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Abstract. In this paper we consider processes Xt with values in Lp, p ≥ 1 on subsets T of
a unit cube in Rn satisfying a natural condition of boundedness of increments, i.e. a process has
bounded increments if for some non-decreasing f : R+ → R+

‖Xt −Xs‖p ≤ f(‖t− s‖), s, t ∈ T.

We give a sufficient criterion for a.s. continuity of all processes with bounded increments on
subsets of a given set T . This criterion turns out to be necessary for a wide class of functions
f . We use a geometrical Paszkiewicz-type characteristic of the set T . Our result generalizes in
some way the classical theorem by Kolmogorov.

1. Introduction. In this paper we investigate conditions of almost sure continuity of
processes with ‘bounded increments’ in Lp spaces, for p ≥ 1. For a fixed probability space
and a non-decreasing function f : R+ → R+ we will say that a process (Xt)t∈T on a
subset T of the unit cube in Rη (with η fixed) has bounded increments if

∀s,t∈T ‖Xt −Xs‖p ≤ f(d∞(t, s)). (1)

More precisely, sets T ⊂ [0, 1]η, η ≥ 1 are considered, and d∞(s, t) = max1≤i≤η |si − ti|,
for s = (s1, . . . , sη), t = (t1, . . . , tη) in Rη. It is merely a matter of convenience to use d∞
instead of the natural Euclidean metric. We give a condition on T which is sufficient for
existence of a.e.-continuous version of every process (Xt)t∈T ′ satisfying (1) on T ′ ⊂ T

(Theorem 1 below). This condition is also necessary if the function f satisfies some
additional requirements (Theorem 3).
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The techniques which are used in this paper stem from the works of Paszkiewicz ([5],
[7] or [6]). Therein similar operators, albeit based on conditional L2-norms, were invented
to give a complete characterization of a.e. convergent orthogonal series (and processes)
in L2 (cf. our formula (5)). It is also worth noting that much similar operators were also
used in [8] for insurance pricing in an unconventional reinsurance model.

The theory of processes with bounded increments on a general compact space T , where
the right-hand bound in (1) is a metric on T , was extensively investigated in e.g. [9], [2],
[1]. The special case of the unit interval with an additional assumption of continuity of
f in (1) was investigated by e.g. [3]. This result generalizes the approach used in [4]
to investigate a.s. continuity of processes with bounded increments with respect to the
metric (d∞)ε, 0 < ε < 1, on the unit cube.

2. Criterion of continuity of processes on subsets of unit cube in Rη. In order
to present the crucial characterization of sets T ⊂ [0, 1]η we will define the sequence of
sets ∆i = ∆T

i , i ≤ 0 determined by T . We will omit the superscript whenever it does not
cause ambiguity.

For any i ≥ 0 and 0 ≤ n < 2i−1 let P in =
[
n2−i, (n+ 1)2−i

)
and P i2i−1 =

[
1− 2−i, 1

]
.

We consider families of dyadic (i-atomic) cubes in [0, 1]η, i.e.

F0
i = {P in1 × . . .× P inη : 0 ≤ nk < 2i, 1 ≤ k ≤ η}, i ≥ 0. (2)

Moreover we will also consider the σ-fields

Fi = σ(F0
i ), i ≥ 0 (3)

and finally we define for T ⊂ [0, 1]η

∆i = ∆T
i =

⋂
{Z ∈ Fi : T ⊂ Z}, i ≥ 0. (4)

For h ∈ Lp([0, 1]η) we will use an unusual but convenient notation for the conditional
Lp-norm, i.e.

‖h‖p,i = (E(|h|p|Fi))
1
p , i ≥ 1; ‖h‖p,0 := ‖h‖p = p

√
E|h|p.

The expectations are taken with respect to Lebesgue measure in [0, 1]η.
Our criterion of sample continuity is based on so-called Paszkiewicz-type operators

associated with sets T ⊂ [0, 1]η. Thus to formulate Theorems 1 (below) and 3, which
constitute the main result of the paper, we need to define for any integer i ≥ 0 the
operators

V Ti h = 2iη/pf(2−i)I∆T
i

+ ‖h‖p,i, for h ∈ Lp([0, 1]η). (5)

Once again we will omit the superscript T whenever it is clear what set determines
the operators in question. A basic observation is that those operators are positive and
increasing with respect to T and with respect to positive arguments h.

Theorem 1. Let T0 ⊂ [0, 1]η and Vi = V T0
i , i ≥ 0 be the operator associated with the set

T0 by (5). If
lim
n→∞

V0 . . . Vn0 <∞. (6)

then for every countable T ⊂ T0 and any process (Xt)t∈T with bounded increments on T
(cf. (1)) (Xt)t∈T is a.s. path continuous.
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Before we present the proof of Theorem 1 let us introduce the following lemma

Lemma 2. Let T ⊂ [0, 1]η be countable and the operators Vi = V Ti , i ≥ 0 be given by (5).
If (Xt)t∈T is a process with bounded increments on T , k ≥ 0 and B(t, ε) denotes a ε-ball
in (T, d∞) then for any t ∈ T∥∥∥ sup

s∈B(t,2−k)

|Xt −Xs|
∥∥∥
p
≤ 4η · lim

n→∞
‖Vk . . . Vn0‖p + 2ηf(2−k).

Proof. Fix a point t ∈ T . First let us notice that since (Xs)s∈T is separable we have∥∥∥ sup
s∈B(t,2−k)

|Xt −Xs|
∥∥∥
p

= sup
F⊂T : F finite

∥∥∥ sup
s∈B(t,2−k)∩F

|Xt −Xs|
∥∥∥
p
.

Let F be a finite subset of T such that t ∈ F and let i0 > k be an integer large enough
so that Fi0 separates the points of F e.g. i0 satisfying 2−i0 < mins,u∈F d∞(s, u). For any
i ≤ i0, and for any δi ∈ F0

i (cf. (2)) such that δi∩F 6= ∅ let us fix an element tδi ∈ δi∩F .
Obviously ‖maxs∈δi0∩F |Xs−Xtδi0

|‖p = 0 for all δi0 ∈ F0
i , δi0 ∩F 6= ∅. Let us assume

that for some i < i0 and all δi+1 ∈ F0
i+1, δi+1 ∩ F 6= ∅,∥∥∥ max

s∈δi+1∩F
|Xs −Xtδi+1

|
∥∥∥
p
≤ 2η · ‖Iδi+1Vi+1 . . . Vi00‖p.

Then, for any δi ∈ F0
i we have the estimate∥∥∥ max

s∈δi∩F
|Xs −Xtδi

|
∥∥∥
p

≤
∥∥∥ max

δi+1∈F0
i+1

δi+1⊂δi, δi+1∩F 6=∅

|Xtδi+1
−Xtδi

|
∥∥∥
p

+
∥∥∥ max

δi+1∈F0
i+1

δi+1⊂δi, δi+1∩F 6=∅

max
s∈δi+1∩F

|Xs −Xtδi+1
|
∥∥∥
p

≤ 2ηf(2−i) +
( ∑
δi+1∈F0

i+1, δi+1⊂δi
δi+1∩F 6=∅

‖ max
s∈δi+1∩F

|Xs −Xtδi+1
|‖pp
) 1
p

≤ 2ηf(2−i) + 2η ·
( ∑
δi+1∈F0

i+1, δi+1⊂δi

‖Iδi+1Vi+1 . . . Vi0‖pp
) 1
p

= 2η(‖2iηf(2−i)Iδi‖p + ‖Iδi‖Vi+1 . . . Vi00‖p,i‖p) = 2η‖IδiVi . . . Vi00‖p.
Finally, by induction and a similar estimate we have∥∥∥ sup
s∈B(t,2−k)∩F

|Xt −Xs|
∥∥∥
p

≤
∥∥∥ max

δk+1∩B(t,2−k) 6=∅
δk+1∈F0

k+1, δk+1∩F 6=∅

|Xtδk+1
−Xt|

∥∥∥
p

+
∥∥∥ max
δk+1∩B(t,2−k)6=∅

δk+1∈F0
k+1

max
s∈δk+1∩F

|Xs −Xtδk+1
|
∥∥∥
p

≤ 2ηf(2−k) + 4η‖IB(t,2−k−1)Vk+1 . . . Vi00‖p
≤ 4η · lim

n→∞
‖IB(t,2−k−1)Vk . . . Vn0‖p + 2ηf(2−k).

Proof of Theorem 1. Let t be a point in T . Let k > 0 be an integer. Notice that f(2−k) =
‖V {t}k 0‖p. By (6) we have for δk ∈ F0

k

lim
n→∞

‖IδkVk . . . Vn0‖p → 0 for k →∞,
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thus by (6) we can choose an increasing sequence of integers (ki)i∈N such that∑
i∈N

(f(2−ki) + lim
n→∞

‖IB(t,2−ki−1)Vki . . . Vn0‖p) <∞.

With B(t, ε) denoting the d∞-ball with centre at t and radius ε, since obviously
0 ≤ V Ti ≤ Vi = V T0

i , i ≥ 0, by Lemma 2 we have∥∥∥ sup
s∈B(t,2−ki )

|Xs −Xt|
∥∥∥
p
≤ 2ηf(2−ki) + 4η lim

n→∞
‖IB(t,2−ki−1)Vki . . . Vn0‖p.

This implies that
∑
i∈N E sups∈B(t,2−ki ) |Xs−Xt| <∞, which (by properties of monotonic

sequences) yields
sup

s∈B(t,2−ki )

|Xs −Xt| → 0 a.s. with i→∞.

Thus (Xs)s∈T is a.s. continuous in t ∈ T .

Theorem 3. Let T0 ⊂ [0, 1]η be a closed set and Vi, i ≥ 0 be the operators associated
with the set T0 by (5). If the non-decreasing function f introduced in (1) satisfies an
additional growth condition, namely for some constant C > 0

∞∑
k=n

f(2−k) +
n−1∑
k=0

2k−nf(2−k) ≤ C · f(2−n), n ≥ 0, (7)

then whenever
lim
n→∞

V0 . . . Vn0 =∞

there exists a countable T ⊂ T0 and a process (Xt)t∈T with bounded increments on T

which is a.s. discontinuous at some t0 ∈ T .

It is convenient to first prove the following lemma.

Lemma 4. Let T ⊂ [0, 1]η and let Vi = V Ti , i ≥ 0 be the operator associated with the
set T by (5). Assume that a non-decreasing f satisfies (7), for some C > 0. For any
integers j0 < i0 and δj0 ∈ F0

j0
there exists a finite F ⊂ δj0 ∩ T and a process (Xt)t∈F

with bounded increments (cf. (1)) for which∥∥∥max
t∈F
|Xt|

∥∥∥
p
≥ 1
KC,η

‖Iδj0Vj0 . . . Vi00‖p, max
t∈F
‖Xt‖p ≤ KC,ηf(2−j0), (8)

where KC,η > 0 is a constant.

Proof. Fix integers j0 < i0 and a set δj0 ∈ F0
j0
. Let F ⊂ T ∩ δj0 be a finite set satisfying

∆T
i0
∩ δj0 = ∆F

i0
(it is enough to choose one point from each nonempty set in the family

(T ∩ δj0 ∩ δ)δ∈F0
i0
), according to (4).

Now by induction we define sequences of variables ξk and Xk
t , t ∈ F , j0 ≤ k ≤ i0 on

the probability space [0, 1]η. For t ∈ F let

Xi0
t (ω) =

∑
δ∈F0

i0

2i0η/pf(2−i0)(1− 2i0d(t, δ))+Iδ(ω)I∆F
i0

(ω),
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where A+ := max{A, 0}, A ∈ R. Moreover let ξi0 = ‖I∆i0
‖−1
p,i0−1I∆i0

with 0/0 := 0. Then
inductively we define for j0 ≤ k < i0

Xk
t (ω) = Xk+1

t (ω) +
∑
δ∈F0

k

2kη/pf(2−k)(1− 2kd(t, δ))+Iδ(ω)ξk+1(ω),

ξk(ω) =
maxt∈F∩δk−1 X

k
t (ω)

‖maxt∈F∩δk−1 X
k
t ‖p,k−1

, for δk−1 ∈ F0
k−1, ω ∈ δk−1,

with 0/0 := 0 and ξk = 0 if F ∩ δk−1 = ∅.
For the process Xj0

t , t ∈ F we have maxt∈F ‖Xj0
t ‖p ≤ 3ηCf(2−j0) since by an easy

computation using (7) for any j0 ≤ k ≤ i0 and t ∈ F we have

‖Xk
t ‖p ≤

i0∑
i=k

∑
δ∈F0

k

‖2iη/pf(2−i)(1− 2id(t, δ))+Iδ‖p ≤ 3η
i0∑
i=k

f(2−i) ≤ 3ηC · f(2−k) (9)

(notice that for any i ≥ 0 the term (1 − 2id(t, δ))+ is positive for at most 3η sets δ in
F0
i ).
To demonstrate that the first stipulation in (8) is also satisfied (up to some constant

factor) for the process (Xj0
t )t∈F we will inductively show that for any δj0 ∈ F0

j0
we have∥∥∥max

t∈F
Xj0
t

∥∥∥
p
≥
∥∥∥Iδj0 max

t∈F∩δj0
Xj0
t

∥∥∥
p
≥ ‖Iδj0Vj0 . . . Vi00‖p.

Assume that for some j0 ≤ k ≤ i0 and any δk ∈ F0
k we have∥∥∥Iδk max

t∈F∩δk
Xk
t

∥∥∥
p
≥ ‖IδkVk . . . Vi00‖p.

Notice that this is indeed true for k = i0, namely

‖Iδi0 max
t∈F∩δi0

Xi0
t ‖p = 2ioη/pf(2−i0) · ‖Iδi0∩∆F

i0
‖p = ‖Iδi0Vi00‖p,

for any δi0 ∈ F0
i0
. For any δk−1 ⊂ ∆F

k−1 = ∆T
k−1, δk−1 ∈ F0

k−1, by collinearity of
maxt∈F∩δk−1 X

k
t and ξk on δk−1, the following estimate holds∥∥∥Iδk−1 max

t∈F∩δk−1
Xk−1
t

∥∥∥
p

=
∥∥∥Iδk−1

[
max

t∈F∩δk−1
(Xk

t + 2(k−1)η/pf(2−(k−1))ξkIδk−1)
]∥∥∥
p

≥
∥∥∥(∥∥∥ ∑

δk⊂δk−1, δk∈F0
k

Iδk max
t∈F∩δk

Xk
t

∥∥∥
p,k−1

+ ‖2(k−1)η/pf(2−(k−1))ξkIδk−1‖p,k−1

)
Iδk−1

∥∥∥
p

=
∥∥∥∥( p

√ ∑
δk⊂δk−1, δk∈F0

k

2(k−1)η‖Iδk max
t∈F∩δk

Xk
t ‖

p
p + 2(k−1)η/pf(2−(k−1))

)
Iδk−1

∥∥∥∥
p

≥
∥∥∥∥( p

√ ∑
δk⊂δk−1, δk∈F0

k

2(k−1)η‖IδkVk . . . Vi00‖pp + 2(k−1)η/pf(2−(k−1))
)

Iδk−1

∥∥∥∥
p

= ‖Iδk−1Vk−1Vk . . . Vi00‖p.
Now, let us assume that s, t ∈ F and let j be an integer satisfying 2j ≤ d(s, t) ≤ 2j+1.

By (7) we have
f(2−j) ≤ f(d(s, t)) ≤ 2C · f(2−j). (10)

We will show that ‖Xt −Xs‖p is also of order f(2−j).
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We have

‖Xj0
t −Xj0

s ‖p ≤ ‖X
j0
t −X

j
t +Xj

s −Xj0
s ‖p + ‖Xj

t ‖p + ‖Xj
s‖p

and

‖Xj0
t −X

j
t +Xj

s −Xj0
s ‖p

≤
∥∥∥ j−1∑
k=j0

∑
δ∈F0

k

|(1− 2kd(t, δ))+ − (1− 2kd(s, δ))+|2kη/pf(2−k)ξkIδ
∥∥∥
p

≤
j−1∑
k=j0

2 · 3ηd(t, s) · 2−kf(2−k)

since the expression |(1− 2kd(t, δ))+ − (1− 2kd(s, δ))+| is positive for at most 2 · 3η sets
δ ∈ F0

k , k ≥ 0, and it does not exceed 2k|d(t, δ) − d(s, δ)| ≤ 2kd(t, s). By (7), (10) we
further obtain

j−1∑
k=j0

2 · 3ηd(t, s) · 2−kf(2−k) ≤ 2 · 3η
j−1∑
k=j0

2−l2kf(2−k) ≤ 2 · 3ηC · f(2−j).

This, together with (9), implies that ((4C3η)−1Xj0
t )t∈F has bounded increments. Thus

it is enough to take Xt = (4C3η)−1Xj0
t , for t ∈ F , and Kη,C = 4C3η.

Proof of Theorem 3. Recall that Vk = V T0
k , k ≥ 0, are operators associated with the set

T0. Since limn→∞ ‖V T0
0 . . . V T0

n 0‖p =∞ and

‖Vk . . . Vn0‖p,k ≤ ‖Vk . . . Vk′0‖p,k + ‖Vk′+1 . . . Vn0‖p,k, 0 ≤ k ≤ k′ < n,

by subadditivity of conditional norms, we can choose a sequence (δ̃k)k≥0 of sets such that
δ̃k ∈ F0

k (cf. (2)); δ̃k ⊂ δ̃k+1, k ≥ 0 and

lim
n→∞

‖Iδ̃kV
T0
k . . . V T0

n 0‖p =∞. (11)

Let us consider the point t0 ∈ T0 = cl(T0), where cl(·) denotes closure of sets, satisfying
t0 ∈

⋂
k≥0 cl(δ̃k+1). Let m0 be an integer such that all binary-rational coordinates of t0

are multiples of 2−m0 . If all coordinates of t0 are binary-irrational put m0 = 0. It is easily
seen that for all k > m0 there exist k′ > k such that d∞(δ̃k

′′
, δ̃m0 \ δ̃k) > 0, for all k′′ ≥ k′.

Namely, let k > m0. If for every k′ > k we have d(δ̃k
′
, δ̃m0 \ δ̃k) = 0 then d(t0, δ̃m0 \ δ̃k) ≤

limk′→∞ diam(δ̃k
′
) = 0. Thus, since t0 ∈ δ̃k and t0 ∈ cl(δ̃m0 \ δ̃k) a coordinate of t0

which is not a multiple of 2−m0 is a multiple of 2−k. This is a contradiction. Obviously
d(δ̃m0 \ δ̃k) ≤ d(δ̃k

′′
, δ̃m0 \ δ̃k), for k′′ > k′.

Let us set k0 = m0. Assume that ki, mi for some i ≥ 0 are defined. Then, since for
m ≥ ki by e.g. the monotone convergence theorem

lim
m→∞

‖Iδ̃kiV
T0\δ̃m
ki

. . . V T0\δ̃m
n 0‖p = ‖Iδ̃kiV

T0
ki
. . . V T0

n 0‖p,

the condition (11) implies that we can choose integers ki+1 > ni so that

‖Iδ̃kiV
T0\δ̃ki+1

ki
. . . V T0\δ̃ki+1

ni 0‖p > 2 ·Kη,C +K2
η,Cf(2−ki), (12)

as well as
d∞(δ̃ki+1 , δ̃k0 \ δni) > 0. (13)
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By Lemma 4 for each i ≥ 0 there exists a finite subset of Fi of T0 ∩ δ̃ki \ δ̃ni and a
process (X̃i

t)t∈Fi with bounded increments such that∥∥∥max
t∈Fi

X̃i
t

∥∥∥
p
≥ Kη,Cf(2−ki) + 2 max

t∈Fi
‖X̃i

t‖p ≤ Kη,Cf(2−ki).

Let us fix τ(i) in Fi such that d(t0, τ(i)) = d(t0, Fi). By taking X̄i
t = X̃i

t − X̃i
τ(i) or

X̄i
t = X̃i

τ(i) − X̃
i
t we obtain a process X̄i

t with bounded increments for which∥∥∥max
t∈Fi
|X̄i

t |
∥∥∥
p
≥ 1, X̄i

τ(i) = 0.

Set ζi = maxt∈Fi |X̄i
t |. It is a standard argument that by taking Xi

t = X̄i
tζ
−1/p
i , t ∈ Fi

on the probability space ({ζi > 0},Λi), where dΛi = ‖ζi‖−pp ζi dλ we obtain a process
(Xi

t)t∈Fi with bounded increments and

Xi
τ(i) = 0 and max

t∈Fi
|Xi

t | ≥ 1 a.e.

Let T =
⋃∞
i=0 Fi ∪ {t0} and (Xt)t∈T be a process given by the following:

– (Xt)t∈Fi and (Xi
t)t∈Fi have the same distribution, for i ≥ 0,

– Xt0 = 0 a.e.

Let (tn)n∈N be a sequence of all elements of
⋃∞
k=0 Fi. Naturally tn → t0 with n→∞.

Moreover mini≥0 maxt∈Fi |Xt| ≥ 1 on some set of full measure. Thus almost surely the
sequence (|Xtn−Xt0 |)n∈N attains a value greater than or equal to 1 for an infinite number
of indices.

It suffices to show that ( 1
8C2+1Xt)t∈T has bounded increments. Let t, s ∈ T . If t ∈ Fi,

s ∈ Fj ⊂ δ̃kj for some j > i ≥ 0 then by (13)

2−kj ≤ d∞(δ̃kj , δ̃k0 \ δ̃ki) ≤ d∞(Fj , Fi) ≤ d∞(t, s),

since for arbitrary k ≥ 0, A,B ∈ Fk the quantity d∞(A,B) is a multiple of 2−k. We also
have

d∞(t, τ(i)) ≤ d(t, s) + d(s, t0) + d(t0, τ(i)) ≤ d(t, s) + 2−kj + d(t0, t)

≤ d(t, s) + 2−kj + d(t, s) + 2−kj ≤ 4d(t, s)

and by (7)

‖Xt −Xs‖p ≤ ‖Xt −Xτ(i)‖p + ‖Xs‖p ≤ f(4d(t, s)) + f(2−kj )

≤ f(4 · 2dlog2 d(t,s)e) + f(d(t, s)) ≤ 4Cf(2dlog2 d(t,s)e) + f(d(t, s))

≤ 8C2f(d(t, s)) + f(d(t, s)) ≤ (8C2 + 1)f(d∞(t, s)).
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