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Abstract. Let (M,d) be a metric space with a fixed origin O. P. Lévy defined Brownian motion

{X(a); a ∈M} as

0. X(O) = 0.

1. X(a)−X(b) is subject to the Gaussian law of mean 0 and variance d(a, b).

He gave an example for M = Sm, the m-dimensional sphere. Let {Y (B);B ∈ B(Sm)} be the

Gaussian random measure on Sm, that is,

1. {Y (B)} is a centered Gaussian system,

2. the variance of Y (B) is equal of µ(B), where µ is the uniform measure on Sm,

3. if B1 ∩B2 = ∅ then Y (B1) is independent of Y (B2).

4. for Bi, i = 1, 2, . . . , Bi ∩Bj = ∅, i 6= j, we have Y (∪Bi) =
P
Y (Bi), a.e.

Set Sa = Ha4HO, where Ha is the hemisphere with center a, and 4 means symmetric

difference. Then

{X(a) = Y (Sa); a ∈ Sm}

is Lévy’s Brownian motion.

In the case of M = Rm, m-dimensional Euclidean space, N. N. Chentsov showed that

{X(a) = Y (Sa)} is an Rm-parameter Brownian motion in the sense of P. Lévy. Here Sa is

the set of hyperplanes in Rm which intersect the line segment Oa. The Gaussian random mea-

sure {Y (·)} is defined on the space of all hyperplanes in Rm and the measure µ is invariant

under the dual action of Euclidean motion group Mo(m).

Replacing the Gaussian random measure with an SαS (Symmetric α Stable) random measure,

we can easily obtain stable versions of the above examples. In this note, we will give further

examples:

1. For hyperbolic space, taking as Sa a self-similar set in Rm, we obtain stable motion on

the hyperbolic space.
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2. Take as Sa the set of all spheres in Rm of arbitrary radii which separate the origin O and

the point a ∈ Rm; then we obtain a self-similar SαS random field as {X(a) = Y (Sa)}.

Along these lines, we will consider a multi-dimensional version of Bochner’s subordination.

1. Multi-parameter Brownian motion of P. Lévy

1.1. Definition and construction by Lévy. In the famous book “Mouvement Brown-
ien” ([7], [8]), P. Lévy defined a notion of Brownian motion {X(u);u ∈ M} on a metric
space (M,d(·, ·)) with a fixed origin O:

Definition 1.1. A Gaussian system {X(u)} is called a Brownian motion on a metric
space (M,d(·, ·)) if it satisfies

1. X(O) ≡ 0.
2. X(u)−X(v) is subject to the Gaussian law of mean 0 and variance d(u, v).

In the case of M = Sm, he constructed a Brownian motion from Gaussian random
measure on the sphere Sm. Let us start with the definition of random measure.

Definition 1.2. A centered Gaussian system Y = {Y (B);B ∈ B, µ(B) < ∞} is called
a Gaussian random measure controlled by a measure space (E,B, µ) if

1. Y (B) is subject to the Gaussian law of mean 0 and variance µ(B).
2. If B1 ∩B2 = ∅ then the random variables Y (B1) and Y (B2) are mutually indepen-

dent.
3. For any sequence of mutually disjoint family of measurable sets B1, B2, B3, . . . ,

Y (∪nBn) =
∑
n

Y (Bn), a.e.

Let Y be a Gaussian random measure controlled by (Sm, µ), where µ is the uniform
measure. For a point u of the sphere Sm, define a set Su = Hu4HO, where Hu = {v ∈
Sm; d(v, u) ≥ π

2 } ∈ B. Then

X(u) = Y (Su) = Y ((Hu ∩Hc
O) ∪ (Hc

u ∩HO)),

is a Brownian motion on Sm.

X(u)−X(v) = Y (Su)− Y (Sv)

= Y ((Hu ∩Hc
O) ∪ (Hc

u ∩HO))− Y ((Hv ∩Hc
O) ∪ (Hc

v ∩HO))

= Y (Hu ∩Hc
v ∩Hc

O) + Y (Hc
u ∩Hv ∩HO)− Y (Hc

u ∩Hv ∩Hc
O)− Y (Hu ∩Hc

v ∩HO).

The variance is

µ(Hu ∩Hc
v ∩Hc

O) + µ(Hc
u ∩Hv ∩HO) + µ(Hc

u ∩Hv ∩Hc
O) + µ(Hu ∩Hc

v ∩HO)

= µ(Hu4Hv),

that is, it is proportional to the geodesic distance d(u, v) of u, v ∈ Sm.

1.2. Construction of Brownian motion on the Euclidean space. For m-dimen-
sional Euclidean space Rm, N. N. Chentsov gave the following construction ([3]). Let E
be the set of all hyperplanes of co-dimension 1 in Rm, and µ be the measure on E which is
invariant under the (dual) action of Euclidean motion group Mo(m). The dual action g∗
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of g ∈Mo(m) is defined as (gx,y) = (x, g∗y), using the homogeneous coordinate g∗ = tg

(see the next subsection). Let us represent an element of E by the canonical form

{x ∈ Rm; a · x + r = 0}, a ∈ Sm−1, r ∈ R+ = [0,∞),

and take a parameter (a, r) ∈ Sm−1 × R+ for the above plane. The invariant measure
mentioned above is dµ(r × a) = dadr.

Fig. 1

Set
Su = {h ∈ E;h separates the origin O and u}.

Then
X(u) = Y (Su)

is a Brownian motion on the Euclidean space (Rm, | · |), where Y = {Y (·)} is the Gaussian
random measure controlled by (E, dµ).

Note that, as we will see in the next subsection, these two constructions of Brownian
motions share the same idea coming from elementary geometry.

1.3. Projective geometry

1.3.1. m-dimensional projective space and the homogeneous coordinates. m-dimensional
projective space is defined as Pm = (Rm+1 \ {O})/(R \ {0}), that is, using the homoge-
neous coordinates,

Pm 3 x = (x1, x2, . . . , xm, x0) = (x, x0),

Pm is nothing but Rm+1 \ {O} identified by the equivalence relation

x ∼ c× x, c ∈ R \ {0}.
Let us take a representative |x| = 1 for an element x ∈ Pm. Then Pm can be considered
as the manifold obtained from the sphere Sm by identifying any point x and its antipodal
point −x. Pm \ {x;x0 = 0}—the rest of the infinite plane {x0 = 0}—can be considered
as {x/x0} = Rm. This is a local coordinate system around the origin O = (0, 0, . . . , 0, 1).
The plane which is perpendicular to a vector x is

Hx = {y; y1x1 + · · ·+ y0x0 = 0}.
On the sphere this set is the great circle with respect to x. The corresponding set of Sx in
Rm (see 1.1) is the connected component of Rd \Hx which does not contain the origin O.
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Fig. 2

Let us introduce the duality mapping

x⇐⇒ x∗ = Hx = {y; (y,x) = 0}, H∗x = x,

and consider x as a coordinate of Hx. Then the set Sx coincides with the set of all
hyperplanes which separate a point x and the origin O.

1.3.2. Group action and invariant measure. Let L(m), Mo(m) and SO(m + 1) be the
Lorentz group, the Euclidean motion group and the rotation group respectively. Then
the hyperbolic space H2, the Euclidean space Rm and the sphere Sm are considered as
symmetric spaces H2 = L(m)/SO(m), Rm = Mo(m)/SO(m) and Sm = SO(m + 1)/
SO(m) respectively. There exist invariant measures on their dual spaces.

Let us recall the construction of Brownian motions on the sphere and Euclidean
space. Consider a metric space (M,d) and a measure space (E,B, µ). Assume also that
the metric d and the measure µ are both invariant under the group action, and moreover
that the relation

M 3 u 7→ Su ∈ B
is compatible under the above group action, that is,

Sg·u = g · Su.
Then the random field defined by {X(u) = Y (Su)} becomes an (M,d)-parameter Brow-
nian motion in the sense of P. Lévy, where Y = {Y (·)} is the Gaussian random measure
controlled by (E,µ).

1.4. Hyperbolic space ([26]). Consider the two-sheeted hyperbolic space

H2 = {|x|2 − x2
0 = −1},

and the dual space, the 1-sheeted hyperbolic space

H1 = {|x|2 − x2
0 = 1}.

The m-dimensional Lorentz group acts on H2 and H1. There exist an invariant metric d
and an invariant measure µ on these two spaces respectively. The dual space H1 can be
considered the set of all hyperplanes of co-dimension 1 as in the Euclidean case.
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Define
X(u) = Y (Su), u ∈ H2,

where Su = {h ∈ E;h separates the origin O and u}, and Y = {Y (·)} is the random
measure controlled by the measure space (H1, µ). Then X(u) is a Brownian motion onH2.

Thus we obtain Brownian motions on the sphere Sm, on the Euclidean space Em and
on the hyperbolic space H2 by a unified method. Here these three spaces are considered
as symmetric spaces with constant curvatures, +1, 0,−1, respectively.

2. Stable random fields

2.1. Stable Random measures. Similarly as a generalization of Gaussian random
measure, let us define symmetric stable random measures.

Definition 2.1. A symmetric α-stable (SαS) system Y = {Y (B);B ∈ B, µ(B) < ∞},
0 < α < 2, is called an SαS random measure controlled by the measure (E,B, µ) if

1. Y (B) is subject to the SαS law with strength (power of scale parameter) µ(B), that
is, E[eizY (B)] = e−µ(B)|z|α .

2. For any disjoint sets B1, B2, B3, . . ., the random variables Y (B1), Y (B2), Y (B3), . . .
form an independent family.

3. For any disjoint sets B1, B2, B3, . . .,

Y (∪nBn) =
∑
n

Y (Bn), a.e.

2.2. Stable random fields on spaces of constant curvatures ([26]). The results
in 1.1–1.3 for the Gaussian system can be extended to stable cases.

Definition 2.2. An SαS system {X(u)} is called an SαS Lévy motion on a metric space
(M,d(·, ·)) if

1. X(O) ≡ 0, where O is the origin of M .
2. X(u)−X(v) is subject to the SαS law of strength d(u, v).

The constructions of random fields used in the last section are also valid for stable
cases.

parameter space M group measure space E measure µ

sphere Sm SO(m+ 1, R) sphere dx

(|(x)|2+1)(m+1)/2

Euclidean space Rm motion group Mo(m) cylinder dx

(|(x)|m+1

hyperbolic space Hm
2 Lorentz group L(m) Hm

1
dx

(|(x)|2−1)(m+1)/2

Let Y be the SαS random measure controlled by the measure (E,µ), and define

X(u) = Y (Su).

Then X is an SαS Lévy motion on the metric space M . This random field X(u) has
independent increments along any geodesic lines. That is, for any geodesic line L = L(t)
of M , the 1-parameter stochastic process

XL(t) = X(L(t))−X(L(0))
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Fig. 3

is an additive process with stationary and independent increments. This fact can be
derived from the following simple geometrical relation:

L 3 ∀u→ u∗ 3 L∗.

That is, all points u of L, boundaries of the set Su, share a point of L∗, the dual of L.
That is, as we see, when u moves to v along L, the boundary v∗ rotates around L∗.
This means that the set Su4Sv increases monotonically. That is, X(·) has independent
increments along L (also see fig. 7 in 3.4).

2.3. Chentsov type random fields. In general, suppose there exist a parameter
space M , a measure space (E,B, µ) and a mapping Su : M 3 u 7→ Su ∈ B. Let us
call an SαS random field X defined by

X(u) = Y (Su)

a random field of Chentsov type, where Y = {Y (·)} is the SαS, 0 < α < 2, random
measure controlled by (E,µ).

2.3.1. n-dimensional characteristic functions. For n points (u1, u2, . . . , un) of parameter
space M , the n-dimensional characteristic function is

E[exp{i(z1X(u1) + z2X(u2) + · · ·+ znX(un))}]
= E[exp{i(z1Y (Su1) + z2Y (Su2) + · · ·+ znY (Sun)}]

Let us decompose the sets Suk , k = 1, . . . , n into mutually disjoint sets, so that

X(u1), X(u1), . . . , X(un)

are decomposed into their independent components. Then the above equals

= E
[
exp
(
i
{ ∑
{1,2,...,n}⊃A, A 6=∅

(∑
k∈A

zk

)
Y
(⋂
k∈A

Suk ∩
⋂
j /∈A

Scuj

)})]
= exp

(
−
{∑

A

∣∣∣∑
k∈A

zk

∣∣∣αµ(⋂
k∈A

Suk ∩
⋂
j /∈A

Scuj

)})
.
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The above means that we have a characterization of the spectral measure ν of a Chentsov
type random vector X(u1), X(u2), . . . , X(un),

E[exp{i(z,X)}] = exp
(
−
{∫

Sn−1
|(z, s)|αν(s) ds

})
.

The spectral measures of Chentsov type random vectors concentrate on the symmetric
2× (2n − 1) points on Sn−1,

±(1, 0, . . . , 0),±
(

1√
2
,

1√
2
, 0, . . . , 0

)
, . . . .

2.4. Determinism ([4], [16], [20])

2.4.1. Consistency laws. In general, there exist consistency laws for the above spectral
measures. For instance, consider 3 SαS random variables (X1, X2, X3) and compare the
spectral measures of (X1, X2, X3) and (X1, X2):

E[exp{i(z1X1+z2X2+z3X3)}] = exp
(
−
∫
S2
|z1s1+z2s2+z3s3|αν(s1, s2, s3) ds1 ds2 ds3

)
E[exp{i(z1X1 + z2X2)}] = exp

(
−
∫
S1
|z1s1 + z2s2|αν1,2(s1, s2) ds1 ds2

)
.

On the other hand, E[exp{i(z1X1 + z2X2 + z3X3)}]z3=0 = E[exp{i(z1X1 + z2X2)}]. We
have a consistency law for these spectral measures

ν1,2(s1, s2) =
∫
ν(s1, s2, s3) ds3,

or in spherical coordinates (θ, ϕ),

ν1,2(θ) =
∫ π

2

−π2
ν(θ, ϕ) cos(ϕ)dϕ.

Similar relations hold for ν2,3 and ν3,1.
Let us return to our case. Consider a stable family (not necessarily Chentsov type)

of 3 variables (X1, X2, X3) such that all marginal characteristic functions of the pairs
(X1, X2), (X2, X3), (X3, X1) are of Chentsov type, that is, their spectral measures con-
centrate on the points ±(1, 0),±( 1

2 ,
1
2 ),±(0, 1). Then, from the above consistency laws,

the 3-dimensional spectral measure should be of Chentsov type. The same facts hold for
any higher dimensional case. Thus,

Theorem 2.3 ([21]). If all 2-dimensional marginal characteristic functions of an SαS
family {X(t); t ∈ T} are of Chentsov type, then the family X itself has Chentsov type
spectral measure.

2.4.2. Lack of point mass from geometry ([4], [16]). Consider 3 sets A,B,C of a measure
space (E,µ) and suppose A ∩B ∩ Cc = ∅. Then

µ(A ∩B ∩ C) = µ(A ∩B).

This relation means that we can calculate any 3-dimensional measure from their 2-
dimensional marginal measures. In the above case, we have

µ(A ∩Bc ∩ C) = µ(A ∩ C)− µ(A ∩B ∩ C) = µ(A ∩ C)− µ(A ∩B)

(see the left hand side of fig. 4). It is easy to show
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Proposition 2.4. Consider a Chentsov type SαS family {X1, X2, . . . , Xn}. If there exists
an integer k such that for any k-dimensional marginals there exists at least one null set
related to the point masses of spectral measures, then the whole distribution of this family
can be calculated from its (k − 1)-dimensional marginals.

Definition 2.5. We say that the above family has k-dimensional determinism.

Theorem 2.6. Suppose a Chentsov type SαS family {X(u);u ∈ T} has k (≥ 2) di-
mensional determinism. If another family {Z(u);u ∈ T} shares the same k-dimensional
marginal distributions with X, then {Z} is also of Chentsov type and shares the same
finite dimensional distributions with X.

Gaussian families have 2-dimensional determinism in this sense. So it should be in-
teresting to consider the stochastic process of fields which have k (> 2) dimensional
determinism and do not have 2-dimensional determinism.

2.5. Examples

2.5.1. Stationary fields on Rm. Take u ∈ Rm, and take the corresponding measure space
(E, dµ) = (Rm, dx). Set

Su = {y ∈ Rm; ||y − u|| ≤ 1},
and define SαS random field X(u) = Y (Su). Note that in 2-dimensional Euclidean space,
any 4 circles divide the whole space into at most 14 subregions (not 16) and this fact
holds in higher dimensions. In m-dimensional Euclidean space, any m+ 2 spheres divide
the space into at most 7 × 2m−1 subregions. Using this fact the above random field has
m+ 2-dimensional but not m+ 1-dimensional determinism.

Fig. 4

2.5.2. Lévy motions. As we saw in 2.2, the Lévy motions on spaces of constant cur-
vatures are Chentsov type random fields. We can consider the sets Su as half spaces.
The boundaries of Su are hyperplanes of co-dimension 1. Let us count the number of
subregions into which the space is divided by k hyperplanes. R2 is divided by 2 lines into
4 regions, but into 7 < 23 regions by 3 lines. In the same manner, it is easy to show that
m+ 1 hyperplanes divide the whole space Rm into only 7× 2(k−3) < 2k regions. Thus,

Theorem 2.7. Any m-parameter Lévy motion has m + 1-dimensional determinism but
does not have m-dimensional determinism.
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Fig. 5

2.5.3. Self-similar stable fields. A SαS random field {X(u); u ∈ Rm} is called H-self-
similar if

Xc(u) = X(c · u) ∼ cHX(u), ∀c > 0.

If 0 < α ≤ 2, 0 < H < 1
α , set

(E,µ) = (R+ ×Rm, dµ(x0,x) = xαH−1−m
0 dx0dx).

The set E can be considered as the set of balls in Rm, that is, (x0,x)∼{(v, x0); v∈Rm,
‖v − x‖ ≤ x0}.

Set
Su = {ball which contains only one of O, u} (see Fig. 6).

Then,

Theorem 2.8 ([20]). X(u) = Y (Su) is an H-self-similar SαS random field.

Fig. 6. S· for self-similar processes
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As we see in the above figure, there are no point masses in any 1 + 2 dimensional
marginals, in the 1-dimensional case. In the m-dimensional case, there are no point masses
in any m+ 2 marginals.

Theorem 2.9 ([14]). The above H-self-similar processes have m+ 2-dimensional deter-
minism.

Note that there exist self-similar processes with more complex determinism ([16]).

3. Multi-parameter additive processes. At the meeting in Tokyo held in October
2000, Professor K. Sato proposed to investigate multi-parameter additive processes. This
section is an answer to his proposal.

3.1. Linearly additive stochastic processes

Definition 3.1. An Rm-parameter stochastic process {X(t); t ∈ Rm} is called a linearly
additive process if for any (straight) line L(s) = {sv+v0; s ∈ R1} the 1-parameter process
obtained by parameter restriction XL(s) ≡ X(sv+v0) has independent increments, that
is, it is an additive process.

The following theorem of T. Mori is the final result on the structure of these processes.

Theorem 3.2 ([11]). Let {X(t)} be an Rm-parameter linearly additive stochastic process
which is subject to an infinitely divisible law. Then there exists a unique measure µ on
the space E of all hyperplanes of co-dimension 1 in Rm and the process has a (Chentsov
type) representation

X(t) = Y (St),

where St is the connected component of Rm \ t∗ which does not contain the origin,
and {Y (B);B is a measurable set in E} is the random measure controlled by the mea-
sure space (E,µ).

3.2. Multi-parameter additive processes

3.2.1. Convex cones

Definition 3.3. A set V ⊂ Rm is called a convex cone if

1. ∀v ∈ V, (v,v0) ≥ 0, for a fixed v0.
2. V is convex, that is for any v1,v2 ∈ V and 0 ≤ c ≤ 1, cv1 + (1− c)v2 ∈ V .
3. for any v ∈ V , and for any positive c, cv ∈ V .

Definition 3.4. A curve `(t), 0 ≤ t is called a time-like curve (with respect to V ) if

1. `(0) = O,
2. `(t) ∈ V + `(s), for any t > s.

Here, we interpret the cone V as the future and −V as the past.

Definition 3.5. The dual cone V ∗ of a convex cone V is defined as

V ∗ = {u ∈ Rm; u · v ≤ 0, ∀v ∈ V }

V ∗ is a convex cone too, and (V ∗)∗ = V (the topological closure of V ).
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3.2.1. Examples.

• For V = (R+)m, V ∗ = (R−)m.
• For Vv0,c = {x·v0

‖x‖ ≥ c}, 0 ≤ c < 1, V ∗ = {y; y·(−v0)
‖y‖ ≥ 1

c}: V is called the light cone
in physics.

3.3. V -parameter additive processes. Let us fix a convex cone V .

Definition 3.6. A random field {X(t); t ∈ V } is called a V -parameter additive process
if the restriction {X`(t) = X(`(t))} to any time-like curve ` is an additive process.

If V -parameter additive processes are also linearly additive, then the following repre-
sentation theorem holds true:

Theorem 3.7 ([23], [24], [25]). Let {X(t); t ∈ Rm} be a linearly additive SαS process. If
the parameter restricted process {X(t); t ∈ V } becomes a V -parameter additive process,
then there exists a unique measure µ supported in the dual cone such that X(·) has the
Chentsov type representation

X(t) = Y (S(t)),

where {Y (·)} is the SαS random measure controlled by µ.

3.4. Proof. Let us consider points u1,u2,u3, . . . in the convex cone V . The differences
are

X(u1) = Y (S(u1)),

X(u2 + u1)−X(u1) = Y (S(u2 + u1))− Y (S(u1)),

X(u3 + u2 + u1)−X(u2 + u1) = Y (S(u3 + u2 + u1))− Y (S(u2 + u1)),

· · ·
If the corresponding sets S(·)∩V ∗ for the increasing sequence u1,u1+u2,u1+u2+u3, . . .,
form an increasing sequence of sets, then the corresponding random variables

X(u1) = Y (S(u1)),

X(u2 + u1)−X(u1) = Y (S(u2 + u1) \ S(u1)),

X(u3 + u2 + u1)−X(u2 + u1) = Y (S(u3 + u2 + u1) \ S(u2 + u1)),

· · ·
form an independent family.

Let us prove this fact. Set S(u1) = {u1·x ≤ −1} and S(u1+u2) = {(u1+u2)·x ≤ −1},
and consider the boundary of the intersection of the two sets, B = {x; u1 · x = −1,
(u1 + u2) · x = −1}. Then ∀z ∈ B, z · u2 = 0.

Recall the definition of the dual cone V ∗ = {u; u · v ≤ 0, ∀v ∈ V }. This means that
the set B is located outside of the set V ∗. Moreover the distances of two boundaries from
the origin are 1/‖u1‖, 1/‖u1 + u2‖, and ‖u1‖ < ‖u1 + u2‖. Thus,

(S(u1 + u2) ∩ V ∗) ⊃ (S(u1) ∩ V ∗),
that is, the difference X(u1 + u2)−X(u1) is independent of X(u1).

Conversely, if the support of the measure is not contained in the dual cone, there
exists an increasing sequence u1,u2,u3 such that the above B and V ∗ have nonempty
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Fig. 7

intersection. So, the related process is not additive on the line u1u2u3. This completes
the proof.

3.4.1. Determinism. As a special case of linearly additive SαS processes, multi-param-
eter additive processes have m+ 1-dimensional determinism.

4. Subordination. Let Y (t), 0 ≤ t, be a positive stable motion of index β, 0 < β < 1,
that is, Y (·) has stationary and independent increments. And let X(t), 0 ≤ t, be a
symmetric stable motion of index α, 0 < α ≤ 2. Then the following result is well known
as Bochner’s subordination:

The random time change Z(t) = X(Y (t)) of the process X(·) becomes a symmetric
stable motion with index α · β.

In this note, we will show an extension of the above result. The parameter of X(·)
will be extended to a multi-dimensional space and Y (·) will be considered a vector-valued
process.

4.1. 1-dimensional case

4.1.1. Definitions and Bochner’s subordination. Let X(t), 0 ≤ t, be a symmetric stable
process of index α with stationary independent increments, that is,

1. E[eiz·X(t)] = e−at·|z|
α

, a > 0,
2. X(tn)−X(tn−1), X(tn−1)−X(tn−2), . . . X(t1)−X(t0) is an independent system

for tn ≥ tn−1 ≥ . . . ≥ t0,
3. X(t+ h)−X(t) ∼ X(h) (equality of laws).

A positive stable process Y (t) is called a subordinator of index β if

1. E[eiz·Y (t)] = e−bt·|z|
β(1−i·sign(z) tan(πβ2 ), b > 0, that is , Y (t) is subject to a positive

stable distribution of index β.
2. Y (t) has independent and stationary increments.
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Bochner considered the composition Z(t) = X(Y (t)) and obtained

Theorem 4.1 (Bochner’s subordination [2]). X(Y (t)) is a symmetric stable motion of
index α · β.

4.2. Sketch of the proof

4.2.1. Approximation of subordinator. Let Tc−nλ(t), n ∈ Z be a sequence of independent
Poisson processes with intensities c−nλ, for a constant c > 1. Consider the sum

T (t) =
∞∑
−∞

cnγTnc−nλ(t).

T (t) is a semi-self-similar process, that is,

T (ck · t) ∼ ckγT (t), ∀k ∈ N,

and the characteristic function is

ϕT (z) = E[exp(i · zT (t))] = exp
(
−λ · t

∞∑
n=−∞

c−n(1− exp(icγz))
)
.

The series in the above equation converges if 1 < γ. Let us replace the semi-self-similar
constant c and the intensity constant λ by cp = c 1

2p , λp = λ
2p , p = 1, 2, . . .. The above

series converges to

exp
(
−λt

∫ ∞
0

1− exp(ix−γz)
c′

dx

)
, c′ = c− 1.

The above integral is equal to

exp
(
λ · t
γc′

∫ ∞
0

(1− cosx)x−
γ+1
γ dx|z|

1
γ (1− isign(z) tan

(
π/γ

2

))
.

That is, T (t) converges to the subordinator Y (t) of index β = 1
γ .

4.2.2. Subordination by a Poisson process. Let X(t), 0 ≤ t be a symmetric α-stable
motion, that is,

E[eizX(t)] = exp(−t(|z|α)).

Consider the time-changed process X(aTλ(t)), by a Poisson process Tλ(t) which is inde-
pendent of X(t). The characteristic function is

E[eizX(aTλ(t))] = exp(−λt(1− e−a|z|
α

)).

Consider the characteristic function of the process X(aTλ(t) + bTµ(t)) which is obtained
by the time change using two independent Poisson processes with different means and
different jumps:

E[eiz(X(aTλ(t)+bTµ(t)))] = e−(λ+µ)t
∑
j,k

e(aj+bk)|z|
α

(λt)j(µt)k

= exp(−t(λ(1− e−a|z|
α

) + µ(1− e−b|z|
α

))).

Thus the characteristic function of the process X(T (t)) in 4.2.1 is

E[eizX(T (t))] = exp
(
−λt

∑
n

c−n(1− e−c
nγ|z|α

)
)
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and, as in 4.2.1, the above sum converges to the following integral:

exp
(
−λt

∫ ∞
0

1− ex−γ |z|α

c′
dx

)
= exp

(
−λt

∫ ∞
0

1− e(x|z|−α/γ)−γ

c′
dx

)
= exp

(
−λt|z|

α
γ

∫ ∞
0

1− ey−γ

c′
dy

)
.

Thus the limit process X(Y (t)) of X(T (t)) has the symmetric stable law of index α · β,
β = 1

H .

4.2.3. Increments. Let us consider the 2-dimensional characteristic function. For t ≥
s ≥ 0,

E[ exp(i(z1(X(aTλ(t) + bTµ(t))−X(aTλ(s) + bTµ(s))) + z2X(aTλ(s) + bTµ(s))))]

=
∑

kt≥ks≥0,`t≥`s≥0

E[exp(i(z1(X(akt + b`t)−X(aks + b`s)) + z2X(aks + b`s)))

· P (Tλ(t) = kt, Tλ(s) = ks, Tµ(t) = `t, Tµ(s) = `s)

=
∑

E[exp(iz1(X(akt + b`t)−X(aks + b`s)))]P (Tλ(t)− Tλ(s) = kt − ks)

· P (Tµ(t)− Tµ(s) = `t − `s) · P (Tλ(t) = kt, Tλ(s) = ks, Tµ(t) = `t, Tµ(s) = `s)

=
∑

kt−ks,`t−`s

E[exp(iz1(X((akt − aks) + (b`t − b`s))))]

· P (Tλ(t− s) = kt − ks) · P (Tµ(t− s) = `t − `s)

·
∑
ks,`s

E[exp(iz2(X(aks + b`s)))]P (Tλ(s) = ks)P (Tµ(s) = `s)

= E[exp(i(z1(X(aTλ(t)+bTµ(t))−X(aTλ(s)+bTµ(s)))))] · E[z2X(aTλ(s) + bTµ(s))].

This means that the processes X(T (t)) and X(Y (t)) have independent increments. Along
these lines we can prove that the process X(Y (t)) is an SαβS Lévy motion, that is, a
process having stationary and independent increments.

4.3. Multi-dimensional case. First, we need the concept of multi-dimensional random
time (subordinator). Let us fix a future cone V .

4.3.1. Multi-dimensional subordinator [27]. Let ν be a measure on V ∩ Sm−1. There
is one-to-one correspondence between the measure ν and an Rm-valued positive stable
process Y(t)(= Yν), 0 ≤ t, with index 0 < β < 1 which satisfies the following properties:

1. Y(·;ω) is a time-like curve for a.e. ω.
2. Y(t)−Y(s), t > s is independent of Y(t), and Y(t)−Y(s) ∼ Y(t− s).

4.3.2. Multi-parameter additive process with stationary increments. Let X(t), t ∈ V be
a V -parameter additive process (cf. 3.3). Suppose X has stationary increments, that is,

E[ei(X(t)−X(s)z] = e−σ(t−s)‖z‖α

and σ(t) = |t|σ( t
|t| ). Then theorem 3.7 can be modified as
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Theorem 4.2 ([23], [24], [25]). There is one-to-one correspondence between measures on
V ∗ ∩ Sm−1 and additive, stationary increments processes on time-like curves. Here the
measure µ on V ∗ has the form dµ(r · q) = dµSm−1(q) dr

rm+1 ,x = r × q, r ≥ 0,q ∈ Sm−1.

4.4. Subordination in multi-dimensional case. We can easily rewrite the proofs in
4.2.1 - 4.2.3, and obtain an extension of Bochner’s subordination.

Theorem 4.3. The time-changed process X(Y(t)) is an SαβS Lévy motion.

4.4.1. Subordination by a Poisson process of direction a ∈ V . Consider the time changed
process X(aTλ(t)) by a Poisson process of direction a ∈ V . The characteristic function is

E[eizX(aTλ(t))] = exp(−λt(1− e−σ(a)|z|α)),

where σ(a) is the strength of the SαS Lévy motion X|ta =X(at) along the line {ta : t≥0}.
The characteristic function of the process X(aTλ(t)+bTµ(t)) for two independent Poisson
processes Tλ(t), Tµ(t) with different directions a and b is

E[eiz(X(aTλ(t)+bTµ(t)))] = e−(λ+µ)t
∑
j,k

eσ(ja+kb)|z|α

(λt)j(µt)k
= e−(λ+µ)te−λte

−σ(a)|z|α

e−µte
−σ(b)|z|α

= exp(−t(λ(1− e−σ(a)|z|α) + µ(1− e−σ(b)|z|α))).

Note that the relation σ(ja + kb) = jσ(a) + kσ(b) comes from the properties that X(t)
has independent stationary increments. Thus the characteristic function of the process
X(aT1(t) + bT2(t)) with the processes like 1.2.1 is

E[eizX(aT1(t)+bT2(t))]

= exp
(
−λ1t

∑
n

c−n(1− e−c
σ(a)nH|z|α

)− λ2t
∑
n

c−n(1− e−c
σ(b)nH|z|α

)
)
.

By arguments similar to 1.2.2, we can show that the time-changed process is subject to
SαβS law and the strength is proportional to the time parameter t.

4.4.2. Increments. Let us consider the 2-dimensional characteristic function. For the
points t ≥ s ≥ 0,

E[ exp(i(z1(X(aTλ(t) + bTµ(t))−X(aTλ(s) + bTµ(s))) + z2X(aTλ(s) + bTµ(s))))]

=
∑

kt≥ks≥0,`t≥`s≥0

E[exp(i(z1(X(akt + b`t)−X(aks + b`s)) + z2X(aks + b`s)))]

· P (Tλ(t) = kt, Tλ(s) = ks, Tµ(t) = `t, Tµ(s) = `s)

=
∑

E[exp(iz1(X(akt + b`t)−X(aks + b`s)))]P (Tλ(t)− Tλ(s) = kt − ks)

· P (Tµ(t)− Tµ(s) = `t − `s) · P (Tλ(t) = kt, Tλ(s) = ks, Tµ(t) = `t, Tµ(s) = `s)

=
∑

kt−ks,`t−`s

E[exp(iz1(X((akt − aks) + (b`t − b`s))))]

· P (Tλ(t− s) = kt − ks) · P (Tµ(t− s) = `t − `s)

·
∑
ks,`s

E[exp(iz2(X(aks + b`s)))]P (Tλ(s) = ks)P (Tµ(s) = `s)

= E[exp(i(z1(X(aTλ(t)+bTµ(t))−X(aTλ(s)+bTµ(s)))))] · E[z2X(aTλ(s)+bTµ(s))].
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This means the process X(Y(t)) has independent increments. Thus the process X(Y(t))
is a SαS Lévy motion.
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