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Abstract. This is a presentation of recent work on quantum permutation groups, complex
Hadamard matrices, and the connections between them. A long list of problems is included. We
include as well some conjectural statements about matrix models.

Introduction. A complex Hadamard matrix is a square matrix H ∈ Mn(C) whose
entries are on the unit circle, |Hij | = 1, and whose rows are pairwise orthogonal, when
regarded as elements of Cn. It follows from definitions that the columns are pairwise
orthogonal as well.

The basic example is the Fourier matrix Fn = (wij), where w = e2πi/n. The name
comes from the fact that Fn is the matrix of the discrete Fourier transform, over Zn. This
is in fact the one and only basic example, typically the only known one when n is prime.

However, lots of other interesting Hadamard matrices, each one having its own story,
do exist. For instance in the real case the Hadamard conjecture, going back to the 19th
century, states that there is a such a matrix H ∈Mn(R), for any n ∈ 4N.

Due to their remarkable combinatorial properties, the complex Hadamard matrices
appear in a wealth of concrete situations, in connection with subfactors, spin models,
knot invariants, planar algebras, quantum groups, and various aspects of combinatorics,
functional analysis, representation theory, and quantum physics.

The present article is a survey on complex Hadamard matrices, quantum permutation
groups, and the connections between them. The idea is very simple:
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(1) First, the Fourier matrix Fn is by definition cyclic, and is in fact naturally associated
to Zn. This suggests that any complex Hadamard matrix H should be in fact
associated to a group-like object G, describing its symmetries.

(2) A glimpse at the various complex Hadamard matrices (different from Fn) which have
been constructed leads to the quick conclusion that their symmetries are rather of
“alien” nature, and cannot be described by a usual group G.

(3) So, we should rather look for a quantum group. And, with this idea in mind, the
solution appears: the orthogonality condition on the rows of H reminds the “magic”
condition on the coordinates of the quantum permutation group S+

n .
(4) With a bit more work, one can associate to any complex Hadamard matrix H ∈

Mn(C) a certain quantum permutation group G ⊂ S+
n . As a first example, associ-

ated in this way to the Fourier matrix Fn is the usual cyclic group Zn.

There is perhaps at this point some need for explanations: the complex Hadamard
matrices are such concrete and beautiful objects, so why doing all this?

The problem is that any complex Hadamard matrix H produces a certain sequence of
numbers ck ∈ N, which are extremely hard to compute. These numbers, called quantum
invariants, appeared from the work of Popa and Jones on subfactor theory, and play a key
role in most of the quantum algebraic contexts where H appears. Their formal definition
is ck = dim(Pk), where P = (Pk) is the planar algebra associated to H.

The point now is that, with the above approach, the numbers ck have a very simple
interpretation. Indeed, they appear as moments of the main character of G:

ck =

∫
G

Tr(g)k dg.

This formula is of course quite encouraging. For instance it shows that, from the point
of view of quantum algebra in a very large sense, G is indeed the correct symmetry group
of H. Of course, these results are quite new, and the correspondence H → G still needs
to be developed in order to reach to some concrete results. It is our hope that so will be
the case, and in the present article we explain the state-of-art of the subject.

The paper is organized as follows: in Sections 1–3 we discuss the quantum permutation
groups, in Section 4 we discuss the complex Hadamard matrices, in Section 5 we describe
the correspondence and its basic properties, and in Section 6 we present some random
matrix speculations.

1. Quantum permutations. Consider the embedding Sn ⊂ On given by the usual
permutation matrices, σ(ej) = eσ(j). The matrix entries of a permutation σ ∈ Sn are
then:

σij =

{
1 if σ(j) = i

0 if not.

Let us introduce now the functions uij : Sn → C given by uij(σ) = σij . These are the
n2 coordinates on Sn, viewed as an algebraic group.

We can see that the matrix u = (uij) is magic, in the following sense:
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Definition 1.1. A square matrix u ∈Mn(A) is called magic if all its entries are projec-
tions, summing up to 1 on each row and column.

Here of course A is a C∗-algebra, and a projection is by definition an element p ∈ A
satisfying p = p∗ = p2. In the above example, the algebra is A = C(Sn).

Consider now the multiplication map (σ, τ) → στ . At the level of functions, this
corresponds to a map ∆ : A→ A⊗A called comultiplication, given by ∆f(σ, τ) = f(στ).
On the above elements uij , the action of ∆ is extremely simple:

∆(uij) =

n∑
k=1

uik ⊗ ukj .

In addition, we know from the Stone–Weierstrass theorem that the coordinate func-
tions uij generate A. With a bit more work one can prove that these generators uij satisfy
no other relations besides the magic ones, so we have reached to the following conclusion:

Theorem 1.2. C(Sn) is the universal commutative C∗-algebra generated by the entries
of an n× n magic matrix u, and its comultiplication is given by ∆(uij) =

∑
k uik ⊗ ukj.

Summarizing, we have a fully satisfactory description of the Hopf algebra C(Sn).
Observe that the counit map ε(f) = f(1) and the antipode map Sf(σ) = f(σ−1) are
given as well by very simple formulae on the standard generators, namely:

ε(uij) = δij , S(uij) = uji.

We recall now that a compact quantum group is an abstract object G, having no
points in general, but which is described by a well-defined Hopf C∗-algebra A = C(G).

The axioms for Hopf C∗-algebras, found by Woronowicz in [87], are as follows:

Definition 1.3. A Hopf C∗-algebra is a C∗-algebra A, given with a morphism of
C∗-algebras ∆ : A → A ⊗ A, called comultiplication, subject to the following condi-
tions:

(1) Coassociativity: (∆⊗ id)∆ = (id⊗∆)∆.
(2) span ∆(A)(A⊗ 1) = span ∆(A)(1⊗A) = A⊗A.

The basic example is A = C(G), where G is a compact group, with ∆f(g, h) = f(gh).
The fact that ∆ is coassociative corresponds to (gh)k = g(hk), and the conditions in (2)
correspond to the cancellation rules gh = gk ⇒ h = k and gh = kh⇒ g = k.

Conversely, any commutative Hopf C∗-algebra is of the form C(G). Indeed, by the
Gelfand theorem we have A = C(G), with G compact space, and (1,2) above tell us that
G is a semigroup with cancellation. By a well-known result, G follows to be a group.

The following key definition is due to Wang [84]:

Definition 1.4. C(S+
n ) is the universal C∗-algebra generated by the entries of an n×n

magic matrix u, with comultiplication ∆(uij) =
∑
k uik ⊗ ukj .

Observe the similarity with Theorem 1.2. Wang proved that this algebra satisfies
Woronowicz’s axioms in Definition 1.3, so that S+

n is a compact quantum group.
The counit and antipode are given by the same formulae as in the classical case,

namely ε(uij) = δij and S(uij) = uji. Observe that the square of the antipode is the
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identity:
S2 = id.

As a first remark, we have a surjective morphism C(S+
n ) → C(Sn), which corre-

sponds to a quantum group embedding Sn ⊂ S+
n . The very first problem is whether this

embedding is an isomorphism or not, and the answer here is as follows:

Proposition 1.5. The quantum groups S+
n are as follows:

(1) At n = 1, 2, 3 we have Sn = S+
n .

(2) At n ≥ 4, S+
n is a non-classical, infinite compact quantum group.

This is clear indeed at n = 2, where each magic matrix must be of the form

u =

(
p 1− p

1− p p

)
.

At n = 3 the statement is that any 9 projections forming a 3 × 3 magic matrix
commute. This is not obvious, but can be seen with a Fourier over Z3 base change.

At n = 4 now, consider the following magic matrix:

u =


p 1− p 0 0

1− p p 0 0

0 0 q 1− q
0 0 1− q q

 .

Here p, q can be any projections. If we choose p, q ∈ B(H) to be free, then 〈p, q〉 is
not commutative and infinite-dimensional, and so must be C(S+

4 ).
Finally, at n ≥ 5 the result follows from S+

k ⊂ S+
n for k ≤ n.

The following result was proved as well by Wang in [84]:

Theorem 1.6. C(S+
n ) is the universal Hopf C∗-algebra coacting on Cn. In other words,

S+
n is the universal compact quantum group acting on {1, . . . , n}.

The idea here is that a coaction map α(ei) =
∑
j ej ⊗ uji is a morphism of algebras

if and only if the matrix u = (uij) is magic. Thus, if we try to construct the universal
algebra coacting on Cn, we are naturally led to Definition 1.4. See Wang [84].

Let us go back now to the above proof of the fact that S+
4 is infinite. If we denote

by X the quantum space corresponding to the algebra 〈p, q〉, the above proof is:

X ⊂ S+
4 , |X| =∞ =⇒ |S+

4 | =∞.

The point now is that X is in fact a quantum group. Indeed, it is well-known that
the algebra 〈p, q〉 generated by two free projections is always the same, regardless of the
projections p, q that we choose. One model is provided by p = (1+g)/2 and q = (1+h)/2,
where g, h are the standard generators of D∞ = Z2 ∗ Z2, and we get:

Proposition 1.7. We have an embedding D̂∞ ⊂ S+
4 .

In order to explain the meaning of this statement, we have to go back to Definition
1.3. Recall that the basic example there was A = C(G), with G compact group. The point



QUANTUM PERMUTATIONS AND HADAMARD MATRICES 15

is that there is another class of “basic examples”, namely the group algebras A = C∗(Γ),
with ∆(g) = g ⊗ g. So, the abstract dual Γ̂ of a discrete group Γ can be defined by

C∗(Γ) = C(Γ̂).

With this notion in hand, the above result simply tells us that the morphism C(S+
4 )→

C∗(D∞) commutes with the comultiplications. But this is clear from definitions.
Proposition 1.7 raises several questions, the first one being the classification of group

dual subgroups Γ̂ ⊂ S+
n . The answer here, found by Bichon in [37], is as follows:

Theorem 1.8. For any quotient group Zn1
∗ . . . ∗ Znk

→ Γ we have Γ̂ ⊂ S+
n , where

n = n1 + . . .+ nk. Any group dual subgroup of S+
n appears in this way.

The proof of the first assertion is similar to that of Proposition 1.7, by using a diagonal
concatenation of magic matrices. The proof of the converse is quite technical, see [37].

Recall now Cayley’s theorem, stating that any finite quantum group G is a permuta-
tion group: G ⊂ Sn, with n = |G|. The above result, when applied to the quotient map
Z∗nn → G, shows that Ĝ is a quantum permutation group: Ĝ ⊂ S+

n2 . So, the following
problem appears: is any finite quantum group a quantum permutation group?

This question was recently answered in the negative [15]:

Theorem 1.9. There exists a quantum group of finite order, namely Z4#Ŝ3 having or-
der 24, which is not a quantum permutation group.

We refer to [15] for the proof, as well as for a number of positive results: for instance
any quantum group whose order divides p3 or pqr is a quantum permutation one.

The other question raised by Proposition 1.7 is that of understanding the structure
of S+

4 . The answer here, quite surprising, involves the following definition, from [9]:

Definition 1.10. C(SO−13 ) is the universal C∗-algebra generated by the entries of a
3× 3 orthogonal matrix a = (aij), with the following relations:

(1) Skew-commutation: aijakl = ±aklaij , with sign + if i 6= k, j 6= l, and − if not.
(2) Twisted determinant condition: Σσ∈S3a1σ(1)a2σ(2)a3σ(3) = 1.

Consider indeed the matrix a+ = diag(1, a), corresponding to the action of SO−13

on C4, and apply to it the Fourier transform over the Klein group K = Z2 × Z2:

u =
1

4


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1




1 0 0 0

0 a11 a12 a13
0 a21 a22 a23
0 a31 a32 a33




1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

 .

The point is that this matrix is magic, and vice versa, i.e. the Fourier transform overK
converts the relations in Definition 1.10 into the relations in Definition 1.1.

This gives the following result, proved in [9]:

Theorem 1.11. We have S+
4 = SO−13 , with the algebraic isomorphism given on the

standard generators by the Fourier transform over the Klein group K = Z2 × Z2.

This isomorphism raises the problem of classifying the “quantum groups acting on
four points”, i.e. the subgroups of S+

4 . The result here, obtained in [9], is as follows:
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Theorem 1.12. The following is the list of subgroups of S+
4 = SO−13 :

(1) Infinite quantum groups: S+
4 , O

−1
2 , D̂∞.

(2) Finite groups: S4, and its subgroups.
(3) Finite group twists: S−14 , A−15 .
(4) Series of twists: D−12n (n ≥ 3), DC−1n (n ≥ 2).
(5) A group dual series: D̂n, with n ≥ 3.

A finer version of this result is provided by the following table, jointly classifying the
subgroups of SO3 and of S+

4 , and containing as well the corresponding ADE graphs:

Subgroup of SO3 ADE graph Subgroup of S+
4

Z1, Z2, Z3, Z4 Ã1, Ã3, Ã5, Ã7 Z1, Z2, Z3, K

Z2n−1, Z2n Ã4n−3, Ã4n−1 �, D̂n

SO2, O2, SO3 A−∞,∞, D∞, A∞ D̂∞, O−12 , S+
4

K, D4 D̃4, D̃6 Z4, D4

D2n−1, D2n D̃2n+1, D̃2n+2 �, D−12n /DC
−1
n

�, � �, � D1, S3

A4, S4, A5 Ẽ6, Ẽ7, Ẽ8 A4, S4/S
−1
4 , A−15

Here the squares denote the various missing objects in the correspondence, and the
slashes indicate the places where the correspondence is not one-to-one.

The meaning of the middle column is a bit formal, in the sense that the graphs there
are Cayley type graphs for the corresponding groups or quantum groups. See [9].

2. Representation theory. We have seen in the previous section that S+
4 is understood

quite well. In order to discuss now the general case, we need some basic notions of
representation theory:

Definition 2.1. A unitary representation of G is described by the corresponding corep-
resentation of A = C(G), which is a unitary matrix u ∈Mn(A) satisfying:

∆(uij) =
∑

k
uik ⊗ ukj ,

ε(uij) = δij ,

S(uij) = u∗ji.

The representation is called fundamental if its coefficients generate A.

Woronowicz proved that the compact quantum groups are semisimple. More precisely,
his results include a Peter–Weyl type theory [85], and a Tannaka–Krein duality [86].

The main problem is to classify the irreducible representations of G, and to find their
fusion rules. In the self-adjoint case, u = ū, it is known that each r ∈ Irr(G) appears in
a certain tensor power u⊗k. So, the problem is to compute the spaces End(u⊗k).

It is convenient to enlarge the attention to the following family of spaces:

C(k, l) = Hom(u⊗k, u⊗l).
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The point is that these spaces form a tensor category, and Woronowicz’s Tannakian
duality results in [86] can be effectively used for their computation.

Let P (k, l) be the set of partitions between k upper points, and l lower points.

Definition 2.2. Associated to π ∈ P (k, l) is the linear map Tπ : (Cn)⊗k → (Cn)⊗l,

T (ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl ,

where δπ = 1 if the indices contained in any block of π are all equal, and δπ = 0 if not.

It follows from definitions that the spaces span(Tπ |π ∈ P (k, l)) form a tensor category.
Indeed, the composition and tensor product of linear maps correspond to the vertical
and horizontal concatenation of the partitions, and the ∗ operation corresponds to the
upside-down turning of partitions. Moreover, it is easy to see that for any π ∈ P (k, l) we
have Tπ ∈ Hom(u⊗k, u⊗l), where u is the fundamental representation of Sn.

Let also NC(k, l) ⊂ P (k, l) be the set of noncrossing partitions.

Theorem 2.3. The spaces Hom(u⊗k, u⊗l) for Sn, S+
n are as follows:

(1) For Sn we obtain span(Tπ |π ∈ P (k, l)).
(2) For S+

n we obtain span(Tπ |π ∈ NC(k, l)).

As already mentioned, the inclusion span(Tπ |π ∈ P (k, l)) ⊂ Hom(u⊗k, u⊗l) is easy
to check for Sn. The reverse inclusion can be justified by several methods, none of them
being trivial. For instance this inclusion follows from the classical Tannaka duality.

In the free case now, we can use the embedding Sn ⊂ S+
n , which at the level of Hom

spaces gives reverse inclusions Hom(u⊗k, u⊗l) ⊂ span(Tπ |π ∈ P (k, l)). Now since S+
n

was obtained from Sn by “removing commutativity”, at the Tannakian level we should
“remove the basic crossing X”, and so we reach to the above sets NC(k, l).

In this latter proof we have used of course the results from [86]. See [17].
We recall that the law of a self-adjoint variable a ∈ (A,ϕ) is the real probability

measure having as moments the numbers ϕ(ak). In what follows ϕ will be the Haar
functional.

Theorem 2.4. The law of the character χ = Tr(u) is as follows:

(1) For Sn with n→∞ we obtain the Poisson law, p = 1
e

∑∞
r=0 δr/r!.

(2) For S+
n with n ≥ 4 we obtain the free Poisson law, π = 1

2π

√
4x−1 − 1 dx.

The first result is well-known, and has a very beautiful proof. Indeed, since the stan-
dard coordinates on Sn are the characteristic functions uij = χ(σ |σ(j) = i), we obtain

χ =

n∑
i=1

χ(σ |σ(i) = i) = |fix(·)|.

Now by using the well-known fact that a random permutation has no fixed points with
probability 1/e, hence has r fixed points with probability 1/(r!e), we get, as claimed:

P(χ(σ) = r) = P(|fix(σ)| = r) ' 1

e
· 1

r!
.
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Another proof, which works as well for S+
n , is as follows. Let D(k, l) be the sets of

diagrams appearing in Theorem 2.3. By using basic Peter–Weyl theory, we have:∫
χk = dim(Fix(u⊗k)) ' |D(0, k)|.

Here the sign at right corresponds to our n→∞ and n ≥ 4 assumptions, and comes
from the fact that the maps Tπ are not exactly linearly independent. See [17]. Now, with
this formula in hand, we conclude that the moments of χ are the Bell, respectively the
Catalan numbers, and this gives the result.

Here is a purely functional analytic application of Theorem 2.4:

Corollary 2.5. For n ≥ 5 the discrete quantum group Ŝ+
n is not amenable.

Indeed, recall the Kesten amenability criterion, which tells us that a discrete group
Γ = 〈g1, . . . , gn〉, chosen with {gi} = {g−1i }, is amenable if and only if

n ∈ Spec(g1 + . . .+ gn).

The point is that the Kesten operator is nothing but the trace of u = diag(g1, . . . , gn),
which is the fundamental representation of Γ̂. Thus, the Kesten criterion reads:

n ∈ Spec(Tr(u)).

With a bit more work, one can show that the same result holds for any discrete
quantum group Γ. See [5]. Thus, the above result follows from Theorem 2.4 (2) and from:

Supp(π) = [0, 4].

There are many interesting questions arising from Corollary 2.5, and from the work
of Brannan [42], Fima [53], Kyed [65] and Vaes–Vergnioux [79]. In all cases, the question
is whether the techniques there apply to S+

n , at n ≥ 5.
Here is another corollary, this time of purely algebraic nature:

Corollary 2.6. For n ≥ 4 the irreducible representations of S+
n can be labeled by N,

and satisfy the Clebsch–Gordan rules: ra ⊗ rb = r|a−b| + r|a−b|+1 + . . .+ ra+b.

This result can be indeed deduced from Theorem 2.4. The idea is that, with the initial
data r0 = 1 and r1 = u−1, we can construct a family of virtual representations ra satisfy-
ing the Clebsch–Gordan rules. The problem is to prove that these virtual representations
ra are true representations, and are irreducible. But this can be done by recurrence on a,
by using the fact that the moments of χ are the Catalan numbers:

dim(Fix(u⊗k)) =
1

k + 1

(
2k

k

)
.

This proof is of course not very enlightening. Probably the best argument is as follows:
let us enlarge attention to the groups S(X) and quantum groups S+(X), where X can
be any finite noncommutative space. We have then the following result:

Theorem 2.7. If u denotes the fundamental representation of S+(X) then

Hom(u⊗k, u⊗l) ' TLn(k, l),

where TLn denotes the Temperley–Lieb algebra of index n = |X|.
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As a first remark, for a usual space X = {1, . . . , n}, this is exactly Theorem 2.3 (2)
above, modulo a “fattening” of the diagrams. In general, the proof is based on the fact
that the multiplication and unit of the algebra C(X) can be represented as:

m = | ∪ |, u = ∩.

Now since S+(X) is the universal quantum group acting on C(X), at the Tannakian
level we get that its associated category is simply given by:

〈m,u〉 = 〈| ∪ |, ∩〉 = TLn.

With this conceptual result in hand, let us go back now to Corollary 2.6, and try to
find a better proof. The point is that for the space M2 = Spec(M2(C)) we have

S+(M2) = S(M2) = SO3.

On the other hand, it is well-known that under the Jones index assumption n ≥ 4,
the fusion ring for the category TLn does not depend on n. Thus, the fusion rules for S+

n

with n ≥ 4 are the same as those for SO3, as stated in Corollary 2.6 above.

Problem 2.8. Is it true that the compact quantum groups having Clebsch–Gordan fusion
rules are exactly the quantum groups S+(X), with |X| ≥ 4?

The general method for attacking this type of problem is via Kazhdan–Wenzl recon-
struction [62]. In the type B case the result here is due to Tuba and Wenzl [78].

Observe that the above discussion shows that with q < 0 given by n = (q + q−1)2 we
have a monoidal equivalence [38], i.e. an equivalence of tensor categories, as follows:

S+
n ∼ SO

q
3.

Observe also that the dimensions of the representations of S+
n with n ≥ 5 are “exotic”.

More precisely, if x, y are the roots of X2 − (n− 2)X + 1 = 0, then

dim(ra) =
xa+1 − ya+1

x− y
+
xa − ya

x− y
.

There are as well a few other algebraic questions, coming from the work of Collins–
Härtel–Thom [43], De Commer [48], Sołtan [74], Vergnioux [80] and Voigt [82].

Let us go back now to Theorem 2.4. One problem is to compute the value of the Haar
functional on any element of type ui1j1 . . . uikjk . The method here, developed for classical
groups by Collins and Śniady in [44], applies as well to Sn, S+

n , and we have:

Theorem 2.9. We have the Weingarten integration formula∫
ui1j1 . . . uikjk =

∑
π,σ∈D(k)

δπ(i)δσ(j)Wkn(π, σ),

where D(k) = D(0, k), and where Wkn = G−1kn , with Gkn(π, σ) = n|π∨σ|.

The proof of this formula, found in [17], is based on Theorem 2.3. Consider indeed
the nk × nk matrix P obtained by integrating the coefficients of u⊗k. That is:

P =
(∫

ui1j1 . . . uikjk

)
i1...ik,j1...jk

.
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We know by Peter–Weyl theory that P is the projection on Fix(u⊗k), and from
Theorem 2.3 that Fix(u⊗k) is spanned by D(k). The Gram matrix of D(k) is

〈Tπ, Tσ〉 =
∑
i1...ik

δπ(i)δσ(i) = n|π∨σ|.

By combining these ingredients and doing some linear algebra, this gives the result.
As a first consequence, we have the following refinement of Theorem 2.4:

Theorem 2.10. The asymptotic laws of truncated characters χt =
∑[tn]
i=1 are:

(1) For Sn: the Poisson law, pt = e−t
∑∞
r=0 t

rδr/r!.
(2) For S+

n : the free Poisson law, πt = max(1− t, 0)δ0 +
√

4t− (x− 1− t)2/(2πx) dx.

This result is important for two reasons. First, it requires n → ∞ for both Sn, S
+
n ,

hence fixes the n → ∞ vs. n ≥ 4 issue in Theorem 2.4. And second, it proves that the
“liberation” operation Sn → S+

n is compatible with the Bercovici–Pata bijection [32].
The proof uses the Weingarten formula. With s = [tn], we get:∫

χkt =
∑

π,σ∈D(k)

s|π∨σ|Wkn(π, σ) = Tr(GksWkn).

Now since with n → ∞, the Gram matrix becomes equal to its diagonal, Gkn =

∆kn +O(n−1), by inverting we get as well Wkn = ∆−1kn +O(n−1), and this gives:∫
χkt = Tr(∆ks∆

−1
kn ) +O(n−1) =

∑
π∈D(k)

t|π| +O(n−1).

According now to the general theory in [68], this shows that the cumulants for Sn, as
well as the free cumulants for S+

n , are simply t, t, t, . . . , and this gives the result.
Let Pr be the Tchebycheff polynomials, P0 = 1, P1 = n and Pr+1 = nPr − Pr−1, and

ak =
1

k + 1

(
2k

k

)
, fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
.

With this notation, we have the following results:

Theorem 2.11. The determinant of Gkn is as follows:

(1) For Sn: det(Gkn) =
∏
π∈P (k) n!/(n− |π|)!.

(2) For S+
n : det(Gkn) = (

√
n)ak

∏k
r=1 Pr(

√
n)dkr , with dkr = fkr − fk+1,r.

The classical result follows by an upper triangularization procedure. The free result
uses Di Francesco’s “meander determinant” in [49]. See [22].

We have as well the following generalization of Theorem 2.4:

Theorem 2.12. The asymptotic law of χ(r) = Tr(ur) is as follows:

(1) For Sn: we obtain a linear combination of independent Poisson laws.
(2) For S+

n : χ(1) is free Poisson, χ(2) is semicircular, χ(r) with r ≥ 3 is circular.

The classical result is due to Diaconis and Shahshahani [50]. Observe that in terms
of the eigenvalue list λ1 ≤ . . . ≤ λn, the variable in the statement is:

Tr(ur) = λr1 + . . .+ λrn.
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In the free case the methods in [50] cannot work. In addition, a surprise appears at
r = 3, where the variable in question is not self-adjoint:

Tr(u3) =
∑
ijk

uijujkuki 6=
∑
ijk

ukiujkuij = Tr(u3)∗.

We refer to our paper [24] for the proof for S+
n , which applies as well to Sn.

Question 2.13. Is there a notion of eigenvalues for the quantum group S+
n , which is

compatible with the above results?

In other words, we would like to have a free analogue of the n eigenvalue functions
λ1 ≤ . . . ≤ λn, making the formulae in Theorem 2.12 work. As observed in [24], such
eigenvalue functions can be constructed for certain related quantum groups O∗n, H∗n.

The main conceptual result regarding Sn, S+
n concerns their action on random vari-

ables. An action of S = (Sn) or S+ = (S+
n ) on a sequence of random variables x1, x2, . . .

is a coaction on the generated algebra, leaving invariant the joint distribution.

Theorem 2.14. A sequence of random variables x1, x2, . . . is invariant iff :

(1) S case: xi are independent and i.d. with respect to the tail algebra.
(2) S+ case: xi are free and i.d. with respect to the tail algebra.

Here the first result is the classical de Finetti theorem, and the second result is the
free de Finetti theorem, due to Köstler–Speicher [64]. A unified proof was given in [25].

3. Actions on finite spaces. We have seen in the previous section that the quantum
groups S+

n are understood quite well. In this section we extend some of these results to
subgroups G ⊂ S+

n .
Consider a finite graph X, with edges colored by real numbers. The basic examples

are the finite metric spaces, and the usual (monocolored) graphs. If we label the vertices
1, . . . , n, the adjacency matrix becomes a real symmetric matrix, d ∈Mn(R).

Definition 3.1. G+(X) is the biggest quantum group acting on X, in the sense that
C(G+(X)) is the quotient of C(S+

n ) by the relations coming from du = ud.

As a first remark, the classical version of G+(X) is the usual symmetry group G(X).
Indeed, with uij = χ(σ |σ(j) = i), the relation du = ud reads:

dij = dσ(i)σ(j).

Let us look now more carefully at the relation du = ud. Since d is a real symmetric
matrix, we can consider its spectral decomposition:

d =
∑
λ

λ · Pλ.

Also, for any r ∈ R we can consider the matrix dr given by drij = 1 if dij = r, and
drij = 0 if not. We obtain in this way the “color decomposition” of d:

d =
∑
r

r · dr.

Here, as in the case of the spectral decomposition, the sum is over nonzero terms.
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Proposition 3.2. For a quantum group G ⊂ S+
n , the following are equivalent :

(1) We have du = ud, i.e. G ⊂ G+(X).
(2) We have Pλu = uPλ, for any λ ∈ R.
(3) We have dru = udr, for any r ∈ R.

Here the equivalence between (1) and (2) follows from definitions, and the equivalence
with (3) follows by doing a bit of matrix analysis. These results are very useful, because
they can be further combined: for instance u must commute with any color component P rλ
of any spectral projection Pλ, and so on. This method of “spectral-color” decomposition
proves to be quite efficient for the computation of G+(X). See [6].

Observe that the equivalence between (1) and (3) can be reformulated as follows,
where Xr denotes the usual (monocolored) graph having adjacency matrix dr:

G+(X) =
⋂
r

G+(Xr).

More generally now, let X be a finite noncommutative set, endowed with a self-adjoint
operator d : L2(X)→ L2(X), where the L2 space is with respect to the counting measure.

Definition 3.3. G+(X) is the biggest quantum group acting on X, in the sense that
C(G+(X)) is the quotient of C(S+(Xset)) by the relations coming from du = ud.

Here we have used the quantum groups S+ appearing in Theorem 2.7 above. This
definition is of course very general, and covers for instance all the 0-dimensional spectral
triples in the sense of Connes [45]. We will be back to these examples, a bit later.

Let ∗ be the free product of discrete quantum groups [83]:

C∗(Γ ∗ Λ) = C∗(Γ) ∗ C∗(Λ).

We denote by ∗̂ the dual operation, at the level of compact quantum groups:

C(G ∗̂ H) = C(G) ∗ C(H).

Finally, let us denote by X1 t . . . tXk a disconnected union of graphs.

Proposition 3.4. We have G+(X1) ∗̂ . . . ∗̂ G+(Xk) ⊂ G+(X1 t . . . tXk).

This follows from definitions, and might seem to be yet another triviality. However,
let us work out the simplest example. For the graph formed by two segments we get:

Z2 ∗̂ Z2 ⊂ G+(| |).

The dual free product on the left is by definition the dual of Z2 ∗ Z2 = D∞. As for
the quantum group of the right, we prefer to view it as the quantum symmetry group of
the complement of X = | |, which is Xc = �. Thus, the above inclusion reads:

D̂∞ ⊂ G+(�).

And this reminds of course the inclusion D̂∞ ⊂ S+
4 from Proposition 1.7 above, which

was a bit the start of everything! More precisely, we have reached now the following quite
conceptual conclusion: “S+

4 is infinite simply because D̂∞ acts on the square”.
Consider now an arbitrary union kX = X t . . . tX (k terms).

Proposition 3.5. If X is connected then G+(kX) = G+(X) o∗ S+
k .
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Here we use the free wreath product operation, constructed by Bichon in [36]:

C(G o∗ H) = (C(G)∗k ∗ C(H))/〈[u(a)ij , vab] = 0〉.

More generally now, let X,Y be finite graphs, and consider the graphs X ∗ Y , X ◦ Y
and X × Y having as vertex set Xset × Yset, and with the following edges:

(i, α) ∼ (j, β) ⇐⇒


α ∼ β or α = β, i ∼ j (∗ case)

i ∼ j, α ∼ β (◦ case)

i = j, α ∼ β or i ∼ j, α = β (× case).

In terms of the adjacency matrix the formulae are as follows, where I denotes the
square matrix filled with 1’s:

d =


dX ⊗ 1 + I⊗ dY (∗ case)

dX ⊗ dY (◦ case)

dX ⊗ 1 + 1⊗ dY (× case).

Let us first look at ∗. This product is obtained by putting a copy of X at each vertex
of Y , so in particular we have kX = X ∗ Yk, where Yk is the k-point graph.

Theorem 3.6. Let X,Y be regular graphs, with spectra {λi}, {µk}. If X is connected and

{λ1 − λi | i 6= 1} ∩ {−nµk} = ∅,

where n and λ1 are the order and valence of X, then G+(X ∗ Y ) = G+(X) o∗ G+(Y ).

This result, generalizing Proposition 3.5, was proved in [8]. Now let us look at ◦,×.
Under suitable assumptions on the eigenvalues of X,Y , we will get the spectral decom-
position of d in terms of that of dX , dY . If we assume in addition that X,Y are regular
and connected, the 1-dimensional eigenspaces coming from the valence can be used for
“splitting” the action of G+, and we have the following result, once again from [8]:

Theorem 3.7. Let X,Y be connected regular graphs, with spectra {λi}, {µk}.

(1) If {λi/λj} ∩ {µk/µl} = {1} then G+(X ◦ Y ) = G+(X)×G+(Y ).
(2) If {λi − λj} ∩ {µk − µl} = {0} then G+(X × Y ) = G+(X)×G+(Y ).

With these results in hand, it is tempting to try to compute G+(X) for all vertex-
transitive graphs of small order. Here is the result found in [8], up to order 9:

Theorem 3.8. The vertex-transitive graphs of order ≤ 9, modulo complementation, and
their quantum symmetry groups, are as follows:

(1) Unions of simplices rKn, having G+ = S+
n o∗ S+

r .
(2) Cycles Cn, n 6= 4, and the cycles with chords C2

8 , C
3
9 , having G+ = Dn.

(3) The cube, having G+ = Z2 × S+
4 , and K3 ×K3, having G+ = S3 o Z2.

(4) The two squares, 2C4, having G+ = (Z2 o∗ Z2) o∗ Z2.

We actually have a longer result in [8], going up to order 11, but not covering the
Petersen graph. This well-known graph, having 10 vertices, consists of a pentagon with
a pentagram inside, with 5 spokes. Our main question, subsequent to [8], is of course:

Problem 3.9. What is the quantum symmetry group of the Petersen graph?
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Regarding now the proof of Theorem 3.8, this basically follows from Theorem 3.6
and Theorem 3.7, and from a number of “no quantum symmetry” results, coming from
Theorem 3.6, from Theorem 3.7, or (e.g. for K3×K3) from a long algebraic computation
based on Proposition 3.2. The subject is quite mysterious, for instance because:

G(Cn) = G+(Cn) ⇐⇒ n 6= 4.

Indeed, the =⇒ assertion follows from the discussion after Proposition 3.4. As for
the converse, this follows from Proposition 3.2, after a brief computation. See [6].

There is an obvious link here with the following conjecture of Goswami [56]:

Conjecture 3.10. A compact connected Riemannian manifold cannot have genuine
quantum isometries.

More precisely, Goswami associated in [55] a quantum isometry group G+(M) to any
noncommutative compact Riemannian manifold M in the sense of Connes [45]. In the
0-dimensional case the idea is basically the one in Definition 3.3 above, and in the general
case the idea is similar, but more technical, with d being the Laplacian of M .

Goswami was mostly interested in genuine noncommutative manifolds, like the Stan-
dard Model one, whose quantum isometries have several potential applications [33]. How-
ever, his construction makes sense for any manifold, and leads to the above conjecture.

Back to graphs now, a very interesting example is the n-cube. The symmetry theory
of this graph, heavily investigated in [11], can be summarized as follows:

Theorem 3.11. Let X = [−1, 1]n be the cube in Rn, regarded as graph, and let Y be the
intersection of X with the n coordinate axes, regarded as a graph formed by n segments.

(1) G(X) = G(Y ) = Z2 o Sn.
(2) G+(X) = O−1n .
(3) G+(Y ) = Z2 o∗ S+

n .

In this statement the group in (1) is the hyperoctahedral group Hn. The quantum
group in (2) is a Drinfeld–Jimbo twist at q = −1. This twist has the same fusion rules
as On, so the operation Hn → O−1n is not a “liberation”, in the sense of Theorem 2.10.

As for the quantum group in (3), which obviously looks as the good generalization
of Hn, this is called the hyperoctahedral quantum group, and is denoted by H+

n .
This fact that Hn → H+

n is indeed a “liberation” in the probabilistic sense comes from
the following result, once again from [11]:

Theorem 3.12. The asymptotic laws of truncated characters χt =
∑[tn]
i=1 uii are:

(1) For Hn: the Bessel law, bt = law(α− β), where α, β ∼ pt/2 are independent.
(2) For H+

n : the free Bessel law, βt = law(α− β), where α, β ∼ πt/2 are free.

Observe the similarity with Theorem 2.10. The terminology comes from the fact that
the density of bt is given by a Bessel function of the first kind:

bt = e−t
∞∑

k=−∞

( ∞∑
p=0

(t/2)|k|+2p

(|k|+ p)!p!

)
δk.
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As for the measure βt, this has remarkable properties as well. For instance the odd
moments vanish, and the even moments involve the Fuss–Narayana numbers:∫

x2k dβt(x) =

k∑
b=1

1

b

(
k − 1

b− 1

)(
2k

b− 1

)
tb.

At the level of diagrams, the partitions as in Theorem 2.3 are those having even blocks,
and the algebra as in Theorem 2.7 is the Fuss–Catalan algebra of Bisch and Jones [39].

These results were subsequently explored and generalized to the case of the complex
reflection groups Hs

n = Zs o Sn and their free versions Hs+
n = Zs o∗ S+

n . See [7], [30].
A general diagrammatic formalism, covering the quantum groups Sn, S+

n , Hn, H
+
n , as

well as many other examples, such as the orthogonal group On and its free analogue O+
n

constructed by Wang in [83], was developed in [29], then in [23], [24], [25]:

Definition 3.13. A compact quantum group Sn ⊂ G ⊂ O+
n is called easy if

Hom(u⊗k, u⊗l) = span(Tπ |π ∈ D(k, l))

for certain sets of partitions D(k, l) ⊂ P (k, l).

This special class of quantum groups, very useful for unifying certain combinatorial
or probabilistic results, was further studied in [46], [47], and in [73].

A promising direction here comes from noncommutative geometry. First, the quantum
isometry groups of 0-dimensional manifolds, generalizing the graph construction, were
investigated in [34]. In the higher dimensional case, a lot of interesting examples come
from discrete group duals [35]. The recent results in [28] show that some of these latter
quantum isometry groups are “super-easy”, in the sense that they appear as above, but
with the representation π → Tπ altered by an involution J : Cn → Cn.

Back now to S+
n , the free hypergeometric law of parameters (n,m,N) is the law of

X(n,m,N) =

n∑
i=1

m∑
j=1

uij ∈ C(S+
N ).

The terminology comes from the fact that the variable X ′(n,m,N), defined as above,
but over the algebra C(SN ), follows a hypergeometric law of parameters (n,m,N).

Theorem 3.14. The moments of X(n, n, n2) are given by∫
X(n, n, n2)k dx =

nk

(n+ 1)k
· q + 1

q − 1
· 1

k + 1

k+1∑
r=−k−1

(−1)r
(

2k + 2

k + r + 1

)
r

1 + qr
,

where q ∈ [−1, 0) is given by q + q−1 = −n.

The proof of this result, from [14], and heavily based on [21], first relies on a purely
algebraic twisting result, followed by a monoidal equivalence

(S+
n2)τ = PO+

n ∼ SO
q
3.

The remaining computation can be done by using a number of delicate manipulations
involving Askey–Wilson polynomials [3], and leads to the above formula.

These computations are of great interest, for instance in connection with the Atiyah
conjecture for quantum groups [43], and with the free spheres introduced in [26].



26 T. BANICA

We would like to end this section with a key algebraic question:

Problem 3.15. Is the inclusion Sn ⊂ S+
n maximal?

The answer here is yes at n = 1, 2, 3, and also yes at n = 4, due to the results in [9].
It is also yes in the “easy” case, as shown in [23]. There are some similarities here with a
recent result in [13], stating that a certain related inclusion On ⊂ O∗n is maximal.

4. Hadamard matrices. A complex Hadamard matrix is a matrix H ∈Mn(C) whose
entries are on the unit circle, |Hij | = 1, and whose rows are pairwise orthogonal.

It follows from definitions that the columns of H are pairwise orthogonal as well.
The link with the quantum permutation groups is immediate. Let H1, . . . ,Hn be the

rows of H, regarded as invertible elements of the algebra Cn.

Proposition 4.1. For an Hadamard matrix H ∈Mn(C), the rank one projections

Pij = Proj(Hi/Hj)

form a magic unitary matrix P ∈Mn(A), where A = Mn(C).

Indeed, the orthogonality condition on the rows of P follows from the fact that the
corresponding vectors form an orthogonal basis of Cn:〈Hi

Hj
,
Hi

Hk

〉
=
∑
r

H̄jrHkr = δjk.

As for the orthogonality condition on the columns, this follows from a similar com-
putation. According now to Definition 1.4 above, we have:

Proposition 4.2. Associated to any Hadamard matrix H ∈Mn(C) is the morphism

πH : C(S+
n )→Mn(C)

given by uij → Proj(Hi/Hj), where H1, . . . ,Hn are the rows of H.

We will be back to this morphism in Section 5 below. The idea there will be that
associated to πH is a quantum group G ⊂ S+

n , describing the “symmetries” of H.
For the moment, let us try to understand what the examples are. First, we have the

Fourier matrix, based on the root of unity w = e2πi/n:

Fn =


1 1 1 . . . 1

1 w w2 . . . wn−1

. . . . . . . . . . . . . . .

1 wn−1 w2(n−1) . . . w(n−1)2

 .

This matrix is the matrix of the Fourier transform over Zn. There are many other
examples of Hadamard matrices, usually coming from finite groups, or other discrete
structures. See [76]. An interesting observation, due to Popa, is that a unitary U ∈ Un
satisfies ∆ ⊥ U∆U∗ if and only if H =

√
n · U is Hadamard. See [72].

In order to present now some classification results, we use the following definitions:

Definition 4.3. Let H,K be two complex Hadamard matrices.

(1) H is called dephased if its first row and column consist only of 1’s.
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(2) H,K are called equivalent if one can pass from one to the other by permuting the
rows or columns, or by multiplying them by complex numbers of modulus 1.

Observe that any complex Hadamard matrix can be supposed to be in dephased form,
up to the above equivalence relation. With a few exceptions, we will always do so.

At n = 2, 3 the Fourier matrix is the only one, up to equivalence. At n = 4 we have
the following family, depending on a parameter on the unit circle, q ∈ T:

F q4 =


1 1 1 1

1 −1 q −q
1 1 −1 −1

1 −1 −q q

 .

Observe that at q = 1 we have F q4 = F2 ⊗ F2. Observe also that at q = −1 we have
F q4 ' F2 ⊗ F2, and that at q = ±i we have F q4 ' F4. We will come back a bit later to
these observations, with a discussion regarding the deformations of Fn.

The following remarkable result is due to Haagerup [57].

Theorem 4.4. The only Hadamard matrices at n ≤ 5 are F2, F3, F
q
4 , F5.

At n = 6 we have several deformations of F6 = F2 ⊗ F3 = F3 ⊗ F2. These matrices
appear as particular cases of the following general construction, due to Diţă [51]:

Definition 4.5. The Diţă deformation of a tensor product H ⊗ K ∈ Mnm(C), with
matrix of parameters L ∈Mm×n(T), is H ⊗L K = (HijLajKab)ia,jb.

As a first observation, by using the above equivalence relation, we can always assume
that L is “dephased”, in the sense that its first row and column consist of 1’s.

The basic example comes from deforming the tensor product F2⊗F2, with the matrix
of parameters L =

(
1 1
1 q

)
. We obtain in this way the above matrix F q4 :

F q4 =

(
1 1

1 −1

)
⊗(

1 1
1 q

) (1 1

1 −1

)
.

As already mentioned, this matrix can be thought of as being a “deformation” of F4,
because at q = ±i we have F q4 ' F4. More generally, we have:

Proposition 4.6. Fnm = Fn ⊗L Fm, where L = (w(a−1)(j−1))aj with w = e2πi/nm.

Let us go back now to the enumeration of Hadamard matrices of small order. At n = 6

we have the (dephased) Diţă deformations of F2 ⊗ F3 and F3 ⊗ F2, given by:

F
(rs)
6 = F2 ⊗(

1 1
1 r
1 s

) F3 , F
(rs)
6 = F3 ⊗(1 1 1

1 r s

) F2.

Here r, s are two parameters on the unit circle, r, s ∈ T. In matrix form:

F
(rs)
6 =



1 1 1 1 1 1

1 j j2 r jr j2r

1 j2 j s j2s js

1 1 1 −1 −1 −1

1 j j2 −r −jr −j2r
1 j2 j −s −j2s −js


, F

(rs)
6 =



1 1 1 1 1 1

1 −1 r −r s −s
1 1 j j j2 j2

1 −1 jr −jr j2s −j2s
1 1 j2 j2 j j

1 −1 j2r −j2r js −js


.
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There are many other examples at n = 6, and we will restrict attention to a certain
special class of matrices, defined as follows:

Definition 4.7. A complex Hadamard matrix is called regular if all the scalar products
between distinct rows decompose as sums of cycles.

Here by cycle we mean a sum of p-roots of unity, rotated by a scalar λ ∈ T:

C =

p∑
k=1

λe2kπi/p.

Besides the above matrices, we have the Haagerup and Tao matrices [57], [77]:

Hq =



1 1 1 1 1 1

1 −1 i i −i −i
1 i −1 −i q −q
1 i −i −1 −q q

1 −i q̄ −q̄ i −1

1 −i −q̄ q̄ −1 i


, T =



1 1 1 1 1 1

1 1 j j j2 j2

1 j 1 j2 j2 j

1 j j2 1 j j2

1 j2 j2 j 1 j

1 j2 j j2 j 1


.

The following result was proved in [16]:

Theorem 4.8. The only regular matrices at n = 6 are F (rs)
6 , F

(rs)
6 , Hq, T .

In the non-regular case, the general classification problem is open at n = 6. See [75].
One interesting example at n = 6, with circulant structure, is the Björck–Fröberg

matrix [41], built by using one of the two roots of a2 − (1−
√

3)a+ 1 = 0:

BF =



1 ia −a −i −ā iā

iā 1 ia −a −i −ā
−ā iā 1 ia −a −i
−i −ā iā 1 ia −a
−a −i −ā iā 1 ia

ia −a −i −ā iā 1


.

In a remarkable paper [31], Beauchamp and Nicoara classified all self-adjoint Hada-
mard matrices at n = 6. Their proof, and the proof of Theorem 4.8 above too, is heavily
combinatorial. At n = 7 we have the following matrix, discovered by Petrescu [71]:

P q =



1 1 1 1 1 1 1

1 qw qw4 w5 w3 w3 w

1 qw4 qw w3 w5 w3 w

1 w5 w3 q̄w q̄w4 w w3

1 w3 w5 q̄w4 q̄w w w3

1 w3 w3 w w w4 w5

1 w w w3 w3 w5 w4


.

Here w = e2πi/6. This matrix, a non-trivial deformation of prime order, was found by
using a computer program, and came as a big surprise at the time of [71].

We can see from the above examples that, at least in the regular case, the roots of
unity play a key role in the construction of complex Hadamard matrices.
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Definition 4.9. The level of a complex Hadamard matrix H ∈ Mn(C) is the smallest
number l ∈ {2, 3, . . . ,∞} such that all the entries of H are l-roots of unity.

Here we agree that a root of unity of order l = ∞ is simply an element on the unit
circle. It is convenient to introduce as well the following notions:

Definition 4.10. The Butson class Hn(l) consists of Hadamard matrices in Mn(C)

having as entries the l-th roots of unity. In particular:

(1) Hn(2) is the set of all n× n real Hadamard matrices.
(2) Hn(l) is the set of n× n Hadamard matrices of level l′|l.
(3) Hn(∞) is the set of all n× n complex Hadamard matrices.

As a first example, let H ∈ Hn(2), with n ≥ 3. By using the equivalence relation, we
may assume that the first three rows look blockwise as follows:

H =


1 1 1 1

1 1 −1 −1

1 −1 1 −1

. . . . . . . . . . . .

 .

Now let a, b, c, d be the lengths of the blocks in the third row. The orthogonality
relations between the first three rows give a+ b = c+ d, a+ c = b+ d and a+ d = b+ c,
so we have a = b = c = d, and we can conclude that 4|n.

The Hadamard conjecture states that the converse is true:

Conjecture 4.11 (Hadamard conjecture). If 4|n then Hn(2) 6= ∅.

This question, going back to the 19th century, is reputed to be of remarkable difficulty.
The numeric verification so far goes up to n = 664. See [63].

This conjecture has as well an analytic interpretation, that we would like now to
explain. Pick any U ∈ Un and apply the Cauchy–Schwarz inequality to its entries:

n∑
i,j=1

1 · |Uij | ≤
( n∑
i,j=1

12
)1/2( n∑

i,j=1

|Uij |2
)1/2

.

We recognize at left the 1-norm of U . The right term being n
√
n, we get

‖U‖1 ≤ n
√
n.

The point now is that the equality holds when the numbers |Uij | are proportional,
and since the sum of squares of these numbers is n2, we conclude that we have equality
if and only if |Uij | = 1/

√
n, i.e. if and only if H =

√
n · U is Hadamard. Thus we have:

Proposition 4.12. For U ∈ Un we have ‖U‖1 ≤ n
√
n, with equality if and only if

U = H/
√
n, for a certain complex Hadamard matrix H.

Now since the maximum of any positive function, and in particular of U → ‖U‖1, can
be obtained from moments, this suggests considering the following type of integral:

IG =
(∫

G

‖U‖k1 dU
)1/k

.
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More precisely, the Hadamard conjecture can be restated as follows:

4|n =⇒ lim
k→∞

IOn = n
√
n.

This observation was made in [19], and a number of related results were obtained
there. For instance, it was shown that the Hadamard conjecture is equivalent to

4|n =⇒ lim
k→∞

IOn
≥ n
√
n− 1

n
√
n
.

This estimate is almost optimal, so the Hadamard conjecture asks for the computation
of IOn

with very high accuracy. In the general context of On integration, where most
results are in the n→∞ limit, this kind of problematics is quite new. See [20].

We have the following theoretical questions, regarding the above integrals:

Problem 4.13. Let IG = (
∫
G
‖U‖k1 dU)1/k.

(1) Does the first-order term of IOn count |Hn(2)|?
(2) Is it possible to generalize this to any l <∞?
(3) What does the first-order term of IUn count?

These questions are of course very vague, because we do not know what “first-order
term” should mean. As an answer to the third question, we would expect of course some
very simple numeric invariant of the complex Hadamard matrix manifold Hn(∞).

Let us go back now to the arbitrary sets of Butson matrices, Hn(l) with l <∞.

Theorem 4.14. We have the following list of obstructions:

(1) Lam–Leung: If Hn(l) 6= ∅ and l = pa11 . . . pass then n ∈ p1N + . . .+ psN.
(2) de Launey: If Hn(l) 6= ∅ then there is d ∈ Z[e2πi/l] such that |d|2 = nn.
(3) Sylvester: If Hn(2) 6= ∅ then n = 2 or 4|n.
(4) Haagerup: If H5(l) 6= ∅ then 5|l.

In this statement (1) follows from [66], (2), where d = detH, was studied in [67],
(3) was already explained, and (4) comes from Theorem 4.4 above.

The proof of the Sylvester obstruction, presented above, can be adapted for higher
values of l, and leads to the following supplementary “Sylvester obstructions”:

(1) If Hn(l) 6= ∅ and n = p+ 2 with p ≥ 3 prime, then l 6= 2pb.
(2) If Hn(l) 6= ∅ and n = 2q with p > q ≥ 3 primes, then l 6= 2apb.

These results were proved in [16]. The point now is that, with these results in hand,
the case n ≤ 10, l ≤ 14 is fully covered. We have the following table from [16], describing
for each n, l either an explicit matrix in Hn(l), or an obstruction which applies:
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nQQ
l 2 3 4 5 6 7 8 9 10 11 12 13 14
2 F2 ◦ F2 ◦ F2 ◦ F2 ◦ F2 ◦ F2 ◦ F2

3 ◦ F3 ◦ ◦ F3 ◦ ◦ F3 ◦ ◦ F3 ◦ ◦
4 F22 ◦ F22 ◦ F22 ◦ F22 ◦ F22 ◦ F22 ◦ F22

5 ◦ ◦ ◦ F5 ◦l ◦ ◦ ◦ F5 ◦ ◦h ◦ ◦
6 ◦s T H1 ◦ T ◦ H1 T ◦s ◦ T ◦ ◦s
7 ◦ ◦ ◦ ◦ P 1 F7 ◦ ◦ ◦s ◦ P 1 ◦ F7

8 F222 ◦ F222 ◦ F222 ◦ F222 ◦ F222 ◦ F222 ◦ F222

9 ◦ F33 ◦ ◦ F33 ◦ ◦ F33 W ◦ F33 ◦ ◦s
10 ◦s ◦ X Y Z ◦ X ◦ F10 ◦ X ◦ ◦

Here ◦, ◦l, ◦s, ◦h denote the various obstructions in Theorem 4.14 and in the discussion
afterwards, for k1, . . . , ks ∈ {2, 3} we use the notation Fk1...ks = Fk1 ⊗ . . . ⊗ Fks , and
X,Y, Z,W are matrices constructed by a computer, and presented in [16].

Question 4.15. What happens at n = 11? And, what happens at l = 15?

We refer here to [16] for technical details.
Finally, let us mention the following key conjecture, from [16].

Conjecture 4.16. Any Butson matrix is regular.

One difficulty in approaching this conjecture lies in the fact that the vanishing sums
of roots of unity have a quite complicated combinatorics, cf. [66].

5. The correspondence. We have seen in the previous section that the complex Hada-
mard matrices, while strongly related to the quantum permutation groups via tha magic
condition, seem rather to belong to another planet. There is no obvious relation between
the substantial mass of combinatorics presented in Sections 1–3 above, and the substantial
mass of combinatorics presented in Section 4 above. So, the following statement might
seem a bit strange:

Fact 5.1. The symmetries of a complex Hadamard matrix H ∈ Mn(C) are described
by a quantum permutation group G ⊂ S+

n . Conversely, each quantum permutation group
G ⊂ S+

n is the symmetry group of an Hadamard-type object H ∈ M̃n(C).

In this section we will try to explain why this fact is true. The fact that the known
combinatorics of quantum permutation groups remains quite far from the known com-
binatorics of complex Hadamard matrices will be discussed in the next section. We will
propose there some conjectural answers to the question, making the above fact a poten-
tially useful tool, in the study of both quantum permutations and Hadamard matrices.

Let us begin with the notion of Hopf image, recently axiomatized in [10]:

Definition 5.2. The Hopf image of A by a representation π : A→Mn(C) is the smallest
Hopf C∗-algebra A′ producing a factorization π : A→ A′ →Mn(C).

In order to understand this notion, let A = C∗(Γ). Then π must come from a unitary
group representation π̃ : Γ→ Un, and we have A′ = C∗(Λ), where Λ = π̃(Γ).
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In this computation Γ was of course a usual discrete group. In the general case, i.e.
when Γ is a discrete quantum group, it is only known that the Hopf image exists, and is
unique [10]. But, of course, the discrete quantum group point of view is very useful.

Here are a few more definitions from [10], based on the same philosophy:

Definition 5.3. Let A be a Hopf C∗-algebra.

(1) A representation π : A→Mn(C) is called inner faithful if A = A′.
(2) A is called inner linear if it has an inner faithful representation.

Observe that with A = C∗(Γ), and with the above notation, π is inner faithful if and
only if π̃ is faithful. Also, A is inner linear if and only if Γ is linear.

These notions, coming from [4], [27], [16], were axiomatized and studied in [10]. A num-
ber of key examples were later on studied by Andruskiewitsch and Bichon in [2].

Some useful supplementary tools, of functional analytic nature, are expected to come
from the idempotent state theory of Franz and Skalski [54].

We can apply these constructions to the representation πH in Proposition 4.2:

Definition 5.4. Associated to any complex Hadamard matrix H ∈Mn(C) is the quan-
tum permutation group G ⊂ S+

n given by the fact that C(G) is the Hopf image of πH .

In other words, if we go back to the definition of both πH and of the Hopf image,
C(G) is the smallest Hopf C∗-algebra producing the following factorization:

C(S+
n )→ C(G)→Mn(C)

uij → Proj(Hi/Hj).

Equivalently, we can say that this representation πH should correspond to a unitary
quantum group representation π̃H : Ŝ+

n → U+
n , and G is simply given by

Ĝ = π̃H(Ŝ+
n ).

This latter description of the correspondence H → G, while being quite heuristic,
starts to justify the first claim in Fact 5.1, namely that “G encodes the symmetries of H”.

Proposition 5.5. The construction H → G has the following properties:

(1) For H = Fn we obtain G = Zn.
(2) For H = H ′ ⊗H ′′ we obtain G = G′ ×G′′.
The first assertion follows indeed from the definition of the Hopf image, because

the representation C(S+
n ) → Mn(C) associated to Fn is circulant, and hence factorizes

through C(Zn). Now since this factorization cannot be further factorized, we obtain
G = Zn.

As for the second assertion, this follows as well from definitions. See [27], [16].
More generally, we have the following result, once again from [27], [16]:

Theorem 5.6. For an Hadamard matrix H, the following are equivalent :

(1) G is a classical group.
(2) Ĝ is a classical group.
(3) G = Zn1

× . . .× Znk
, for some numbers n1, . . . , nk.

(4) H = Fn1
⊗ . . .⊗ Fnk

, for some numbers n1, . . . , nk.
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We recall now from Definition 4.5 above that the Diţă deformation of a tensor product
H ⊗K ∈Mnm(C), with matrix of parameters L ∈Mm×n(T), is

H ⊗L K = (HijLajKab)ia,jb.

We have already seen in Section 4 that this notion is a key one. For instance Theorem
4.4 tells us that at n = 4 the only Hadamard matrices are the Diţă deformations of F2⊗F2,
and Theorem 4.8 tells us that the only regular matrices at n = 6 are the Haagerup and
Tao matrices Hq, T , and the Diţă deformations of F6 = F2 ⊗ F3 = F3 ⊗ F2.

The symmetries of H ⊗LK, even for very simple values of H,K, vary a lot, and in a
very subtle way, with the matrix of parameters L. The only general result here is:

Theorem 5.7. We have G(H ⊗L K) ⊂ G(K) o∗ G(H).

This result, from [16], marks the end of the algebraic theory. We will come back in
Section 6 below with a conjectural discussion of the problem.

For the moment, let us just record a difficult question:

Problem 5.8. What is G(Fn ⊗L Fm)?

Here are a few more questions, for the most of algebraic nature:

Problem 5.9. Let H be a complex Hadamard matrix.

(1) When is G finite?
(2) When is Ĝ amenable?
(3) Can we have G = S+

n ?

All these questions look equally very difficult. Question (3) is due to Jones [61]. Let
us discuss now the representation theory of G. The result here, from [16], is as follows:

Theorem 5.10. We have T ∈ Hom(u⊗k, u⊗l) if and only if T ◦Gk+2 = Gl+2T ◦, where:

(1) T ◦ = id⊗T ⊗ id.
(2) Gjbia =

∑n
k=1HikH̄jkH̄akHbk.

(3) Gki1...ik,j1...jk = G
jkjk−1

ikik−1
. . . Gj2j1i2i1

.

The proof in [16] uses a quite simple Tannakian argument, further developed in [10],
stating that when we have an inner faithful representation uij → Pij , then

Hom(u⊗k, u⊗l) = Hom(P⊗k, P⊗l).

Here the spaces on the right are defined exactly as those on the left, namely:

Hom(P⊗k, P⊗l) = {T : (Cn)⊗k → (Cn)⊗l |TP⊗k = P⊗lT}.

This result makes the link with the planar algebra approach of Jones [61]:

Theorem 5.11. Let H be a complex Hadamard matrix.

(1) The planar algebra associated to H is given by Pk = Fix(u⊗k).
(2) The quantum invariants of H are the moments of χ = Tr(u).
(3) The Poincaré series of H is the Stieltjes transform of law(χ).
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Indeed, (1) follows Theorem 5.10 at k = 0, because the description there of the space
Fix(u⊗l) coincides with the description in [61] of the space Pl. As for (2,3), these are
simply quantum group translations of Jones’ notions in [61], namely:

ck = dim(Pk), f(z) =

∞∑
k=0

ckz
k.

More precisely, using the results of Woronowicz in [85], we get as claimed:

ck =

∫
G

χk, f(x) =

∫
G

1

1− zχ
.

Summarizing, the above results fully justify the first claim in Fact 5.1, namely that
“G is the symmetry group of H”. The story here can be actually made longer, by talking
about commuting squares [72], spin models [60] and subfactors [59]. See [4].

We should probably mention that, via the various algebraic results presented in the
beginning of this section, Theorem 5.11 allows one to recover most of what is known
about the Hadamard matrix subfactors, sometimes with some slight enhancements.

Let us go now to the second claim in Fact 5.1, namely that any quantum permutation
group G ⊂ S+

n is the symmetry group of an Hadamard-type object H ∈ M̃n(C). The
situation here is much more complicated, and we only have a categorical result so far:

Theorem 5.12. There is a Tannaka–Galois correspondence between quantum permuta-
tion groups G ⊂ S+

n and subalgebras of the spin planar algebra P ⊂ Qn. In addition:

(1) The quantum symmetry groups of generalized colored graphs correspond in this way
to the subalgebras of Qn generated by a 2-box.

(2) The quantum groups S+
n , H

+
n correspond in this way to the canonical copies of the

Temperley–Lieb and Fuss–Catalan algebras inside Qn.
(3) The quantum group associated to a complex Hadamard matrix H ∈ Mn(C) corre-

sponds in this way to the planar algebra associated to H.

The Tannaka–Galois correspondence was established in [6], the idea being that the
embedding P ⊂ Qn could be regarded as a “piece” of the usual Tannakian data, namely
“tensor category + Hilbert functor”. By Frobenius duality we can recover the rest of the
Tannakian data, and by using Woronowicz’s duality in [86] we obtain the result.

The assertion (1) was equally established in [6], the idea here being simply that the
condition d ∈ End(u) reads d ∈ P2, and hence P = 〈d〉. This result shows that our
classification program for graphs, presented in Section 3, can be regarded as part of the
Bisch–Jones classification program for planar algebras generated by a 2-box [40].

The assertion (2) for S+
n follows simply from functoriality: since S+

n is the biggest
quantum permutation group, it should correspond to the smallest planar subalgebra
of Qn, which is of course the Temperley–Lieb algebra TLn. Observe that we have here
yet another proof of Theorem 2.7, but this time, without any single computation!

As for the assertion (2) for H+
n , this follows from Theorem 3.12 above, or rather from

the diagrammatic comments following it. See [11]. The interest in this statement comes
of course in conjunction with Theorem 3.12, and with the various probabilistic formulae
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following it: all these formulae concern of course the Fuss–Catalan algebra of Bisch and
Jones [39], which was previously not known to have all these combinatorial aspects.

Finally, the assertion (3) follows from Theorem 5.11 above.
Let us go back now to the second claim in Fact 5.1. Given a quantum permutation

group G ⊂ S+
n , we would like to construct an object H ∈ M̃n(C) whose symmetry group

is G. This is of course a quite difficult task, and the above categorical result, or the purely
algebraic considerations in [16], are just a first step towards an answer.

We believe that the following question can push things here one step further:

Problem 5.13. What is the noncommutative geometry of a complex Hadamard matrix?

In other words, associated to any complex Hadamard matrix H ∈ Mn(C) we would
like to have a noncommutative manifold MH in the sense of Connes [45], modelled on
the noncommutative set Mn = Spec(Mn(C)), with the requirement G(H) = G+(M).

6. Matrix models. We have seen in the previous section that associated to any complex
Hadamard matrix H ∈ Mn(C) is a quantum permutation group G ⊂ S+

n , describing its
“symmetries”. The correspondence H → G appears to be fully satisfactory at the level of
simple examples, and is also compatible with the planar algebra approach of Jones [61].

The challenging problem is to relate the combinatorics of quantum permutation
groups, explained in Sections 1–3 above, to the combinatorics of complex Hadamard
matrices, explained in Section 4. Our answer here, largely conjectural, is as follows:

Conjecture 6.1. Consider the correspondence H → G.

(1) The known combinatorics of G and the known combinatorics of H are not different :
they are just different aspects of a single combinatorics.

(2) This single combinatorics appears when looking at the affine families {Hq | q ∈ Tr},
and at the corresponding quantum groups {Gq | q ∈ Tr}.

(3) The unifying theorem is a statement regarding matrix models for Gq, Hq, with the
parameter space being a certain subgroup of Tr, associated to q.

In other words, our claim is that the quantum permutation groups Gq = G(Hq) with
q ∈ Tr should behave a bit like the usual Drinfeld–Jimbo deformations [52], [58] in the
parameter range |q| = 1, with a rich combinatorics depending on the arithmetics of q.
And this combinatorics should correspond to the various combinatorial aspects of Hq,
i.e. to the Butson obstructions, and to the subtle behavior of the Poincaré series.

Our second claim is that a useful and effective tool for dealing with these difficult
questions in the notion of matrix model. The idea here, to be explained in detail later
on, is that under suitable assumptions we should have an explicit matrix model of type
C(Gq) ⊂ C(Kq)⊗Mn(C), where Kq ⊂ Tr is a certain abelian group associated to q.

Let us first explain the notion of affine family:

Definition 6.2. An affine family of complex Hadamard matrices is a familyHq ∈Mn(C),
depending analytically on a parameter q ∈ Tr. The family is called:

(1) Regular, if all matrices Hq are regular.
(2) Normalized, if l(H1) ≤ l(Hq), for any q ∈ Tr.
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(3) Arithmetic, if l(Hq) ≤ K · ord(q), for some K > 0.

We use here the notions of regularity and level, introduced in Section 4. As an example,
the Diţă deformations of Fourier matrices, as well as the Haagerup and Petrescu matrices
Hq, P q, form affine families which are regular, arithmetic, and often normalized.

With a bit of complex analysis, one can prove that any arithmetic regular family is
obtained in a similar way, by starting with a Butson matrix, and adding r parameters.

We recall from [69], [76] that the defect of a matrix H ∈Mn(C) counts the dimension
of the component of the Hadamard matrix manifold Hn(∞) passing through H.

Here is a first question that we have, regarding the affine families:

Problem 6.3. Is there a notion of regular defect of H ∈Mn(C), counting the dimension
of the maximal regular affine family passing through H?

In other words, we are asking here for an explicit formula for the regular defect, in the
spirit of those found in [76]. This question is probably quite difficult, due to its relation
with Conjecture 4.16 above, stating that any Butson matrix is regular.

Here is another question, probably more elementary:

Problem 6.4. Is it true that the maximal affine family passing through F = Fn1 ⊗ . . .⊗
Fnk

can be obtained via a sequence of Diţă deformations of F?

Normally this should follow from the various defect formulae in [76] and from the fact
that the Fourier matrix Fn1...nk

is in the orbit of F , cf. Proposition 4.6.
Let us discuss now the notion of matrix model:

Definition 6.5. A matrix model for a Hopf C∗-algebra A is a morphism of C∗-algebras
π : A → L∞(X) ⊗ B(H), where X is a probability space, and H is a finite-dimensional
Hilbert space, such that

∫
a = (E⊗ tr)π(a), for any a ∈ A.

At the level of examples, let us first look at the commutative case. Here the algebras
in question are those of the form A = C(G), where G is a usual compact group, and the
identity map id : C(G)→ L∞(G)⊗B(C) is of course a matrix model.

Let us record now a few general properties of the matrix models.

Proposition 6.6. Let π : A→ L∞(X)⊗B(H) be a matrix model.

(1) A is amenable in the discrete quantum group sense.
(2) π is injective, i.e. π(a) = 0 implies a = 0.

Indeed, let ϕ : A→ Ared the projection onto the reduced version, obtained by dividing
by the null ideal of the Haar functional. For any a ∈ A we have:

π(a) = 0 =⇒ (E⊗ tr)π(aa∗) = 0 =⇒
∫
aa∗ = 0 =⇒ ϕ(a) = 0.

Thus we have kerπ ⊂ kerϕ, so Ared appears as quotient of the image algebra π(A) ⊂
L∞(X)⊗B(H). With this observation in hand, we can prove now our assertions:

Indeed, (1) follows from the fact that L∞(X) ⊗ B(H) is of type I: by the general
theory, so must be its subalgebra π(A), and also its subquotient Ared. But now since Ared

is of type I, A follows to be amenable, i.e. we have A = Ared, and we are done.
As for (2), since A is amenable we have kerπ ⊂ kerϕ = C, and we are done.
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Definition 6.7. A linear model for a quantum permutation algebra C(S+
n ) → A is a

continuous matrix model π : A → C(K) ⊗Mn(C), where K ⊂ On is a compact group,
such that the magic entries Uxij ∈Mn(C) are linear functions of x ∈ K ⊂Mn(C).

In other words, we are making some key assumptions here, both taking into account
the number n of points on which A coacts: we assume that our probability space is a
compact group K ⊂ On, that our Hilbert space is H = Cn, and that the model itself
comes from a “linear construction” applied to the embedding K ⊂ B(H).

The basic example is the model for C(S+
4 ) found in [18]. Recall first that the elements

of SU2 are of the following form, with (x, y, z, t) ∈ S3:

m =

(
x+ iy z + it

−z + it x− iy

)
.

Observe that m = xc1 + yc2 + zc3 + tc4, where ci are the Pauli matrices:

c1 =

(
1 0

0 1

)
c2 =

(
i 0

0 −i

)
c3 =

(
0 1

−1 0

)
c4 =

(
0 i

i 0

)
.

Now SU2 acts by conjugation,m′(p) = mpm∗, on span(c1, c2, c3, c4) ' R4, and we have
m′ = diag(1,m′′), with m′′ ∈ SO3. Thus we have explicit morphisms SU2 → SO3 ⊂ O4.

Theorem 6.8. We have a linear model C(S+
4 ) ⊂ C(SO3) ⊗ M4(C) given by Uxij =

Proj(cixcj), where c1, c2, c3, c4 are the Pauli matrices.

This result was found in [18]. The first observation is that the formula of Uxij in the
statement defines a morphism of algebras C(S+

4 ) → C(SU2) ⊗M4(C). Now since Uxij
is invariant under x → −x, this shows that the target of our morphism is contained in
C(SO3)⊗M4(C). Thus we have a representation as in the statement.

As pointed out in [9], this representation is indeed a linear model in the sense of
Definition 6.7, when using the above-mentioned embedding SO3 ⊂ O4.

The proof in [18] of the equality
∫
a = (E⊗ tr)π(a) uses the Weingarten formula for

the evaluation of the left term, and an explicit computation for the right term.
We have now all ingredients for stating our main conjecture:

Conjecture 6.9. Let {Hq | q ∈ Tr} be an affine family of complex Hadamard matrices,
and consider the corresponding family of quantum permutation groups {Gq | q ∈ Tr}.
Then, under suitable assumptions, there exist compact abelian groups Kq ⊂ Tr such that :

(1) We have twisting results of type Gq = K−1q .
(2) We have linear models of type C(Gq) ⊂ C(Kq)⊗Mn(C).

Observe that at n = 4 we know from Theorem 5.7 above that we have an inclusion
G(F q4 ) ⊂ Z2 o∗ Z2 = O−12 , so the remaining problem is to find the correct group Kq, by
using Theorem 1.12 and Theorem 6.8. This will be explained in a forthcoming paper.

Conclusion. We have seen in this paper that the combinatorics of quantum permuta-
tion groups G ⊂ S+

n shares many common aspects with the combinatorics of complex
Hadamard matrices H ∈Mn(C). The quite substantial mass of work so far, on quantum
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groups and Hadamard matrices, goes however is slightly different directions. We can only
hope that a further study of the correspondence H → G would be fruitful on both sides.

One problem comes from the fact that a lot of work on G has gone into quite delicate
probabilistic aspects, whose matrix counterpart is for the moment unknown.

The other problem is that a lot of work on H has gone into the root of unity case,
and an abstract notion of quantum permutation groups at roots of unity is still lacking.

We believe that both problems can be solved, and the correspondence H → G can
be substantially upgraded, in the general context of the matrix model problematics. This
idea, which is largely conjectural for the moment, is explained in Section 6 above.

Finally, we hope that the present text was readable. The prequisites for a second
reading would be a certain familiarity with Hopf algebras and operator algebras [1], [70],
with compact quantum groups [85], [86], and with free probability theory [68], [81]. The
reader might also consult the previous survey article on the subject [12].
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