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Abstract. In [6] for c > 0 we defined the truncated variation, TV cµ , of a Brownian motion with
drift, Wt = Bt + µt, t ≥ 0, where (Bt) is a standard Brownian motion. In this article we define
two related quantities: the upward truncated variation

UTV cµ [a, b] = sup
n

sup
a≤t1<s1<...<tn<sn≤b

nX
i=1

max{Wsi −Wti − c, 0}

and, analogously, the downward truncated variation

DTV cµ [a, b] = sup
n

sup
a≤t1<s1<...<tn<sn≤b

nX
i=1

max{Wti −Wsi − c, 0}.

We prove that the exponential moments of the above quantities are finite (in contrast to the
regular variation, corresponding to c = 0, which is infinite almost surely). We present estimates
of the expected value of UTV cµ up to universal constants.

As an application we give some estimates of the maximal possible gain from trading a
financial asset in the presence of flat commission (proportional to the value of the transaction)
when the dynamics of the prices of the asset follows a geometric Brownian motion process. In
the presented estimates the upward truncated variation appears naturally.

1. Introduction. Let (Bt, t ≥ 0) be a standard Brownian motion, and Wt = Bt + µt

be a Brownian motion with drift µ.
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In [6] the truncated variation at the level c > 0 of the Brownian motion with drift µ
on the interval [a, b] was defined as

TV cµ [a, b] := sup
n

sup
a≤t1≤···≤tn≤b

n−1∑
i=1

max{|Wti+1 −Wti | − c, 0}.

(Technical remark: for a > b we set TV cµ [a, b] = 0.)
There were also proved estimates of ETV cµ [0, T ] up to universal constants. Using

similar techniques as in [6] we will prove existence of finite exponential moments of
TV cµ [0, T ], E exp(αTV cµ [0, T ]), for any α, T > 0.

Further we will consider two related quantities:

• the upward truncated variation, defined as

UTV cµ [a, b] := sup
n

sup
a≤t1<s1<···<tn<sn≤b

n∑
i=1

max{Wsi
−Wti − c, 0},

• analogously, the downward truncated variation, defined as

DTV cµ [a, b] := sup
n

sup
a≤t1<s1<···<tn<sn≤b

n∑
i=1

max{Wti −Wsi
− c, 0}.

It is easy to see that all three above defined quantities have the following properties,
which we state only for the truncated variation:

• shift invariance property in distributions:

L(TV cµ [a, b]) = L(TV cµ [a+ ∆, b+ ∆]),

• superadditivity: for any numbers a ≤ a1 < a2 < · · · < an ≤ b

TV cµ [a, b] ≥
n−1∑
i=1

TV cµ [ai, ai+1].

It is also easy to see that the following relations hold

TV cµ [0, T ] ≥ UTV cµ [0, T ], (1)

TV cµ [0, T ] ≥ DTV cµ [0, T ], (2)

TV cµ [0, T ] ≤ UTV cµ [0, T ] +DTV cµ [0, T ],

L(UTV cµ [0, T ]) = L(DTV c−µ[0, T ]). (3)

By (3) all estimates proved for the upward truncated variation have analogs for the
downward truncated variation.

Analogously as in [6] we will prove some estimates of EUTV cµ [0, T ] (and thus for
EDTV cµ [0, T ]) up to universal constants. Unfortunately, the estimates involve the ex-
pected values of some other related variables.

Remark. In order to shorten the proofs we did not put much stress on obtaining the
best possible constants.

Remark. K. Oleszkiewicz pointed out that it would be also interesting to have estimates
for higher moments of the defined quantities. However, the author presumes that other
methods than those used in this paper are needed to obtain such estimates.
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Remark. A. N. Chuprunov pointed out to the author that it would be also interesting
to have estimates of the quadratic truncated variation, which one may define as

QTV cµ [a, b] := sup
n

sup
a≤t1≤···≤tn≤b

n−1∑
i=1

max{|Wti+1 −Wti |2 − c2, 0}.

Remark. A similar concept of truncation (or shrinking) of random variables on Hilbert
spaces was investigated by Z. J. Jurek in a series of papers beginning with [2], [3], which
now evolved into the theory of s-selfdecomposable distributions (see e.g. [4]).

2. Existence of exponential moments of truncated variation. Let us start with
the existence of finite exponential moments of TV cµ [0, T ]. To prove this let us define

Tc = inf
{
t ≥ 0 : sup

0≤s≤t
Ws ≥Wt + c

}
,

further let T sup
c be the last instant when the maximum of Wt on [0, Tc] is attained, and

let T inf
c ≤ T sup

c be such that WT inf
c

= inf0≤s≤T sup
c

Ws.

Let us fix α > 0 and let δ > 0 be a small number such that

1−E exp
(
α sup

0≤t≤T
Wt + αc

)
P (Tc < δ) > 0.

By definition of Tc and T inf
c we have WT inf

c
> −c and WT sup

c
−WT inf

c
− c ≤ WT sup

c
.

Now, by Lemma 1, Lemma 2 in [6] and independence of Wt−WTc
, t ≥ Tc, and Tc (strong

Markov property of Brownian motion) for any M > 0 we have

E exp(αTV cµ [0, T ] ∧M) ≤ E exp(αWT sup
c

+ αc+ αTV cµ [Tc, T ] ∧M)

≤ E exp(αWT sup
c

+ αc)E exp[αTV cµ [Tc, T ] ∧M ;Tc < δ]

+ E exp(αWT sup
c

+ αc)E exp[αTV cµ [Tc, T ] ∧M ;Tc ≥ δ]
≤ E exp(αWT sup

c
+ αc)E exp[αTV cµ [Tc, T + Tc] ∧M ;Tc < δ]

+ E exp(αWT sup
c

+ αc)E exp[αTV cµ [Tc, T + Tc − δ] ∧M ;Tc ≥ δ]

≤ E exp
(
α sup

0≤t≤T
Wt + αc

)
E exp(αTV cµ [0, T ] ∧M)P (Tc < δ)

+ E exp
(
α sup

0≤t≤T
Wt + αc

)
E exp(αTV cµ [0, T − δ] ∧M)P (Tc ≥ δ).

From the above we have

E exp(αTV cµ [0, T ] ∧M)

≤
E exp(α sup0≤t≤T Wt + αc)P (Tc ≥ δ)

1−E exp(α sup0≤t≤T Wt + αc)P (Tc < δ)
E exp(αTV cµ [0, T − δ] ∧M).

Similarly

E exp(αTV cµ [0, T − δ] ∧M)

≤
E exp(α sup0≤t≤T Wt + αc)P (Tc ≥ δ)

1−E exp(α sup0≤t≤T Wt + αc)P (Tc < δ)
E exp(αTV cµ [0, T − 2δ] ∧M).
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Iterating and putting together the above inequalities we finally obtain

E exp(αTV cµ [0, T ] ∧M) ≤
(

E exp(α sup0≤t≤T Wt + αc)P (Tc ≥ δ)
1−E exp(α sup0≤t≤T Wt + αc)P (Tc < δ)

)dT/δe
.

Letting M →∞ we get E exp(αTV cµ [0, T ]) < +∞.
By (1) and (2) we obtain the finiteness of exponential moments of UTV cµ [0, T ] and

DTV cµ [0, T ] as well.

3. Estimates of expected value of upward and downward truncated variation

3.1. Preparatory lemmas. In order to obtain estimates of EUTV cµ [0, T ] (and analo-
gously EDTV cµ [0, T ]) we will use similar techniques as in [6]. Due to typographical reasons
let us introduce the notation max{x, 0} =: (x)+.

We will need the following analog of Lemma 2 from [6]:

Lemma 3.1. We have the following identity

UTV cµ [0, T ] = sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + UTV cµ [Tc, T ]. (4)

Proof. Let 0 ≤ t1 < s1 < t2 < s2 < · · · < tn < sn ≤ T . We will prove that
n∑
i=1

(Wsi −Wti − c)+ ≤ sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + UTV cµ [Tc, T ]. (5)

Let n0 be the greatest number such that sn0 < Tc and let us assume that n0 < n and
tn0+1 < Tc.

Let us consider several cases.

• Wtn0+1 ≥WTc
. In this case

(Wsn0+1 −Wtn0+1 − c)+ ≤ (Wsn0+1 −WTc
− c)+

and
n∑
i=1

(Wsi
−Wti − c)+ ≤

n0∑
i=1

(Wsi
−Wti − c)+ + (Wsn0+1 −WTc

− c)+

+
n∑

i=n0+2

(Wsi
−Wti − c)+. (6)

• Wtn0+1 < WTc and Wsn0+1 ≤ WT sup
c
. In this case tn0+1 < T sup

c (since for T sup
c <

t < Tc, Wt > WTc
) so

(Wsn0+1 −Wtn0+1 − c)+ ≤ (WT sup
c
−Wtn0+1 − c)+

and
n∑
i=1

(Wsi
−Wti − c)+ ≤

n0∑
i=1

(Wsi
−Wti − c)+ + (WT sup

c
−Wtn0+1 − c)+

+
n∑

i=n0+2

(Wsi
−Wti − c)+. (7)
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• Wtn0+1 < WTc and Wsn0+1 > WT sup
c

= WTc + c. In this case

(Wsn0+1 −Wtn0+1 − c)+ = Wsn0+1 −Wtn0+1 − c

= WT sup
c
−Wtn0+1 − c+Wsn0+1 −WT sup

c

= WT sup
c
−Wtn0+1 − c+Wsn0+1 −WTc − c

= (WT sup
c
−Wtn0+1 − c)+ + (Wsn0+1 −WTc − c)+

and
n∑
i=1

(Wsi
−Wti − c)+ ≤

n0∑
i=1

(Wsi
−Wti − c)+ + (WT sup

c
−Wtn0+1 − c)+

+ (Wsn0+1 −WTc − c)+ +
n∑

i=n0+2

(Wsi −Wti − c)+. (8)

Thus for tn0+1 < Tc inequality (6), (7) or (8) holds and we may assume, adding in
the case tn0+1 < Tc new terms in the partition and renaming the old ones, that

0 ≤ t1 < s1 < · · · < tn0 < sn0 ≤ Tc,
Tc ≤ tn0+1 < sn0+1 < · · · < tn < sn ≤ T.

In order to prove (5) without loss of generality we may assume that for any 1 ≤ i ≤ n0,

(Wsi
−Wti − c)+ > 0 (otherwise we may omit the summand (Wsi

−Wti − c)+). From
the definition of Tc we have that for any 1 ≤ i ≤ n0 − 1, Wsi −Wti+1 < c, so

(Wsi −Wti − c)+ + (Wsi+1 −Wti+1 − c)+

= Wsi −Wti − c+Wsi+1 −Wti+1 − c
= Wsi+1 −Wti − c+ (Wsi

−Wti+1 − c) < Wsi+1 −Wti − c.

Iterating the above inequality, we obtain
n0∑
i=1

(Wsi
−Wti − c)+ ≤Wsn0

−Wt1 − c ≤ sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+.

This, together with the obvious inequality
n∑

i=n0+1

(Wsi
−Wti − c)+ ≤ UTV cµ [Tc, T ]

proves (5). Taking the supremum over all partitions 0 ≤ t1 < s1 < t2 < s2 < · · · < tn <

sn ≤ T we finally get

UTV cµ [0, T ] ≤ sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + UTV cµ [Tc, T ].

Since the opposite inequality is obvious, we finally get (4).

Let us now define some auxiliary variables. Let T (0)
c ≡ 0 and let T (i)

c , i = 1, 2, . . . be
defined recursively as

T (i)
c = inf

{
t > T (i−1)

c : sup
T

(i−1)
c ≤s≤t

Ws ≥Wt + c

}
.
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(notice that T (1)
c = Tc). We define a new variable

UTV cµ (T ) :=
∞∑
i=1

e−T
(i−1)
c /T sup

T
(i−1)
c ≤t<s≤T (i)

c ∧(T
(i−1)
c +T )

(Ws −Wt − c)+.

We have the following

Lemma 3.2. The variables UTV cµ [0, T ] and UTV cµ (T ) are related by the following rela-
tions

UTV cµ [0, T ] ≤ eUTV cµ (T ), (9)

UTV cµ [0, T ] � 1− e−1

2
UTV cµ (T ), (10)

where the first relation holds almost surely and the second holds in the sense of stochastic
domination i.e. for every y ≥ 0, P (UTV cµ [0, T ] ≥ y) ≥ P ( 1−e−1

2 UTV cµ (T ) ≥ y).

Proof. By the previous lemma, we have

UTV cµ [0, T ] = sup
0≤t<s≤T (1)

c ∧T
(Ws −Wt − c)+ + UTV cµ [T (1)

c , T ]

= sup
0≤t<s≤T (1)

c ∧T
(Ws −Wt − c)+ + sup

T
(1)
c ≤t<s≤T (2)

c ∧T
(Ws −Wt − c)+

+UTV cµ [T (2)
c , T ]

= ... =
∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T (i)

c ∧T
(Ws −Wt − c)+. (11)

From (11) we almost immediately get (9)

UTV cµ [0, T ] =
∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T (i)

c ∧T
(Ws −Wt − c)+

≤
∞∑
i=1

e1−T (i−1)
c /T sup

T
(i−1)
c ≤t<s≤T (i)

c ∧(T
(i−1)
c +T )

(Ws −Wt − c)+

= eUTV cµ (T ).

In order to prove the second relation let i0 ≥ 1 be the greatest index such that T (i0−1)
c < T

and let us consider the term

A = sup
T

(i0−1)
c ≤t<s≤T (i0)

c ∧(T
(i0−1)
c +T )

(Ws −Wt − c)+.

If i0 = 1 then A = sup
0≤t<s≤T (1)

c ∧T (Ws −Wt − c, 0)+, otherwise A is independent of
B = sup

0≤t<s≤T (1)
c ∧T (Ws −Wt − c, 0)+ but has the same distribution as B.
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By (11) we have

UTV cµ [0, T ] =
∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T (i)

c ∧T
(Ws −Wt − c)+ (12)

=
i0−1∑
i=1

sup
T

(i−1)
c ≤t<s≤T (i)

c

(Ws −Wt − c)+

+ sup
T

(i0−1)
c ≤t<s≤T

(Ws −Wt − c)+.

In both cases (i0 = 1 and i0 > 1) 2UTV cµ [0, T ] stochastically dominates the sum

S1 =
i0∑
i=1

e−T
(i−1)
c /T sup

T
(i−1)
c ≤t<s≤T (i)

c ∧(T
(i−1)
c +T )

(Ws −Wt − c)+.

(
∑i0−1
i=1 sup

T
(i−1)
c ≤t<s≤T (i)

c
(Ws −Wt − c)+ dominates the first i0 − 1 terms in the above

sum and B, which appears in the sum (12) dominates A.) Similarly, define ik recursively
as the greatest integer such that T (ik−1)

c < T
(ik−1)
c + T and

Sk =
ik∑

i=ik−1+1

exp
(
−T

(i−1)
c − T (ik−1)

c

T

)
sup

T
(i−1)
c ≤t<s≤T (i)

c ∧(T
(i−1)
c +T )

(Ws −Wt − c)+.

Sk is independent of S1, . . . , Sk−1, moreover it has the same distribution as S1 and

UTV cµ (T ) =
∞∑
k=1

e−T
(ik−1)
c /TSk.

By the definition of ik, T
(ik)
c ≥ T

(ik−1)
c + T, thus we have T (ik)

c ≥ (k − 1)T. Now, since
2UTV cµ [0, T ] � Sk, k = 1, 2, . . . , we have that

2
1− e−1

UTV cµ [0, T ] =
∞∑
k=1

e−(k−1)2UTV cµ [0, T ]

�
∞∑
k=1

e−T
(ik−1)
c /T 2UTV cµ [0, T ]

�
∞∑
k=1

e−T
(ik−1)
c /TSk = UTV cµ (T ).

which proves (10).

Next, let us state a refinement of Lemma 3 from [6]:

Lemma 3.3. For any µ and c > 0

P

(
Tc <

1
3
ETc

)
≤ 7

9
.

Proof. The proof follows exactly as in [6], since one can show that for any real µ

(ETc)2

ET 2
c

=
1
2

(e2µc − 1− 2µc)2

e4µc − 6e2µcµc+ e2µc + 2µ2c2 − 2
≥ 1

2
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and, by the Paley-Zygmund inequality we obtain

P

(
Tc ≥

1
3
ETc

)
≥
(

1− 1
3

)2 (ETc)2

ET 2
c

≥ 4
9

1
2

=
2
9

and

P

(
Tc <

1
3
ETc

)
= 1− P

(
Tc ≥

1
3
ETc

)
≤ 7

9
.

3.2. Estimates for long and short time intervals. Now we are ready to prove
estimates of the expected value of UTV cµ [0, T ] for long and short time intervals (T ≥ 1

3ETc
and T < 1

3ETc respectively). We have

Theorem 3.4. For any T ≥ 1
3ETc we have

0.3
T

ETc
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ ≤ EUTV cµ [0, T ]

≤ 27
T

ETc
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+.

Proof. By Lemma 3.1 and independence of Wt −WTc , t ≥ Tc, and Tc (strong Markov
property of Brownian motion) we calculate

EUTV cµ [0, T ] = E sup
0≤t≤s≤Tc∧T

(Ws −Wt − c)+ + EUTV cµ [Tc ∧ T, T ]

≤ E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + E
[
UTV cµ [Tc, T ];Tc <

1
3
ETc

]
+E

[
UTV cµ [Tc, T ];

1
3
ETc ≤ Tc ≤ T

]
≤ E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + E

[
UTV cµ [Tc, T + Tc];Tc <

1
3
ETc

]
+E

[
UTV cµ [Tc, T + Tc −

1
3
ETc];

1
3
ETc ≤ Tc ≤ T

]
≤ E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + EUTV cµ [0, T ]P

(
Tc <

1
3
ETc

)
+EUTV cµ

[
0, T − 1

3
ETc

]
P

(
Tc ≥

1
3
ETc

)
.

Now, by the above inequality and Lemma 3.3

EUTV cµ [0, T ] ≤
E sup0≤t<s≤Tc∧T (Ws −Wt − c)+

P (Tc ≥ 1
3ETc)

+ EUTV cµ

[
0, T − 1

3
ETc

]
≤ 9

2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + EUTV cµ

[
0, T − 1

3
ETc

]
.

Similarly

EUTV cµ

[
0, T − 1

3
ETc

]
≤ 9

2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + EUTV cµ

[
0, T − 2

3
ETc

]
.
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Iterating and putting together the above inequalities we obtain the estimate from above

EUTV cµ [0, T ] ≤
⌈

T
1
3ETc

⌉
9
2
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+

≤
(

3T
ETc

+ 1
)

9
2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+

≤ 6T
ETc

9
2
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+

≤ 27
T

ETc
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+.

The estimate from below is obtained from Lemma 3.2 (see also the comment after the
calculation):

EUTV cµ [0, T ] ≥ 1− e−1

2
EUTV cµ (T ) ≥ 0.3EUTV cµ (T )

= 0.3
∞∑
i=1

Ee−T
(i−1)
c /T sup

T
(i−1)
c ≤t<s≤T (i)

c ∧(T
(i−1)
c +T )

(Ws −Wt − c)+

= 0.3
∞∑
i=1

Ee−T
(i−1)
c /TE sup

T
(i−1)
c ≤t<s≤T (i)

c ∧(T
(i−1)
c +T )

(Ws −Wt − c)+

= 0.3

( ∞∑
i=1

(Ee−T
(1)
c /T )i−1

)
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+

= 0.3
1

1−Ee−T
(1)
c /T

E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

≥ 0.3
1

1−E(1− T (1)
c /T )

E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

= 0.3
T

ETc
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+.

In the above calculations we used consecutively: the independence of T (i−1)
c and Ws −

W
T

(i−1)
c

, s ≥ T (i−1)
c , the equality of distributions of every term

sup
T

(i−1)
c ≤t<s≤T (i)

c ∧(T
(i−1)
c +T )

(Ws −Wt − c)+

for i = 1, 2, . . . , the definition of T (i−1)
c , which implies the equality

Ee−T
(i−1)
c /T = (Ee−T

(1)
c /T )i−1,

and finally we used the inequality ex ≥ 1 + x.

The estimates in Theorem 3.4 involve the expected value of the variable

sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

the distribution of which, as far as the author knows, is not known, but it may be
simulated numerically. We also have
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Corollary 3.5. For any T ≥ 1
3ETc we have

3
T

ETc
E sup

0≤t≤s≤ 1
3ETc

(Ws −Wt − c)+ ≤ EUTV cµ [0, T ]

≤ 27
T

ETc
E sup

0≤t≤s≤Tc

(Ws −Wt − c)+. (13)

Proof. The estimate from above is a straightforward consequence of Theorem 3.4 and the
estimate from below is obtained immediately by superadditivity:

EUTV cµ [0, T ] ≥
b3T/ETcc∑

i=1

EUTV cµ

[
i− 1

3
ETc,

i

3
ETc

]
≥ b3T/ETccEUTV cµ

[
0,

1
3
ETc

]
≥ 3

T

ETc
E sup

0≤t≤s≤ 1
3ETc

(Ws −Wt − c)+.

Remark. Using the results of Hadjiliadis and Vecer [1] we are able to calculate exactly
the estimate from above appearing in (13). Using the notation from [1], for z > 0 we have

P

(
sup

0≤t≤s≤Tc

(Ws −Wt − c)+ ≥ z
)

= P

(
sup

0≤t≤s≤Tc

(Ws −Wt) ≥ z + c

)
= P (T (c, z + c) = T2(z + c))

and by Theorem 2.1 from [1], for y > c we have

P

(
sup

0≤t≤s≤Tc

(Ws −Wt) ≥ y
)

=
e2µc − 2µc− 1
e2µc + e−2µc − 2

exp
(
− 2µ
e2µc − 1

(y − c)
)
.

Hence

E sup
0≤t≤s≤Tc

(Ws −Wt − c)+ =
∫ ∞
c

P

(
sup

0≤t≤s≤Tc

(Ws −Wt) ≥ y
)
dy

=
e2µc − 2µc− 1
e2µc + e−2µc − 2

∫ ∞
c

exp
(
− 2µ
e2µc − 1

(y − c)
)
dy

=
e2µc − 2µc− 1
e2µc + e−2µc − 2

e2µc − 1
2µ

.

Estimates of EUTV cµ [0, T ] for short time intervals (T < 1
2ETc) are the subject of the

next theorem.

Theorem 3.6. For any T < 1
3ETc we have

E sup
0≤t≤s≤T

(Ws −Wt − c)+ ≤ EUTV cµ [0, T ]

≤ 5E sup
0≤t≤s≤T

(Ws −Wt − c)+.

Proof. Applying Lemma 3.1 and the independence of Wt−WTc
, t ≥ Tc, and Tc we again
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calculate

EUTV cµ [0, T ] ≤ E sup
0≤t≤s≤Tc∧T

(Ws −Wt − c)+ + EUTV cµ [Tc ∧ T, T ]

≤ E sup
0≤t≤s≤T

(Ws −Wt − c)+ + E[UTV cµ [Tc, T ];Tc < T ]

≤ E sup
0≤t≤s≤T

(Ws −Wt − c)+ + EUTV cµ [0, T ]P
(
Tc <

1
3
ETc

)
≤ E sup

0≤t≤s≤T
(Ws −Wt − c)+ + EUTV cµ [0, T ]

7
9
.

Thus we get

EUTV cµ [0, T ] ≤ 9
2
E sup

0≤t≤s≤T
(Ws −Wt − c)+.

The estimate from above is self-evident

EUTV cµ [0, T ] ≥ E sup
0≤t≤s≤T

(Ws −Wt − c)+.

Remark. In order to calculate the quantity E sup0≤t≤s≤T (Ws−Wt−c)+ for T ≤ 1
3ETc,

which appears in Corollary 3.5 and in Theorem 3.6, one may use the results of [5]. Let

GD̄(y) = 2eµy
{
L+

∞∑
n=1

θn sin θn
θ2
n + µ2y2 + µy

(
1− exp

(
−θ

2
nT

2y2
− µ2T

2

))}
,

where θn are positive solutions of the eigenvalue condition tan θn = − θn

µy ,

L =


0, 0 < y < − 1

µ ;
3
2 (1− e−µ2T/2), y = − 1

µ ;
2η sinh η

η2−µ2y2−µy

(
1− exp

(
η2T
2y2 − µ2T

2

))
, y > − 1

µ ;

and η is the unique positive solution of tanh η = − η
µy . In the notation used in [5] for

z > 0 we have

P

(
sup

0≤t≤s≤T
(Ws −Wt − c)+ ≥ z

)
= P

(
sup

0≤t≤s≤T
(Ws −Wt) ≥ z + c

)
= P (D̄(T ;−µ, 1) ≥ z + c) = GD̄(z + c)

and thus

E sup
0≤t≤s≤T

(Ws −Wt − c)+ =
∫ ∞

0

GD̄(z + c)dz =
∫ ∞
c

GD̄(z)dz.

However, the above formula is numerically very unstable and it does not seem to be a
straightforward task to apply it to obtain good numerical or analytical estimates of the
expected value of the variable sup0≤t≤s≤T (Ws −Wt − c)+.

4. Example of application. As mentioned earlier, upward truncated variation appears
naturally in the expression for the least upper bound for the rate of return from any
trading of a financial asset, the dynamics of which follows geometric Brownian motion, in
the presence of flat commission. A similar result was proved in [6] for truncated variation,
however, truncated variation is not the least upper bound.
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Indeed, similarly as in [6], let us assume that the dynamics of the prices Pt of some
financial asset (e.g. stock) is the following Pt = exp(µt + σBt). We are interested in
the maximal possible profit coming from trading this single instrument during the time
interval [0, T ]. We buy the instrument at times 0 ≤ t1 < · · · < tn < T and sell it at
s1 < · · · < sn ≤ T, where t1 < s1 < t2 < s2 < · · · < tn < sn, in order to obtain the
maximal possible profit. Furthermore we assume that for every transaction we have to
pay a flat commission and γ is the ratio of the transaction value paid for the commission.

The maximal possible rate of return from our strategy is (cf. [6])

sup
n

sup
0≤t1<s1<···<tn<sn≤T

Ps1
Pt1

1− γ
1 + γ

· · · Psn

Ptn

1− γ
1 + γ

− 1.

Let Mn be the set of all partitions

π = {0 ≤ t1 < s1 < · · · < tn < sn ≤ T}.
To see that exp(σUTV c/σµ/σ [0, T ])−1 with c = ln 1+γ

1−γ is the least upper bound for maximal
possible rate of return let us calculate

sup
n

sup
Mn

n∏
i=1

{
Psi

Pti

1− γ
1 + γ

}
= sup

n
sup
Mn

n∏
i=1

{
exp(µsi + σBsi

)
exp(µti + σBti)

e−c
}

= sup
n

sup
Mn

exp

(
σ

n∑
i=1

{(µ
σ
si +Bsi

)
−
(µ
σ
ti +Bti

)
− c

σ

})

= exp

(
σ sup

n
sup
Mn

n∑
i=1

{(µ
σ
si +Bsi

)
−
(µ
σ
ti +Bti

)
− c

σ

})
= exp(σUTV c/σµ/σ [0, T ]).

This gives the claimed bound.
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