd s e Fy
It is proved in [20] using a non-constructive argument that there is a positive number C
such that

INT4(f) =

n(e,INTy) < Ce™? Vee(0,1) Vd=1,2,....

-1

Furthermore, the exponent 2 of e is sharp due to [46]. Hence, we have strong tractability

of multivariate integration with the exponent of strong tractability equal to 2.

6. Vanquishing the curse of dimensionality. The curse of dimensionality or in-
tractability cannot be broken by a more clever choice of an algorithm since it is the
intrinsic property of the multivariate problem S = {S;} in the worst case setting. The
only way to vanquish the curse of dimensionality or intractability is:

e Switch from the worst case setting to a setting where the error and/or the cost of
an algorithm is defined in a less demanding way. For example, we can switch to:

— the average case setting in which instead of taking the supremum of ||S; —
A a(f)]] we take an average of ||Sq — Ay q(f)|| with respect to some probability
measure on the space Fy,

— the probabilistic setting in which we demand that ||Sq — A,, 4| is small only for
elements f from a subset of F; whose measure is large,

— the randomized setting in which we allow randomized algorithms A, 4(f,w) for
some random element w, and measure their performance by the expected value
with respect to w and then taking the supremum with respect to f. The classical
Monte Carlo algorithm for multivariate integration is probably the most com-
monly known randomized algorithm. It is well known that its randomized error
is bounded by ||f|z,,, p,)/v/n- Hence, if the Ly-norms of functions from the
unit ball of F; depend polynomially on d then we have tractability of multivari-
ate integration in the randomized setting. Furthermore, if they do not depend
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on d then we have strong tractability. For example, take the first example of
Section 4. Clearly, the Ly-norms are now bounded by 1 and strong tractability
holds. Hence, the curse of dimensionality present in the worst case setting is eas-
ily broken by switching to the randomized setting and using the classical Monte
Carlo algorithm.

— the quantum setting in which quantum algorithms use vast parallelization. This is
a new setting with a very interesting stream of work for discrete and continuous
problems including multivariate integration and function approximation. The
reader interested in this setting is referred to papers of Heinrich, Novak and
others, see e.g., [15, 16, 17, 18, 28, 29].

e To redefine the multivariate problems S; : F3 — G4 by shrinking the space Fjy.
This can be done still in the worst case setting by using additional properties of
functions. As we shall see this approach leads to weighted spaces of functions in
which successive variables or, more generally, groups of variables are moderated
by corresponding weights. The major question is to find necessary and sufficient
conditions on weights to guarantee tractability or strong tractability of multivariate
problems still in the worst case setting.

We restrict ourselves in this paper only to show how tractability can be restored by
using weighted spaces of functions in the worst case setting.

6.1. Weighted reproducing kernel Hilbert spaces. Before we define weighted reproducing
kernel Hilbert spaces, we motivate our approach by the following example.

ExAMPLE (Weighted Sobolev space). Consider the (unweighted) Sobolev space F; =
W, h1(]0,1]9) as in the Lo-discrepancy example of Section 4. The space W' ([0, 1]4)
is the reproducing kernel Hilbert space with the kernel
d
Ky(z,y) = [[(1+min(1 — 25,1 —y;)).
j=1

This space is isotropic since all variables play the same role, and, as we already know,
multivariate integration and function approximation suffer from the curse of dimension-
ality.

Suppose that we know additionally that the successive variables play diminishing role.
That is, the first variable x; is more important than x5 which in turn is more important
than x3 on so on. This holds, for example, for finance problems, where functions depend
in a decreasing way on the successive variables, see [45] and papers cited there. This can
be modeled by introducing the sequence of weights {;}, with y; > 5 > --- >0, and by
considering the weighted Sobolev space Fy = H(Kgq) defined as the reproducing kernel
Hilbert space with the kernel

d
Ki(z,y) = Hl—l—’y]mlnl—zj,l—yj)).
j=1
Note that for v = 1, i.e., 7; = 1 for all j, we have K41 = K4, and we return to the
(unweighted) Sobolev space Wy ([0, 1)%).
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The inner product is now given for f,g € H(Kq~) by

1 alu\ 8'“‘
Dy = Mg+ > — o F ) — g, 1) da,
P#ucq{1,2,...,d} Yu Jo,1]ul u )
where
=T
jEu

Observe that f € H(Ky,) can be uniquely decomposed as
fla) = Z fulzw)
0#uc{1,2,...,d}
with f, € H(Kd,u) and Kd,u(xuayu) = H

fzo) = f(1).
This decomposition is an ANOVA-type decomposition, see [12, 40]. Its essence is that

jewmin(l — 25,1 — y;). For u = () we have

f is decomposed as a sum of functions depending on groups of variables indexed by
subsets u. Furthermore, the importance of each group of variables is measured by -,
since
2 -1 2
Hf”H(KdW) = Z Yu Hfu||H(Kd,u)
0#ucq{1,2,...,d}

with the convention that 0/0 := 0. For u # (J, the functions f, have the properties that
fu(zy) = 0 if at least one component of z, is 1, and

) ol 2 J
e = [ (i) o

If f lies in the unit ball of H(Kg,) then || fullz(x,.) < Y. Hence, is ; is small then all
fu with j € u have small norms. In this way, the weights moderate the contributions of
fu’s in the decomposition of f from the unit ball of H (K ).

We now comment on tractability of multivariate integration and function approxi-
mation for the weighted Sobolev space H(K,-) It is known that strong tractability of
multivariate integration and function approximation for H(Kg ) holds iff

Z Vi < 00,
j=1

and tractability holds iff
d
lim sup L:j =17 ,
d—oo In d

see [31, 36] for multivariate integration, and [50] for multivariate function approxima-
tion. m

Based on this motivating example, we are ready to present weighted reproducing
kernel Hilbert spaces of functions of d variables, see [52]. We start with d = 1. For a
Lebesgue measurable set D C R, let p : D — R, be a Lebesgue integrable function
such that [, p(t)dt = 1. Let H(K) be a separable reproducing kernel Hilbert space of
univariate functions defined on D with the reproducing kernel K : D x D — R. We
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assume that the constant non-zero functions do not belong to H(K). For simplicity, we
assume that

Ai= [ pla)o)K (a,y)dady > o
D2

B := /Dp(m)K(:r,x) dr < oo.

The first condition A>0 implies that the integration problem in H(K) is not trivial
since for INT(f) = [, p(t)f(t) dt we have |[INT| = A. The second condition B < oo
implies that H(K) is contlnuously embedded into Ly ,(D) since || f||z, ,(p) < Bl fllmx
Obviously, 0 < A < B since |K (z,y)| < /K(z,2)\/K(y,y).

For d > 2, we take Dg = D x D x --- x D, d times, and pg(x) = H;‘i:1 p(x;). Let
v = {7Va,u} be a sequence of non-negative numbers, called weights, indexed by d and u

which is an arbitrary subset of indices from the set {1,2,...,d}. Thus for each d we have
27 non-negative weights Yd,u- For simplicity, we assume that v 9 > 0. Let {{; denote the
set of nonempty subsets u with positive vq .

Consider the weighted reproducing kernel Hilbert space H(Kg ) with the reproducing
kernel

Kd,'y(xay):f)/d,(l)+ Z de,uHK(xjayj) Vx»?JGDd-

uely JEU

The space H (K4, ) is a subset of Ly ,,(Dg) and consists of functions defined on D4 which
can be uniquely decomposed as

F=h+ D fu=rafo+ Y Yaufiu
ucly ucly

where fu = vqufau € H(Kg4y) with the reproducing kernel K (z,y) = Hj€u K(z;,95),
K, = 1. Hence, functions f, depend only on variables with indices from the subset u.
In particular, fy = constant. For f,g € H(K ) we have

(f:9) b ra,y = Va0 fa0gan + D Y Fa 9au) i, o -
uelly

This is a generalized ANOVA-type decomposition,
The weights v = {44} are called product weights if

Yo =1, vau=[[v Vdu#o,
JjEu
for some non-negative numbers v;, see [10, 36].
The weights v = {yq4.u} are called finite-order weights of order ¢* if
Yau =0 for all (d,u) with |u| > ¢%,

where ¢* is the smallest integer with this property, see [10, 38, 52].

For product weights, we have

d
Kany(z,y) =[] Q+K(x;,95))-
j=1
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The importance of the jth variable is moderated by the weight 7;, whereas the importance
of the group of variables indexed by u is moderated by Hjeu ;. As an example, observe
that for D =1[0,1], p =1, K(z,y) = min(1 —x,1 — y), and for product weights we obtain
H(Kg4,) as the weighted Sobolev space considered in the motivating example.

For finite-order weights with order ¢*, each function from H(K,.) is a sum of func-
tions which depend on at most ¢* variables. Furthermore, each group of at most ¢*
variables is moderated by the weight v4,. As we already mentioned, this property holds
for many multivariate problems in mathematical finance and in physics.

6.2. Linear tensor products problems for H(Kg.). Observe that H(K4.) is a subset
of the space H(Ky1) with all weights 74, = 1. That is why it is enough to define a
multivariate problem over H (K 1). Since H (K1) is the tensor product of d copies of
H(1 + K) we first define S; : H(1+ K) — G as a continuous linear operator for a
separable Hilbert space G1. Then for d > 2, we take Sy : H(Ky1) — Gg4 as the tensor
product of S7 with G4 being the tensor product of G1. In this way we obtain multivariate
integration for S; = INT; with G; = R, and multivariate function approximation for
Sl = APP1 with Gl = L27p1 (D)

As in the third example of Section 4, for a general S; we denote W; = S7S5; :
H(1+ K) — H(1+ K) and denote its non-increasing eigenvalues by {\;} with the same
convention that A; = 0 for j > dim(H (1 + K)) + 1. For an arbitrary non-increasing and
non-negative sequence 7 = {7;}, we say, as in [49], that p, is the sum-exponent of 7 if

pn:inf{aEO:Zn;‘ <oo}7
=1

with p, = oo if the set of a’s is empty.

6.3. Tractability for product weights. Tractability depends on the class of permissible
information evaluations. Assume first that all continuous linear functionals can be used
as information evaluations. Obviously, if Ao = 0 then S, is a continuous linear functional
and strong tractability trivially holds since n(e,Sy) € {0,1}. Assume then Ay > 0. The
following theorem was proven in [49]:

e Tractability is equivalent to strong tractability.
o Strong tractability holds iff the sum-exponents of A = {\;} and v = {v;,} are finite.
If this holds then the exponent of strong tractability is

p = 2max(px, py)-

Observe that for all v; = 1 we have p, = oo and any linear tensor product problem is
intractable. This holds even if S is a rank two operator, i.e., A; = 0 for all j > 3. Hence,
to obtain tractability we must have the diminishing importance of successive variables
such that p, < oo. This means that the weights v; must behave like j~P for some positive
8. Obviously, since p, = 1/ the exponent of strong tractability is large for small 3.

The condition py < co is quite natural. Even for d = 1, the minimal number n(e, S)
depends polynomially on ¢! iff the eigenvalues A; behave like j~P for some positive 3.
Hence, the compactness of Sy is enough to guarantee that n(e, S7) is finite but not enough
to guarantee tractability.
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We now briefly discuss the class of information evaluations given by function values.
In this case, there are a number of different results depending on certain assumptions
on the operator S;. We only mention that a typical result which holds, in particular, for
multivariate integration and function approximation is that strong tractability holds iff
px < oo and

oo
Z v < 09,
j=1

whereas tractability is, in general, not equivalent to strong tractability, and holds iff

px < oo and
i
lim sup ==L
d~>oop In d
The reader interested in more specific results, in the estimates on the exponents of ¢!
and d, as well as in constructive algorithms for which tractability bounds hold is referred

to a survey [30] and papers cited there.

6.4. Tractability for finite-order weights. Finite-order weights usually imply tractability
or even strong tractability of linear multivariate problems, and the role of the number
d of variables is replaced by the order ¢* of finite-order weights in tractability bounds.
We illustrate this point for multivariate integration for which an explicit estimate on
n(e,INTy) may be found in [52],

.
n(e, INT) < (%) glz Vee (0,1)¥d=1,2,....
Here, A and B are defined as in Subsection 6.1. Hence, we have strong tractability of
multivariate integration.

We stress that this estimate holds for arbitrary finite-order weights of order ¢*. Fur-
thermore, the exponential dependence on ¢* present in this estimate is sharp for some
finite-order weights of order ¢*.

For some Hilbert spaces H(K) it may happen that A = 0 and the last estimate cannot
be applied. This holds, in particular for the Korobov space H(1 + K) with K(x,y) =
Bsy(|lz—vy)), for z,y € [0,1], where By(t) = t2 7t+% is the Bernoulli polynomial of degree
2. The inner product in this case is (f,g) = fol f(®)g(t)dt + f02 f'(t)g'(t)dt. For A =0,
instead of strong tractability, we have tractability of multivariate integration, see [52].

Similar bounds on n(e, S4) hold for multivariate function approximation and other
linear multivariate problems. Roughly speaking, we always have tractability and under
certain assumptions on finite-order weights we have strong tractability, see again [52].

Tractability for finite-order weights has been also studied for quasilinear problems
such as partial differential equations in [54, 55, 56]. The essence of these results is that
finite-order weights imply tractability of these non-linear problems.

The tractability results for finite-order weights which we mentioned so far are obtained
by non-constructive arguments. There are also results with “semi-constructive” and fully
constructive proofs. We now indicate a couple of such results.
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We first indicate a “semi-constructive” proof for tractability of multivariate integration
with Dy = [0,1]%, pg = 1 and for the weighted Sobolev space H(Kq.) with finite-order
weights of order ¢* and with the univariate kernel K (z,y) = min(1 —z,1 —y). As in [3§],
we consider a shifted lattice rule

B ()

where z € {1,2,...,n — 1}? is an integer vector with d components computed by the
CBC (component-by-component) algorithm, and A € [0,1)¢ is a shift vector. Then for
some A, the shifted lattice rule has error at most ¢||INTy|| with

n<C,e¥edr =9 vaell,2),

see [38]. Here, C, is a positive number independent of ¢ and d.

This is a “semi-constructive” proof since we know how to construct the generating
vector z of the lattice rule, but we do not know how to construct the shift A. We also
stress that z as well as A depend on finite-order weights.

Note that for a close to 2, the exponent of e~! is almost 1 which is optimal, and the
exponent of d is almost ¢* /2. This implies tractability. On the other hand, if we take a = 1
then the dependence on d disappears and the exponent of ¢! is 2. This implies strong
tractability. Hence, we have an interesting trade-off since we can improve the dependence
on d at the expense of the dependence on ¢~ 1.

We now turn to a fully constructive proof for the same problem with finite-order
weights of order ¢*. As an algorithm we now take a QMC algorithm

= > w)

with {t;} given as one of the classical low discrepancy sequences such as Halton, Nieder-
reiter or Sobol, see [11, 26, 42]. For example, take the Niederreiter sequence in base b,
Then the algorithm A,, 4 has error at most ¢||[INT|| with

n<Cse ) (dn(d+b)T T vs>o,

see [38]. Here, Cs is a positive number independent of € and d. Hence, modulo §, we
have the best dependence on ¢~1. We also stress that the Niederreiter sample points t;
do not depend on finite-order weights. This estimate implies tractability but not strong
tractability.

Finally, we would like to mention constructive proofs for general linear multivariate
problems presented in [52]. The algorithms studied in these papers are WTP (weighted
tensor product) algorithms which are modifications of Smolyak’s algorithm, see [39], for
weighted spaces of functions. The WTP algorithms depends on finite-order weights, and
the basic idea behind them is to use a proper tensor product of known algorithms for the
univariate case. Assume that the univariate problem can be solved with O(¢~P) function
values or arbitrary information evaluations for some positive p. Then for arbitrary d > 2,
the WTP algorithm has error at most ¢||S4|| and uses n function values or arbitrary
information evaluations such that
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n<CePd? (In(d/e)? P+,

for some positive C' independent of ¢ and d. This implies tractability. In [52], there

are presented conditions on finite-order weights for which the WTP algorithm solves the

problem using n information evaluations polynomially dependent on e ! and independent

of d. This implies strong tractability.

6.5. Conclusion. We conclude this section by the following points regarding tractability

conditions on weights:

For linear multivariate problems defined over unweighted spaces, 4, = 1, we usu-
ally have intractability or even the curse of dimensionality in the worst case setting.
We may restore tractability or even strong tractability by considering linear multi-
variate problems over weighted spaces in which we can moderate the importance of
successive variables or groups of variables.

For product weights, v; moderates the behavior of the jth variable. Typically, if only
function values are used, strong tractability holds iff Z;}il v; < 00, and tractability

iff E?:1 «; is of order In d. If we can use arbitrary continuous linear functionals,
then strong tractability is equivalent to tractability and holds iff Z;i1 75" < oo for
some positive a.

For arbitrary finite-order weights, we usually have tractability of linear multivariate
problems with an exponential dependence on the order of finite-order weights.
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