STABILITY IN PROBABILITY
BANACH CENTER PUBLICATIONS, VOLUME 90
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2010

ON THE INFINITE DIVISIBILITY OF SCALE MIXTURES OF SYMMETRIC α -STABLE DISTRIBUTIONS, $\alpha \in (0, 1]$

G. MAZURKIEWICZ

Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
Szafrana 4a, 65-516 Zielona Góra, Poland
E-mail: G.Mazurkiewicz@wmie.uz.zgora.pl

Abstract. The paper contains a new and elementary proof of the fact that if $\alpha \in (0, 1]$ then every scale mixture of a symmetric α -stable probability measure is infinitely divisible. This property is known to be a consequence of Kelker's result for the Cauchy distribution and some nontrivial properties of completely monotone functions. It is known that this property does not hold for $\alpha = 2$. The problem discussed in the paper is still open for $\alpha \in (1,2)$.

1. Introduction. Throughout the paper we denote by $\mathcal{L}(X)$ the distribution of the random variable X. If random variables X and Y have the same distribution we will write $X \stackrel{d}{=} Y$. By X' we denote a random variable which is independent of X and such that $X' \stackrel{d}{=} X$. The set \mathcal{P} contains all probability measures on \mathbb{R} .

For every $a \in \mathbb{R}$ and every probability measure $\mu \in \mathcal{P}$ we define the rescaling operator $T_a \colon \mathcal{P} \to \mathcal{P}$ by the formula:

$$T_a\mu(A) = \begin{cases} \mu(A/a) & \text{for } a \neq 0, \\ \delta_0(A) & \text{for } a = 0, \end{cases}$$

for every Borel set $A \subseteq \mathbb{R}$. Equivalently $T_a\mu$ is the distribution of the random variable aX if μ is the distribution of X.

The scale mixture $\mu \circ \lambda$ of the measure $\mu \in \mathcal{P}$ with respect to the measure $\lambda \in \mathcal{P}$ is defined by the formula:

$$\mu \circ \lambda(A) \stackrel{def}{=} \int_{\mathbb{R}} T_s \mu(A) \lambda(ds).$$

[79]

2010 Mathematics Subject Classification: 60A10, 60B05, 60E05, 60E07, 60E10.

Key words and phrases: stable distribution, scale mixture, variance mixture.

The paper is in final form and no version of it will be published elsewhere.

Notice that $\mu \circ \lambda$ is the distribution of the random variable ΘX if $\mu = \mathcal{L}(X)$, $\lambda = \mathcal{L}(\Theta)$, X and Θ are independent.

Let us recall (see e.g. [4, 6]) that a symmetric random variable X is α -stable, $\alpha \in (0, 2]$, if for every choice of $a, b \in (0, \infty)$ there exists a constant $c = (a^{\alpha} + b^{\alpha})^{1/\alpha}$ such that

$$aX + bX' \stackrel{d}{=} cX.$$

For $\alpha \in (0,2]$ we denote by γ_{α} the standard symmetric α -stable distribution with the characteristic function $\varphi_{S_{\alpha}}(t) = \exp\{-|t|^{\alpha}\}$. The corresponding random variable is denoted by S_{α} .

A random variable X is infinitely divisible (see e.g. [1]) if for every $n \in \mathbb{N}$ there exist a sequence of independent, identically distributed random variables $Y_{1,n}, Y_{2,n}, \ldots, Y_{n,n}$ such that

$$X \stackrel{d}{=} Y_{1,n} + Y_{2,n} + \ldots + Y_{n,n}.$$

Infinite divisibility is of interest in view of its applications especially in Lévy processes, in waiting-time theory and most notably in modeling problems.

2. Infinite divisibility of scale mixtures of symmetric α -stable distributions, $\alpha \in (0,1]$. In this section, using elementary criterions and a very useful method, we show that if $\alpha \in (0,1]$ and $\lambda \in \mathcal{P}$ then every scale mixture of the form $\gamma_{\alpha} \circ \lambda$ is infinitely divisible. This property is known and can be found in [8] as Corollary 10.6. This corollary follows from Theorem 10.5 and by combining (III.3.8) and Example III.4.9, or from Proposition A.3.7(vi) and Bernstein's theorem.

We give here a direct proof of this fact. But we do not know whether this surprising property stays true for $\alpha \in (1,2)$ and this problem seems to be open since 1972 (see [2]). The cases $\alpha = 1$ and $\alpha = 2$ were previously considered in [3]. In this paper Kelker showed that every scale mixture of a symmetric Cauchy distribution is infinitely divisible. He showed also that a scale mixture of a symmetric Gaussian measure need not be infinitely divisible. Another proof of this fact was given by Rosiński in [5].

THEOREM 2.1. Let Θ be a real random variable and S_{α} be independent of Θ . If $\alpha \in (0,1]$ then ΘS_{α} is infinitely divisible.

Proof. For $\alpha \in (0,1]$ let

$$C(t) = \mathsf{E} \exp\{it\Theta S_{\alpha}\} = \mathsf{E} \exp\{it|\Theta|S_{\alpha}\} = \int_{0}^{\infty} \exp\{-|t|^{\alpha}u\}\lambda(du),$$

where $\lambda = \mathcal{L}(|\Theta|^{\alpha})$. Using the criterion from [7] it is enough to show that the real characteristic function C(t) is log-convex on $(0,\infty)$, that is, $\log C(t)$ is convex for $t \in (0,\infty)$. Notice first that $t \mapsto C(t)$ is at least twice differentiable on $(0,\infty)$. Hence for every t > 0 we obtain

$$\begin{split} \frac{d^2}{dt^2} \log C(t) &= \alpha^2 t^{2\alpha - 2} \bigg[\int_0^\infty u^2 \exp\{-t^\alpha u\} \lambda(du) / C(t) - \bigg[\int_0^\infty u \exp\{-t^\alpha u\} \lambda(du) / C(t) \bigg]^2 \\ &\quad - \frac{\alpha - 1}{\alpha} t^{-\alpha} \bigg[\int_0^\infty u \exp\{-t^\alpha u\} \lambda(du) / C(t) \bigg] \bigg] \\ &= \alpha^2 t^{2\alpha - 2} \bigg[\mathrm{Var} Y_t - \frac{\alpha - 1}{\alpha} t^{-\alpha} \mathsf{E} Y_t \bigg], \end{split}$$

where the nonnegative random variable Y_t , t > 0, has the cumulative distribution function $H_t(y) = P\{Y_t < y\}$ defined in the following way

$$H_t(y) = \begin{cases} \int_0^y \exp\{-t^{\alpha}u\}\lambda(du)/C(t) & \text{for } y > 0, \\ 0 & \text{for } y \le 0. \end{cases}$$

For every $\alpha \in (0,1]$ and t > 0 we have

$$\int_0^\infty u^2 \exp\{-t^\alpha u\} \lambda(du) \le \int_0^\infty u^2 \exp\{-t^\alpha u\}|_{u=2t^{-\alpha}} \lambda(du) = 4 \exp\{-2\}t^{-2\alpha} < \infty,$$

which means $\mathsf{E} Y_t^2 < \infty$. Since $-\frac{\alpha-1}{\alpha} \geq 0$ we obtain $\frac{d^2}{dt^2} \log C(t) \geq 0$ for every t > 0.

REMARK. Log-convexity criterion is based on Pólya's criterion ([2]). Therefore it is also worth noticing that Theorem 2.1 directly follows from Pólya's sufficient condition. Then it is enough to show that the function $t\mapsto C(t)^{1/n}$ is nonincreasing and convex on $(0,\infty)$ for every $n\in\mathbb{N}$. Notice first that $\frac{d}{dt}C(t)^{1/n}\leq 0$ for every t>0. Using analogous substitutions and calculations as in the proof of Theorem 2.1 we show that for every t>0

$$\begin{split} &\frac{d^2}{dt^2}C(t)^{1/n}\\ &=\frac{1}{n}\alpha^2t^{2(\alpha-1)}C(t)^{1/n}\bigg[\mathrm{Var}Y_t-\frac{\alpha-1}{\alpha}t^{-\alpha}\mathsf{E}Y_t+\frac{1}{n}(\mathsf{E}Y_t)^2\bigg]\geq 0. \end{split}$$

We do not know whether Theorem 2.1 stays true also for $\alpha \in (1,2)$. It is clear that if Θ^{α} is infinitely divisible and independent of S_{α} , $\alpha \in (0,2]$, then the scale mixture ΘS_{α} is infinitely divisible. Theorem 2.1 is not true if $\alpha = 2$ since for Θ nondegenerate, nonnegative, bounded almost everywhere and independent of S_2 the random variable ΘS_2 is not infinitely divisible (see [3, 5]).

References

- [1] W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, John Wiley, New York, 1966.
- J. Keilson and F. W. Steutel, Families of infinitely divisible distributions closed under mixing and convolution, Annals of Math. Statist. 43 (1972), 242–250.
- [3] D. Kelker, Infinite divisibility and variance mixtures of the normal distribution, Ann. Math. Statist. 42 (1971), 802–808.
- [4] E. Lukács, Characteristic Functions, Griffin, London, 1960.
- [5] J. Rosiński, On a class of infinitely divisible processes represented as mixtures of Gaussian processes, in: Stable Processes and Related Topics, Progress in Probability 25, Birkhäuser, 1991, 27–41.

- [6] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994.
- [7] F. W. Steutel, Infinite divisibility in theory and practice, Scand. J. Statist. 6 (1979), 57–64.
- [8] F. W. Steutel and K. Harn, Infinite Divisibility of Probability Distributions on the Real Line, CRC Press, 2004.