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Abstract. The following problem in risk theory is considered. An insurance company, endowed

with an initial capital a > 0, receives insurance premiums and pays out successive claims from two

kind of risks. The losses occur according to a marked point process. At any time the company may

broaden or narrow down the offer, which entails the change of the parameters of the underlying

risk process. These changes concern the rate of income, the intensity of the renewal process and

the distribution of claims. Our goal is to find the best moment for changes which is the moment of

maximal value of the capital assets. Based on the representation of stopping times for piecewise

deterministic processes and the dynamic programming method the solution is derived for the

finite and infinite horizon model.

1. Introduction

1.1. Preliminaries. Let us consider an insurance company having an initial capital
a > 0 which insures two kind of risks. The i-th risk makes the stream of insurance
premiums with the constant rate ci and pays out successive claims, which are represented
by i.i.d. random variables Xi,1, Xi,2, . . . with cumulative distribution function Hi. The
losses related to the i-th risk occur according to the renewal process {Ni(t), t ≥ 0},
where Ni(t), i = 1, 2, is the number of claims up to time t in the stream of the risk i. The
renewal processes are mutually independent and they are independent of the sequence of
claims. The 2-vector process (N1(t), N2(t)), t ≥ 0 can be represented also by a sequence
of random variables Tn taking values in [0,∞] such that

T0 = 0,
Tn <∞ ⇒ Tn < Tn+1,

(1)
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for n ∈ N, and a sequence of {1, 2}-valued random variables Zn for n ∈ N ∪ {0} (see
Brémaud (1981) Ch. II, Jacobsen (2006)). The random variable Tn denotes the moment
of the n-th claim (T0 = 0) from any stream of risks and the random variable Zn indicates
to which stream of risks the n-th claim belongs. The processes Ni(t) can be defined by
the sequence {(Tn, Zn)}∞n=0 as follows:

Ni(t) =
∞∑
n=1

I{Tn≤t}I{Zn=i}. (2)

Both the 2-variate process
−→
N (t) = (N1(t), N2(t)) and the double sequence {(Tn, Zn)}∞n=0

are called 2-variate point processes.
Let us define for i ∈ {1, 2} and k ∈ N the sequence

ni,0 = 0,
ni,k+1 = inf{n > ni,k : Zn = i}

(3)

and put σi,k = Tni,k . Let us define random variables Si,n = σi,n−σi,n−1 and assume that
they are i.i.d. with continuous, cumulative distribution function Fi(t) = P(Si,n ≤ t) and
the conditional distribution function F si (t) = P(Si,n ≤ t|Si,n ≥ s). Define the balance
between premium and collection of payoffs covering the claims Ri(t) = cit−

∑Ni(t)
s=1 Xi,s

in the risk i.
The considered processes allow to describe the reserves of insurance companies. Man-

agement decisions concerning the portfolio of risks change parameters of the processes.
The main idea is to find a good moment to manage the assets. Various approaches
are taken into account. The optimal stopping problems for processes which are simi-
lar to risk process have been considered by Davis (1993), Boshuizen and Gouweleeuw
(1993), Boshuizen (1994). These results are described in detail later. Here we would like
to mention that each group of risks can be tackled separately. The interference consists
in successive control of each risk. It leads to switching between processes and stopping
them. Observing risk processes and suggestions the decision makers choose one of the
considered processes, based on the knowledge from the past, the best moment is found
for switching between prescribed processes. In such a way one can model the case when
the insurance company insures a risk modeled by the first process and at some moment
s it changes this process to the second one by broadening the offer to appeal to a wider
range of customers. The optimal choice of the intervention and switching time and next
stopping of the final risk process leads to the double stopping problem for stochastic
processes. Multiple optimal stopping problems have been treated by many authors. The
early formulation for discrete time double indexed processes was given by Haggstrom
(1967) and for the discrete time Markov processes has been considered by Eidukjavicjus
(1979), Nikolaev (1979, 1998) and Stadje (1985).

If there are two decision makers and their aims are in contradiction, but each of
them can choose one moment of modification or stopping, the game model could be
an appropriate approach. The first paper on the competitive stopping of discrete time
stochastic processes has been presented by Dynkin (1969). Many extensions, modifications
and applications of the Dynkin game have been investigated. Only a few of them are
strictly related to risk processes.
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1.2. Formal description of the model. Let {(Tn, Zn)}∞n=0 (a sequence of pairs)
be a 2-variate point process ({1, 2}-marked point process) defined on (Ω,F ,P). Using
the notations of the previous section there are three point processes {Ti,n}∞n=1, where
T0,n = Tn by convention, and TZn,NZn (Tn) = Tn. There are also three renewal processes
{(Ti,n, Xi,n)}∞n=1, i = 0, 1, 2, where X0,n = Xn by convention, and XZn,NZn (Tn) = Xn.
The following σ-fields generated by the history of the {1, 2}-marked renewal processes
are defined

F{1,2}t = σ(X1, T1, Z1 . . . , XN(t), TN(t), ZN(t)), (4)

for t ≥ 0. These σ-fields can be defined as F{1,2}t = σ{Ni(s), 0 ≤ s ≤ t, i = 1, 2}.

Definition 1.1. Let T be a set of stopping times with respect to the σ-fields {Ft}, t ≥ 0,
defined by (4). The restricted sets of stopping times

Tn,K = {τ ∈ T : τ ≥ 0, Tn ≤ τ ≤ TK} (5)

for n ∈ N, n < K are subsets of T . The elements of Tn,K are denoted τn,K .

In the optimization problems formulated in the sequel, a crucial role is played by the
representation of stopping times according to the following lemma (see Brémaud (1981)
Appendix A.2, cf. also Davis (1993) Th. A2.3).

Lemma 1.2. If τ ∈ Tn,K , then there exists a positive, Fn-measurable, random variable
Rn such that

τ ∧ Tn+1 = (Tn +Rn) ∧ Tn+1, a.s. (6)

It is convenient to diversify the form of τ based on information from the Zn sequence.
We have for i, j ∈ {1, 2}, i 6= j,

τ ∧ Tj,Nj(Ti,n)+1 ∧ Ti,n+1 = (Ti,n +Ri,n) ∧ Tj,Nj(Ti,n)+1 ∧ Ti,n+1, a.s., (7)

where Ri,n is Fi,n = FTi,n -measurable. This very precise description of the class of Ft–
stopping times is convenient in solution of various optimization problems for piecewise
deterministic processes. Roughly speaking, τ ∈ T stops a process at a moment of claims
from the risk i ∈ {1, 2} or after this moment but not later than a new claim appears in
any stream of risks. In the class of such strategies the optimization problem can be split
into several different steps. There are decisions at the moment of claims and between
the claims. This observation is justified by considerations of section 3 and 4 (see also
Boshuizen and Gouweleeuw (1993)).

Let us consider the moment σi,k = Tni,k . It is the moment of a k-th event in the i-th
stream of claims. The last event in the j-th stream of claims before σi,k has appeared
at σj,s?k = Tj,ni,s?

k
, where nj,s?k = max{n ≤ ni,k : Zn = j} = max{nj,s ≤ ni,k : s ∈ N}

and s?k = arg max{nj,s ≤ ni,k : s ∈ N}. It follows that except Si,n, the time between
claim from the stream i, we have S?i,n = σi,n−σj,s?n , the time between claims in different
stream of risks.

1.3. Risk process and economic environment. When a real enterprise is considered
in an economic environment the effects of interest rate and inflation rate have to be
taken into account. By interest rate we mean that the capital increases in time due to
investments in money markets or risk–less bonds. The interest is modeled by eα(t) as the
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value at time t of the monetary unit invested at time 0. The function α : R+ → R+ is
increasing by assumption with the condition α(0) = 0. If α(t) is absolutely continuous,
then α(t) =

∫ t
0
δ(s)ds, where the nonnegative function δ(t) is called the force of interest

at time t (or spot rate). The inflation means that a monetary unit at time 0 has the value
e−β(t) at time t. The function β(t) is a certain nonnegative, continuous function with the
condition β(0) = 0. The coefficient e−β(t) is called the discount factor. If β(t) is absolutely
continuous and β(t) =

∫ t
0
γ(s)ds for some positive function γ : R+ → R+, then γ(·) is

called the instantaneous inflation rate at time t. The discounted risk reserve process has
been considered by many authors (see e.g. Rolski et al. (1998) Ch. 11.4). The optimal
stopping problem for the risk process in the randomly varying economic environment has
been considered by Schöttl (1998) and Muciek and Szajowski (2007). We assume in this
paper that the effects of interest and inflation are canceling out.

1.4. Remarks on the terminology. Taking the most important features of a real
problem into the mathematical description we usually get a universal model. It may
happen that one and the same model can describe different situations which seemingly
do not have too much in common. This results in different names for the same elements
of the mathematical formulation. The considered processes are not an exception. This is
broadly discussed in Rolski et al. (1998).

The general risk reserve model is defined as follows:

1. random epochs T0, T1, T2, . . . with T0 < T1 < T2 < . . . at which the claims occur,
where the random variables Tn can be discrete or continuous;

2. the corresponding positive, individual or aggregate, claim size X1, X2, . . .;
3. the initial risk reserve a ≥ 0;
4. the premiums which are collected at a constant rate c > 0, so that the premium

income is a linear function of time.

The sequence {(Tn, Xn)} of arrival epochs and claim sizes can be described equiva-
lently by the inter-occurrence times Sn = Tn − Tn−1 and the claim sizes Xn. The se-
quence {Tn} is called a point process and {(Tn, Xn)} a marked point process (see Rol-
ski et al. (1998) Ch. 12). We can define for further use the cumulative arrival process
Ut =

∑∞
i=1XiI{Ti≤t} =

∑Nt
i=1Xi. Ut is the aggregate amount of all claims arriving in the

interval (0, t] and Nt is the counting process Nt =
∑∞
i=1 I{Ti≤t}. The risk reserve process

{Rt}, t ≥ 0 is given by Rt = a+ct−Ut and the claim surplus process {ξt}, t ≥ 0 is defined
as ξt = Ut − ct. The extension of the risk reserve model which is under consideration in
the paper is introduced in Section 1.1.

2. The risk processes and the optimization problems. Let us consider the above
introduced risk processes as possible items used in the description of insurance companies.
The following possibilities will be analyzed in the paper.

1. Both risks are parts of the capital assets U(t), t ≥ 0, of the insurance company

U(t) = a+ (c1 + c2)t−
N1(t)∑
s=1

X1,s −
N2(t)∑
s=1

X2,s. (8)
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Based on these two risk processes we can define different optimization problems.
Let g(u, t) = g1(u)I{t≥0}, where g1 is a utility function. The return at time t is
{Z(t), t ≥ 0} and it is given by

Z(t) = g(Ut, t0 − t)
N(t)∏
j=0

I{UTj>0} = g(Ut)I{Us>0,s≤t} (9)

The optimal stopping problem for the process Z(t) is investigated.

V1(a) = Eg(U(τ?)) = sup
τ

Eg(U(τ)), (10)

V2(a) = Eg(a+R1(τ?) +R2(σ?)) = sup
τ,σ

Eg(a+R1(τ) +R2(σ)), (11)

V3(a) = Eg(a+ c̃1(σ? − τ?) +R1(τ?) +R2(σ? − τ?))

= sup
τ<σ

Eg(a+ c1τ −
N1(τ)∑
i=1

X1,i + c̃1(σ − τ) + c2σ −
N2(σ−τ)∑
i=1

X2,i). (12)

2. This paper focuses mainly on problem (12). The insurance company insures a risk
modeled by the first process and in some moment s it changes the risk process to
the second one by broadening the offer to appeal to a wider range of customers. Let
U(s, t) be the value of the capital assets at time t, if the change of the parameters
took place at time s, then

U(s, t) =

{
a+ c1t−

∑N1(t)
n=0 Xn if t ≤ s,

a+ c1s−
∑N1(s)
n=0 Xn + c2(t− s)−

∑N2(t−s)
n=0 X̃n if t > s,

(13)

where X0 = 0, X̃0 = 0. It is convenient to introduce the classical Cramér-Lundberg
risk process

U1(t) = a+ c1t−
N1(t)∑
n=0

Xn, (14)

which is the base of many models widely discussed in the literature (see Azcue and
Muler (2005), Muciek (2002), Rolski et al. (1998)). Additionally, let

U2(t) = c2t−
N2(t)∑
n=0

X̃n. (15)

Then, the formula (13) reduces to

U(s, t) =
{
U1(t) if t ≤ s,
U1(s) + U2(t− s) if t > s.

(16)

3. The model of the risk process in the formula (13) allows to model the assets of
more than one insurer. There are two companies which insure the risks modeled by
the first and the second process, respectively. They agree to re-insure each other.
This means that both companies share the risks in some proportion. The possible
questions under consideration for such models are subject of another investigation.

The companies measure the performance of their business by utility functions g defined
on the state space of the process U(t), t ≥ 0. Based on the history of the renewal
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processes we are looking for the best moment for changes of the policy. This leads to the
optimization problem having the form given by (10). The problem formulated in (12)
has been tackled by Karpowicz and Szajowski (2007). The formulation at (11) should be
discussed in the context of reinsurance or changes in the collection of risks. It is an open
problem.

Assumption 1. The utility function g is bounded, continuous, nondecreasing and dif-
ferentiable.

2.1. The optimal stopping of the risk process with two types of claims. The
random variables Si,n = σi,n − σi,n−1 are times between successive claims of the i-
type. Assume that they are i.i.d. with continuous, cumulative distribution function Fi,
i ∈ {1, 2}. The size of the demand Xi,n has the distribution Hi, i ∈ {1, 2}.

The set of stopping times with respect to {Ft}t≥0 is denoted by T . There is a nice
and useful representation of the stopping time given by (7) in Lemma 1.2. Let us denote
Ti,n,K = {τ ∈ TK : Ti,n ≤ τ ≤ TK}. If τ ∈ Ti,n,K , then there exists a positive, Fi,n-
measurable, random variable Ri,n such that

τ ∧ Tj,Nj(Ti,n)+1 ∧ Ti,n+1 = (Ti,n +Ri,n) ∧ Tj,Nj(Ti,n)+1 ∧ Ti,n+1, a.s..

The aim of the decision maker is to find the stopping time τ?K ∈ TK such that

EG(τ?K) = sup
τ∈TK

EG(τ), (17)

where

G(t) = g(Ut, t0 − t)
N(t)∏
j=0

I{UTj>0} (18)

and U(t) is given by (8). In order to find the optimal stopping time τ?K according to the
definition (17), we first consider the optimal stopping times τ?i,n,K such that

Γi,n,K = E(G(τ?i,n,K)|Fi,n) = ess sup
τ∈Ti,n,K

E(G(τ)|Fi,n), (19)

for i ∈ {1, 2}, n = 0, 1, . . . ,K and using backward induction on i and n as in the dynamic
programming, we will obtain τ?K = τ?0,K = τ?0,0,K (the claims at time 0 for both types of
risks are 0 by assumption).

3. A fixed number of claims. In this section we find the form of an optimal stopping
time in the finite horizon case, which means the optimal stopping time in the class T0,K ,
where K is finite and fixed (the number of claims is fixed, but the time of the Kth claim,
i.e. the time horizon, remains random). This is a technical assumption which allows to
get a solution for a finite number of claims and next to extend it to an infinite number of
claims. The structure of the risk process suggests to take into account, in the construction
of the optimal stopping time, the information about the source of the successive claims
and the time of its appearance.

First we present the dynamic programming solution satisfying

Γi,n,K = ess sup{E(G(τ)|Fi,n) : τ ∈ Ti,n,K},
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for n = K,K − 1, . . . , 1 and i = 1, 2. Then in Corollary 3.3 we find optimal stopping
times τ∗n,K , τ∗K and the optimal mean values of the return related to them.

Let µ0 = 1 and µn =
∏n
j=1 I{UTj>0}. Then Γi,K,K = G(Ti,K) = g(UTi,K , t0−Ti,K)µK .

Note that the sum of claims from (8) can be expressed as

N1(t)∑
n=0

X1,n +
N2(t)∑
n=0

X2,n = a+ (c1 + c2)t− Ut. (20)

Let us define, for ξ > 0 such that there is no jump between t and t+ ξ,

dt,ξ,Ut = Ut+ξ − Ut = (c1 + c2)ξ (21)

then we have

µi,K = µi,K−1I{UTi,K−1+dTi,K−1,ζi,K,UTi,K−1
−Xi,K>0}. (22)

Similarly to Muciek (2002), Theorem 1, from (20) and (21) we get the dynamic pro-
gramming equations for {Γi,n,K}Kn=0, i = 1, 2.

Theorem 3.1. For the given horizon t0, the {1, 2}-marked renewal processes and the
fixed number of claims K, the optimal expected value of the stopping problem, with the
restricted sets of stopping times Ti,n,K , fulfills the recursive equations:

(i) For n = K − 1,K − 2, . . . , 0, i = 1, 2,

Γi,n,K = ess sup
{
µnF̄i(ξ)F̄j

Ti,n(ξ + Ti,n − Tj,Nj(Ti,n))g(UTi,n + dTi,n,ξ,UTi,n , t0 − Ti,n − ξ)
+E(I{ξ≥ζj,Nj(Ti,n)+1+Tj,Nj(Ti,n)−Ti,n,Āi,n}Γj,Nj(Ti,n)+1,K |Fi,n)

+E(I{ξ≥ζi,n+1,Ai,n}Γi,n+1,K |Fi,n) : ξ ≥ 0 is Fi,n-measurable
}

a.s.,

where F̄i = 1 − Fi are the survival functions and Ai,n = {ω : ζi,n+1 = ζi,n+1 ∧
(ζj,Nj(Ti,n)+1 + Tj,Nj(Ti,n) − Ti,n)}.

(ii) For n = K,K − 1, . . . , 0, i, j ∈ {1, 2}, i 6= j,

Γi,n,K = µnγi,K−n(UTi,n , Tj,Nj(Ti,n), Ti,n) a.s.,

where the sequence of the functions {γi,n(u, s, t), u ∈ R, s, t ≥ 0, s ≤ t}, using (21),
(20) and (22) is defined as follows: γi,0(u, s, t) = g(u, t0 − t) and

γi,k(u, s, t) = sup
r≥0

[
F̄i(r)F̄ tj (t+ r − s)g(u+ cr, t0 − t− r)

+
∫ r

0

dFi(ξ)
∫ ∞
ξ+t−s

dFj(η)
∫ u+cξ

0

γi,k−1 (u+ cξ − x, t+ ξ) dHi(x)

+
∫ r+t−s

0

dFj(η)
∫ ∞
η+s−t

dFi(ξ)
∫ u+c(η+s−t)

0

γj,k−1 (u+ c(η + s− t)− x, s+ η) dHj(x)
]

j = 1, 2, . . ., i = 1, 2 and c = c1 + c2.

Proof. The recursive equation is a direct consequence of the representation theorem for
stopping times given by Lemma 1.2.
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The sequence of functions {γi,n(u, s, t), u ∈ R, s, t ≥ 0, s ≤ t} can be rewritten in
simplified form: γi,0(u, s, t) = g(u, t0 − t) and

γi,k(u, s, t) = sup
r≥0

[
F̄i(r)F̄ tj (t+ r − s)g(u+ cr, t0 − t− r)

+
∫ r

0

dFi(ξ)F̄ tj (ξ + t− s)
∫ u+cξ

0

γi,k−1 (u+ cξ − x, t+ ξ) dHi(x)

+
∫ r+t−s

0

dFj(η)F̄ si (η + s− t)
∫ u+c(η+s−t)

0

γj,k−1 (u+ c(η + s− t)− x, s+ η) dHj(x)
]
.

Remark. The above equations differ from the ones in Theorem 1 in Muciek (2002) as
a result of the different form of the capital assets process Ut. The optimal value of the
problem with the given number of claims K is Γ1,0,K = Γ2,0,K .

The next step is to find the optimal stopping time τ∗K . To do this we should an-
alyze the properties of the sequence of the functions {γi,n, n ≥ 0, i ∈ {1, 2}}. Let
B = B[(−∞,+∞) × [0,+∞) × [0,+∞)] be the space of all bounded and continu-
ous functions with the norm ||δ|| = supu,s,t |δ(u, s, t)| and let B0 = {δ : δ(u, s, t) =
δ1(u, s, t)I{s≤t≤t0} and δ1 ∈ B}. One should notice that the functions {γi,n, n ≥ 0} are
included in B0. For each ~δ = (δ1, δ2) ∈ B0 ×B0 and any u ∈ R, s, t, r ≥ 0 let

(~φ~δ(r, u, s, t))i = F̄i(r)F̄ tj (t+ r − s)g(u+ cr, t0 − t− r)

+
∫ r

0

dFi(ξ)F̄ tj (ξ + t− s)
∫ u+cξ

0

δi (u+ cξ − x, t+ ξ) dHi(x)

+
∫ r+t−s

0

dFj(η)F̄ si (η + s− t)
∫ u+c(η+s−t)

0

δj (u+ c(η + s− t)− x, s+ η) dHj(x).

From the properties of the cumulative distribution function F·(·) it is known that
~φ~δ(r, u, s, t) has at most a countable number of points of discontinuity according to r and
is continuous according to (u, s, t) in the case of g1(·) being continuous and t 6= t0 − r.
Therefore, for further considerations we assume that the function g1(·) is bounded and
continuous.

Let ~δ ∈ B0 ×B0 and

(
−→
Φ~δ)i(u, s, t) = sup

r≥0
{(~φ~δ)i(r, u, s, t)} for i ∈ {1, 2}. (23)

Lemma 3.2. For each ~δ ∈ B0 ×B0 we have

(
−→
Φ~δ)i(u, s, t) = max

0≤r≤t0−t
{(~φ~δ)i(r, u, s, t)} ∈ B

0

and there exists a function rδi(u, s, t) such that (
−→
Φ~δ)i(u, s, t) = (~φ~δ)i(rδi(u, s, t), u, s, t).

In the subsequent considerations some properties of
−→
Φ are presented. For k = 1, 2, . . .,

i ∈ {1, 2} and u ∈ R, s, t ≥ 0, γi,k(u, s, t) can be expressed as follows

γi,k(u, s, t) = (~γk)i(u, s, t) =

{
(
−→
Φ~γk−1)i(u, s, t) if u ≥ 0 and s ≤ t ≤ t0,

0 otherwise.
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From Lemma 3.2 there exist functions r(~γk−1)i(u, s, t) such that

γi,k(u, s, t) =

{
(~φ~γk−1)i(r(~γk−1)i(u, s, t), u, s, t) if u ≥ 0 and s ≤ t ≤ t0,
0 otherwise.

To specify the form of the optimal stopping times τ∗i,n,K , we need to define the following
random variables R∗i,s = r~γK−s+1(UTi,s , Tj,Nj(Ti,s), Ti,s) and σi,n,K = K ∧ inf{s ≥ n :
R?i,s < Si,s+1}. Finally in Corollary 3.3 we present the form of the optimal stopping time.

Corollary 3.3. Let τ∗i,n,K = Ti,σi,n,K + R?i,σi,n,K and τ?K = τ∗0,K = τ∗i,0,K , then for all
0 ≤ n ≤ K the following relations hold

Γi,n,K = E(G(τ∗i,n,K)|Fi,n) a.s. and Γ0,K = E(G(τ∗i,0,K)) = (~γK)i(a, 0, 0).

This means that τ∗i,n,K and τ?K are the optimal stopping times in the classes Ti,n,K and
T0,K , respectively.

4. An infinite number of claims. In this section we consider the case of an infinite
number of claims and we find the stopping time τ∗, which is optimal in the class T . Let
us restrict to the cumulative distribution functions such that

Assumption 2. Fi(t0) < 1 for i = 1, 2.

The following lemma (see Ferenstein and Sierociński (1997)) will play an important
role in our considerations.

Lemma 4.1. The operator
−→
Φ : B0 ×B0 → B0 ×B0 defined by (23) is a contraction.

Proof. Let us take ~δ1, ~δ2 ∈ B0×B0. By Lemma 3.2 there exists ~ρ(u, s, t) = r~δ(u, s, t) such
that (

−→
Φ~δ)i(u, s, t)= ~φ~δi(~ρi(u, s, t), u, s, t), i = 1, 2. Let us notice that ~φ~δ2i (~ρ2

i (u, s, t), u, s, t)

≥ ~φ~δ2i
(~ρ1
i (u, s, t), u, s, t) and it follows that

(
−→
Φ~δ1)i(u, s, t)− (

−→
Φ~δ2)i(u, s, t) = ~φ~δ1i

(~ρ1
i (u, s, t), u, s, t)− ~φ~δ2i (~ρ2

i (u, s, t), u, s, t)

≤ ~φ~δ1i
(~ρ1
i (u, s, t), u, s, t)− ~φ~δ2i (~ρ1

i (u, s, t), u, s, t)

≤
∫ ~ρ1i

0

dFi(ξ)F̄ tj (ξ + t− s)
∫ u+cξ

0

[~δ1
i − ~δ2

i ] (u+ cξ − x, t+ ξ) dHi(x)

+
∫ ~ρ1i+t−s

0

dFj(η)F̄ si (η + s− t)
∫ u+c(η+s−t)

0

[~δ1
j − ~δ2

j ] (u+ c(η + s− t)− x, s+ η) dHj(x)

≤ ||~δ1
i − ~δ2

i ||

[∫ ~ρ1i

0

dFi(ξ)F̄ tj (ξ + t− s)
∫ u+cξ

0

dHi(x)

+
∫ ~ρ1i+t−s

0

dFj(η)F̄ si (η + s− t)
∫ u+c(η+s−t)

0

dHj(x)

]
≤ ϑ̃‖~δ1

i − ~δ2
i ‖,
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where

ϑ̃ = sup
u>0

[∫ ~ρ1i

0

dFi(ξ)F̄ tj (ξ + t− s)
∫ u+cξ

0

dHi(x)

+
∫ ~ρ1i+t−s

0

dFj(η)F̄ si (η + s− t)
∫ u+c(η+s−t)

0

dHj(x)

]
≤ P(S1,· ∧ S2,· ≤ t0) < 1.

Similarly, we get (
−→
Φ~δ2)i(u, s, t)− (

−→
Φ~δ1)i(u, s, t) ≤ ϑ̃‖δ2 − δ1‖. Hence,

‖(
−→
Φ~δ1)i(u, s, t)− (

−→
Φ~δ2)i(u, s, t)‖ ≤ ϑ̃‖~δ1

i − ~δ2
i ‖.

As ~γ0 ∈ B0 × B0 we conclude that ~γk ∈ B0 × B0 for all k, therefore we can use the
Banach fixed point theorem (see Goebel and Kirk (1990), Granas and Dugundji (2003))
and obtain the following lemma

Lemma 4.2. There exists ~γ ∈ B0 ×B0 such that ~γ =
−→
Φ~γ and limK→∞ ‖~γK − ~γ‖ = 0.

Corollary 4.3. ~γ is the uniform limit of ~γK , when K tends to the infinity.

The considerations of Sections 3 and 4 lead to the following formulation of the optimal
strategy after the change of parameters in the risk process.

Theorem 4.4. If the function g fulfills Assumption 1, Fi fulfills Assumption 2 and has
the density function fi, i = 1, 2, then

(i) for n ∈ N the limit τ∗i,n = limK→∞ τ∗i,n,K a.s., for i = 1, 2, exists and τ∗i,n is an
optimal stopping rule in the set T ∩ {τ ≥ Ti,n},

(ii) E(G(τ∗i,n)|Fs,n) = µi,nγi,n(U(Ti,n), Tj,Nj(Ti,n), Ti,n) a.s.

Proof. (i) The stopping rule τ∗i,n = limK→∞ τ∗i,n,K a.s. exists because τ?i,n,K ≤ τ?i,n,K+1.
Let us define the process ξ(t) = (t, U(t),Z(t), Y1(t), Y2(t), V (t)), where Yi(t) = t −

Ti,Ni(t), Z(t) = IZN(t)=1, V (t) = µZ(t),NZ(t)(t). By Gikhman and Skorokhod (2004), ξ(t)
is a Markov process with the state space R+×R×{0, 1}×R+×R+×{0, 1}. We express
the process G(t) as G(t) = g̃(ξ(t)) and calculate the strong generator of ξ(t)

(Ag)(t, u, ν, y1, y2, v) = v

{
cg′(u) + ν

f1(y)
F̄1(y)

[ ∫ u

0

g(u− x)dH1(x)− g(u)
]

+(1− ν)
f2(y)
F̄2(y)

[ ∫ u

0

g(u− x)dH2(x)− g(u)
]}
,

where t < t0, yi > 0 for i = 1, 2, and ν, v ∈ {0, 1}.
The next step is noting that g(ξ(t))− g(ξ(0))−

∫ t
0
(Ag)(ξ(z))dz is a martingale with

respect to σ(ξ(z), z ≤ t), which is the same as Ft (see Davis (1993)) and applying the
optional sampling theorem

E{g(ξ(τ∗i,n,K))|Fi,n} − g(ξ(Ti,n)) = E

[ ∫ τ∗i,n,K

Ti,n

(Ag)(ξ(z))dz|Fi,n
]

a.s. (24)
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It is immediate that

(Ag)(ξ(t)) = µN(t)

{
cg′(U(t))

+ Z(t)
f1(t− T1,N1(t))
F̄1(t− T1,N1(t))

[ ∫ U(t)

0

g(U(t)− x)dH1(x)− g(U(t))
]

+ (1− Z(t))
f2(t− T2,N2(t))
F̄2(t− T2,N2(t))

[ ∫ U(t)

0

g(U(t)− x)dH2(x)− g(U(t))
]}
,

therefore the right side of (24) can be expressed as E{I1
n,K |Fs,n} −E{I2

n,K |Fs,n}, where

I2
n,K =

∫ eτ∗n,K
eTn µN1(s)µN2(z−s)

f2(z − T̃N2(z−s))

F̄2(z − T̃N2(z−s))
g(U(s, z))dz

}
.

We can observe that I1
n,K , I2

n,K are positive random variables. Let us define a random
variable M = inf{n ∈ N : Tn < t0, Tn+1 ≥ t0}, then

I2
n,K ≤

g(a+ c2(t0 − s))
F̄2(t0)

EM a.s.,

where EM =
∑∞
n=0 F

∗(n)

2 (t0) ≤
∑∞
n=0 [F2(t0)]n < ∞. By the monotone convergence

theorem we see that

E

[ ∫ eτ∗n,K
Tn

(Ag̃)(ξ(s, z))dz|Fs,n
]
K→∞
−−−→ E

[ ∫ eτ∗n
Tn

(Ag̃)(ξ(s, z))dz|Fs,n
]

a.s. (25)

Dynkin’s formula again yields

E

[ ∫ eτ∗n
Tn

(Ag̃)(ξ(s, z))dz|Fs,n
]

= E{g̃(ξ(s, τ̃∗n))|Fs,n} − g̃(ξ(s, Tn)) a.s. (26)

Combining these with (24), (25) we obtain

E{g̃(ξ(s, τ̃∗n,K))|Fs,n}
K→∞
−−−→ E{g̃(ξ(s, τ̃∗n))|Fs,n} a.s. (27)

The task is now to prove that τ̃∗n is optimal in the T s ∩ {τ : τ ≥ Tn}. Let τ be any
stopping rule τ ∈ T s ∩ {τ : τ ≥ Tn}, then from optimality of τ̃∗n,K we get

E{g̃(ξ(s, τ̃∗n,K))|Fs,n} ≥ E{g̃(ξ(s, τ ∧ TK))|Fs,n} a.s.

In the same manner like before, we can see that E{g̃(ξ(s, τ̃∗n))|Fs,n} ≥ E{g̃(ξ(s, τ))|Fs,n},
which completes the proof.

(ii) Applying Theorem 3.1 and (19) we deduce that

E{g̃(ξ(s, τ̃∗n,K))|Fs,n} = E{G(s, τ̃∗n,K)|Fs,n} = µN1(s)µs,nγ̃K−n(U(s, Tn), Tn) a.s.

Combining Lemma 4.1 and (27) we obtain

E{g̃(ξ(s, τ̃∗n,K))|Fs,n}
K→∞−→ E{g̃(ξ(s, τ̃∗))|Fs,n} = µN1(s)µs,nγ̃(U(s, Tn), Tn) a.s.

To end this section we notice that the optimal stopping time for the second stop is
equal to τ̃∗ = τ̃∗0 ∈ T s, where τ̃∗0 = limK→∞ τ̃∗0,K and the conditional value function of
the optimal stopping problem after moment s is given by

J(s) = E{G(s, τ̃∗0 )|Fs,0} = µN1(s)µs,0γ̃(U(s, T0), T0) = µN1(s)γ̃(U1(s), s) a.s. (28)
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5. Final remarks. The topic of the paper can be extended in many ways, mainly by
fitting the risk process to the economic environment and the possible decision in the
insurance practice. An example of related research is Azcue and Muler (2005). Recently,
Ferenstein and Pasternak-Winiarski (2010) have taken into account the possibility of
abrupt changes in the risk process modeling only one insurance contract or aggregated
assets.

Acknowledgements. I have benefited from discussions with Dr. Anna Karpowicz on
an early version of the manuscript, for which I am grateful.
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E. Z. Ferenstein and A. Sierociński (1997), Optimal stopping of a risk process, Applicationes

Mathematicae 24 (3), 335–342.

I. Gikhman and A. Skorokhod (2004), The Theory of Stochastic Processes, II, Springer, Berlin.

K. Goebel and W. Kirk (1990), Topics in Metric Fixed Point Theory, Cambridge Studies in

Advanced Mathematics 28, Cambridge University Press, Cambridge.

A. Granas and J. Dugundji (2003), Fixed Point Theory, Springer Monographs in Mathematics,

Springer, New York, NY.

G. Haggstrom (1967), Optimal sequential procedures when more than one stop is required, Ann.

Math. Stat. 38, 1618–1626.

M. Jacobsen (2006), Point Process Theory and Applications. Marked Point and Piecewise De-

terministic Processes, Probability and Its Applications 7, Birkhäuser, Boston.
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