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Abstract. The concepts of geometric infinite divisibility and stability extend the classical prop-

erties of infinite divisibility and stability to geometric convolutions. In this setting, a random

variable X is geometrically infinitely divisible if it can be expressed as a random sum of Np com-

ponents for each p ∈ (0, 1), where Np is a geometric random variable with mean 1/p, independent

of the components. If the components have the same distribution as that of a rescaled X, then

X is (strictly) geometric stable. This leads to broad classes of probability distributions closely

connected with their classical counterparts. We review fundamental properties of these distribu-

tions and discuss further extensions connected with geometric sums, including multivariate and

operator geometric stability, discrete analogs, and geometric self-similarity.

1. Introduction. The concepts of geometric stability and infinite divisibility, which
goes back to [70], extends the classical properties of stability and infinite divisibility (ID)
to geometric convolutions

Sp =
Np∑
j=1

Xj , (1)

where Np is a geometric variable given by the probability density function (PDF)

P (Np = k) = p(1− p)k−1, k = 1, 2, . . . (2)

while the {Xj} are independent and identically distributed (IID) variables independent
of Np. In this context, the distribution of X is geometrically infinitely divisible if for each
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p ∈ (0, 1), X has the same distribution as Sp (where of course the distribution of the {Xj}
depends on p). Similarly, the distribution of X is (strictly) geometric stable if X has the
same distribution as apSp for some deterministic ap, where this time the {Xj} in (1) have
the same distribution as X. This leads to broad classes of probability distributions, closely
connected with their classical counterparts. A sharp peak at the mode, similar to that of
the Laplace distribution (which is geometric stable), is one characteristic feature of these
distributions, in addition to their heavy tails and infinite divisibility. These properties,
coupled with their relation to geometric sums, which appear quite naturally in many
applied problems (see, e.g., [68]), make these distributions applicable in many diverse
areas.

This is a brief review of geometric stable and infinitely divisible distributions, as
well as other interesting and important classes of distributions that arise in connection
with geometric random sums (1). We emphasize general mechanisms generating these
distributions, their fundamental properties that are relevant in applications, and their
relation to other well-known classes, most notably, univariate and multivariate as well as
operator stable laws. Our journey begins with Sections 2 and 3, where we introduce the
concepts of geometric stability and infinite divisibility. It continues with Section 4, where
we review general geometric stable laws, which are the limiting distributions of geometric
sums (1). Further extensions connected with multivariate geometric sums (1) normalized
by linear operators are discussed in Section 5. Our final destination is Section 6, devoted
to quite recent concepts and stochastic models connected with geometric stability and
self-similarity of random processes.

2. Geometric stability. The origins of (strictly) geometric stable distributions are con-
nected with invariance properties of renewal process with respect to geometric thinning.
Suppose that each point of a renewal process {R(t), t ≥ 0} is retained with probability
p ∈ (0, 1) and deleted with probability 1 − p, independently of other points, leading to
the new point process {Rp(t), t ≥ 0}, known as the p-thinning of R (see, e.g., [43]) or
rarefaction (see [189]). Gnedenko [37] and Rényi [165], among others, characterized those
renewal processes where R and Rp have the same distribution for each p (up to the change
of time scale). Since the inter-arrival of Rp is the geometric sum (1) of Np inter-arrivals
Xj of R, we can express this invariance as the equality in distribution

X
d= ap

Np∑
j=1

Xj , p ∈ (0, 1), (3)

where ap > 0 and X,X1, X2, . . . are IID, independent of Np. Perhaps the best-known
solution of (3), presented in [7], is the exponential distribution given by the Laplace
transform (LT)

ψ(t) =
1

1 + λtα
, t > 0, (4)

with α = 1 and ap = p in (3), and the corresponding renewal process R is Poisson
(see [165]). As shown in [37], the only other solution of (3) supported on the positive
real line is that given by the LT (4) with some 0 < α ≤ 1 and ap = p1/α in (3). This
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is the Mittag-Leffler distribution (see, e.g., [61, 62, 63, 80, 89, 90, 126, 156, 192]), also
known as the positive Linnik law (see [128, 151]), which plays a crucial role in heavy-tail
renewal theory arising in connection with anomalous (fractional) diffusion (see, e.g., [45]
and references therein). The latter terminology has to do with the fact that distributions
with the characteristic function (ChF) given by

ψ(t) =
1

1 + σα|t|α
, t ∈ R, (5)

with 0 < α ≤ 2, known as (symmetric) Linnik distributions (see, e.g., [4, 5, 23, 67, 78, 79,
125, 127, 129, 150]), solve (3) within the class of symmetric distributions on the entire
real line. Since the special case α = 2 yields the familiar Laplace distribution with its
characteristic peak at the mode (see [77] and references therein), Linnik laws (5) are also
known as α-Laplace distributions (see [154]).

Note that the ChFs of all these distributions are related to those of stable distributions
via the relation

ψ(t) =
1

1− log φ(t)
, (6)

where φ is the ChF of a degenerate distribution when ψ is exponential, stable subordinator
when ψ is Mittag-Leffler, symmetric stable when ψ is symmetric Linnik, and normal when
ψ is Laplace. These are all examples of strictly geometric stable (SGS) random variables,
introduced in [70] as those variables that satisfy the stability relation (3). As shown in
[70], the general class of SGS distributions is given by the ChF (6), where φ is the ChF of
a strictly stable distribution (see, e.g., [172]). The same concept applies to distributions
on Rd (see, e.g., [118]) or in general Banach spaces (see [160]). Let us also note that the
relation (6) has an interpretation in terms of subordination, or randomly stopped Lévy
processes: the ChF ψ corresponds to the variable X(Z), where {X(t), t ≥ 0} is a Lévy
process with X(1) having the ChF φ, and Z is an independent exponential variable. It
is clear in this connection that the distribution given by ψ is infinitely divisible (ID),
with the ChF ψu corresponding to the random variable X(Z(u)), with X(t) as before
and {Z(t), t ≥ 0} being the gamma Lévy process (so that Z(1) is exponential). Special
cases of random variables with ChF ψu include generalized Mittag-Leffler (see, e.g., [2]),
generalized Linnik (see, e.g., [32, 152]), and generalized Laplace (or Bessel function)
distributions (see, e.g., [77]).

Remark 2.1. In case of exponential distribution, where in (3) we have ap = p, relation
(3) written in terms of the exponential ChF ψ takes on the form

ψ(t) =
pψ(pt)

1− (1− p)ψ(pt)
, (7)

or equivalently, ψ(t) = ψ(pt)(p + (1 − p)ψ(t)). This shows that an exponential variable
X solves the equation X

d= W1X1 + pX2, where X, X1, and X2 are IID and W1 has
a Bernoulli distribution with parameter 1 − p = P (W1 = 1), and is independent of X1

and X2. More general equations of the form X
d= W1X1 + W2X2, with (W1,W2) such

that E(W1 +W2) = 1, were investigated in [9].
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Remark 2.2. The stability property (3) of the exponential distribution under geometric
summation has been observed empirically in a variety of settings (see references in [108]),
most notably in connection with studying growth periods of currency exchange rates (see
[99, 109]). Within a growth period, all consecutive log-returns Xj = logRj+1 − logRj ,
where Rj is the exchange rate on day j, are positive. Moreover, the cumulative log-return
over the growth period is given by the random sum Sp in (1), where the number of terms
Np is the duration of the growth period. A remarkable property of the exchange rates,
reported in [99, 109], shows that cumulative log-return Sp has the same distribution (up
to a scale factor) as a single log-return Xj (over one day) given that Xj is positive. This
is essentially the stability property (3). An interesting mixed bivariate model (Sp, Np),
where the Np is geometric and the {Xj} in (1) are IID exponential, was developed in
this connection in [99] (see [11, 12, 100, 101, 102] for further extensions and applications
of this model).

Remark 2.3. The concept of geometric stability as defined in (3) needs a modification
in order to be applicable to discrete distributions. Such modification appeared in [2,
14], where the multiplication by ap was replaced by the binomial thinning operator �,
introduced in [188] in connection with extending the concepts of self-decomposability and
stability to this setting. Recall that for any discrete random variable N supported on the
set of non-negative integers Z+ = {0, 1, . . .} and any a ∈ (0, 1), we have

a�N =
N∑
j=1

Ij , (8)

where the {Ij} are IID indicator random variables with parameter a, independent of
N . In this setting, a Z+-valued random variable X is discrete strictly geometric stable
(DSGS) if for each p ∈ (0, 1) there exist an ap ∈ (0, 1) such that X d= ap � Sp, where Sp
is the sum (1) whose terms are IID copies of X, independent of the geometric number
of terms Np. As shown in [2], there is a correspondence between DSGS distributions and
discrete stable laws (see [24, 188]), which can be stated as

G(s) =
1

1− logH(s)
, (9)

where G is the probability generating function (PGF) of a DSGS distribution and H

is the PGF of the corresponding discrete stable distribution. Since the PGF of any dis-
crete stable distribution is of the form H(s) = φ(1 − s), where φ is the LT of a sta-
ble subordinator (see [188]), the PGF of a DSGS distribution is of the form ψ(1 − s),
where ψ is the Mittag-Leffler LT given in (4). Note that this distribution, called dis-
crete Mittag-Leffler in [60, 157], describes a standard Poisson process {N(t), t ≥ 0},
randomly stopped at a Mittag-Leffler distributed Z, which is independent of the process.
See [2, 3, 14, 15, 20, 57, 151, 179, 180] for further properties and extensions, including
autoregressive schemes with discrete stationary distributions.

Remark 2.4. The problem of random stability in the spirit of (3) was considered in many
works, including [5, 16, 17, 41, 42, 54, 55, 67, 70, 72, 75, 125]. It is now well-known that the
geometric distribution is somewhat unique in that it allows the existence of distributions



GEOMETRIC INFINITE DIVISIBILITY, STABILITY, AND SELF-SIMILARITY 43

satisfying the stability relation (3). The key property of the geometric distribution that is
behind this is the fact that the class {Gp, p ∈ (0, 1)} of geometric probability generating
functions (PGF) forms a commutative semi-group under the operation of convolution:
Gp(Gq(s)) = Gq(Gp(s)) for all p, q ∈ (0, 1), where

Gp(s) =
ps

1− (1− p)s
(10)

is the PGF of the geometric distribution (2). Indeed, a notion of stability with respect
to a general family of integer-valued random variables {Np, p ∈ ∆ ⊂ (0, 1)} requires that
the corresponding PGFs commute (see [17, 42, 75]). Perhaps the easiest way to see this,
is to note that if the distribution of X is stable with respect to Np and Nq for some
p, q ∈ ∆, so that for some ap, aq > 0 we have

X
d= ap

Np∑
j=1

Xj and X
d= aq

Nq∑
j=1

Xj , (11)

where the {Xj} are IID copies of X, then we will also have

X
d= apaq

Np∑
i=1

Nq∑
j=1

Xij
d= aqap

Nq∑
i=1

Np∑
j=1

Xij , (12)

where the {Xij} are again IID copies of X, which essentially shows that pq ∈ ∆ and X

is stable with respect to Npq, whose PGF is Gpq(s) = Np(Nq(s)) = Nq(Np(s)). There are
very few such families with commuting PGFs, all related to the geometric distribution
(see [17]). Thus, for most cases other than geometric, we do not have distributions with
random stability in the spirit of (3). For example, no such stable distributions exist when
Np is a Poisson distribution with mean − log p, p ∈ (0, 1).

3. Geometric infinite divisibility. Geometric infinitely divisible random variables,
introduced in [70], are those variables that can be decomposed into the sum of Np IID
random variables for each p ∈ (0, 1), where Np is a geometric random variable.

Definition 3.1. A random variable in Rd is geometrically infinitely divisible (GID) if
for each p ∈ (0, 1) we have

X
d= X

(p)
1 +X

(p)
2 + · · ·+X

(p)
Np
, (13)

where Np is a geometric variable (2) and the {X(p)
j } are IID variables independent of Np.

Writing equation (13) in terms of the ChFs we obtain

ψ(t) =
pψp(t)

1− (1− p)ψp(t)
, (14)

where ψ and ψp are the ChFs of X and X
(p)
1 , respectively. This shows that in order for

X to be GID, the function ψp(t) = ψ(t)[p + (1 − p)ψ(t)]−1 must be a genuine ChF for
each p ∈ [0, 1]. Clearly, all strictly geometric stable distributions given by the ChF (6) are
GID. As shown in [70], all GID distributions are given by the ChF of the form (6) with
φ being the ChF of an ID distribution in the classical sense. Thus, there is a one-to-one
correspondence between ID and GID distributions, as there is between SGS and strictly
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stable laws. Here, we again have an interpretation in terms of randomly stopped Lévy
processes: the ChF ψ of a GID distribution corresponds to the variable X(Z), where
{X(t), t ≥ 0} is a Lévy process with X(1) having the ChF φ, and Z is an independent
exponential variable. This shows that all GID distributions are also ID in the classical
sense.

Remark 3.2. Note that the relation (14) can be written as

ψ(t) = ψp(t){p+ (1− p)ψ(t)}, (15)

which in terms of random variables can be stated as

X
d= IX +X(p), (16)

where X and X(p) are random variables with the ChFs ψ and ψp, respectively, I is
a Bernoulli variable with P (I = 1) = 1 − p, and all the variables on the right-hand-
side of (16) are mutually independent. Thus, the solution of the problem of finding all
random variables X satisfying the relation (16), posed by Zolotarev (cf. [70]), is provided
by the class of GID random variables. It is worth noting in this connection that only
(and any) GID distribution can appear as the marginal distribution of Xn in stationary
autoregressive schemes of the form

Xn =
{
εn with probability p
εn +Xn−1 with probability 1− p, (17)

with εn having the ChF ψp. Such models appeared in [5, 58, 59, 61, 122, 123, 184, 185,
186, 187], see also [112].

Remark 3.3. When defining the concept of GID for discrete distributions supported on
the set of non-negative integers Z+, one may require that the distribution of the variables
{X(p)

j } in (13) be also supported on Z+ (see [2]). In this case, the relation (6) is usually
stated as in (9) in terms of the PGFs rather than ChFs (see [2]), where G is the PGF of a
discrete-GID distribution with ChF ψ and H is the PGF of the corresponding discrete-ID
distribution with ChF φ. Since all discrete-ID distributions are compound Poisson, so that
H(s) = exp{−λ[1−Q(s)]} with some λ > 0 and PGF G, every discrete-GID PGF admits
the representation

G(s) =
1

1 + λ[1−Q(s)]
. (18)

Since the right-hand-side of (18) is the PGF of
∑Np−1
j=1 Wj , where Np is geometric (2)

with the parameter p = 1/(1 + λ) and the {Wj} are IID with common PGF Q, and
are independent of the Np, we see that every discrete-GID distribution is compound
geometric, as established in [2].

It is worth noting that the geometric random variable (2) is not GID (see [99]), while
a shifted geometric random variable Np−1 is GID. Further, if X with the ChF ψ is GID,
then the variable X(p) with the ChF ψp appearing in (14) is also GID for each p ∈ (0, 1).
In addition, the class of GID distributions is closed under geometric summation, that is
the geometric sum S =

∑Nq
j=1Xj is GID whenever the Xj are IID and GID and Nq is

geometric with parameter q, and independent of the {Xj}. This can be seen by noting
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that whenever the ChF of Xj is of the form (6) with some ID φ then the ChF of S
is also of this form but with φ replaced with φ1/q (which is still ID). Let us also note
that any mixture of a GID distribution with a point mass at zero is always GID, that
is for each q ∈ (0, 1) the ChF q + (1 − q)ψ(t) is GID whenever ψ is GID, although the
converse does not hold (the mixture can still be GID with ψ not being GID), see [114]
for examples and further information. Finally, it should be noted that the class of GID
distributions arises as the only limiting laws of geometric sums for triangular arrays, in a
similar way as classical ID distributions arise in connection with deterministic sums. We
refer the reader to [69, 146, 155, 158, 114, 173, 174, 175] for more information on GID,
and to [2, 17, 42, 56, 75, 177, 178, 181] for generalizations to divisibility with respect to
integer-valued distributions other than geometric.

4. Geometric stable distributions. With analogy to classical stable distributions,
one can define a class of limiting distributions in the geometric summation scheme as
follows (see [81, 142]).

Definition 4.1. A random vector Y in Rd is said to be geometric stable (GS) with
respect to the summation scheme if there exists a sequence of IID random vectors
X1, X2, . . ., a geometric random variable Np independent of all Xi, and constants ap > 0
and bp ∈ Rd such that

ap

Np∑
i=1

(Xi + bp)
d−→ Y, as p→ 0. (19)

As shown in [71], GS distributions can be described in terms of their ChF via (6),
where φ is a stable ChF. If the stable ChF φ corresponds to a strictly stable random
vector, then Y is called strictly geometric stable (SGS), and appears as a weak limit in
(19) with bp = 0. If the distribution of a GS random variable Y is symmetric, then Y is
called symmetric GS, and is necessarily SGS.

Remark 4.2. One dimensional strictly GS laws defined as limiting distributions in (19)
with bp = 0 coincide with those mentioned in Section 2 in connection with the stability
of geometric sums.

Remark 4.3. The characteristic function representation of GS distributions follows from
classical transfer theorems for random sums that go back to Robbins [167, 168], see, e.g.,
[27, 38, 39, 40, 42, 95, 96, 120, 169, 171, 190]. These results imply that whenever the
{Xi} are in the domain of attraction of a stable distribution with the ChF φ and the
integer-valued random variables Np converge to infinity in probability (as p converges to
zero) such that pNp converges in distribution to a non-negative random variable Z with
cumulative distribution function (CDF) F and LT ϕ, and we have the convergence in
(19), then the ChF of the limit is the convolution mixture

ψ(t) =
∫ ∞

0

φz(t)dF (z) = ϕ(− log φ(t)). (20)

In the geometric case, pNp converges to the standard exponential distribution with the LT
ϕ(t) = 1/(1 + t), which produces the basic relation (6). Different families of distributions
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arise for other integer-valued variables {Np, p ∈ ∆ ∈ (0, 1)}, whose generating functions
do not need to be commutative, which is required to ensure the stability as discussed in
Section 2. More information related to this can be found in [42, 75, 95, 96].

Remark 4.4. If the convergence in (19) is along a particular subsequence, the resulting
limiting distributions are called semi-geometric stable, with analogy to the semi-stable
case. Their ChFs are still of the form (6), where this time φ is the ChF of a semi-stable
law (see, e.g., [119, 153]). See [13, 26, 51, 60, 61, 63, 134, 135, 146, 154, 175] for further
details.

4.1. GS characteristic function. A substitution of the stable ChF as given in [172]
into (6) produces a GS ChF (see, e.g., [118]),

ψ(t) =
[
1 +

∫
Sd

|〈t, s〉|α ωα,1 (〈t, s〉) γ(ds)− i 〈t,m〉
]−1

, (21)

where 〈·, ·〉 denotes the inner product, 0 < α ≤ 2, γ is a finite measure on the unit sphere
Sd of Rd, m ∈ Rd, and

ωα,β(x) =
{

1− iβsign(x) tan(πα/2), if α 6= 1,
1 + iβ 2

π sign(x) log |x| , if α = 1.
(22)

As in the stable case, the parameter α is the index of stability that controls the tails,
while γ is the spectral measure that reflects the dependence structure. For example, the
association of the the components of a GS random vector implies certain conditions on the
spectral measure (see [124]). However, in contrast with the stable case, the components
can never be independent and the location parameter m is not a shift parameter, although
it coincides with the mean whenever it exists (α > 1). If d = 1, the ChF can be written
as (see, e.g., [117])

ψ(t) = (1 + σα|t|αωα,β(t)− iµ t)−1, (23)

where β ∈ [−1, 1] is a skewness parameter, while µ ∈ R and σ ≥ 0 control location
and scale, respectively. There are many other parameterizations of GS distributions,
which parallel those for the stable case (see, e.g., [117]). Let us note that univariate GS
distributions are supported on the entire real line, with the exception of the case α < 1
and |β| = 1, where we obtain a distribution concentrated on (0,∞) for β = 1, µ > 0 and
on (−∞, 0) for β = −1, µ < 0. More information on the univariate case can be found in
[10, 36, 73, 69, 83, 84, 87, 88, 117].

4.2. Basic properties. The following fundamental representation, taken from [97],
shows that GS distributions are location and scale mixtures of stable distributions.

Proposition 4.5. If Y is GS with index α, spectral measure γ and a location parameter
m, and X is α-stable with the same spectral measure and location parameter 0, then

Y
d=
{
mZ + Z1/αX, if α 6= 1,
mZ + ( 2

πZ logZ)g + ZX, if α = 1,
(24)

where Z is a standard exponential random variable, independent of X, and

g = (g1, . . . , gd) =
∫
Sd

sγ(ds). (25)



GEOMETRIC INFINITE DIVISIBILITY, STABILITY, AND SELF-SIMILARITY 47

Many properties of GS distributions, such as their densities and distribution functions,
moments, and tail behavior, follow from the stable case via (24). In particular, for any non-
negative p1, . . . pd, the joint moment E{|Y1|p1 · · · |Yd|pd} is finite if and only if p1 + · · ·+
pd < α, whenever α ∈ (0, 2) and the coordinates of Y = (Y1, . . . , Yd) are d-fold dependent
(see, e.g., [172]), that is γ{s ∈ Sd : si 6= 0, i = 1, . . . d} > 0. In one dimension, we simply
have E[|Y |p] < ∞ if and only if p < α. Moreover, for any Borel set B ⊂ Sd, we have
xαP (||Y || > x, Y/||Y || ∈ B)→ cαγ(B) as x→∞, where cα is an appropriate constant.
The individual coordinates of Y have power tails as well, xαP (±Yk > x)→ cα(1±βk)σαk /2
as x→∞, where βk and σk are the skewness and the scale parameters of Yk, k = 1, . . . d.
The PDFs and distribution functions of general GS distributions do not have explicit
forms, but admit certain integral representations (obtained via (24)), involving their
stable counterparts. It should be noted that all marginals and linear transformations
of GS random vectors are GS. In particular, the quantity 〈b, Y 〉 is GS for all b ∈ Rd

whenever Y is GS. The converse is also true when for all b ∈ Rd the quantity 〈b, Y 〉 is
strictly GS, symmetric GS, or GS with α ∈ [1, 2); the case α = 2 is still open.

Series representations in one dimension, analogous to LePage representations of stable
random variables (see [172]), were developed in [104]. Information on simulation and
parameter estimation connected with this model can be found in [82, 88, 98]. There are
also alternative representations (see [10, 25, 78, 86, 87, 152]), in particular, one showing
that in one-dimension we always have Y

d= ZT , where Z and T are independent, Y
is GS, Z is standard exponential, and T has an explicit density (see [69]). Thus, all
univariate GS distributions are exponential mixtures, and thus unimodal with the mode
at the origin. Note that this property implies that all multivariate GS distributions are
(linearly) unimodal with the mode at zero. Let us note that the unimodality of this class
does not follow from their self-decomposability, as is the case with the stable laws, since
not all GS distributions are in the class L of self-decomposable distributions (see, e.g.,
[163] for examples). It is also important to note that the multivariate GS densities in the
symmetric case are unbounded at the mode, as are one-dimensional strictly GS densities
with α < 1 (see [69]). This behavior at the mode is one characteristic feature of this
class that distinguishes these distributions from the stable laws, which have the same
tail behavior and domains of attraction. Since high peak at the mode and power tails
are often found in empirical distributions of financial data, GS-based models offer an
attractive alternative to normal and stable distributions in this area (see, e.g., [19, 81,
89, 92, 97, 103, 107, 109, 116, 130, 131, 143, 144, 159, 161, 162]).

4.3. Special cases and examples. Below we discuss important special cases of GS
laws.

4.3.1. Improper GS laws. If the ChF φ that appears in (6) corresponds to a degenerate
stable law, we obtain an improper GS distribution with the ChF

ψ(t) = [1− i 〈t,m〉]−1
, (26)

In one dimension, this distribution is the familiar exponential, while in Rd we have
Y

d= mZ
d= D(m)W , where Y is a GS variable with the ChF (26), Z is standard ex-

ponential, D(m) is a diagonal matrix with the elements of m on its main diagonal, and
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W = (W1, . . . ,Wd) has a Marshall-Olkin exponential distribution, given by the survival
function

P (W1 > x1, . . . ,Wd > xd) = e−max(x1,...,xd).

Since Y satisfies the stability relation (3) with ap = p, the improper GS distribution is
strictly geometric stable.

4.3.2. Strictly GS laws. Strictly GS (SGS) distributions arise as the limiting laws in
(19) with bp = 0. Equivalently, SGS random vectors are characterized via the stability
property (3), where necessarily ap = p1/α (see, e.g., [84, 85]). As shown in [142], the ChF
of a SGS random vector is of the form (6) with φ being the ChF of a strictly stable
distribution. Consequently, all SGS distributions have the ChFs of the form (21), where
either γ ≡ 0 (an improper GS law with the ChF (26)) or γ 6= 0, in which case we must
have α 6= 1 and m = 0 or α = 1 and

∫
Sd
skγ(ds) = 0 for all k = 1, . . . , d. In one dimension,

SGS distributions are described by the ChF (23) with α 6= 1 and µ = 0 or α = 1 and
β = 0, although certain alternative parameterizations are often used in this case (see,
e.g., [117]). These distributions are also known in the literature as the (non-symmetric)
Linnik distributions (see, e.g., [29, 30, 31, 78]).

Remark 4.6. Since all SGS random vectors X are GID and the relation (14) holds with
ψp(t) = ψ(p1/αt), where ψ is the ChF of X, we also have (15), which in this case can be
written as

ψ(t) = ψ(ρt)ψ(ρ)(t),

with ψ(ρ)(t) = ρα + (1 − ρα)ψ(t) and ρ = p1/α ∈ (0, 1). What this shows is that all
SGS distributions belong to the class L of the self-decomposable (SD) distributions,
and lead to stationary, non-Gaussian autoregressive processes Xn = ρXn−1 + εn, where
the {Xn} are SGS with common ChF ψ and the IID {εn} have common ChF ψ(ρ) (see
[112]). Many such processes with general SD stationary distributions have been developed,
including GS special cases of exponential processes (see, e.g., [35]), Laplace processes (see
[1, 22, 121]), Linnik processes (see [5, 58]), and Mittag-Leffler processes (see [61]).

4.3.3. Symmetric GS laws. A GS random vector is called symmetric geometric stable if
P (Y ∈ A) = P (−Y ∈ A) for all Borel sets A in Rd. It is well-known (see, e.g., [69]) that
the ChF of symmetric GS random vectors with index 0 < α < 2 is of the form

ψ(t) =
[
1 +

∫
Sd

|〈t, s〉|α γ(ds)
]−1

, (27)

where γ is a unique, finite, and symmetric measure on Sd. When α = 2, the relation (27)
holds as well, although in this case γ is not unique. In one dimension, these are symmetric
Linnik distributions with the ChF (5).

4.3.4. Multivariate Linnik distributions. If the ChF φ in (6) corresponds to a sub-
Gaussian stable law on Rd (see. e.g., [172]), then the corresponding GS ChF is of the
form

ψ(t) =

[
1 +

(
1
2
t′Σt

)α/2
− i〈m, t〉

]−1

, (28)
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where t′ denotes the transpose of t and Σ is a non-negative definite symmetric matrix.
In the symmetric case m = 0 we obtain the multivariate Linnik distribution studied in
[4, 150], which generalizes the one-dimensional case (5).

4.3.5. Laplace distributions. If α = 2 then the GS ChF (21), as well as as the multivariate
Linnik ChF (28), become

ψ(t) =
[
1 +

1
2
t′Σt− i 〈t,m〉

]−1

, (29)

where Σ is a d × d non-negative definite symmetric matrix. If the matrix Σ is positive-
definite, then the distribution is truly d-dimensional, and its PDF is expressible in terms
of the modified Bessel functions of the third kind (see [106]). This multivariate asymmetric
Laplace (AL) distribution (see [77, 106]), along with the improper one, stand out within
the class of GS distributions in that they have a finite covariance matrix (with the AL
covariance matrix being Σ +mm′). In case d = 2r+ 3, where r is a non-negative integer,
the AL density takes on an explicit form (see [77]), which is particularly simple when
d = 3 (r = 0):

g(y) =
e−y

′Σ−1m−
√

2+m′Σ−1m
√
y′Σ−1y

2π
√
y′Σ−1y|Σ|1/2

, y 6= 0. (30)

It is worth noting that when d > 1 all AL PDFs blow out at the origin, as is the case with
multivariate symmetric GS densities as well. All marginal distributions of multivariate AL
laws are also AL, as are their linear transformations. In addition, according to Proposition
4.5, all AL laws are location and scale mixtures of Gaussian distributions, as the variable
X in (24) in this case is Gaussian (with mean 0 and covariance Σ). In the symmetric case
m = 0, mentioned in [4], AL distributions are elliptically contoured, and belong to the
class of G-type distributions. The latter are scale mixtures of normal laws with infinitely
divisible stochastic variance (see [132, 133, 136, 170]).

When d = 1, we obtain a univariate skew Laplace distribution (see [77, 103, 105, 107,
111, 112]) with the ChF

ψ(t) =

(
1

1 + i σκ√
2
t

)(
1

1− i σ√
2κ
t

)
, t ∈ R, κ, σ > 0, (31)

which reduces to the classical symmetric Laplace distribution with mean zero and variance
σ2 when the skewness parameter κ is equal to one. The above factorization of the AL
ChF ψ shows that an AL random variable Y admits stochastic representations

Y
d=

1√
2

(
1
κ
Z1 − κZ2

)
d=

1√
2
IZ,

where Z, Z1 and Z2 are IID standard exponential variables and I, which is independent
of Z, takes on the values 1/κ and −κ with probabilities 1/(1 + κ2) and κ2/(1 + κ2),
respectively. Consequently, the PDF of Y is of the form

g(x) =
2κ

1 + κ2
·
{
f(xκ) for x ≥ 0
f(xκ ) for x < 0,

(32)

where f(x) = exp{−
√

2|x|/σ}/(
√

2σ) is the PDF of the symmetric Laplace distribution
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with variance σ2. Thus, the AL model emerges from a general scheme (32) of incorporating
skewness into any symmetric PDF f , proposed in [34] (see also [33]). Many standard
distributions were extended to their skew counterparts through this scheme, including
normal (see [149]), student-t (see [6, 34, 44]), Weibull (see [65, 66]), and exponential
power (see [8, 33, 76]).

With their characteristic peak at the mode and semi-heavy tails, skewness, and rela-
tion to limit results for geometric sums, multivariate and univariate Laplace distributions
have appeared in many applications due to their simplicity and flexibility, see [77] for more
information and additional references.

Remark 4.7. A related class of distributions, termed log-Laplace (LL) in [108, 109] and
double-Pareto in [164], arises via X = exp(Y ) with Y being AL. These distributions
appeared in connection with modeling under-reported data in [47, 52]. Their densities
are double-power laws of the form

f(x) =
1
δ

αβ

α+ β
·
{

(x/δ)β−1 for 0 < x < δ

(δ/x)α+1 for x ≥ δ, (33)

where δ > 0 (scale) and α, β > 0 (tail parameters). Consequently, a log-log plot of f
produces a distinct “tent” shape, observed empirically in a variety of fields in connection
with modeling growth rates in numerous applications, such as gross domestic product,
stock prices, company sizes, physics and others (extensive references are available in
[108, 109]). It is argued in [108, 109] that the emergence of the LL distributions in
these settings is connected with their fundamental properties of stability with respect
to geometric multiplication (see [74]), which reflect analogous properties of the Laplace
distribution in the summation setting.

5. Operator geometric stable distributions. Operator geometric stable laws gener-
alize GS distributions, as they arise as the limiting distributions in (19) when the sums
are normed by linear operators on Rd rather then by scalars ap > 0 (see [75, 92]).

Definition 5.1. A random vector Y on Rd is operator geometric stable (OGS) if for Np
geometric with the PDF (2) there exist IID random vectors X1, X2, . . . independent of
Np, linear operators Ap, and centering constants bp such that

Ap

Np∑
i=1

(Xi + bp)
d→ Y as p→ 0. (34)

If (34) holds we say that the distribution of X1 is weakly geometrically attracted to that
of Y , and the collection of such distributions is called the generalized domain of geometric
attraction of Y .

As shown in [92], OGS distributions are all ID as well as GID, and are closely related
to operator stable (OS) laws, which are the limiting distributions in this setting for de-
terministic sums (see, e.g., [64, 139]). Similarly to the GS case, any OGS ChF is of the
form (6) with φ being operator stable ChF. Equivalently, any OGS random vector Y has
the same distribution as that of L(Z), where Z is a standard exponential variable while
{L(t), t ≥ 0} is a stochastic process with stationary independent increments, independent
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of Z, and such that L(1) is OS and L(0) = 0 almost surely. Thus, every OGS random
vector admits the stochastic representation

Y
d= ZEX + aZ , (35)

where Z is as before and X, which is independent of Z, is OS with exponent E and
distribution ω satisfying

ωt = tEω ∗ εat for all t > 0. (36)

Here, εa is the unit mass at the point a ∈ Rd, tE = exp(E log t) and exp(A) = I +
A + A2/2! + A3/3! + · · · is the usual exponential operator. The representation (35) is a
generalization of (24), which applies to GS random vectors.

Remark 5.2. Using the results of [182] for subordinated Lévy processes (see also [53]),
one can derive the Lévy representation of the OGS ChF. As shown in [92] the ChF of an
OGS law, related to a full OS law ω via (6), is of the form

ψ(t) = ei〈a,t〉 +
∫
Rd

{
ei〈t,x〉 − 1− i〈t, x〉

1 + ||x||2

}
dν(x)

where ν(x) = h(x)dx, h(x) =
∫∞

0
g(s, x) 1

sde
−sds,

a =
∫ ∞

0

∫
Rd

x

1 + ‖x‖2
g(s, x)dx

1
s
e−sds, (37)

and g(s, x) is the Lebesgue density of ωs for any s > 0. The asymptotics of the Lévy
measure in the one-dimensional GS case were studied in [115].

Remark 5.3. The problems of geometric summation (and geometric stability) with op-
erator norming have also appeared in more abstract setting of probability on groups, see
[48, 49, 50, 51] for details. Further generalizations where the random summation in (34)
is other than geometric can be found in [93].

5.1. Special cases and examples. Clearly, when the operators in (34) are of the form
Ap = apId, where ap > 0 and Id is a d-dimensional identity matrix, then the limiting
distributions coincide with the GS laws on Rd. Additionally, we get multivariate Laplace
distributions if the {Xi} in (34) are in the normal domain of attraction.

5.1.1. Strictly OGS laws. If the OS law given by the characteristic function φ in (6) is
strictly OS, then the distribution given by ψ is called strictly OGS. For the strictly OGS
distributions, the convergence in (34) holds with bp = 0. In addition, the representation
(35) reduces to

Y
d= ZEX, (38)

where, as before, Z is a standard exponential variable and X is strictly OS with exponent
E (and independent of Z). It should be noted that strictly OGS distributions generalize
the stability property of the GS laws, see [92] (and also [49, 50] for more general results
on strict geometric stability on nilpotent Lie groups).
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Proposition 5.4. Let Y , Y1, Y2, . . . be IID random variables in Rd, and let Np be a
geometrically distributed random variable (2), independent of the sequence (Yi). Then

Sp = Ap

Np∑
i=1

Yi
d= Y, p ∈ (0, 1), (39)

with some operators Ap on Rd if and only if Y is strictly OGS, in which case Y admits
the representation (38) for some OS random variable X with exponent E and Ap = pE

for p ∈ (0, 1).

5.1.2. Marginally geometric stable laws. If the operators Ap in (34) are diagonal matrices
diag(ap,1, . . . , ap,d) for some positive {ap,i}, then the one-dimensional marginals of the
limiting OGS vector Y are GS with the ChF (23) and possibly different values of α. Here,
the ChF of Y is given by (6) with φ corresponding to a marginally stable OS random
vector (see, e.g., [18, 137, 145, 166]). If the values of α for all marginal distributions are
less than 2, then the ChF of Y is of the form

ψ(t) =
(

1 +
∫
Sd

∫ ∞
0

(
ei〈t,r

Es〉 − 1− i〈t, rEs)〉
1 + ‖rEs‖2

)
dr

r2
γ(ds)− i〈t,m〉

)−1

, (40)

where E is a diagonal matrix

E = diag(1/α1, . . . , 1/αd), 0 < αi ≤ 2, i = 1, . . . , d, (41)

called the exponent of Y , rE = diag(|r1|1/α1 . . . , |rd|1/αd), the spectral measure γ is a finite
measure on the unit sphere Sd in Rd, and m ∈ Rd is the shift parameter. As in the stable
and GS cases, the measure γ determines the dependence structure. The fact that these
distributions allow for a different tail behavior for their marginals makes them, along with
marginally stable laws, attractive in financial portfolio analysis (see [92, 140, 144, 159]).
Let us note that OGS distributions admit a stability property similar to (39) with diagonal
Ap (see [92]). Two interesting examples from this class are a bivariate distribution with
Laplace and Linnik marginal distribution (see [92]), given by the ChF

ψ(t, s) =
1

1 + σ2t2 + ηα|s|α
, s, t ∈ R, α ∈ (0, 2], (42)

and a bivariate distribution with exponential and Mittag-Leffler marginal distributions
(see [91]), given by the LT

ψ(t, s) =
1

1 + σt+ ηαsα
, s, t ∈ R+, α ∈ (0, 1]. (43)

6. Geometric self-similarity. Recall that a stochastic process X(t) is self-similar with
index H if for all c > 0 we have X(c ·) d= cHX(·), so that the time scale change is
(stochastically) equivalent to the space scale change (see, e.g., [28]). In the same spirit,
one can consider self-similarity with respect to a random time change, understood as
subordination (see [94, 110]). Let T = {Tc(t), t ≥ 0}, c ≥ 1, be a family of random time
changes, with Tc(0) = 0 almost surely and non-decreasing sample paths, such E[Tc(t)] =
ct. Following [94], we define stochastic self-similarity as follows.
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Definition 6.1. Let {X(t), t ≥ 0} be a stochastic process on Rd and let T be a family
of processes described above, independent of X. The process X(t) is stochastically self-
similar with index H (or H-sss) with respect to the family T if

X(Tc(·))
d= cHX(·), c ≥ 1. (44)

Remark 6.2. The above notion of stochastic self-similarity, which involves stochastic
renormalization in time, is apparently unrelated to that considered in [46] and [191],
which involves stochastic renormalization in space.

Remark 6.3. Note that by iterating the relation (44), we obtain

X(Tc1 ◦ Tc2(·)) d= X(Tc2 ◦ Tc1(·)) d= (c1c2)HX(·), c1, c2 ≥ 1, (45)

so it is natural to require that the family T be a commutative composition semigroup,
that is

Tc1 ◦ Tc2(·) d= Tc1c2(·), c1, c2 ≥ 1, (46)

where ◦ stands for the composition of two functions.

6.1. Examples. One example of a process that is H-sss is the standard gamma process
{G(t), t ≥ 0}, which is stochastically self-similar (with index H = 1) with respect to the
family

T = {Tc(t) = t+NBp(t), t ≥ 0}, c ≥ 1. (47)

Here, p = 1/c ∈ (0, 1] and {NBp(t), t ≥ 0} is a negative binomial Lévy process (NBP)
studied in [113], whose marginal distributions are negative binomial with the PDF

P (NBp(t) = k) =
Γ(t+ k)
Γ(t)k!

pt(1− p)k, k = 0, 1, 2, . . . . (48)

It is easy to verify that this family of negative binomial processes with drift satisfies all
the required properties, including ETc(t) = ct as well as (46).

Remark 6.4. Another family of random time changes that satisfies these properties can
be constructed as follows (see [110]). For each non-negative integer k let

N (k)
p = kNBp(1/k), p ∈ (0, 1),

where NBp(1/k) is the 1/k-lag increment of the NBP. In [176, 180], the distribution of
N

(k)
p + 1, which is supported on the set of integers {1, k+ 1, 2k+ 1, . . .}, is referred to as

Harris law (see also [17, 141] in this connection). Since Np(k) is ID, it leads to a Lévy
processes {N (k)

p (t), t ≥ 0}, which in turn allows us to define the family of such processes
with drift,

Tk = {T (k)
c (t) = t+N (k)

p (t), t ≥ 0}, p ∈ (0, 1), c = 1/p ≥ 1. (49)

This family satisfies all the required properties, including (46). Then the re-scaled stan-
dard gamma Lévy process {G(k)(t), t ≥ 0}, where G(k)(1) = kG(1/k) (gamma distribu-
tion with shape parameter 1/k and scale parameter k), is stochastically self-similar (with
index H = 1) with respect to the family Tk given by (49). See [110] for more details and
further generalizations.
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Remark 6.5. As noted in [110], the Lévy process {Gα(t), t ≥ 0}, whose lag-1 increments
have the Mittag-Leffler distribution given by the LT (4), is stochastically self-similar with
index H = 1/α with respect to the family of negative binomial time changes (47).

Other stochastic self-similar processes can be constructed by subordinating stable
processes to the gamma process or the Mittag-Leffler Lévy process Gα(t) discussed above.
Here, one would follow the following general fact, noted in [94].

Proposition 6.6. If {X(t), t ≥ 0} is any self-similar process with index H and {Z(t),
t ≥ 0} is an independent Lévy process that is stochastically self-similar with index H ′

with respect to a family T = {Tc(t), t ≥ 0}, c ≥ 1, then the subordinated process {Y (t) =
X(Z(t)), t ≥ 0} is stochastically self-similar with index HH ′ with respect to the same
family.

When X(t) is a Brownian motion and Z(t) is a gamma process, we obtain the Laplace
motion discussed in [77]. This model plays an increasingly important role in mathematical
finance, where it is known as the variance-gamma process (see [21, 130, 131, 183]). A
more general process with correlated increments, termed a fractional Laplace motion in
[94, 138], arises by subordinating a fractional Brownian motion to the gamma process.

6.1.1. Fractional Laplace motion. Let {BH(t), t ≥ 0}, H ∈ (0, 1), be a fractional Brow-
nian motion with the covariance function

E[BH(t)BH(s)] =
σ2

2
(
|t|2H + |s|2H − |t− s|2H

)
, t, s ≥ 0, (50)

and let {G(t), t ≥ 0} be a standard gamma process. Then

{Y (t), t ≥ 0} d= {BH(G(t)), t ≥ 0} (51)

is the fractional Laplace motion (FLM) with shape parameter 1, denoted by FLMH(σ).
(When G in (51) is a gamma process with parameter ν > 0, which is a Lévy process whose
lag-t increments have gamma distributions with shape parameter t/ν and unit scale, we
obtain a more general FLM with shape parameter ν > 0.) Since the gamma process is
H-sss with H = 1 with respect to the family (47), by Proposition 6.6, so is the FLM (51).
The one-dimensional distributions of FLMH(σ) are scale mixtures of Gaussian laws,

Y (t) d= (σ2[G(t)]2H)1/2Z. (52)

Here, Z is a standard normal random variable while the “stochastic variance” [G(t)]2H ,
which is independent of Z, has the generalized gamma distribution given by the PDF

f(x) =
γxαγ−1

cαγΓ(α)
e−(x/c)γ , x > 0, (53)

with scale c = 1 and shape parameters α = t and γ = 0.5/H. It is worth noting that
the distribution of Y (t) is ID if and only if 1/2 ≤ H ≤ 1, which reflects the fact that
the powers of gamma variable [G(t)]1/γ in (52) are ID whenever 0 < |γ| ≤ 1 but not ID
for γ > 1 (interestingly, the case γ < −1 is still open). This is closely related to the tail
behavior of the FLM, derived in [94].
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Proposition 6.7. The tail probability of Y (t) ∼ FLMH(σ) admits the following asymp-
totic behavior:

P (Y (t) > x) ∼ cx2(t−1)/(1+2H) exp{−bx2/(1+2H)}, x→∞, (54)

where c = aH2H/(1+2H) and

a =
1√

1 + 2HΓ(t)
Ht/(1+2H)−1/2, b =

1 + 2H
2

H−2H/(1+2H). (55)

Other basic properties of the FLM, derived in [94], reflect those of the FBM. In
particular, the covariance structures of the FLMH(σ) is asymptotically equivalent to
that of the FBM. Similarly, the moment scaling of the FLMH(σ),

E|Y (t)|q = cq
Γ(Hq + t)

Γ(t)
, cq =

√
2q

π
Γ
(

1 + q

2

)
, (56)

which is linear in t when q = 1/H, is asymptotically the same as that of the FBM,
E|Y (t)|q ∼ cqtqH as t→∞. This reflects the fact that the increments of the FLM become
Gaussian with an increasing lag. In analogy with the FBM, the stationary process

{Wj , j = 1, 2, . . .} d= {Y (ηj)− Y (η(j − 1)), j = 1, 2, . . .}, η > 0, (57)

consisting of lag-η increments of the FLM, is called a fractional Laplace noise (FLN).
The covariance function of the FLN, derived in [94], has the same asymptotic behavior
as that of the fractional Brownian noise,

r(n) = E[WjWj+n] ∼ σ2H(2H − 1) (η)2H
n2H−2 as n→∞ and H 6= 0.5,

so that when H > 1/2 the series
∑∞
n=1 r(n) diverges, and similarly to the fractional

Brownian noise, the FLN exhibits a long-range dependence. More details on theory and
applications of the FLM or FLN can be found in [94, 138, 147, 148].

6.2. Geometric renormalization group and self-similarity. As noted in [94, 110],
stochastic self-similarity of FLM leads to random stability properties of FLN. Indeed, by
taking t = 1 in the relation (44), we find that (1/p)HY (1) d= Y (Np(1)), where Y is an
FLM FLMH(σ) and {Np(t) = NBp(t) + t, t ≥ 0} is the negative binomial process with
drift. Since Y (Np(1)) is the sum of the first Np(1) lag-1 increments of Y , this relation
can be written as

pH
Np∑
j=1

Wj
d= W1,

where Np = Np(1) is a geometric variable (2) and the {Wj} are the increments (57) of
Y with η = 1. Note that when H = 1/2, then the {Wj} are independent and Laplace
distributed, so this is a generalization of geometric stability. This motivates the following
definition (see [94]).

Definition 6.8. For each p ∈ (0, 1), let {Np(t), t ≥ 1} be a NB Lévy process with
drift. A composition group of transformations {Tp, ◦}, p ∈ (0, 1), of stationary sequences
W = {Wj , j = 1, 2, . . .}, defined by

Tp : W → TpW = {(TpW )k, k = 1, 2, . . .},
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where
(TpW )k = pH(WNp(k−1)+1 + · · ·+WNp(k)), k = 1, 2, . . .

and Np(t) is independent of W , is called a geometric renormalization group with param-
eter H ∈ (0, 1).

Thus, Tp transforms a stationary sequence W into another one, obtained by summing
the components of W over successive blocks of geometric size N (k)

p = Np(k)−Np(k − 1)
and normalizing by pH = (expected block size)H . Note that this group is commutative,
since we have Np(Nq(k)) = Nq(Np(k)), p, q ∈ (0, 1), k = 1, 2, . . ., where Np and Nq are
two independent negative binomial processes with drift. The fact that FLN is a fixed
point of the transformations in in group, leads to the following definition (see [94])

Definition 6.9. Let {Tp, ◦}, p ∈ (0, 1), be a geometric renormalization group with

parameter H ∈ (0, 1). If W = {Wj , j = 1, 2, . . .} is a stationary sequence and TpW
d= W ,

p ∈ (0, 1), then we say that W is geometrically self-similar with index H.

We see that a lag-1 FLN is a geometric self-similar stationary sequence. We conclude
by noting that the notion of geometric self-similarity in relation to stationary sequences
is quite similar to invariance properties of renewal processes with respect to geometric
thinning, discussed in Section 2, since both properties are based on stability with respect
to geometric summation.

Acknowledgements. The author thanks the referee for helpful comments.
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