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Abstract. It is proven that every flat connection or covariant derivative ∇ on a left A-module M

(with respect to the universal differential calculus) induces a right A-module structure on M so

that ∇ is a bimodule connection on M or M is a flat differentiable bimodule. Similarly a flat

hom-connection on a right A-module M induces a compatible left A-action.

1. Introduction. The first aim of this note is to show that every flat connection or

covariant derivative ∇ on a left A-module M (with respect to the universal differential

calculus) induces a right A-module structure on M so that ∇ is a bimodule connection

on M [11, Section 3.6] or that M is a flat differentiable A-bimodule [2, Section 2.3]. The

idea is to use the correspondence between flat connections in noncommutative geometry

and comodules of corings [6, Section 29] and explore the recently discovered remarkable

fact that the category of comodules over the Sweedler coring is a braided (more pre-

cisely, symmetric) monoidal category [1]. Consequently, the category of modules with

flat covariant derivatives with respect to the universal calculus is a symmetric monoidal

category. This note is aimed at noncommutative geometers, hence we will try to make

it self-contained for this audience and will not use any of the coring-specific terminology

or techniques. The interested reader is encouraged to consult [3] for a noncommutative

geometry oriented review of the correspondence between comodules and flat connections.

The second aim of the note is to use the techniques developed in the case of connections

to the case of hom-connections [4], and to show that a right A-module M that admits

a flat hom-connection with respect to the universal differential algebra over A inherits

a natural left A-action that makes M an A-bimodule. In both cases the existence of a
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connection or a hom-connection yields the existence of a unital action commuting with

the original one. The flatness of a (hom-)connection is responsible for the associativity.

This last observation might be recognisable by the geometers familiar e.g. with Frobenius

manifolds; see [12, Chapter 1].

The existence of a connection (with respect to the universal differential algebra) on a

left A-module M has a purely algebraic meaning of projectivity: M admits a connection

if and only if it is a projective A-module [8, Corollary 8.2]. Similarly, the existence of a

hom-connection is tantamount with the injectivity of the module [5, Theorem 2.2]. Thus,

from the purely algebraic point of view, this note establishes the existence of a unital (but

not necessarily associative on one side) bimodule structure on any projective or injective

module. If such a module satisfies additional property corresponding to flatness of the

(hom-)connection, then the induced action is necessarily associative.

2. Every module with a flat connection with respect to the universal differ-

ential structure is a flat differentiable bimodule. Let A be an associative algebra

with identity over a field K. By a differential algebra over A we mean a non-negatively

graded differential graded algebra (Ω(A), d) with Ω0(A) = A. Any algebra A admits

the universal differential graded algebra (ΩA, d) over A defined as follows. One sets

ΩnA = Ω1A ⊗A Ω1A ⊗A . . . ⊗A Ω1A, i.e. ΩA := TA(Ω1A) is the tensor algebra of the

A-bimodule Ω1A = kerµ, where µ : A ⊗ A → A is the multiplication map (here and

below the unadorned tensor product is over K). In view of the natural identification

A ⊗A M ∼= A, a ⊗A m 7→ am, of left A-modules, ΩnA can be understood as the sub-

space of A⊗n+1 consisting of those tensors that vanish upon the multiplication of any

two adjacent factors, i.e.

ΩnA =
{∑

i

ai0 ⊗ . . .⊗ ain | ∀k < n,
∑
i

ai0 ⊗ . . .⊗ aik−1 ⊗ aikaik+1 ⊗ aik+2 ⊗ . . .⊗ ain = 0
}
.

The multiplication in ΩA is given by the restriction of the concatenation

(a0 ⊗ . . .⊗ an)(b0 ⊗ . . .⊗ bm) = a0 ⊗ . . . an−1 ⊗ anb0 ⊗ b1 ⊗ . . .⊗ bm.

The differential is defined as d : A→ Ω1A, a 7→ 1⊗ a− a⊗ 1 and extended to the whole

of ΩA by the graded Leibniz rule and d2 = 0, so that

d
(∑

i

ai0 ⊗ . . .⊗ ain
)

=

n+1∑
k=0

(−1)k
∑
i

ai0 ⊗ . . . aik−1 ⊗ 1⊗ aik ⊗ . . .⊗ ain.

This is the differential graded algebra we are interested in in this note.

Given a left A-module M , a connection or a covariant derivative with respect to

(Ω(A), d) is a K-linear map ∇ : M → Ω1(A) ⊗A M satisfying the Leibniz rule, for all

m ∈M and a ∈ A,

∇(am) = a∇(m) + da⊗A m; (2.1)

see e.g. [7]. The map ∇ can be extended to a map ∇ : Ωn(A) ⊗A M → Ωn+1(A) ⊗A M

by the graded version of the Leibniz rule (2.1). ∇ is said to be flat provided (the left

A-module map) ∇ ◦∇ : M → Ω2(A)⊗A M is identically zero.



A NOTE ON FLAT CONNECTIONS 45

In the case of the universal differential algebra over A one can use the standard

identification A⊗A⊗A M ∼= A⊗M to view a connection on M as a map

∇ : M → A⊗M, ∇(m) =
∑

m[A] ⊗m[M ].

The latter expression is a notation which proves useful in explicit calculations. The indices

are meant to remind the reader that the first leg is in A and the second in M , and the

summation sign indicates that we are not dealing with simple tensors but finite sums.

Exploring the definition of (ΩA, d) and using the above notation one finds that ∇ is a

connection provided ∑
m[A]m[M ] = 0, (2.2)∑

(am)[A] ⊗ (am)[M ] =
∑

am[A] ⊗m[M ] + 1⊗ am− a⊗m, (2.3)

for all a ∈ A, m ∈ M . The first equation encodes the fact that the image of ∇ is in

Ω1A⊗AM which can be identified with the kernel of the action A⊗M →M . The second

equation is the Leibniz rule. A connection ∇ is flat provided∑
1⊗m[A] ⊗m[M ] =

∑
m[A] ⊗m[M ][A] ⊗m[M ][M ] :=

∑
m[A] ⊗∇(m[M ]). (2.4)

Lemma 2.1. If a left A-module M has a flat connection ∇ with respect to (ΩA, d), then

M is an A-bimodule with the right action defined through the left action by

ma := am−
∑

m[A]am[M ], (2.5)

for all a ∈ A and m ∈M .

Proof. This is contained in [1] and can be revealed through the identification of modules

with a flat connection with (left) comodules of the particular coring known as the Sweedler

coring. However, as we do not assume that the reader is familiar with corings, we prove

this lemma directly.

The unitality of the right A-action, i.e. that m1 = 1 follows by the unitality of the left

A-action and equation (2.2). To prove the associativity, take any a, b ∈ A and m ∈ M
and compute

(ma)b = (am)b−
∑

(m[A]am[M ])b

= bam−
∑

(am)[A]b(am)[M ] −
∑

bm[A]am[M ]

+
∑

(m[A]am[M ])[A]b(m[A]am[M ])[M ]

= −
∑

am[A]bm[M ] + abm+
∑

m[A]am[M ][A]bm[M ][M ] −m[A]abm[M ]

= abm+
∑

am[A]bm[M ] = m(ab),

where the third equation follows by (2.3) and the fourth one by (2.4). Finally, in order to

check the compatibility between left and right A-actions, take any a, b ∈ A and m ∈M ,

and, using the Leibniz rule (2.2), compute

(am)b = bam−
∑

(am)[A]b(am)[M ]

= bam−
∑

am[A]bm[M ] − bam+ abm = a(mb),

as required.
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In view of Lemma 2.1 one can take the tensor product M ⊗A N of any two left

A-modules with flat connections.

Lemma 2.2. Given two left A-modules M , N with flat connections with respect to (ΩA, d),

the following map

cM,N : M ⊗A N → N ⊗A M, m⊗A n 7→ n⊗A m−
∑

m[A]n⊗A m
[M ], (2.6)

is an isomorphism of A-bimodules.

Proof. This again can be read off [1] and again we will give an explicit proof. As a priori

it is not clear that the map cM,N is well-defined it appears prudent to consider first the

lifting

c̃M,N : M ⊗N → N ⊗M, m⊗ n 7→ n⊗m−
∑

m[A]n⊗m[M ].

The left A-linearity of c̃M,N is proven as follows, for all a ∈ A and m ∈M ,

c̃M,N (am⊗ n) = n⊗ am−
∑

(am)[A]n⊗ (am)[M ]

= n⊗ am−
∑

am[A]n⊗m[M ] − n⊗ am+ an⊗m = ac̃M,N (m⊗ n),

where the second equality follows by the Leibniz rule (2.3). Using the definition of the

right A-action on M (2.5) and the left A-linearity of c̃M,N (to derive the second equality)

one can compute

c̃M,N (ma⊗ n) = c̃M,N (am⊗ n)− c̃M,N

(∑
m[A]am[M ] ⊗ n

)
= an⊗m−

∑
am[A]n⊗m[M ] −

∑
m[A]an⊗m[M ]

+
∑

m[A]am[M ][A]n⊗m[M ][M ]

= an⊗m−
∑

am[A]n⊗m[M ] −
∑

m[A]an⊗m[M ]

+
∑

am[A]n⊗m[M ]

= c̃M,N (m⊗ an).

The penultimate equality follows by (2.4). These properties of c̃M,N imply that the map

c̃M,N gives rise to the left A-linear map cM,N as described in (2.6). Next, using the

definition of the right A-action on M , the flatness condition (2.4) and (2.6) one can

compute

cM,N (m⊗A n)a = n⊗A ma−
∑

m[A]n⊗A m
[M ]a

= n⊗A am−
∑

n⊗A m
[A]am[M ] −

∑
m[A]n⊗A am

[M ]

+
∑

m[A]n⊗A m
[M ][A]am[M ][M ]

= na⊗A m−
∑

n⊗A m
[A]am[M ] −

∑
m[A]na⊗A m

[M ]

+
∑

n⊗A m
[A]am[M ]

= cM,N (m⊗A na).

This means that cM,N is a right A-linear map as required. Finally, cN,M is the inverse of
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cM,N as

cN,M ◦cM,N (m⊗A n) = m⊗A n−
∑

n[A]m⊗A n
[N ] −

∑
m[M ] ⊗A m

[A]n

+
∑

(m[A]n)[A]m[M ] ⊗A (m[A]n)[N ]

= m⊗A n−
∑

n[A]m⊗A n
[N ] −

∑
m[M ] ⊗A m

[A]n+
∑

m[A]n[A]m[M ] ⊗A n
[N ]

+
∑

m[M ] ⊗A m
[A]n−

∑
m[A]m[M ] ⊗A n

= m⊗A n−
∑

mn[A] ⊗A n
[N ] = m⊗A n,

where the Leibniz rule (2.2) is used in derivation of the second equality. The remaining

equalities follow by properties (2.3) (for both connections on M and N) and the definition

of the right A-action onN (remember that the tensor product is over A, and terms marked

m[A], n[A] are elements of A).

In fact the results of [1] assert that the maps cM,N define a braiding (more precisely,

symmetry, since cM,N ◦ cN,M = id) for the category of flat connections (with respect to

the universal differential algebra). It is worth to keep this in mind, although we make no

use of this fact in the present note.

The following definition combines notions introduced in [13],[9] (bimodule connec-

tions) and in [2] (flat differentiable bimodules).

Definition 2.3. Let M be an A-bimodule and fix a differential graded algebra (Ω(A), d)

over A. Denote the product Ω1(A)⊗A Ω1(A)→ Ω2(A) by µΩ(A).

A connection ∇ : M → Ω1(A) ⊗A M on (the left A-module) M is called a bimodule

connection if there exists an A-bilinear map σ1 : M ⊗A Ω1(A)→ Ω1(A)⊗AM such that

∇(ma) = ∇(m)a+ σ1(m⊗A da). (2.7)

M together with a flat bimodule connection (∇, σ1) is called a flat differentiable

bimodule if there exists an A-bilinear map σ2 : M ⊗A Ω2(A) → Ω2(A) ⊗A M extending

σ1 in the sense that the following equality

(µΩ(A)⊗A) ◦ (id⊗A σ
1) ◦ (σ1 ⊗A id) = σ2 ◦ (id⊗A µΩ(A)) (2.8)

holds on M ⊗A Ω1(A)⊗A Ω1(A).

It is worth pointing out [10] that if M is an A-bimodule and ∇ is a connection (in

the left A-module M) with respect to the universal differential algebra over A, then it is

automatically a bimodule connection. Since the space M ⊗A Ω1A can be identified with

the kernel of the right A-action, i.e.,

M ⊗A Ω1A ∼=
{∑

i

mi ⊗ ai ∈M ⊗A |
∑
i

miai = 0
}
,

there is always a well-defined map

σ1 : M ⊗A Ω1A→ Ω1A⊗A M,
∑
i

mi ⊗ ai 7→ −
∑
i

∇(mi)ai, (2.9)

known as the right universal symbol of ∇ [10]. Evidently, σ1 is a right A-module map.
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Its left A-linearity follows by the Leibniz rule (2.3) coupled with the defining property∑
imiai = 0. Since da = 1 ⊗ a − a ⊗ 1, one easily checks that the condition (2.7) is

satisfied. Furthermore, the multiplication in the universal differential algebra over A is

provided by the tensor product and Ω2A = Ω1A ⊗A Ω1A, hence the equality (2.8) takes

in this case the simpler form:

(id⊗A σ
1) ◦ (σ1 ⊗A id) = σ2. (2.10)

Since σ1 is a bimodule map, this need not be treated as a condition on σ2 but rather

as the definition of σ2. Therefore, if ∇ is a flat connection with respect to ΩA, then M

is a flat differentiable bimodule. In view of this, the following theorem is not so much

a statement about the existence but rather about the particular form of the maps σ1

and σ2.

Theorem 2.4. Let M be a left A-module with a flat connection ∇ with respect to the

universal differential algebra over A. Then M is a flat differentiable bimodule with right

A-action (2.5), σ1 = cM,Ω1A and σ2 = cM,Ω2A, where flat connections on the ΩnA (needed

for the defintions (2.6)) are provided by d.

Proof. By Lemma 2.1,M is an A-bimodule and the maps σ1, σ2 are well-defined bimodule

(iso)morphisms by Lemma 2.2. We start by checking that ∇ is a bimodule connection on

M . Take any a ∈ A and m ∈M and compute:

∇(ma) = ∇(am)−∇
(∑

m[A]am[M ]
)

=
∑

am[A] ⊗m[M ] + 1⊗ am− a⊗m−
∑

m[A]am[M ][A] ⊗m[M ][M ]

−
∑

1⊗m[A]am[M ] +
∑

m[A]a⊗m[M ]

= 1⊗ am− a⊗m−
∑

1⊗m[A]am[M ] +
∑

m[A]a⊗m[M ].

The first equality is a consequence of the definition of the right A-action on M , the second

follows by the Leibniz rule (2.2) and the third one by the flatness of ∇ (2.4). On the other

hand,

∇(m)a + cM,Ω1A(m⊗A da) =
∑

m[A] ⊗m[M ]a+ da⊗A m−
∑

m[A]da⊗A m
[M ]

=
∑

m[A] ⊗ am[M ] −
∑

m[A] ⊗m[M ][A]am[M ][M ] + 1⊗ am

− a⊗m−
∑

m[A] ⊗ am[M ] +
∑

m[A]a⊗m[M ]

= −
∑

1⊗m[A]am[M ] + 1⊗ am− a⊗m+
∑

m[A]a⊗m[M ] = ∇(ma).

The first equality is simply the definition of the map cM,Ω1A (2.6), while the second follows

by the definitions of the right A-action (2.5) and the universal differential d, and by the

standard identification A⊗A⊗AM ∼= A⊗M . The penultimate equality follows by (2.4).

Therefore, ∇ is a left bimodule connection, as stated.
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Equation (2.10) is checked by taking any m ∈ M and ω, ω̃ ∈ Ω1A and computing

(where ⊗ denotes the tensor product over A)

(id⊗ σ1)◦(σ1 ⊗ id)(m⊗ ω ⊗ ω̃) = (id⊗ σ1)(ω ⊗m⊗ ω̃ −
∑

m[A]ω ⊗m[M ] ⊗ ω̃)

= ω ⊗ ω̃ ⊗m−
∑

ω ⊗m[A]ω̃ ⊗m[M ] −
∑

m[A]ω ⊗ ω̃ ⊗m[M ]

+
∑

m[A]ω ⊗m[M ][A]ω̃ ⊗m[M ][M ]

= ω ⊗ ω̃ ⊗m−
∑

m[A]ω ⊗ ω̃ ⊗m[M ] = cM,Ω2A(m⊗ ω ⊗ ω̃).

The first two equalities follow by the definition of σ1 = cM,Ω1A, while the second equality is

a consequence of the flatness of the connection (2.4). The final equality is the definition of

cM,Ω2A. Since σ2 = cM,Ω2A, the compatibility condition (2.10) is satisfied and the theorem

is proven.

By [2, Propositions 2.12 & 2.15], a flat differentiable bimodule induces an endofunctor

on the category of modules with (flat) connections: If (M,∇, σ1, σ2) is a flat differentiable

bimodule and (N,∇N ) is a module with connection, then there is a covariant derivative

on M ⊗A N ,

∇M⊗AN = ∇⊗A id + (σ1 ⊗A id) ◦ (id⊗A ∇N ).

Furthermore, ∇M⊗AN is flat, provided ∇N is flat. In view of Theorem 2.4, in the case

of the universal differential algebra over A, given any flat connection ∇ on a left A-

module M and a left connection ∇N : N → A ⊗ N , n 7→
∑
n[A] ⊗ n[N ], the map

∇M⊗AN : M ⊗A N → A⊗M ⊗A N , given by

∇M⊗AN (m⊗A n) =
∑

m[A] ⊗m[M ] ⊗A n+
∑

n[A] ⊗m⊗A n
[N ]

−
∑

1⊗ n[A]m⊗A n
[N ]

+
∑

m[A] ⊗ n[A]m[M ] ⊗A n
[N ] −

∑
m[A]n[A] ⊗m[M ] ⊗A n

[N ],

is a connection on M ⊗AN that is flat provided ∇N is flat. Here, the left action of A on

M ⊗A N is a(m⊗A n) := am⊗A n.

Example 2.5. Take M = A ⊗ A and view it as a left A-module by the ‘outer’ action

a(b⊗ c) = ab⊗ c. The right A-action induced by the flat connection

∇(a⊗ b) = 1⊗ a⊗ b− a⊗ 1⊗ b+ a⊗ b⊗ 1− ab⊗ 1⊗ 1,

comes out as

(a⊗ b)c = ac⊗ b+ a[b, c]⊗ 1, (2.11)

where [b, c] = bc− cb denotes the commutator. One can easily check that the map

∆ : A⊗A→ A⊗A⊗A A⊗A, a⊗ b 7→ a⊗ 1⊗A 1⊗ b, (2.12)

is A-bilinear and satisfies the associative law (∆⊗A id) ◦∆ = (id⊗A ∆) ◦∆. If e ∈ A is

an idempotent element, i.e. e2 = e, then

∆(e⊗ 1) = e⊗ 1⊗A e⊗ 1.

As explained in [6, 29.3], one can associate with M and e⊗1 a differential graded algebra

Ω(A) over A, where Ω(A) is the tensor algebra of the A-bimodule M and the differential
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d : Ωn(A)→ Ωn+1(A) is

d(m1⊗A · · · ⊗Amn) = (e⊗ 1)⊗A m1 ⊗A · · · ⊗A mn

+(−1)n+1m1 ⊗A · · · ⊗A mn ⊗A (e⊗ 1)

+

n∑
i=1

(−1)im1 ⊗A · · · ⊗A mi−1 ⊗A ∆(mi)⊗A mi+1 ⊗A · · · ⊗A mn,

for all m1, . . . ,mn ∈ A ⊗ A. Taking into account the natural identification (A ⊗ A) ⊗A

(A ⊗ A) ∼= A ⊗ A ⊗ A, one concludes that Ωn(A) ∼= A⊗n+1. The forms of the action

(2.11) and the map ∆ (2.12) yield the following explicit description of Ω(A). First, for

any a0, . . . , an, b ∈ A, write ψ(a0, . . . , an; b) ∈ A⊗n+1 for the following sum (of 2n terms)

ψ(a0, . . . , an; b) := a0b⊗ a1 ⊗ . . .⊗ an

+

n∑
i=1

∑
1≤k1<k2<...<ki≤n

a0[ak1
, [ak2

, . . . [aki
, b] . . .]]⊗ a1 ⊗ . . .⊗ âk1

⊗ . . .⊗ âki
⊗ . . .⊗ an,

where âl means that al should be replaced by 1 (in the l + 1-st position). For example,

ψ(a0, a1, a2; b) = a0b⊗a1⊗a2 +a0[a1, b]⊗1⊗a2 +a0[a2, b]⊗a1⊗1+a0[a1, [a2, b]]⊗1⊗1.

With this notation at hand, the product in Ω(A) is given by

(a0 ⊗ . . .⊗ an)(b0 ⊗ . . .⊗ bm) = ψ(a0, . . . , an; b0)⊗ b1 ⊗ . . .⊗ bm,

and the differential d : A⊗n → A⊗n+1 comes out as

d(a0 ⊗ . . .⊗ an) = ea0 ⊗ 1⊗ a1 ⊗ . . .⊗ an + (−1)n+1ψ(a0, . . . , an; e)⊗ 1

+

n∑
i=1

(−1)ia0 ⊗ . . .⊗ ai−1 ⊗ 1⊗ ai ⊗ . . .⊗ an.

Example 2.6. The connection on the left A-module M = A⊗A (with the left A-action

as in Example 2.5)

∇ = d⊗ id, a⊗ b 7→ 1⊗ a⊗ b− a⊗ 1⊗ b,

induces the ‘inner’ right A-action, (a⊗ b)c = ac⊗ b. Rather disappointingly, the natural

‘outer’ right A-action (a⊗ b)c = a⊗ bc on A⊗A, does not seem to be a manifestation of

a flat connection on the left A-module A⊗A with the ‘outer’ left A-action.

3. Every module admitting a flat hom-connection with respect to the univer-

sal differential structure is a bimodule. In addition to standard connections one

can also consider connections of the second kind or hom-connections introduced in [4].

A right hom-connection with respect to a differential graded algebra (Ω(A), d) over an

algebra A is a pair (M,∇), where M is a right A-module and

∇ : HomA(Ω1(A),M)→M,

is a K-linear map, such that, for all f ∈ HomA(Ω1(A),M) and a ∈ A,

∇(fa) = ∇(f)a+ f(da). (3.1)

Here HomA(Ω1(A),M) denotes the space of all right A-linear maps and is given a right

A-module structure by (fa)(ω) := f(aω), ω ∈ Ω1(A), a ∈ A.



A NOTE ON FLAT CONNECTIONS 51

Any hom-connection (M,∇) can be extended to higher forms. The vector space⊕
n=0 HomA(Ωn(A),M) is a right module over Ω(A) with the multiplication, for all

ω ∈ Ωn(A), f ∈ HomA(Ωn+m(A),M), ω′ ∈ Ωm(A),

fω(ω′) := f(ωω′). (3.2)

For any n > 0, define ∇n : HomA(Ωn+1(A),M)→ HomA(Ωn(A),M), by

∇n(f)(ω) := ∇(fω) + (−1)n+1f(dω), (3.3)

for all f ∈ HomA(Ωn+1(A),M) and ω ∈ Ωn(A). The map F := ∇ ◦ ∇1 is a right

A-module homomorphism which is called the curvature of (M,∇), and (M,∇) is said to

be flat provided F = 0.

Proposition 3.1. Let (M,∇) be a flat right hom-connection with respect to the universal

differential algebra ΩA over A. Then M is an A-bimodule with the left action, for all

a ∈ A, m ∈M
am := ma+∇(ϕm,a), (3.4)

where the right A-linear maps ϕm,a : Ω1A→M are defined by

ϕm,a :
∑
i

ai ⊗ bi 7→
∑
i

maiabi. (3.5)

Proof. First note that, for all a, b ∈ A and m ∈M ,

ϕm,ab = ϕmb,a and ϕm,a(db) = mab−mba.

Hence, equation (3.1) for f = ϕm,b takes the following form

∇(ϕma,b) = ∇(ϕm,b)a+mba−mab. (3.6)

In particular, for all ω ∈ Ω1A,

∇(ϕϕm,a(ω),b) = ϕ∇(ϕm,b),a(ω) + ϕmb,a(ω)− ϕm,a(ω)b. (3.7)

Next, identify Ω2A with the subspace of A⊗A⊗A defined as the intersection of kernels

of multiplications µ⊗ id and id⊗ µ, and define right A-linear maps, for all a, b,∈ A and

m ∈M ,

ϕm,a,b : Ω2A→M,
∑
i

ai ⊗ bi ⊗ ci 7→
∑
i

maiabibci.

Acting with ω =
∑

i ai ⊗ bi ∈ Ω1A on ϕm,a,b as in (3.2) one finds

ϕm,a,b ω = ϕ∑
i maiabi,b = ϕϕm,a(ω),b. (3.8)

Furthermore, since d(
∑

i ai ⊗ bi) =
∑

i(1 ⊗ ai ⊗ bi − ai ⊗ 1 ⊗ bi + ai ⊗ bi ⊗ 1), for all

ω ∈ Ω1A,

ϕm,a,b (dω) = ϕma,b(ω)− ϕm,ab(ω) + ϕm,a(ω)b. (3.9)

Combining the definition of ∇1 (3.3) with equations (3.8), (3.9) and (3.7), one computes,
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for all ω ∈ Ω1A,

∇1(ϕm,a,b)(ω) = ∇ (ϕm,a,b ω) + ϕm,a,b (dω)

= ∇
(
ϕϕm,a(ω),b

)
+ ϕma,b(ω)− ϕm,ab(ω) + ϕm,a(ω)b

= ϕ∇(ϕm,b),a(ω)+ϕmb,a(ω)−ϕm,a(ω)b+ϕma,b(ω)−ϕm,ab(ω)+ϕm,a(ω)b

=
(
ϕ∇(ϕm,b),a + ϕmb,a + ϕma,b − ϕm,ab

)
(ω)

Since ∇ is flat, ∇ ◦∇1 = 0, so

∇
(
ϕ∇(ϕm,b),a

)
= ∇(ϕm,ab)−∇(ϕmb,a)−∇(ϕma,b). (3.10)

With (3.6) and (3.10) at hand one can prove that M is a bimodule with the left A-action

(3.4) as follows. First 1m = m, since ϕm,1 = 0. Next, for all a, b ∈ A and m ∈M ,

a(bm) = mba+∇(ϕmb,a) +∇(ϕm,b)a+∇
(
ϕ∇(ϕm,b),a

)
= ∇(ϕmb,a) +∇(ϕma,b) +mab+∇

(
ϕ∇(ϕm,b),a

)
= mab+∇(ϕm,ab) = (ab)m,

where the second equality follows by (3.6) and the third one by (3.10). Finally,

(am)b = mab+∇(ϕm,a)b = ∇(ϕmb,a) +mba = a(mb),

by (3.6). Therefore, M is an A-bimodule as stated.

Thus, a module with a flat hom-connection ∇ is automatically an A-bimodule. Con-

sequently, HomA(Ω1A,M) is an A-bimodule with the left A-action defined by

(af)(ω) = af(ω), for all a ∈ A, f ∈ HomA(Ω1A,M) and ω ∈ Ω1A.

One easily checks that, for all a ∈ A, the map

HomA(Ω1A,M)→M, f 7→ ∇(fa)−∇(f)a,

is a left A-module map, hence ∇ : HomA(Ω1A,M) → M is a first order differential

operator; see [10, Lemma 1]. By [10, Theorem 1] ∇ has a left universal symbol

σL(∇) : Ω1A⊗A HomA(Ω1A,M)→M,

determined by

∇(af) = a∇(f) + σL(∇)(da⊗A f).

This symbol takes the particularly simple form for the morphisms ϕm,a introduced in

Proposition 3.1. By noting that bϕm,a = ϕbm,a, one easily computes that, for all a, b, c ∈ A
and m ∈M ,

σL(∇)(bdc⊗A ϕm,a) = b[a, c]m.
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