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Abstract. We describe a new model of multiple reinsurance. The main idea is that the rein-
surance premium is paid conditionally. It is motivated by some analysis of the ultimate price of
the reinsurance contract. For simplicity we assume that the underlying risk pricing functional
is the L2-norm. An unexpected relation to the general theory of sample regularity of stochastic
processes is given.

1. Introduction. The aim of this paper is to present a model of multiple reinsurance in
which the premium is paid conditionally (to be explained later). We formulate a theorem
on stability of the insurance system, i.e. for a wide class of such reinsurance systems the
total price of the insurance is approximately the same.

For clarity, randomness is modelled by considering the probability space [0, 1) with
the Lebesgue measure λ as the probability. If a random variable R : [0, 1) → [0,∞) is
interpreted as the insurance risk then its L2-norm ‖R‖ =

√
ER2 is considered as the

price of the insurance. The use of the L2-norm is assumed only for simplicity since the
model presented in this paper can be easily generalized.

A first of our ideas can be explained as follows. With the risk function R given, one
could consider a stop-loss reinsurance with the premium given by the following formula

P (R) =
(
E
[
((R− k)+)2|F

])1/2 ,
where k is the stop-loss level and F is a σ-field representing the information available at
the time of purchase. The premium P (R) is a random variable and it is paid conditionally.

We also suggest (and it is our second idea) that in this setting a sequence of reinsurers
can be considered. Namely the 0th reinsurer is the insurance buyer himself, the 1st
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reinsurer is the insurer who accepts the risk of R−(R−k1)+, with k1 being the appropriate
stop-loss level. Analogously (R− ki−1)+ − (R− ki1)+ expresses the risk accepted by the
i-th reinsurer. This leads to the ultimate reinsurance price of the form

Price = P0

(
(R− 0)+ − (R− k1)+ + P1

(
(R− k1)+ − (R− k2)+ + P2 (. . .)

))
,

where Pi is the conditional premium paid by the i-th reinsurer.
We shall explain the idea with the following example. Set

‖R‖F :=
(
E(R2|F)

)1/2 . (1)

If we consider an insurer and reinsurers described by ‘reinsurance levels’ k1 < k2, and by
σ-fields F1 ⊂ F2 ⊂ B[0, 1) and if F0 = {∅, [0, 1)} then

P2

(
(R− k2)+

)
= ‖(R− k2)+‖F2 (2)

is the premium charged by the 2nd reinsurer,

P1

(
(R− k1)+ − (R− k2)+ + ‖(R− k2)+‖F2

)
=
∥∥(R− k1)+ − (R− k2)+ + ‖(R− k2)+‖F2

∥∥
F2

(3)

is the premium charged by the 1st reinsurer,

P0

(∥∥(R− k1)+ − (R− k2)+ + ‖(R− k2)+‖F2

∥∥
F2

)
=
∥∥∥∥∥(R− k1)+ − (R− k2)+ + ‖(R− k2)+‖F2

∥∥
F2

∥∥∥ (4)

is the premium charged by the insurer.
In order to describe our conditional pricing scheme it is necessary to introduce a

filtration of information available to consecutive reinsurers. For simplicity we start with
considering the filtration Fk, k ≥ 0 associated with dyadic partitions of the unit interval
(into 2k equal-length parts):

Fk = σ
([
n2−k, (n+ 1)2−k

)
: 0 ≤ n < 2k

)
, k ≥ 0. (5)

The main result of the paper states that the ultimate premium paid by the insurance
buyer is (almost) independent of the model parameters (cf. Theorem 2.1). The system
of conditional reinsurance pricing is described by some subfiltration (Fki

)i≥0 (satisfying
rather weak requirements (12)). This implies that the final result is considerably general.

Section 2 specifies the model and presents the main theorem. It is interesting that the
cited fundamental Lemma 2.2 was used to solve a classical problem of characterization of
all orthogonal a.e. convergent sequences ([3], Theorem 1.6). In section 3, a short overview
of the theory and related results is presented.

The last Section 4 features examples, which show among other things that some
assumptions on the sequence of ‘reinsurance levels’ are necessary. These examples require
some technicalities. We also discuss the relations between our model of premium with
other models of reinsurance pricing. Models are compared with respect to the value of
the ultimate premium paid.
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It is natural that further generalizations of the insurance pricing at a single step should
be considered, e.g. described by an arbitrary Orlicz norm instead of the L2-norm. It turns
out that the reasoning presented in this paper finds a clear generalization at least to the
case of Lp-norm, p ≥ 1. This should however be presented elsewhere since some parts of
the paper are, even in the present setting, quite technical.

2. Reinsurance based on conditional premium. In this section we present the main
result on the ultimate premium paid by the insurance buyer in the model suggested in
our paper (Theorem 2.1). Namely, we assume that we have a sequence of reinsurers
of ‘increasing levels’ i = 0, 1, . . . , j. The premium of (higher) level i + 1 is an
Fi-measurable random variable (see (5)) paid by the reinsurer of level i. We
give an upper and a lower bound for the ultimate price of insurance in the system. As
mentioned before we assume that each reinsurance is based on the stop-loss scheme. An
additional assumption on the reinsurance sequence is suggested by formula (12). This
assumption is in fact not very restrictive but, as implied by examples given in Section 4,
an assumption on the reinsurance sequence could not be omitted (for validity of Theorem
2.1).

Let us recall that we consider the probability space ([0, 1), λ), with λ being the
Lebesgue measure. We also consider the filtration (5) and conditional L2-norms

‖g‖Fk
=
(
E(g2|Fk)

)1/2 , g ∈ L∞[0, 1), k ≥ 0,

with E(·|Fk) being the conditional expectation in ([0, 1), λ).
Let us fix a non-negative risk function R, a sequence of non-empty events (∆k)k≥0

and a sequence of integer levels k = (k0, . . . , kj(k)) satisfying

0 = k0 < k1 < . . . < kj(k) =: l. (6)

and

[0, 1) = ∆0 ⊃ ∆1 ⊃ . . . , ∆k ∈ Fk, k ≥ 0, (7)

R : [0, 1)→ [0, l], l = kj(k), (8)

{R > ki} ⊂ ∆ki
⊂ {R ≥ ki} , 0 ≤ i ≤ j(k). (9)

Let us define operators Vk, k ≥ 1 on L∞[0, 1) by (cf. [3], Section 2a or [2])

Vkg = I∆k
+ ‖g‖Fk

, g ∈ L∞[0, 1). (10)

We also define a sequence of operations in L∞[0, 1) associated with the risk function R
and the sequence k by

PRk
ki
g = (R− ki−1)+ − (R− ki)+ + ‖g‖Fki

, g ∈ L∞[0, 1), (11)

for 1 ≤ i ≤ j(k), according to ideas given in (2), (3), (4).
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Theorem 2.1. Let conditions (7), (8), (9) be satisfied for some R and (∆i)i≥0. If the
‘reinsurance system’ k = (k0, . . . , kj(k)) satisfies (6) and

{20, 21, . . .} ∩ {1, . . . , l} ⊂ {k0, . . . , kj(k)} (12)

then
1
2
‖V1 . . . Vl0‖ ≤ ‖PRk

k1 . . . PRk
kj(k)

0‖ ≤ 2‖V1 . . . Vl0‖+ 1. (13)

The quantity ‖V1 . . . Vl0‖ is determined by the sequence of events ∆1 ⊂ . . . ⊂ ∆l,
which may be interpreted as a description of randomness associated with insurance loss
and the information available to the (re-)insurance buyer. The ‘pricing’ operators PRk

ki
,

i ≥ 0 are on the other hand dependent on the risk function R and the assumed levels of
reinsurance ki, thus on the assumed ‘reinsurance system’ k. Thus Theorem 2.1 is in
fact a theorem on stability of the price of insurance in the model suggested
in our paper. Despite the constants 1

2 , 1, 2 in the formula (13) the result is, as implied
by the examples of Section 4, Theorems 4.1, 4.4, still meaningful.

The proof of Theorem 2.1 is connected with the properties of the operators Vk, k ≥ 1
described in [3], Section 2a. Namely, taking additionally

Vig = 2i−1I∆2i + ‖g‖2i , g ∈ L∞[0, 1), i ≥ 0 (14)

we have the following estimate for any fixed l ≥ 1, with j(l) given by

2j(l)−1 < l ≤ 2j(l). (15)

Lemma 2.2. For any sequence (∆k)k≥1 satisfying (7) the following estimate is valid:

V0 . . .Vj(l)0 ≤ V1 . . . Vl0 ≤ 2V . . .Vj(l)0 + 1.

The proof can be found in [3], Section 2.4, Step II-III.
In order to prove Theorem 2.1 it is convenient to generalize our notation. Let us

recall that we have fixed the sequence of sets (7). In the following reasoning we will be
considering classes of risk functions, rather than a single risk function R.

For any increasing sequence k =
(
0 = k0, k1, . . . , kj(k)

)
of integers we define operations

(cf. (11))
PQk
ki
g = (Q− ki−1)+ − (Q− ki)+ + ‖g‖Fki

, 1 ≤ i ≤ j(k). (16)

By definitions (14), (16) we have immediately the following lemma.

Lemma 2.3. For j ≥ 0, k = d := (0, 20, 21, . . . , 2j), Q− = I∆20
+
∑j
i=1 2i−1I∆2i we have:

PQ
−d

2i = Vi, 1 ≤ i ≤ j,

PQ
−d

20 =
1
2

I∆20
+ V0.

Proof. This follows simply from the definition since (Q− 2i−1)+− (Q− 2i)+ = 2i−1I∆2i ,
i ≥ 1.

The following two general lemmas are straightforwardly implied by monotonicity and
subadditivity of conditional L2-norms. For our increasing sequences k we have:
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Lemma 2.4. For sequences k ⊂ k′ = (0 = k′0 < . . . < k′j(k′) = kj(k)) and for Q : [0, 1)→
[0, kj(k)] satisfying (cf. (9))

∀0≤i≤j(k′) ∃∆k′
i
∈Fk′

i
{Q > k′i} ⊂ ∆k′i

⊂ {Q ≥ k′i},

we have
PQk
k1

. . . PQk
kj(k)

0 ≤ PQk′

k′1
. . . PQk′

k′
j(k′)

0. (17)

Proof. The lemma can be obtained by repeated use of (17) with only one additional index
k′ in k′:

k′ = (k0, . . . , ki0−1, k
′, ki0 , . . . , kj(k)). (18)

By (16) and monotonicity of conditional norms, it is enough to show that (18) implies

‖PQk
ki0
g‖Fk′ ≤ ‖P

Qk′

k′ PQk′

ki0
g‖Fk′ ,

for g supported on ∆ki0
. This can be done by using the condition {Q > k′i} ⊂ ∆k′i

⊂
{Q ≥ k′i}, namely

PQk
i0
g = I[0,1)\∆k′

PQk
i0
g + I∆k′P

Qk
i0
g

=
[
(Q− ki0−1)+ − (Q− k′)+

]
I[0,1)\∆k′

+[
k′ − ki0−1 + (Q− k′)+ − (Q− ki0)+ + ‖g‖Fk0

]
I∆k′ ,

thus by subadditivity of conditional norm

‖PQk
i0
g‖Fk′ ≤

∥∥(Q− ki0−1)+ − (Q− k′)+
∥∥
Fk′

I[0,1)\∆k′
+∥∥k′ − ki0−1 + (Q− k′)+ − (Q− ki0)+ + ‖g‖Fk0

∥∥
Fk′

I∆k′

≤
∥∥∥(Q− ki0−1)+ − (Q− k′)+ +

∥∥(Q− k′)+ − (Q− ki0)+ + ‖g‖Fk0

∥∥
Fk′

∥∥∥
Fk′

.

Lemma 2.5. For Q ≤ Q′, Q,Q′ : [0, 1)→ [0,∞) we have

PQk
k1

. . . PQk
kj(k)

0 ≤ PQ
′k

k1
. . . PQ

′k
kj(k)

.

Let us once again fix a risk function 0 ≤ R ≤ l, satisfying (9), in which k satisfies (6)
and (12). With j(l) given by (15):

2j(l)−1 < l ≤ 2j(l),

let us consider the following two functions

Q− = I∆20
+
j(l)−1∑
i=1

2i−1I∆2i , Q+ = I[0,1) +
j(l)−1∑
i=0

2iI∆2i . (19)

Their useful properties are given in the following lemma.

Lemma 2.6. For functions Q−, Q+ given in (19) and our risk function 0 ≤ R ≤ l,
satisfying (9), where k satisfies (6), (12) we have

Q− ≤ R ≤ Q+.
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Proof. By (9), (12) we have

Q− = I∆20
+
j(l)−1∑
i=1

2i−1I∆2i

≤ (R− 0)+ − (R− 20)+ +
j(l)−1∑
i=1

[
(R− 2i−1)+ − (R− 2i)+

]
I∆2i−1

≤ (R− 0)+ − (R− 20)+ +
j(l)∑
i=1

[
(R− 2i−1)+ − (R− 2i)+

]
= R

≤ I[0,1) +
j(l)∑
i=1

2i−1I∆2i−1 = Q+.

Proof of Theorem 2.1. Let 0 ≤ R ≤ l be a risk function satisfying (9), where k satisfies (6),
(12). Let us observe that for e := (0, 20, . . . , 2j(l)−1, l) ⊂ k and for d := (0, 20, . . . , 2j(l))
we have PRe

l 0 = (R− 2j(l)−1)+ = PRd
2j(l)0. By Lemma 2.4 we immediately have

PRd
20 . . . PRd

2j(l)0 = PRe
20 . . . PRe

l 0 ≤ PRk
k1 . . . PRk

kj(k)
0.

Similarly by Lemmas 2.5 and 2.6

PQ
−d

20 . . . PQ
−d

2j(l) 0 ≤ PRd
20 . . . PRd

2j(l)0,

and by Lemma 2.3

PQ
−d

20 . . . PQ
−d

2j(l) 0 =
1
2

+ V0 . . .Vj(l)0.

Finally, Lemma 2.2 implies
1
2
V1 . . . Vl0 ≤

1
2

+ V0 . . .Vj(l)0,

which further yields the first inequality in (13).
By Lemmas 2.5 and 2.6 we have

PRk
k1 . . . PRk

kj(k)
0 ≤ PQ

+k
k1

. . . PQ
+k

kj(k)
0. (20)

Let us define a new sequence of sets

∆+
k = ∆2i for 2i ≤ k < 2i+1, i ≥ 0; ∆+

0 = [0, 1).

Then we have ∆+
2i = ∆2i , i ≥ 0 and ∆k ∈ Fk, k ≥ 0.

We should note that the function Q+ satisfies the assumptions of Lemma 2.4 with
k′ = n := (0, 1, 2, . . . , l) and with ∆+

k instead of ∆k, k ≤ l, thus

PQ
+k

k1
. . . PQ

+k
kj(k)

0 ≤ PQ
+n

1 . . . PQ
+n

l 0.

We also define a new set of operators

V+
i g = 2i−1I∆+

2i
+ ‖g‖F2i , g ∈ L∞[0, 1), i ≥ 0,

and
V +
k g = I∆+

k
+ ‖g‖Fk

, g ∈ L∞[0, 1), k ≥ 0.
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By definition for i ≥ 0 we immediately have V+
i = Vi since ∆2i = ∆+

2i . We also have
(cf. (19))

Q+ = I[0,1) +
j(l)−1∑
i=0

2iI∆2i =
2j(l)−1∑
k=0

I∆+
k

thus PQ
+n

k = V +
k , 1 ≤ k ≤ l (cf. (15)).

It is now clear that
PQ

+n
1 . . . PQ

+n
l 0 = V +

1 . . . V +
l 0

and by Lemma 2.2 we have

V +
1 . . . V +

l 0 ≤ 1 + 2V+
0 . . .V+

j(l)0 = 1 + 2V0 . . .Vj(l)0.

Finally, we have
1 + 2V0 . . .Vj(l)0 ≤ 1 + 2V1 . . . Vl0,

by Lemma 2.2 once again. By (20) the second inequality in (13) is proved.

3. Relations to maximal functions of stochastic processes. Let us note that the
operators Vi, i ≥ 0 and Vk, k ≥ 1 turned out to be a very useful tool in investigation
of continuity of processes with orthogonal increments in L2 and bounded increments in
Lp. In particular Paszkiewicz in [3] used both sets of operators to prove the following
theorem. Let us say that a process (Xt)t∈T satisfying Xt ∈ L2, t ∈ T is a process with
orthogonal increments if

‖Xt −Xs‖2 = |t− s|, s, t ∈ T .

Theorem 3.1. Let T ⊂ [0, 1]. Every separable process (Xt)t∈T , Xt ∈ L2, t ∈ T with
orthogonal increments on T is sample continuous if and only if the set T possesses the
following property: for ∆k =

⋂
{Z ∈ Fk : T ⊂ Z}

lim
k→∞

‖V1 . . . Vk0‖ <∞,

according to (10).

The proof of the theorem is unexpectedly hard; especially the construction of a dis-
continuous orthogonal process in case when limk→∞ ‖V1 . . . Vk0‖ =∞ requires a number
of combinatorial lemmata. In [2] a variation of the operators of Vi, i ≥ 1, was used to
investigate sample continuity of processes in Lp satisfying a weaker condition. Below, | · |
is the maximum norm in Rn and ‖ · ‖p denotes the Lp-norm. We use the standard dyadic
σ-fields F⊗nk in [0, 1]n (cf. (5)).

Theorem 3.2. Let T ⊂ [0, 1]n, q > 1. Every separable process (Xt)t∈T , Xt ∈ Lp, t ∈ T ,
satisfying

‖Xt −Xs‖p ≤ q
√
|s− t|, s, t ∈ T

is path continuous if and only if T satisfies: for ∆k =
⋂
{Z ∈ F⊗nk : T ⊂ Z}, V pk h =

2k/q−in/pI∆k
+ p

√
E(gp|F⊗nk ), g ∈ Lp,

lim
k→∞

‖V1 . . . Vk0‖ <∞.
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Path continuity of processes with bounded increments in a more general setting was
also investigated by means of so called majorizing measures. In particular Talagrand in
[4] showed for a large class of Young functions Φ that whenever for a compact metric
space (T, d) we have

M(T ) := inf

{
sup
t∈T

∫ diam(T )

0

Φ−1

(
1

m{s ∈ T : d(s, t) < ε}

)
dε : m ∈ P (T )

}
<∞ (21)

(with P (T ) denoting the set of all Borel probability measures) then all separable processes
(Xt)t∈T satisfying ‖Xt − Xs‖Φ ≤ d(t, s) (i.e. EΦ (|Xt −Xs|/d(t, s)) ≤ 1), s, t ∈ T are
path continuous. Any m ∈ P (T ) for which the supremum in (21) is finite is called a
majorizing measure. The condition M(T ) < ∞ is also necessary if Φ grows faster than
the function Φγ(x) = xγ ln ln(x+e), for some γ > 0. In [1] it was also shown that (21) is
also necessary for, roughly speaking, metrics being a root of a metric, i.e. dq is also a
metric in T , for some q > 0 (see [1] for details).

The following surprising theorem can be deduced from our reasoning and from [3],
[2]. It connects our reinsurance model with properties of stochastic processes on a set
T and with majorizing measures for ‖ · ‖Φ = ‖ · ‖, d(s, t) =

√
|s− t|. Thus we put

M(T, ‖ · ‖) := infm∈P (T ) supt∈T
∫ 1

0

√
1/m{s ∈ T : |s− t| < ε2} dε.

As a crucial assumption we need the following

∆k =
⋂
{Z ∈ Fk : T ⊂ Z}, k ≥ 0 (22)

for our sequence (7).

Theorem 3.3. Let ∅ 6= T ⊂ [0, 1] be a finite set. Let ∆k be defined in (22). Let k be a
‘reinsurance system’ 0 = k0 < k1 < . . . < kj(k), satisfying

{20, 21, . . .} ∩ {1, 2, 3, . . . , kj(k)} ⊂ k,

2−kj(k) < min
s,t∈A

|s− t|.

Let R : [0, 1) → [0, kj(k)) be a risk function satisfying (9). For the operators PRk
ki

, i ≥ 0
defined by (11) we have

‖PRk
k0 . . . PRk

kj(k)
0‖ ∼ M(T, ‖ · ‖) ∼

sup
X process

with bounded inc.

E max
s,t∈A

(Xt −Xs) ∼ sup
X process

with orthog. inc.

E max
s,t∈A

(Xt −Xs). (23)

The relation ∼ in the above theorem denotes equality modulo some universal constant,
i.e.

S ∼ P ≡ ∃a∈R

[
1
a
S − a ≤ P ≤ aS + a

]
,

for any quantities S, P.

4. Important examples. In this section we present some technical examples which
compare the conditional reinsurance scheme with two other natural schemes. As it turns
out, the total price of the insurance with conditional reinsurance can be con-
siderably larger than the price of the insurance without reinsurance (Theo-
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rem 4.1); it can also be considerably smaller than the price of insurance where
all reinsurers are paid unconditionally (Theorem 4.4).

The theorems of this section imply that our insurance system with conditional rein-
surance premiums is optimal if there is no single insurer willing to price the risk R at
‖R‖. Our conditional pricing scheme can also produce the ultimate price any given factor
lower than the premium in a system where all the reinsurance premiums are paid naively,
summing up to

‖(R− k0)+ − (R− k1)+‖+ . . .+ ‖(R− kj(k)−1)+ − (R− kj(k))+‖.

Theorem 4.1. For any C > 0 there exists a sequence [0, 1) = ∆0 ⊃ ∆1 ⊃ . . . ⊃ ∆2j ,
∆k ∈ Fk, 0 ≤ k ≤ 2j and a function R : [0, 1)→ [0, 2j), for some j ≥ 1, satisfying

{R > 2i} ⊂ ∆2i ⊂ {R ≥ 2i}, 0 ≤ i ≤ j,

and for d = (0, 20, 21, . . . , 2j), according to (11), we have

C‖R‖ < ‖PRd
20 . . . PRd

2j 0‖.

Before we proceed to the demonstration of the theorem first let us fix the following
notation. Let us notice that each σ-field F2i , i ≥ 1 can be interpreted as the product
F2i−1 ⊗ F2i−1 . Thus for any i ≥ 1 there exists an event Ai ∈ F2i independent of F2i−1

with λ(Ai) being any given multiple of 2−2i−1
. Let us fix a number h ≥ 1 and a sequence

(Ai)i>h for which for every integer i > h we have Ai ∈ F2i and the set Ai is independent
of F2i−1 . Moreover Ai satisfies

1
4

(
i

i+ 1

)2

≤ λ (Ai) ≤
1
4

(
i

i+ 1

)3/2

, i > h. (24)

Such h (and sets Ai) exist since for the bounds in (24) we have 1
4

(
i
i+1

)3/2 − 1
4

(
i
i+1

)2
>

2−2i−1
for i large enough.

We can additionally define

A0, . . . , Ah = [0, 1). (25)

Now we can define
∆2i = A0 ∩ . . . ∩Ai, i ≥ 0 (26)

and also

∆0 = [0, 1),

∆k = ∆2i , 2i ≤ k < 2i+, i ≥ 0.

Thus ∆k ∈ Fk, k ≥ 0.
Let j ∈ N, j > h. We define a risk function Rj by

Rj = I∆20
+ 20I∆21

+ . . .+ 2j−1I∆2j . (27)

Now for the notions defined above we can formulate the following lemmas.

Lemma 4.2. With Rj as above we have Rj : [0, 1)→ [0, 2j ] and

{Rj ≥ 2i} = ∆2i , 0 ≤ i ≤ j,
{Rj > 2i} = ∆2i+1 , 0 ≤ i < j,
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in particular (9) holds for (k0, . . . , kj(k)) = (0, 20, . . . , 2j). Moreover (Rj − 2i−1)+ −
(Rj − 2i)+ = 2i−1I∆2i , 1 ≤ i ≤ j and Rj − (Rj − 20)+ = I∆20

.

By independence of Ai′ and Ai, i 6= i′ and by (26) we have

Lemma 4.3. For integers i > i′ ≥ 0 we have∥∥I∆2i

∥∥
F

2i′
=
√

E(I∆
2i′ IAi′+1

. . . IAi |F2i′ ) =
√

E(IAi′+1
|F2i′ ) · . . . · E(IAi |F2i′ )I∆

2i′

=
√
λ (Ai′+1) · . . . · λ (Ai)I∆

2i′ .

This yields two almost immediate corollaries.

Corollary 1. For integers 0 ≤ i′ < i ≤ j we have∥∥(R− 2i−1)+ − (R− 2i)+
∥∥
Fi′

= ‖2i−1I∆2i ‖Fi′ =
√
λ (Ai′+1) · . . . · λ (Ai)2i−1I∆

2i′ .

Corollary 2. For d(j) = (0, 20, 21, . . . 2j) we have∥∥∥PRjd(j)

20 . . . P
Rjd(j)

2j 0
∥∥∥ =

∥∥R− (R− 20)+
∥∥+

∥∥(R− 20)+ − (R− 21)+
∥∥+ . . .

+
∥∥(R− 2j−2)+ − (R− 2j−1)+

∥∥+
∥∥(R− 2j−1)+

∥∥ .
Proof. Let us notice that ‖PRjd(j)

2j 0‖Fj−1 = ‖(R − 2j−1)+‖Fj−1 . Moreover for every 0 ≤
i ≤ j we have

‖PRjd(j)

2i . . . P
Rjd(j)

2j 0‖F2i−1 =
j∑

m=i

‖(R− 2m−1)+ − (R− 2m)+‖F2i−1 ,

assuming a convenient notation 2−1 := 0. Indeed, if the above is true for some 0 < i ≤ j
then

‖PRjd(j)

2i−1 . . . P
Rjd(j)

2j 0‖F2i−2

=
∥∥∥(R− 2i−2)+ − (R− 2i−1)+ + ‖PRjd(j)

2i . . . P
Rjd(j)

2j 0‖F2i−1

∥∥∥
F2i−2

=
∥∥∥2i−2I∆2i−1 +

j∑
m=i

‖(R− 2m−1)+ − (R− 2m)+‖F2i−1

∥∥∥
F2i−2

=
j∑

m=i−1

‖(R− 2m−1)+ − (R− 2m)+‖F2i−2 ,

since all summands under the outer norm are collinear (by Corollary 1).

Proof of Theorem 4.1. With an arbitrary integer j fixed let us observe that we have by
(26), (27)

‖Rj‖2 = (20)2λ(∆20 \∆21) + . . .+ (2j−1)2λ(∆2j−1) \∆2j ) + (2j)2λ(∆2j )

≤ (20)2λ(∆20) + . . .+ (2j)2λ(∆2j )

= (20)2λ(A0) + . . .+ (2j)2λ(A0) · . . . · λ(Aj) ≤ K

for some K > 0 as, by (24), for i > h,

(2i)2λ(A0) · . . . · λ(Ai) ≤ 4i
(

1
4

)i−h(
h+ 1
h+ 2

· . . . · i

i+ 1

)3/2

=
4h(h+ 1)3/2

(i+ 1)3/2
.



REINSURANCE 149

On the other hand by Corollary 2 and Lemma 4.2∥∥∥PRjd(j)

20 . . . P
Rjd(j)

2j 0
∥∥∥

> 2h
√
λ(∆2h+1) + . . .+ 2j−1

√
λ(∆2j )

≥ 2h
√
λ(Ah+1) + . . .+ 2j−1

√
λ(Ah+1 ∩ . . . ∩Aj) (by (25), (26))

≥ 2h(h+ 1)
(

1
h+ 2

+ . . .+
1
j

)
(by (24)).

We can conclude that ‖PRjd

20 . . . P
Rjd

2j 0‖ tends to infinity as j → ∞, whereas ‖Rj‖ < K

for some constant K and all integers j > h.

Theorem 4.4. For any C > 0 there exists a sequence [0, 1) = ∆0 ⊃ ∆1 ⊃ . . . ⊃ ∆2j ,
∆k ∈ Fk, 0 ≤ k ≤ 2j and a function R : [0, 1)→ [0, 2j ], for some integer j, satisfying

{R > 2i} ⊂ ∆2i ⊂ {R ≥ 2i}, 0 ≤ i ≤ j

and for d = (0, 20, 21, . . . 2j), according to (16), we have

C · ‖PRd
20 . . . PRd

2j 0‖ <
‖R− (R− 20)+‖+ ‖(R− 20)+ − (R− 21)+‖+ . . .+ ‖(R− 2j−1)+ − (R− 2j)+‖.

Denote j(s) = 2s for integer s (for typographical reasons). Then we have

Lemma 4.5. There exists a non-increasing sequence of sets ∆2i , i ≥ j(4), satisfying

∆2i is an interval with left end 0,
1

4ii2
≤ λ(∆2i) ≤ 2

4ii2
, (28)

∆2i ∈ F2j(s) , for i < j(s+ 1). (29)

Proof. For s ≥ 4 we have

2j(s) > 2j(s+ 1) + 2(s+ 1),

22j(s)
> 4j(s+1)j(s+ 1)2,

22j(s)
> 4ii2,

if only i < j(s+ 1). Thus there exist numbers n(i) satisfying
1

4ii2
≤ n(i)

22j(s) ≤
2

4ii2
, j(s) ≤ i < j(s+ 1).

It is enough to set

∆2i = [0, n(i)2−2j(s)
), j(s) ≤ i < j(s+ 1), s ≥ 4.

Now we can complete our definition of the sequence (∆k)k≥0. Let

∆2i = ∆0 = [0, 1), 0 ≤ i < j(4),

∆2i = ∆2i+1 = . . . = ∆2i+1−1, i ≥ 0.

Let us consider an integer t > 4. We define a sequence

dt = (0, 20, 21, . . . , 2j(t)) (30)
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and a risk function (cf. (27))

Rt = I∆0 + 20I∆20
+ . . .+ 2j(t)−1I∆

2j(t)−1 . (31)

By definition of the sequence (∆k)k≥0 and the function Rt we immediately have a
lemma on particularly strong measurability of increments of Rt. Namely

Lemma 4.6. With notation as above we have Rt : [0, 1)→ [0, 2j(t)] and

Rt − (Rt − 2j(s+1))+ is F2j(s)-measurable,

for all s ≥ 4.

Proof. Let us notice that Rt − (Rt − 2j(s+1))+ = I∆0 +
∑j(s+1)−1
n=0 2nI∆2n and (29) can

be used.

The definition (16) implies

Lemma 4.7. If k = (k0, k1, . . . kj(k)),

0 = k0 < k1 < . . . < kj < . . . < kj′ < . . . < kj(k),

R : [0, 1)→ [0, kj(k)] and

R− (R− kj′)+ is Fkj -measurable,

then
PRk
kj+1

. . . PRk
kj′

0 = (R− kj)+ − (R− kj′)+.

It is also a simple exercise to show that by subadditivity of conditional norms we have

Lemma 4.8. If k = (k0, k1, . . . kj(k)),

0 = k0 < k1 < . . . < kj < . . . < kj′ < . . . < kj′′ < . . . < kj(k),

R : [0, 1)→ [0, kj(k)] then

‖PRk
kj

. . . PRk
kj′′

0‖ ≤ ‖PRk
kj

. . . PRk
kj′

0‖+ ‖PRk
kj′+1

. . . PRk
kj′′

0‖.

Proof. Notice that for any functions h, g ∈ L∞[0, 1) we have PRk
kj

(h + g) ≤ (PRk
kj
h) +

‖g‖Fkj
, 1 ≤ j ≤ kj(k).

Proof of Theorem 4.4. For the risk function given in (31) and ‘reinsurance system’ (30)
we have the estimate

‖Rt− (Rt− 20)+‖+ ‖(Rt− 20)+− (Rt− 21)+‖+ . . .+ ‖(Rt− 2j(t)−1)+− (Rt− 2j(t))+‖

≥
∑

j(4)<i≤j(t)

‖(Rt − 2i−1)+ − (Rt − 2i)+‖ =
∑

j(4)<i≤j(t)

2i−1
√
λ({Rt > 2i−1})

=
∑

j(4)<i≤j(t)

2i−1
√
λ(∆2i−1) ≥

∑
j(4)<i≤j(t)

2i−1

√
1

4i−1(i− 1)2
=
j(t)−1∑
i=j(4)

1
i
.

It is clear that the rightmost term grows to infinity as t→∞.
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On the other hand we have

‖PRtdt

20 . . . PRtdt

2j(t) 0‖

≤ ‖PRtdt

20 . . . PRtdt

2j(4) 0‖+ ‖PRtdt

2j(4)+1 . . . P
Rtdt

2j(5) 0‖+ . . .+ ‖PRtdt

2j(t−1)+1 . . . P
Rtdt

2j(t) 0‖
(by Lemma 4.8)

≤ ‖Rt − (Rt − 2j(4))+‖+ ‖(Rt − 2j(4))+ − (Rt − 2j(5))+‖+ . . .

+‖(Rt − 2j(t−1))+ − (Rt − 2j(t))+‖ (by Lemmas 4.6 and 4.7)

< 2j(4) +√
(2j(4))2λ(∆2j(4)) + (2j(4)+1)2λ(∆2j(4)+1) + . . .+ (2j(5)−1)2λ(∆2j(5)−1)

+ . . .+√
(2j(t−1))2λ(∆2j(t−1)) + (2j(t−1)+1)2λ(∆2j(t−1)+1) + . . .+ (2j(t)−1)2λ(∆2j(t)−1)

(by (31))

≤ 2j(4) +
√

2
(

1
j(4)2

+
1

(j(4) + 1)2
+ . . .+

1
(j(5)− 1)2

)1/2

+ . . .

+
√

2
(

1
j(t− 1)2

+
1

(j(t− 1) + 1)2
+ . . .+

1
(j(t)− 1)2

)1/2

(by (28))

≤ 224
+
√

2 ·
(

24 1
(24)2

)1/2

+ . . .+
√

2 ·
(

2t−1 1
(2t−1)2

)1/2

< 224
+

8√
2− 1

, since j(s) = 2s,

which completes the proof.
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