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Abstract. For a sequence of dependent random variables (Xk)k∈N we consider a large class of
summability methods defined by R. Jajte in [11] as follows: For a pair of real-valued nonnegative
functions g, h : R+ → R+ we define a sequence of “weighted averages” 1

g(n)

Pn
k=1

Xk
h(k)

, where g

and h satisfy some mild conditions. We investigate the almost sure behavior of such transfor-
mations. We also take a close look at the connection between the method of summation (that is
the pair of functions (g, h)) and the coefficients that measure dependence between the random
variables.

1. Introduction. Undeniably the classical Kolmogorov strong law of large numbers
(for short SLLN) for iid random variables had a significant impact on the development
of probability theory and mathematical statistics. This theorem was generalized in two
different directions. The first path is the study of almost sure convergence of weighted
averages, started by the work of Marcinkiewicz and Zygmund [12] in which one may find
an extension of Kolmogorov’s result to a wide class of means. On the other hand majority
of researchers focused on extensions of the classical SLLN to the case of dependent random
variables and so probably the most commonly known result in modern probability is the
SLLN for pairwise independent identically distributed random variables due to Etemadi
[8], which was lately generalized by Matula [16]. Our aim is to combine these two paths
and state weighted strong laws of large numbers (for short WSLLN) for dependent random
variables; we emphasize that our work is not new in this topic (see for instance [3], [15]).

First let us define the class of means we shall be dealing with. The following notation
is due to Jajte [11].
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Notation 1. We shall say that a pair of real valued, nonnegative functions (g, h) on
[0,∞) satisfies the (F-J) condition if g is strictly increasing with range (0,∞) and more-
over the function φ(x) := g(x)h(x) satisfies:

1. there exist q ≥ 0 such that for any x > y ≥ q we have φ(x) > φ(y),
2. there exist r ≥ 0, a ≥ 0 such that for any y ≥ r the following condition is satisfied
φ2(y)

∑∞
n=y

1
φ2(n) ≤ ay.

For a given pair of functions (g, h) let us denote by (σn)n∈N the sequence of weighted
averages of a given sequence of random variables (Xn)n∈N, that is:

σn :=
1

g(n)

n∑
k=1

1
h(k)

(Xk −mk), mk := E(XkI{|Xk| ≤ φ(k)}).

The main part of our work is devoted to generalizations of the following theorem
stated by Feller in 1945 [9] and revisited by Jajte in 2003 [11].

Theorem 1.1. Let (Xn)n∈N be a sequence of iid random variables and (g, h) be a pair
of functions that satisfies the condition (F-J). We have

lim
n→∞

σn = 0 a.s.⇐⇒ Eφ−1(|X1|) <∞.

In the present note we seek for optimal sufficient conditions for almost sure conver-
gence of the sequence of weighted averages (σn)n∈N, thus for brevity we shall say that
the sequence of dependent random variables (Xn)n∈N satisfies the (g, h)-WSLLN if the
corresponding sequence of weighted averages (σn)n∈N converge to zero almost surely. For
that purpose we need to extract a few smaller classes of weighted averages from the
Feller-Jajte class.

It is worth mentioning that the Feller-Jajte WSLLN uncovers an interesting property
of iid random variables, namely Theorem 1.1 implies:

Remark 1. Let the function h be strictly increasing with range (0,∞) and (g, h) satisfy
the condition (F-J), then:

lim
n→∞

1
g(n)

n∑
k=1

1
h(k)

(Xk − EXk) = 0 a.s.⇐⇒ lim
n→∞

1
h(n)

n∑
k=1

1
g(k)

(Xk − EXk) = 0 a.s,

where (Xn)n∈N is as in the previous theorem.

We shall see that these two conditions are not always equivalent in the case of depen-
dent random variables, which is not surprising as the pair (g, h) and (h, g) may define
completely different summability methods. Let us also note that according to a theorem
of Martikainen and Petrov [13] it remains an exercise to prove that no assumption on
dependence of random variables is need in a special case of the previous theorem when
there exist r ≥ 0, a ≥ 0, such that for any y ≥ r the following condition is satisfied
φ(y)

∑∞
n=y

1
φ(n) ≤ ay.

In recent decades much attention was focused on investigating the asymptotic behavior
of dependent random variables (see [4], [2], [7], [19], [1]). One can find a vast variety of
conditions imposed on the dependence structure of the investigated sequence; we shall be
interested in two classical ones: martingale difference sequences and α-mixing (i.e. strong
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mixing) sequences. For the sake of completeness we recall the definitions of these two
types of sequences below.

Definition 1. Let L, F be σ-fields on a probability space (Ω,=, P ). We denote

α(L,F) := sup{P (A ∩B)− P (A)P (B);A ∈ L, B ∈ F}.

We shall say that a sequence of random variables (Xk)k∈Z is α-mixing if

0 = lim
n→∞

αn := lim
n→∞

(
sup
k∈Z

α(Fk−∞,F∞k+n)
)
,

where
Fk−∞ = σ(Xl : l ≤ k),F∞k+n = σ(Xl : l ≥ k + n).

Definition 2. Let (Fn)n∈N be a filtration on a probability space. We shall say that a
sequence of random variables (Xn)n∈N is a martingale difference sequence with respect
to the filtration (Fn)n∈N if the sequence of partial sums (Sn)n∈N is a martingale with
respect to the filtration (Fn)n∈N, where Sn :=

∑n
k=1Xk for n = 1, 2, ....

In the present paper we do not deal with associated (or negatively associated) se-
quences (for details see Matula [14]), for which the SLLN and WSLLN were studied in
detail by Matula in [14], [15] (for further modifications see Chandra and Ghosal [5]). In
view of Matula’s generalization of the classical three series theorem (see Matula [14]) the
proof of the remark below is an elementary exercise.

Remark 2. Let (Xn)n∈N be a sequence of identically distributed negatively associated
random variables and (g, h) be a pair of functions that satisfies the condition (F-J). If
Eφ−1(|X1|) <∞, then (Xn)n∈N satisfies the (g, h)-WSLLN.

Our main results generalize not only the Feller-Jajte SLLN, but also a few known
WSLLN for dependent random variables (see Rio [18], Hall and Heyde [10] and references
therein). Methods used in the proofs are modifications of those used by Rio [18] and Hall
and Heyde [10], but our results cannot be derived from the above mentioned theorems.

2. WSLLN for α-mixing sequences. In the present section we state the main result
for mixing sequences. For the sake of clarity and brevity we shall not give all the proofs
here, instead we give reference to a forthcoming work, which contains more detailed
discussion of this topic. Before stating our main result for α-mixing sequences we give a
maximal inequality which is the main tool in the proof of the forthcoming theorem, but
is also of interest on its own. First recall (what is known as the ’quantile transformation’)
that if X is a random variable with distribution function F then X =d F−1(U), where
U ∼ Unif([0, 1]) and F−1 denotes the generalized inverse of F . Moreover for any given
nondecreasing sequence of nonnegative reals (αn)n∈N∪{0} and any random variable X let
us make the following notation.

Notation 2. Let us denote by α : R+ → R+ a cadlag function given by

α(t) := α[t], t ∈ R

and let
α−1(u) := sup{t ∈ R : α(t) > u}, u ∈ R+.
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Moreover in the same spirit let us denote by Q a generalized inverse function to the decay
function, i.e. to 1− F , where F is the distribution function of X, defined as follows

Q(u) := sup{t ∈ R : 1− F (t) > u}, u ∈ R+.

In the proof of the next lemma we shall use a covariance inequality due to E. Rio [17],
which is as follows.

Proposition 2.1. Let X,Y be two square integrable random variables and let α :=
α(σ(X), σ(Y )) be as in Definition 1. We have

|Cov(X,Y )| ≤ 2
∫ 2α

0

QX(t)QY (t)dt,

where QX(t) and QY (t) are generalized inverse functions of the decay functions of the
random variables |X| and |Y | respectively and σ(X), σ(Y ) are σ-fields generated by X
and Y respectively.

We are now ready to state the key lemma, a maximal inequality for α-mixing se-
quences, which is an adjustment of Theorem 4 of Rio [18] to our setting.

Lemma 2.2. Let (Xn)n∈N be a α-mixing sequence and let (αn)n∈N be the corresponding
sequence of mixing coefficients as in Definition 1. Moreover let Xn be square integrable
for each n ∈ N and let Qn denote the inverse of the decay function of the random variable
|Xn|. Let h : R → R be a nonnegative real function and a1 < a2 natural numbers. For
any x > 0 and r ∈ N we have

P

(
max

a1≤p≤a2

p∑
k=a1

Xk

h(k)
≥ 2x

)

≤ 2
x2

a2∑
k=a1

1
h2(k)

∫ 2α0

0

Q2
k(u)du+

2
x

a2∑
k=a1

1
h(k)

∫ 2αr

0

Qk(u)du

+
8
x2

a2∑
k=a1

1
h(k)

max(r−1,k−a1)∑
i=1

1
h(k − i)

∫ 2αi

0

Q2
k(u)du

+
8
x2

a2∑
k=a1

1
h(k)

max(r−1,k−a1)∑
i=1

1
h(k − i)

∫ 2αi

0

Q2
k−i(u)du,

where 1/h(0) ≡ 0.

Before stating a WSLLN for α-mixing sequences let us make some assumptions used
in the sequel. Let us assume that there exist a nondecreasing nonnegative cadlag function
ν such that for each n, k ∈ N, k < n

ν(k) := sup
k≤n

k−1∑
i=0

h(n)
h(n− i)

, ν(x) = ν[x], x ∈ R. (1)

Moreover let us define a nonnegative sequence (θn)n∈N by the following condition

φ(n)
n∑
k=1

1
φ(k)

= θn, n ∈ N and let θ(t) := θ[t], t ∈ R. (2)
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Let (Xn)n∈N be an α-mixing sequence (as in Definition 1 and let α−1 be given in Notation
2), assume that there exist a nonnegative random variable X which dominates stochas-
tically the sequence (Xn) i.e. such that for each t ∈ R P (X > t) = supn∈N P (|Xn| > t)
and Eφ−1(X) <∞. What is more let Q be the generalized inverse function to the decay
function of the random variable X. Last let us assume that the pair of functions (g, h)
satisfies the (F-J) condition.

Theorem 2.3. With the above notations and assumptions if

(i) θ(n)
n = O(1) and ∫ 1

0

φ−1(ν(α−1( t2 ))Q(t))
ν(α−1( t2 ))

dt <∞, (3)

or if

(ii) ∫ 1

0

∣∣∣∣θ(φ−1(ν(α−1( t2 ))Q(t)))− ν(α−1( t2 ))θ(φ−1(Q(t)))
ν(α−1( t2 ))

∣∣∣∣ dt <∞, (4)

(here θ(n)
n could be unbounded.),

then the sequence (Xn)n∈N satisfies the (g, h)-WSLLN.

2.1. Optimality of the given conditions. Certainly a natural question arises on the
optimality of the stated results, but the answer to this goes far beyond the scope of this
short note. Nevertheless in the case of α-mixing sequences under the assumption that
φ(n) := n

1
p and

ck ≤
k−1∑
i=0

h(n)
h(n− i)

≤ dk (5)

a construction similar to the one given in [6] may be performed, which in result shows the
optimality of the stated results for mixing sequences. The counterexample is a well known
(see [20]) result which indicates connections between the behavior of sums of independent
random variables and Markov Chains. For convenience we shall be using the notion of
β-mixing (for definition see below) instead of α-mixing in the sequel as it is well known
(see [19]) that every stationary, ergodic Markov Chain is β-mixing.

Definition 3. Let L, F be σ-fields on a probability space (Ω,=, P ). We denote

β(L,F) :=
1
2

sup
∑
i∈I

∑
j∈J

P (Ai ∩Bj)− P (Ai)P (Bj),

where the supremum is taken over all possible finite partitions of the probability space
(Ai)i∈I ,(Bj)j∈J , which are L and F measurable respectively. We shall say that a sequence
of random variables (Xk)k∈Z is β-mixing if

0 = lim
n→∞

βn := lim
n→∞

(
sup
k∈Z

β(Fk−∞,F∞k+n)
)
,

where
Fk−∞ = σ(Xl : l ≤ k), F∞k+n = σ(Xl : l ≥ k + n).
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In the following lemma we postulate the existence of a Markov Chain with particularly
“bad” properties from our point of view.

Lemma 2.4. For each a > 1 there exist a Markov Chain (Ui)i∈Z, where Ui is uniformly
distributed over the interval [0, 1] for each i ∈ Z and a sequence of numers (βn)n∈N, such
that (Ui)i∈Z is β-mixing with mixing coefficients given by (βn)n∈N and what is more

1. 0 < lim infn→∞ naβn ≤ lim supn→∞ naβn <∞
2. For every integrable function f : [0, 1]→ R if∫ 1

0

u
1−p

a (f(u))pdu =∞, (6)

then

lim
n→∞

1
g(n)

n∑
k=1

1
h(k)

(f(Uk)− Ef(Uk)) =∞ a.s.

It seems clear that by employing the so called ’quantile transformation’ (see the begin-
ning of the previous section) one may construct proper sequences that show optimality of
the stated results in the case of power mixing rates. We refer the reader to a forthcoming
work for the proof of this lemma and more details on the construction in the general case.

3. Main results for martingale difference sequences. Now we turn our attention
to martingale difference sequences and to this end we assume (Xn)n∈N is a sequence
of random variables and (Fn)∞n=0 an increasing sequence of σ-fields such that Xn is
measurable with respect to Fn for n ∈ N. The next theorem is a generalization of a result
due to Hall and Heyde [10].

Theorem 3.1. Let X be a random variable which dominates stochastically the sequence
(Xn)n∈N i.e. such that P (|Xn| > x) ≤ P (|X| > x) for each x ≥ 0 and n ∈ N and such
that E|X| <∞ . Moreover let (g, h) be a pair of functions satisfying the (F-J) conditions.
For θ given by (2) if E(θ(|X|)) <∞, then

lim
n→∞

1
g(n)

n∑
k=1

Xk − E(Xk | Fk−1)
h(k)

= 0 a.s.

Proof. We set X̂n := (Xn ∧ φ(n)) ∨ (−φ(n)) and Ŝn :=
∑n
k=1

X̂k−E(X̂k|Fk−1)
h(k) , n ∈ N, we

have for ε > 0
∞∑
k=1

P

(
X̂k − E(X̂k | Fk−1)

φ2(k)
> ε

)
≤
∞∑
k=1

EX̂2
n

φ2(k)
≤ EX2

∞∑
k=1

1{|Xk|≤φ(k)}

φ2(k)
≤ Eφ−1(|X|)

since the pair (g, h) satisfies the (F-J) condition and so due to Theorem 2.15 of Hall and
Heyde [10] we have

lim
n→∞

1
g(n)

n∑
k=1

X̂k − E(X̂k | Fk−1)
h(k)

= 0 a.s.

Since
∑∞
n=1 P (Xn 6= X̂n) < ∞, then limn→∞

1
g(n)

∑n
k=1

Xk−E(X̂k|Fk−1)
h(k) = 0 a.s. It re-
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mains to prove that

0 = lim
n→∞

1
g(n)

n∑
k=1

|E(Xk | Fk−1)− E(X̂k | Fk−1)|
h(k)

≤ lim
n→∞

1
g(n)

n∑
k=1

E(|Xk|1{|Xk|>φ(k)} | Fk−1)
h(k)

since
∞∑
k=1

E(|Xk|1{|Xk|>φ(k)})
φ(k)

≤ E|X|
∞∑
k=1

1{|Xk|>φ(k)}

φ(k)
≤ Eθ(|X|)

form the relation (2), then due to Kronecker’s Lemma

lim
n→∞

1
g(n)

n∑
k=1

E(|Xk|1{|Xk|>φ(k)} | Fk−1)
h(k)

= 0 a.s.

(see Hall and Heyde [10] pages 31–39 for details). This completes the proof of the theo-
rem.

Remark 3. As far as martingale difference sequences are concerned a latest result of
Sakhanenko [21] proves optimality of the classical SLLN (as stated in Hall and Heyde [10])
and it seems natural that a similar construction to the one in [21] should give counterex-
amples showing that the condition given in Theorem 3.1 (i.e. E(θ(|X|)) <∞) is optimal.
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