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Abstract. This work introduces the class of generalized tempered stable processes which en-

compass variations on tempered stable processes that have been introduced in the field, in-

cluding “modified tempered stable processes”, “layered stable processes”, and “Lamperti sta-

ble processes”. Short and long time behavior of GTS Lévy processes is characterized and

the absolute continuity of GTS processes with respect to the underlying stable processes is

established. Series representations of GTS Lévy processes are derived. Such representations

can be used for simulation and illustration of GTS processes as well as for their theoretical

study.

1. Introduction. Tempered stable distributions have been introduced as a modification
of stable laws to model systems exhibiting local spatiotemporal fractality and aggrega-
tional Gaussianity. It has been known that the velocity change in a turbulent flow is
extremely chaotic (fractal) in a short period of time but over long periods of time it can
be modeled by Gaussian distributions. Physicists Mantegna and Stanley [10] proposed
stable distributions with truncated Lévy measure to model such phenomena. The papers
of Novikov [11] and Koponen [9] replaced truncation by exponential tilting and put the
ideas of [10] on a solid mathematical ground. Presently tempered stable models are used
in several areas of physics, including turbulence, plasma physics, solar winds, and their
popularity is still growing.
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Analogous behavior to turbulent velocity was observed in the study of changes of
certain stocks on financial markets. To model such phenomena, Carr, Geman, Madan,
and Yor [4] introduced exponentially tempered stable processes (the CGMY model).
Barndorff-Nielsen and Shephard developed non-Gaussian Ornstein-Uhlenbeck-based mo-
dels applying, among others, exponentially tempered stable processes. At present, there
is a substantial literature in financial mathematics devoted to the CGMY and Barndorff-
Nielsen and Shephard models.

Exponentially tempered stable processes have their natural mathematical limita-
tions. For example, they are not closed under superpositions of independent terms,
and the tails are always decreasing exponentially fast. To gain a bigger flexibility but
yet to retain nice features of exponentially tempered stable processes, Rosiński [13] in-
troduced tempered stable distributions, where tempering is due to a radial completely
monotone function. He also found special series representations of such distributions
and processes based on their intrinsic characteristics. Simulation methods of such pro-
cesses based on such series representations and Gaussian approximation of small jumps
were investigated by Cohen and Rosiński [5]. Terdik and Woyczyński [15] studied in
detail tempered stable distribution under several parametric classes of tempering func-
tions.

Several authors introduced different modifications of tempered stable distributions
and processes. Houdré and Kawai [6] introduced layered stable processes, Kim, Rachev,
Chung, and Bianchi [8] introduced modified stable processes, and Caballero, Pardo, and
Pérez [3] introduced Lamperti stable processes. The purpose of this work is to identify
the essential feature of all four classes of tempered-like Lévy processes that enables us
to prove stable behavior in short time scales, Gaussian in long time scales, and abso-
lute continuity with respect to underlying stable processes. The resulting distributions or
processes we call generalized tempered stable (GTS) distributions or processes, respec-
tively.

In Section 2 we give the definition of a GTS distribution and discuss examples. Short
and long time behavior of GTS Lévy processes is proved in Section 3. In Section 4 we prove
the absolute continuity of GTS processes with respect to the underlying stable process.
Series representation of GTS Lévy processes are considered in Section 5. We examine two
methods of generating series representations in the context of GTS processes: the LePage
Method and the Rejection Method. We establish general forms of representations of GTS
processes and compute examples. Such series representations can be used for simulation
of GTS processes.

2. Generalized tempered stable distributions

Definition 2.1. An infinitely divisible distribution µ on Rd is said to be generalized
tempered stable (GTS) if µ has no Gaussian part and the Lévy measure ν of µ can be
represented as

ν(B) =
∫
Sd−1

∫ ∞
0

1B(rξ) q(r, ξ) r−α−1 dr σ(dξ), B ∈ B(Rd), (1)
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where α ∈ (0, 2), σ is a finite measure on Sd−1, and q : (0,∞) × Sd−1 7→ R+ is a
measurable function such that for some nonnegative function g ∈ L1(Sd−1, σ)

lim
r→0
‖q(r, ·)− g(·)‖L1(Sd−1,σ) = 0. (2)

We write νGTS to signify that this is the Lévy measure of a GTS distribution as in (1).

The class of GTS distributions contains various “tempered-like” distributions that
were earlier considered for their own merit. We will list some of them.

Example 2.2 (Tempered Stable (TS) Distributions, [13]). These are infinitely divisible
distributions on Rd with no Gaussian parts and Lévy measures of the form (1) such
that for each ξ ∈ Sd−1, the function q(·, ξ) is a completely monotone function on (0,∞)
satisfying q(∞, ξ) = 0, and q(0+, ξ) = 1. (We refer here to proper tempered stable
distributions, according to the terminology of [13].)

The complete monotonicity means that (−1)n ∂n

∂rn q(r, ξ) > 0 for all r > 0, ξ ∈ Sd−1,
and n = 0, 1, 2, . . .. In particular, q(·, ξ) is strictly decreasing, convex, and since q(0+, ξ) =
1, it is bounded by 1. Thus condition (2) holds with g(ξ) = 1. A function q(r, ξ) = e−λr

is a standard example of the q-function for a tempered stable distribution. For classes of
more interesting examples of tempering see [15].

Example 2.3 (Layered Stable Distributions, [6]). These are infinitely divisible distribu-
tions on Rd with no Gaussian parts and Lévy measures of the form (1) with q(r, ·) being
locally integrable and such that

q(r, ξ) ∼ c1(ξ) as r → 0 (3)

and

rβ−αq(r, ξ) ∼ c2(ξ) as r →∞ (4)

for σ-almost every ξ ∈ Sd−1. Here c1 and c2 are positive functions in L1(Sd−1, σ), α ∈
(0, 2) and β ∈ (0,∞).

Layered stable distributions inspired our way to introduce GTS distributions. How-
ever, condition (3) is not sufficient for the stable behavior of a layered stable process in a
short time, contrary to the claim made in Theorem 3.1 of [6], as a simple counterexample
can be constructed. For that reason we introduce (2). We do not require (4) as it is not
satisfied by other examples. A layered stable distribution becomes a GTS distribution
with g = c1 when we add the convergence in L1(Sd−1, σ) to (3).

Example 2.4 (Modified Tempered Stable (MTS) Distributions, [8]). These are infinitely
divisible distributions on R with no Gaussian parts and Lévy measures of the form (1)
with

q(r, ξ) =

2
1−α

2
(
Γ
(
α+1

2

))−1 (λ+r)
α+1

2 Kα+1
2

(λ+r) if ξ = 1,

2
1−α

2
(
Γ
(
α+1

2

))−1 (λ−r)
α+1

2 Kα+1
2

(λ−r) if ξ = −1,

where λ+, λ− > 0, α ∈ (0, 2), and Kp is the modified Bessel function of the second kind
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with an integral representation given by

Kp(x) =
1
2

(x
2

)p ∫ ∞
0

e−t−
x2
4t t−p−1dt. (5)

Since for any p > 0, the function x 7→ xpKp(x) is decreasing with limx→0 x
pKp(x) =

2p−1Γ(p) and limx→∞ x1/2exKp(x) = (π/2)1/2, we get that for each ξ = ±1 the radial
tempering function r 7→ q(r, ξ) is decreasing with

q(r, ξ) ∼ 1 as r ↓ 0 and q(r, ξ) ∼
(π

2

)1/2

(λ±r)α/2e−λ±r as r ↑ ∞.

Thus MTS distributions belong to the class of GTS distributions with g(ξ) = 1 in (2).
We notice that an MTS distribution is not a special case of a TS distribution because
the second derivative of q(r, ξ) with respect to r fails to be positive for all r > 0. This is
not a layered stable distribution either, because q(·, ξ) decays at infinity faster than any
power function.

Example 2.5 (Lamperti Stable Distributions, [3]). These are infinitely divisible distribu-
tions on Rd with no Gaussian parts and Lévy measures of the form (1) with

q(r, ξ) =
erf(ξ) rα+1

(er − 1)α+1
,

where α ∈ (0, 2) and f : Sd−1 → R is such that β := supξ∈Sd−1 f(ξ) < α+ 1. We have

q(r, ξ) ∼ 1 as r ↓ 0 and q(r, ξ) ∼ rα+1e−(α+1−f(ξ))r as r ↑ ∞.

It is easy to see that there is a finite constant C(α, β) such that q(r, ξ) ≤ C(α, β). Thus
Lamperti stable distributions belong to the class of GTS distributions with g(ξ) = 1
in (2). However, as noted in [3], Lamperti stable distributions are not tempered stable nor
layered stable. This is because the function r 7→ q(r, ξ) fails to be completely monotone
and decays at infinity faster than any power function.

The following is an immediate consequence of (2). We state it for a convenient refer-
ence. There exists δ ∈ (0, 1] such that∫

Sd−1
q(r, ξ)σ(dξ) ≤

∫
Sd−1

g(ξ)σ(dξ) + 1 =: M1 ∀ r ∈ (0, δ]. (6)

Lemma 2.6. Suppose α ∈ (0, 1). Then∫
{‖x‖≤1}

‖x‖ νGTS(dx) <∞.

Proof. Using (6) we get∫
{‖x‖≤1}

‖x‖ νGTS(dx) ≤
∫
{‖x‖≤δ}

‖x‖ νGTS(dx) + νGTS({‖x‖ > δ})

=
∫
Sd−1

∫ δ

0

r−αq(r, ξ) drσ(dξ) + νGTS({‖x‖ > δ})

≤M1

∫ δ

0

r−α dr + νGTS({‖x‖ > δ}) <∞.
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Consequently, the characteristic function µ̂ of a GTS distribution can be written as
µ̂(y) = exp(Cµ(y)), where the cumulant function Cµ(y), y ∈ Rd, is given by

Cµ(y) =


∫

Rd(ei〈y,x〉 − 1) νGTS(dx) + i〈y, b〉, α ∈ (0, 1),∫
Rd(ei〈y,x〉 − 1− i〈y, x〉1{‖x‖≤1}(x)) νGTS(dx) + i〈y, b〉, α ∈ [1, 2).

(7)

We will also write µ = µGTS to signify that µ is a GTS distribution.

Definition 2.7. Given a Lévy measure νGTS , as in Definition 2.1, define the associated
α-stable Lévy measure by

να(B) =
∫
Sd−1

∫ ∞
0

1B(rξ) r−α−1 dr g(ξ)σ(dξ), B ∈ B(Rd). (8)

If µ is a GTS distribution with the cumulant function as in (7), then the distribution µα

with the cumulant function

Cµα(y) =


∫

Rd(ei〈y,x〉 − 1) να(dx) + i〈y, b〉, α ∈ (0, 1),∫
Rd(ei〈y,x〉 − 1− i〈y, x〉1{‖x‖≤1}(x)) να(dx) + i〈y, b〉, α ∈ [1, 2),

(9)

will be called the associated α-stable distribution. In short, the associated α-stable distri-
bution µα has the spectral measure g(ξ)σ(dξ) and drifts analogous to µGTS .

3. Short and long time behavior of GTS Lévy processes. Let {XGTS
t }t≥0 be a

Lévy process in Rd determined by a GTS distribution µ of XGTS
1 (in short, a GTS Lévy

process). A Lévy process {Xα
t }t≥0 such that Xα

1 has an α-stable distribution associated
to L(XGTS

1 ) is called the associated α-stable Lévy process.
The following theorem extends similar results obtained for special cases of GTS Lévy

processes. It shows that in a short time a GTS process behaves like a stable one but in
a long time (when q decays appropriately) it converges to a Gaussian process.

The convergence in distribution “ d→” of processes is understood in D([0,∞),Rd), in
the Skorohod topology.

Theorem 3.1. Consider a Lévy process {XGTS
t }t≥0 such that X1 has a GTS distribution

µ with the cumulant function as in (7) with b = 0. Put

ah =

0, α ∈ (0, 1),

−
∫
{h1/α<‖x‖≤1} x ν

GTS(dx), α ∈ [1, 2).
(10)

Case(i): (Short time) If h→ 0, then

{h−1/α[XGTS
ht − htah]}t≥0

d−→ {Xα
t }t≥0

where {Xα
t }t≥0 is the associated α-stable Lévy process.

Case(ii): (Long time) Assume additionally that∫
{‖x‖>1}

‖x‖2 νGTS(dx) <∞ (11)
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and define

bh =


∫

Rd x ν
GTS(dx), α ∈ (0, 1),∫

{‖x‖>1} x ν
GTS(dx), α ∈ [1, 2).

(12)

Then, as h→∞,

{h−1/2[XGTS
ht − htbh]}t≥0

d→ {Bt}t≥0

where {Bt}t≥0 is a centered Brownian motion with covariance matrix

Σ =
∫

Rd
xx> νGTS(dx). (13)

Proof. Case (i): Short time (h→ 0). Since for each h > 0, Y ht := h−1/α
[
XGTS
ht − htah

]
is a Lévy process, by a theorem of Skorohod (see [7, Theorem 15.17]) we only need to
check the convergence at time 1. Therefore, we need to show that

Y h1
d→ Xα

1 as h→ 0. (14)

In view of (7), the cumulant CY h1 of Y h1 is given by

CY h1 (y) = hCµ(h−1/αy)− ih1−1/α〈y, ah〉

=

h
∫

Rd(ei〈y,h
−1/αx〉 − 1) νGTS(dx), α ∈ (0, 1),

h
∫

Rd(ei〈y,h
−1/αx〉 − 1− i〈y, h−1/αx〉1{‖x‖≤1}(h−1/αx)) νGTS(dx), α ∈ [1, 2).

This can be written as

CY h1 (y) =


∫

Rd(ei〈y,x〉 − 1)λh(dx), α ∈ (0, 1),∫
Rd(ei〈y,x〉 − 1− i〈y, x〉1{‖x‖≤1}(x))λh(dx), α ∈ [1, 2),

(15)

where λh(B) := hνGTS(h1/αB), B ∈ B(Rd) is the Lévy measure of Y h1 .
We will prove (14) using [7, Theorem 15.14]. To this end we need to verify the following

conditions: as h→ 0,

(a) λh converges vaguely to να on Rd \ {0},

(b)
∫
{‖x‖≤1} xx

> λh(dx)→
∫
{‖x‖≤1} xx

> να(dx),

(c)
∫
{‖x‖≤1} xλ

h(dx)→
∫
{‖x‖≤1} x ν

α(dx) when α ∈ (0, 1).

Here Rd denotes the one-point compactification of Rd. To prove (a) we need to show that
for any bounded continuous function f : Rd → R, vanishing in a neighborhood of the
origin and such that lim‖x‖→∞ f(x) exists, we have∫

Rd
f(x)λh(dx)→

∫
Rd
f(x) να(dx) as h→ 0. (16)
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Let C = supRd |f(x)| and let r0 ∈ (0, 1] be such that f(x) = 0 whenever ‖x‖ ≤ r0. Then∫
Rd
f(x)λh(dx) = h

∫
Rd
f(h−1/αx) νGTS(dx)

= h

∫
Sd−1

∫ ∞
h1/αr0

f(h−1/αrξ)r−α−1q(r, ξ) drσ(dξ)

=
∫
Sd−1

∫ ∞
r0

f(rξ)r−α−1q(h1/αr, ξ) drσ(dξ)

=
∫ ∞
r0

Fh(r)r−α−1 dr,

where

Fh(r) =
∫
Sd−1

f(rξ)q(h1/αr, ξ)σ(dξ), r ≥ r0.

By condition (2), for each r ≥ r0,

Fh(r)→
∫
Sd−1

f(rξ)g(ξ)σ(dξ), as h→ 0,

and also, by (6), |Fh(r)| ≤ CM1 whenever h ≤ δαr−α0 . Therefore,

lim
h→0

∫
Rd
f(x)λh(dx) =

∫ ∞
r0

∫
Sd−1

f(rξ)g(ξ)σ(dξ)r−α−1 dr =
∫

Rd
f(x) να(dx),

which proves (16) and so (a).
To show (b) we write∫

{‖x‖≤1}
xx> λh(dx) = h1−2/α

∫
{‖x‖≤h1/α}

xx> νGTS(dx)

= h1−2/α

∫
Sd−1

∫ h1/α

0

ξξ>r1−αq(r, ξ) drσ(dξ)

=
∫ 1

0

Gh(r)r1−α dr,

where Gh is a matrix valued function given by

Gh(r) =
∫
Sd−1

ξξ>q(h1/αr, ξ)σ(dξ), r ∈ (0, 1].

Gh is uniformly bounded,

‖Gh(r)‖ ≤
∫
Sd−1

q(h1/αr, ξ)σ(dξ) ≤M1

for h ≤ δα by (6), and limh→0Gh(r) =
∫
Sd−1 ξξ

>g(ξ)σ(dξ) by (2). Since r1−α1(0,1](r) dr
is a finite measure, we obtain by the Dominated Convergence Theorem

lim
h→0

∫
{‖x‖≤1}

xx> λh(dx) =
∫ 1

0

∫
Sd−1

ξξ>g(ξ)σ(dξ)r1−α dr =
∫
{‖x‖≤1}

xx> να(dx),

which proves (b).
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To show (c) we notice that, when α ∈ (0, 1),∫
{‖x‖≤1}

xλh(dx) = h1−1/α

∫
{‖x‖≤h1/α}

x νGTS(dx)

= h1−1/α

∫
Sd−1

∫ h1/α

0

ξ r−αq(r, ξ) drσ(dξ)

=
∫ 1

0

Hh(r)r−α dr,

where

Hh(r) =
∫
Sd−1

ξq(h1/αr, ξ)σ(dξ), r ∈ (0, 1].

By the same arguments as above we get that Hh is uniformly bounded for small h and
limh→0Hh(r) =

∫
Sd−1 ξ g(ξ)σ(dξ). Since r−α1(0,1](r) dr is a finite measure, we obtain

lim
h→0

∫
{‖x‖≤1}

xλh(dx) =
∫ 1

0

∫
Sd−1

ξg(ξ)σ(dξ)r1−α dr =
∫
{‖x‖≤1}

x να(dx),

which proves (c) and concludes proof of the short-time part of the theorem.

Case (ii): Long time (h→∞). Notice that under condition (11), E‖XGTS
1 ‖2 <∞ (see,

e.g., [14, Theorem 25.3]). Thus, for each h > 0,

Zht := h−1/2
[
XGTS
ht − htbh

]
is a zero mean Lévy process with the cumulant of Zh1 given by

CZh1 (y) = hCµ(h−1/2y)− ih1/2〈y, bh〉

= h

∫
Rd

(ei〈y,h
−1/2x〉 − 1− i〈y, h−1/2x〉) νGTS(dx)

=
∫

Rd
(ei〈y,x〉 − 1− i〈y, x〉)κh(dx),

where the measure κh(B) = hνGTS(h1/2B), B ∈ B(Rd) is the Lévy measure of Zh1 .
Similarly to the proof of the small time behavior, it is enough to verify the convergence

in distribution at time t = 1. Using [7, Theorem 15.14], the latter amounts to verifying
the following three conditions: as h→∞,

(a’) κh converges vaguely to the null-measure on Rd \ {0},

(b’)
∫
{‖x‖≤1} xx

> κh(dx)→ Σ,

(c’)
∫
{‖x‖>1} xκ

h(dx)→ 0.

To prove (a’) we take ε > 0. Then, as h→∞,

κh({‖x‖ > ε}) ≤ ε−2

∫
{‖x‖>ε}

‖x‖2 κh(dx) = ε−2

∫
{‖x‖>εh1/2}

‖x‖2 νGTS(dx)→ 0,

which follows by (11).
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Now we consider (b’). Recall the definition of Σ from (13). Then, in view of (11),∫
{‖x‖≤1}

xx> κh(dx) =
∫
{‖x‖≤h1/2}

xx> νGTS(dx)→ Σ,

as h→∞.
Finally, we consider (c’). We have∥∥∥∫

{‖x‖>1}
xκh(dx)

∥∥∥ ≤ ∫
{‖x‖>1}

‖x‖κh(dx) ≤
∫
{‖x‖>1}

‖x‖2 κh(dx)

=
∫
{‖x‖>h1/2}

‖x‖2 νGTS(dx)→ 0,

as h→∞. The proof is complete.

4. Absolute continuity with respect to a stable process. In this section, absolute
continuity of GTS processes with respect to the associated stable process is studied. This
should be compared with the results of [13], [6] and [3].

Recall that a process {X(t) : t ≥ 0} in Rd is said to be canonical if X(t, ω) = ω(t),
t ≥ 0, ω ∈ Ω, where Ω = D([0,∞),Rd); Ω is equipped with the σ-algebra F = σ{X(s) :
s ≥ 0} and the right-continuous natural filtration Ft =

⋂
s>t σ{X(u) : u ≤ s}, t ≥ 0.

The canonical process is completely described by a probability measure P on (Ω,F). As
usual, we set ∆X(t) = X(t)−X(t−). By P|Ft we will denote the restriction of P to the
σ-algebra Ft.
Theorem 4.1. In the above setting consider two probability measures P and Q on (Ω,F)
such that under P the canonical process is a GTS process, Xt = XGTS

t , with L(XGTS
1 ) =

µ determined by (7) and under Q it is the canonical process is a α-stable process, Xt =
Xα
t − tx0, with L(Xα

1 ) = µα determined by (9). Then, the following two statements are
equivalent:

(1) P|Ft and Q|Ft are mutually absolutely continuous for every t ∈ (0,∞)
(2) The following three conditions hold

(2.a) σ-almost everywhere on Sd−1

{ξ : g(ξ) = 0} =
{
ξ :
∫ ∞

0

q(r, ξ) dr = 0
}
,

(2.b) ∫
Sd−1

∫ 1

0

(q(r, ξ)1/2 − g(ξ)1/2)2r−α−1 dr σ(dξ) <∞,

(2.c)

x0 =

{
0 if α ∈ (0, 1),∫
Sd−1 ξ

∫ 1

0
(q(r, ξ)− g(ξ)) r−α drσ(dξ) if α ∈ [1, 2).

If P|Ft and Q|Ft are not mutually absolutely continuous for some t > 0, then they are
singular for all t > 0.

Proof. In the proof we verify conditions for the equivalence of distributions of Lévy
processes from [14, Theorem 33.1]. The first condition for (1) is that νGTS and να must
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be mutually absolutely continuous. We claim that this is equivalent to (2.a). Indeed, let
U = {ξ ∈ Sd−1 : g(ξ) = 0} and U1 = {ξ ∈ Sd−1 :

∫∞
0
q(r, ξ) dr = 0}. Then by (8)

να({rξ : r > 0, ξ ∈ U}) = 0.

Consequently,

0 = νGTS({rξ : r > 0, ξ ∈ U}) =
∫
U

∫ ∞
0

r−α−1q(r, ξ) drσ(dξ),

which shows U ⊂ U1 σ-almost everywhere. Proceeding in the reverse order yields U1 ⊂ U
σ-almost everywhere, which completes the proof of (2.a). Conversely, if U = U1 σ-almost
everywhere, then for every B ∈ B(Rd)

νGTS(B) =
∫
Uc1

∫ ∞
0

1B(rξ) q(r, ξ) r−α−1 dr σ(dξ)

=
∫
Uc

∫ ∞
0

1B(rξ) q(r, ξ) r−α−1 dr σ(dξ)

=
∫
Sd−1

∫ ∞
0

1B(rξ)
q(r, ξ)
g(ξ)

1{g(ξ)>0}(ξ) r−α−1 dr g(ξ)σ(dξ)

=
∫
B

q(‖x‖, x/‖x‖)
g(x/‖x‖)

1{g(x/‖x‖)>0}(x) να(dx).

Thus νGTS is absolutely continuous with respect to να, and since

νGTS({x : g(x/‖x‖) = 0}) = να({x : g(x/‖x‖) = 0}) = 0

by (2.a), νGTS and να are equivalent with the Radon–Nikodym derivative

dνGTS

dνα
(x) =

{
q(‖x‖,x/‖x‖)
g(x/‖x‖) if g(x/‖x‖) > 0,

1 otherwise.
(17)

The second condition in [14, Theorem 33.1] for (1) is∫
Rd

(eφ(x)/2 − 1)2να(dx) <∞,

where

φ(x) := log
dνGTS

dνα
(x).

Substituting (17) we get∫
Rd

(eφ(x)/2 − 1)2να(dx) =
∫
{g(ξ)>0}

∫ ∞
0

((
q(r, ξ)
g(ξ)

)1/2

− 1

)2

r−α−1g(ξ) drσ(dξ)

=
∫
Sd−1

∫ ∞
0

(q(r, ξ)1/2 − g(ξ)1/2)2r−α−1 drσ(dξ),
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where the last equality employs (2.a). Observe that∫
Sd−1

∫ ∞
1

(q(r, ξ)1/2 − g(ξ)1/2)2r−α−1 drσ(dξ)

≤
∫
Sd−1

∫ ∞
1

q(r, ξ)r−α−1 drσ(dξ) +
∫
Sd−1

∫ ∞
1

g(ξ)r−α−1 drσ(dξ)

= νGTS({‖x‖ > 1}) + να({‖x‖ > 1}) <∞.

Thus, ∫
Rd

(eφ(x)/2 − 1)2να(dx) <∞

if and only if ∫
Sd−1

∫ 1

0

(q(r, ξ)1/2 − g(ξ)1/2)2 r−α−1 dr σ(dξ) <∞,

which is (2.b). The third condition in [14, Theorem 33.1] gives x0 as in (2.c).
The last statement of the theorem comes from a general dichotomy result of [2].

Remark 4.2. A direct application of Theorem 33.2 in [14] to the Radon–Nikodym deriva-

tive (17) yields the Radon-Nikodym derivative
dP

dQ

∣∣∣
Ft

for each t > 0.

Remark 4.3. The critical condition in Theorem 4.1 for the absolute continuity is (2.b).
It depends on the rate of convergence of q(r, ξ) to g(ξ) as r → 0. We will state a (usually)
simple to verify condition which yields (2.b). Suppose there exists a function k(r) > 0
such that

∫ 1

0
k(r)r−1 dr <∞ such that

lim sup
r→0

1
rαk(r)

∫
Sd−1

(q(r, ξ)1/2 − g(ξ)1/2)2 σ(dξ) <∞. (18)

Then condition (2.b) of Theorem 4.1 holds.

Proof. There exists r0 ∈ (0, 1] and a constant M such that∫
Sd−1

(q(r, ξ)1/2 − g(ξ)1/2)2 σ(dξ) ≤Mk(r)rα ∀r ∈ (0, r0].

Hence ∫
Sd−1

∫ r0

0

(q(r, ξ)1/2 − g(ξ)1/2)2r−α−1 dr σ(dξ) ≤M
∫ r0

0

k(r)r−1 dr <∞.

Then we estimate∫
Sd−1

∫ 1

r0

(q(r, ξ)1/2 − g(ξ)1/2)2r−α−1 dr σ(dξ)

≤ νGTS({‖x‖ > r0}) + να({‖x‖ > r0}) <∞,

similarly as in the proof of condition (2.b) of the above theorem.
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Example 4.4 (A Tempered Stable Process). Let q(r, ξ) = e−rf(ξ), where f : Sd−1 7→
(0,∞). Here g(ξ) = 1. Then,∫

Sd−1
(q(r, ξ)1/2 − g(ξ)1/2)2 σ(dξ) =

∫
Sd−1

(e−rf(ξ)/2 − 1)2 σ(dξ)

≤ 1
4
r2

∫
Sd−1

f(ξ)2 σ(dξ).

Thus condition (18) holds with k(r) = r2−α, as long as
∫
Sd−1 f(ξ)2 σ(dξ) <∞.

Example 4.5 (Lamperti Stable Processes). Let

q(r, ξ) =
erf(ξ) rα+1

(er − 1)α+1
,

where f : Sd−1 → R is such that β := supξ∈Sd−1 f(ξ) < α + 1. Here g(ξ) = 1. Then, for
r ∈ (0, 1]∫

Sd−1
(q(r, ξ)1/2 − g(ξ)1/2)2 σ(dξ) =

∫
Sd−1

(
erf(ξ)/2 r(α+1)/2

(er − 1)(α+1)/2
− 1
)2

σ(dξ)

≤ 2
rα+1

(er − 1)α+1

∫
Sd−1

(erf(ξ)/2 − 1)2 σ(dξ) + 2
(

r(α+1)/2

(er − 1)(α+1)/2
− 1
)2

σ(Sd−1)

≤ 1
2
C1e

α+1r2

∫
Sd−1

f(ξ)2 σ(dξ) + 2C2r
2σ(Sd−1),

where C1 = supr∈(0,1]
rα+1

(er−1)α+1 <∞ and C2 = supr∈(0,1] r
−2
(

r(α+1)/2

(er−1)(α+1)/2 − 1
)2
<∞ by

elementary calculus. Thus a Lamperti stable process is equivalent to an underlying stable
process provided

∫
Sd−1 f(ξ)2 σ(dξ) < ∞ (we take k(r) = r2−α in (18)). Such result was

proved in [3, Theorem 5.1].

Example 4.6 (A Not Equivalent Tempered Stable Process). In conclusion, we recall an
example from [13, Example 4]. Consider d = 1 for simplicity, σ = δ1 and q(r) = q(r, 1) =
e−r

β

, where 0 < β ≤ α
2 . Since 1− e−x/2 ≥ x/4 when x ∈ [0, 1],∫ 1

0

(e−r
β/2 − 1)2r−α−1 dr ≥ 1

16

∫ 1

0

r2β−α−1 dr =∞.

Thus (2.b) fails and the resulting tempered stable process is not equivalent to any stable
process.

5. Series representation of GTS Lévy processes. In this section we examine two
methods, LePage and Rejection Methods [12], to generate series representations of GTS
Lévy processes. First, a series representation using LePage’s Method is considered. It
involves looking at a decomposition of the Lévy measure of the form:

νGTS(A) =
∫
Sd−1

∫ ∞
0

1A(rξ) ρ∗(dr, ξ)σ∗(dξ)

where σ∗ is a probability measure on Sd−1 and ρ∗(·, ξ) is a Lévy measure for σ∗-almost
all ξ ∈ Sd−1. Such a decomposition is naturally provided by (1) if we take σ∗(dξ) :=
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σ(dξ)/σ(Sd−1) := σ(dξ)/‖σ‖ and ρ∗(·, ξ) given by

ρ∗([x,∞), ξ) = ‖σ‖ ρ([x,∞), ξ),

where

ρ([x,∞), ξ) :=
∫ ∞
x

q(r, ξ)r−α−1 dr. (19)

Since ∫
Sd−1

∫ ∞
0

(1 ∧ r2) ρ∗(dr, ξ)σ∗(dξ) =
∫

Rd
(1 ∧ ‖x‖2)νGTS(dx) <∞,

we get ∫ ∞
0

(1 ∧ r2)ρ∗(dr, ξ) <∞ σ∗-almost everywhere on Sd−1,

so that ρ∗(·, ξ) is a Lévy measure for σ∗-almost all ξ ∈ Sd−1. Define the right-continuous
inverse of the tail function x 7→ ρ∗([x,∞), ξ) as:

ρ−1
∗ (u, ξ) := inf{x > 0 : ρ∗([x,∞), ξ) < u}.

Then
ρ−1
∗ (u, ξ) = ρ−1(u/‖σ‖, ξ),

where ρ−1(·, ξ) is the right-continuous inverse of the function x 7→ ρ([x,∞), ξ) given
by (19).

Theorem 5.1. Let µGTS be a GTS distribution with the cumulant function (7), where
νGTS is given by (1) and b = 0. Put ‖σ‖ := σ(Sd−1) and let T > 0 be fixed. Let
{Γi}i≥1 be a sequence of partial sums of iid standard exponential random variables. Let
{Ui}i≥1 be a sequence of iid uniform random variables on [0, T ] and let {Vi}i≥1 be a
sequence of random variables in Sd−1 with common distribution σ(dξ)/‖σ‖. Assume that
the sequences {Γi}i≥1, {Ui}i≥1, and {Vi}i≥1 are independent of each other. Then,

XGTS
t :=

∞∑
i=1

{
ρ−1

(
Γi
‖σ‖T

, Vi

)
Vi 1{Ui≤t} − ci

t

T

}
(20)

converges uniformly a.s. on [0, T ] to a Lévy process such that L(XGTS
1 ) = µGTS, where

ci = 0 when α ∈ (0, 1) and for α ∈ [1, 2)

ci =
∫ i

i−1

E

{
ρ−1

(
s

‖σ‖T
, V1

)
V11{s≥‖σ‖Tρ([1,∞),V1)}(s)

}
ds.

In particular, if the function q does not depend on ξ, q(r, ξ) = q(r), then ρ−1 will not
depend on ξ either and the above series representation is simplified to the following:

∞∑
i=1

{
ρ−1

(
Γi
‖σ‖T

)
Vi 1{Ui≤t} − ci

t

T

}
(21)

where ci = 0 when α ∈ (0, 1) and for α ∈ [1, 2)

ci = E(V1)
∫ i

i−1

ρ−1

(
s

‖σ‖T

)
1{s≥‖σ‖Tρ([1,∞))}(s) ds.

Proof. This representation is a special case of series representations considered in [12],
where the pathwise uniform convergence of the series is proved in general.
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Practical applicability of series (20)–(21) (e.g., for simulation of GTS processes) de-
pends on whether or not ρ−1 has a closed form. We will give a couple of examples where
this is the case.

Example 5.2 (Lamperti Stable Processes). Recall that

q(r, ξ) =
erf(ξ) rα+1

(er − 1)α+1
.

Asssume that f(ξ) = 1 for all ξ ∈ Sd−1. Then

ρ([x,∞), ξ) = ρ([x,∞)) =
∫ ∞
x

errα+1

(er − 1)α+1
r−α−1 dr = α−1 (ex − 1)−α ,

which implies that

ρ−1(u) = ln
(

1 + (αu)−1/α
)
.

From Theorem 5.1 we get a series expansion of Lamperti stable processes on [0, T ] with
f(ξ) := 1 (and b = 0 in (7))

Xt =
∞∑
i=1

{
ln

(
1 +

(
αΓi
‖σ‖T

)−1/α
)
Vi 1{Ui≤t} − ci

t

T

}
, (22)

where ci = 0 when α ∈ (0, 1) and when α ∈ [1, 2)

ci = E(V1)
∫ i

i−1

log

(
1 +

(
αs

‖σ‖T

)−1/α
)

1{s≥k‖σ‖T}(s) ds,

where k = ρ([1,∞)) = α−1(e− 1)−α. The representation (22) was also obtained in [3].

The next is the well-known series representation of stable processes.

Example 5.3 (Stable Processes). A stable process is a GTS process when we take
q(r, ξ) ≡ 1. Then,

ρ([x,∞), ξ) = ρ([x,∞)) =
∫ ∞
x

r−α−1 dr =
x−α

α

which implies that
ρ−1(u) = (αu)−

1
α .

Thus,

Xt =
∞∑
i=1

{(
αΓi
‖σ‖T

)− 1
α

Vi 1{Ui≤t} − ci
t

T

}
(23)

where ci = 0 when α ∈ (0, 1) and for α ∈ [1, 2)

ci = E(V1)
∫ i

i−1

((
αs

‖σ‖T

)− 1
α

1{s≥α−1‖σ‖T}(s)

)
ds

converges pathwise uniformly on [0, T ] to an α-stable process with spectral measure σ
and b = 0 in (7).
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Example 5.4 (Exponentially tempered stable process). Consider a tempered stable pro-
cess with q(r, ξ) = e−r. Then,

ρ([x,∞), ξ) = ρ([x,∞)) =
∫ ∞
x

e−r r−α−1 dr

does not have a closed form, neither does its inverse ρ−1(u).

The above example shows a simple case where the series representation based on the
LePage method is difficult to apply in practice. For tempered stable processes a different
kind series representations were introduced in [13]. However, such representations will
not work for arbitrary GTS processes. The next result develops the rejection method
of Rosiński [12] for series representations of GTS processes which applies whenever the
function q is bounded and beyond.

Theorem 5.5. Let µGTS be a GTS distribution with the cumulant function (7), where
νGTS is given by (1) and b = 0. Suppose there is a function h : (0,∞) → R+ such that∫∞

0
(r2 ∧ 1)h(r) r−α−1 dr <∞ and

sup
ξ∈Sd−1

q(r, ξ) ≤ h(r) for all r > 0. (24)

Define

ρ([x,∞)) =
∫ ∞
x

h(r) r−α−1 dr (25)

and let ρ−1 be the right-continuous inverse of the function x 7→ ρ([x,∞)). Put ‖σ‖ :=
σ(Sd−1) and let T > 0 be fixed.

Let {Γi}i≥1 be a sequence of partial sums of iid standard exponential random vari-
ables. Let {Ui}i≥1 be a sequence of iid uniform random variables on [0, T ] and let {Vi}i≥1

be a sequence of random variables in Sd−1 with common distribution σ(dξ)/‖σ‖. Let
{Wi}i≥1 be a sequence of iid uniform random variables on [0, 1]. Assume that the se-
quences {Γi}i≥1, {Ui}i≥1, {Vi}i≥1, and {Wi}i≥1 are independent of each other. Define

Ji := ρ−1

(
Γi
‖σ‖T

)
, i ≥ 1

and

βi :=

{
1 if q(Ji, Vi) ≥ h(Ji)Wi,

0 otherwise.

Then,

XGTS
t :=

∞∑
i=1

{
βiJiVi 1{Ui≤t} − ci

t

T

}
(26)

converges uniformly a.s. on [0, T ] to a Lévy process such that L(XGTS
1 ) = µGTS, where

ci = 0 when α ∈ (0, 1) and for α ∈ [1, 2)

ci = E
{
1[i−1,i](Γ1)eΓ1β1J1V1

}
.

Proof. Consider a measure

λ(B) =
∫
Sd−1

∫ ∞
0

1B(rξ)h(r)r−α−1 drσ(dξ), B ∈ B(Rd).
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λ is a Lévy measure by our assumption on integrability of h. Moreover, νGTS is absolutely
continuous with respect to λ and

dνGTS

dλ
(x) =

q(‖x‖, x/‖x‖)
h(‖x‖)

≤ 1

by (24). This is a case where the rejection method of [12] applies. {JiVi}i≥1 is a Poisson
point process in Rd with the intensity measure λ obtained by LePage’s method and the
βi’s provide trimming of this process. The conclusion follows from direct applications
of [12].

Remark 5.6. This theorem gives us a possibility to choose ρ such that ρ has a closed
form. For example, if h(r) ≡ 1, then ρ−1(u) = (αu)−1/α.

Example 5.7 (Lamperti Stable Processes again). Consider a Lamperti stable process
with

q(r, ξ) =
erf(ξ) rα+1

(er − 1)α+1
,

where γ := supξ∈Sd−1 f(ξ) < α + 1. In Example 5.2 we gave a series representation
for the case f(ξ) ≡ 1. Surprisingly, the method of that example will mostly fail when
f(ξ) ≡ γ 6= 1. This is because of the lack of a closed form for q−1(u).

In this example we will assume that f(ξ) ≤ 1, ξ ∈ Sd−1. Then

q(r, ξ) =
erf(ξ) rα+1

(er − 1)α+1
≤ er rα+1

(er − 1)α+1
=: h(r).

Now we compute the quantities from Theorem 5.5:

ρ−1(u) = ln(1 + (αu)−1/α),

as in Example 5.2

Ji := ln

(
1 +

(
αΓi
‖σ‖T

)−1/α
)
,

and

βi :=

{
1 if e−Ji(1−f(Vi)) ≥Wi,

0 otherwise.

Then

Xt :=
∞∑
i=1

{
βiJiVi 1{Ui≤t} − ci

t

T

}
converges uniformly a.s. on [0, T ] to a Lamperti stable process (with b = 0 in (7)), where
ci = 0 when α ∈ (0, 1) and for α ∈ [1, 2)

ci = E
{
1[i−1,i](Γ1)eΓ1β1J1V1

}
.

Example 5.8 (Modified Tempered Stable Processes). Recall from Example 2.4 that

q(r, ξ) =

2
1−α

2
(
Γ
(
α+1

2

))−1 (λ+r)
α+1

2 Kα+1
2

(λ+r) if ξ = 1,

2
1−α

2
(
Γ
(
α+1

2

))−1 (λ−r)
α+1

2 Kα+1
2

(λ−r) if ξ = −1,
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where λ+, λ− > 0, α ∈ (0, 2), and Kp is the modified Bessel function of the second kind
with an integral representation given by (5). Since Kp(x) = K−p(x), we get

Kp(x) = K−p(x) =
1
2

(x
2

)−p ∫ ∞
0

e−t−
x2
4t tp−1dt

≤ 1
2

(x
2

)−p ∫ ∞
0

e−ttp−1dt =
Γ(p)

2

(
2
x

)p
.

Hence,
xpKp(x) ≤ 2p−1Γ(p), x > 0.

Using this bound with p = (α+ 1)/2 we get that

sup
ξ∈Sd−1

q(r, ξ) ≤ 1 for all r > 0.

Therefore, we use the rejection method with

h(r) ≡ 1.

Now we compute the quantities from Theorem 5.5:

ρ(u) = (αu)−1/α
,

Ji :=
(
αΓi
‖σ‖T

)−1/α

,

and

βi :=

{
1 if q(Ji, Vi) ≥Wi,

0 otherwise.

Then,

Xt :=
∞∑
i=1

{
βiJiVi 1{Ui≤t} − ci

t

T

}
(27)

converges uniformly a.s. on [0, T ] to a MTS Lévy process (with b = 0 in (7)), where ci = 0
when α ∈ (0, 1) and for α ∈ [1, 2)

ci = E
{
1[i−1,i](Γ1)eΓ1β1J1V1

}
.

Example 5.9 (Tempered Stable Processes). Special series representations for proper tem-
pered stable processes were constructed in [13]. They are based on intrinsic characteristics
of such processes. Here we will only indicate that the rejection method of Theorem 5.5
can be applied as well to obtain alternative representations. Indeed, since

sup
ξ∈Sd−1

q(r, ξ) ≤ 1, r > 0,

we may take h(r) ≡ 1 in Theorem 5.5 to obtain series representations based on trimming
of jumps of the associated stable processes.
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