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Abstract. In a recent article, Kenny De Commer investigated Morita equivalence between

locally compact quantum groups, in which a measured quantum groupoid, of basis C2, was

constructed as a linking object. Here, we generalize all these constructions and concepts to the

level of measured quantum groupoids. As for locally compact quantum groups, we apply this

construction to the deformation of a measured quantum groupoid by a 2-cocycle.

1. Introduction

1.1. In two articles ([Val1], [Val2]), J.-M. Vallin has introduced two notions (pseudo-

multiplicative unitary, Hopf bimodule), in order to generalize, to the groupoid case, the

classical notions of multiplicative unitary [BS] and of Hopf-von Neumann algebras [ES]

which were introduced to describe and explain duality of groups, and led to appropriate

notions of quantum groups ([ES], [W1], [W2], [BS], [MN], [W3], [KV1], [KV2], [MNW]).

In another article [EVal], J.-M. Vallin and the author have constructed, from a depth

2 inclusion of von Neumann algebras M0 ⊂M1, with an operator-valued weight T1 satis-

fying a regularity condition, a pseudo-multiplicative unitary, which led to two structures

of Hopf bimodules, dual to each other. Moreover, we have then obtained an action of

one of these structures on the algebra M1 such that M0 is the fixed point subalgebra,

the algebra M2 given by the basic construction being then isomorphic to the crossed

product. There is on M2 an action of another structure, which can be considered as the

dual action.
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If the inclusion M0 ⊂M1 is irreducible, we recovered quantum groups, as proved and

studied in former papers ([EN], [E2]).

Therefore, this construction leads to a notion of ”quantum groupoid”, and a duality

within ”quantum groupoids”.

1.2. In a finite-dimensional setting, this construction can be much simplified, and is

studied in [NV2], [BSz1], [BSz2], [Sz], [Val3], [Val4], [Val5], and examples are described.

In [NV3], the link between these ”finite quantum groupoids” and depth 2 inclusions of

II1 factors is given, and in [D] it has been proved that any finite-dimensional connected

C∗-quantum groupoid can act outerly on the hyperfinite II1 factor.

1.3. In [E3], the author studied, in whole generality, the notion of pseudo-multiplicative

unitary introduced by J.-M. Vallin in [Val2]; following the strategy given by [BS], with

the help of suitable fixed vectors, he introduced a notion of ”measured quantum groupoid

of compact type”. Then F. Lesieur in [L], starting from a Hopf bimodule (as introduced

in [Val1]), when there exist a left-invariant operator-valued weight and a right-invariant

operator-valued weight, mimicking in this wider setting the technics of Kustermans and

Vaes ([KV1], [KV2]), obtained a pseudo-multiplicative unitary, which, as in the quantum

group case, ”contains” all the information about the object (the von Neumann algebra,

the coproduct, the antipode, the co-inverse). Lesieur gave the name of ”measured quan-

tum groupoids” to these objects. A new set of axioms for these have been given in an

appendix of [E5]. Moreover, in [E4] it has been shown that, with suitable conditions, the

objects constructed in [EVal] from depth 2 inclusions, are ”measured quantum groupoids”

in the sense of Lesieur.

1.4. In [E5] have been developed the notions of action (already introduced in [EVal]),

crossed product, etc, following what has been done for locally compact quantum groups

in ([E1], [ES1], [V2]); a biduality theorem for actions has been obtained in ([E5], 11.6).

Moreover, we proved in ([E5] 13.9) that, for any action of a measured quantum groupoid,

the inclusion of the initial algebra (on which the measured quantum groupoid is acting)

into the crossed product is depth 2, which leads, thanks to [E4], to the construction of

another measured quantum groupoid ([E5] 14.2). In [E6] was proved a generalization of

Vaes’ theorem ([V2], 4.4) on the standard implementation of an action of a locally com-

pact quantum group; namely, we have obtained such a result when there exists a normal

semi-finite faithful operator-valued weight from the von Neumann algebra on which the

measured quantum groupoid is acting, onto the copy of the basis of this measured quan-

tum groupoid which is put inside this algebra by the action.

1.5. In [E7] were studied outer actions of measured quantum groupoids. This notion was

used to prove that any measured quantum groupoid can be constructed from a depth 2

inclusion.

1.6. In [DC1], Kenny De Commer introduced a notion of monoidal equivalence between

two locally compact quantum groups, and constructed, in that situation, a measured

quantum groupoid of basis C2 as a linking object between these two locally compact

quantum groups. More precisely, from a locally compact quantum group G1 having a
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specific action a1, called a Galois action, on a von Neumann algebra A, he was able to

construct an important bunch of structures on A, and by a reflexion technique, inspired

by the work of P. Shauenburg in an algebraic context ([Sc]), a second locally compact

quantum group G2, and more precisely, a measured quantum groupoid linking G1 and

G2. This leads to an equivalence relation between locally compact quantum groups.

1.7. In that article, we generalize De Commer’s construction to measured quantum

groupoids. We call this equivalence relation Morita equivalence; two measured quantum

groupoids G1 and G2 are Morita equivalent if there exists a von Neumann algebra on

which G1 acts on the right, G2 acts on the left, and the two actions commute and being

Galois, roughly speaking in a similar sense as De Commer’s. This von Neumann algebra

is then called an imprimitivity bi-comodule for these two measured quantum groupoids.

This definition is similar to Renault’s equivalence of locally compact groupoids, as de-

fined in [R1], and developed in [R2], in which he proved that the C∗-algebras of these two

locally compact groupoids are then Morita equivalent. This is why we have chosen this

terminology of ”Morita equivalence”. In [DC2], De Commer uses also this terminology,

but two quantum groups are Morita equivalent in his sense if and only if their duals are

Morita equivalent in ours.

1.8. In fact, De Commer’s technics remain unchanged in the measured quantum groupoid

context, if we start from a measured quantum groupoid G, and a Galois action a of G

on a von Neumann algebra A, such that the invariant subalgebra Aa is a finite sum of

factors. This was remarked also in [DC4]. In the general context, some extra hypothesis

is needed, and we had to introduce what we called a ”Galois system”, which is, roughly

speaking, a Galois action, equipped with an invariant weight.

1.9. De Commer used his construction to solve the problem of deforming a locally com-

pact quantum group by a 2-cocycle. Namely, if G is a locally compact quantum group, and

Ω a 2-cocycle, it has been observed since years that it is possible to deform the coproduct

by using Ω. Is the deformation still a locally compact quantum group? or, equivalently,

is there, in that case, an existence theorem for a left (resp. right) Haar weight? This

problem was solved in several particular cases and examples ([EV], [V], [FV]) and De

Commer answered positively to this question in whole generality. Of course, the same

problem holds for measured quantum groupoids, and the answer is still positive when the

basis of the measured quantum groupoid is a finite sum of factors. In the general case, we

were able to give different sufficient conditions on the 2-cocycle, and give some examples,

based on the construction of matched pairs of groupoids ([Val6]).

1.10. This article is organized as follows:

In chapter 2, we recall as quickly as possible all the notations and results needed in

that article; we emphazise that this article should be understood as the continuation of

[E5] and [E6], and that reading this article needs having [E5] in hand.

In chapter 3, inspired by [V2] and [DC1], we prove specific results on integrable actions

of a measured quantum groupoid G and define Galois actions of G and Galois systems

for G.
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In chapter 4, inspired by [DC1], we associate to a Galois action of G several data

which will be useful in the sequel. In particular we discuss how it is possible to construct

a Galois system from a Galois action.

In chapter 5, we use the reflexion technique introduced in [DC1], in order to con-

struct, ”through the Galois system”, another measured quantum groupoid G1, and more

precisely, a measured quantum groupoid linking G and G1.

Chapter 6 is devoted to several equivalent definitions of Morita equivalence of mea-

sured quantum groupoids. We finish that chapter by giving some examples and con-

structions of locally compact quantum groups Morita equivalent to measured quantum

groupoids (6.12).

In chapter 7, following K. De Commer, we tried to use Morita equivalence to solve

the problem of deforming a measured quantum groupoid by a 2-cocycle. This problem

is here solved if the basis of the measured quantum groupoid is a finite sum of factors.

In the general case, we obtain sufficient conditions, which will help, in chapter 8, to

give a new example of construction of measured quantum groupoids, using J.-M. Vallin’s

construction of matched pairs of groupoids ([Val6]).

2. Preliminaries. This article is a continuation of [E5]; preliminaries are to be found

in [E5], and we just recall herafter the following definitions and notations:

2.1. Spatial theory; relative tensor products of Hilbert spaces and fiber prod-

ucts of von Neumann algebras ([C1], [S], [T], [EVal]). Let N be a von Neumann

algebra, ψ a normal semi-finite faithful weight on N ; we shall denote by Hψ,Nψ, . . . the

canonical objects of the Tomita-Takesaki theory associated to the weight ψ; let α be a

non-degenerate faithful representation of N on a Hilbert space H; the set of ψ-bounded

elements of the left-module αH is

D(αH, ψ) = {ξ ∈ H;∃C <∞, ‖α(y)ξ‖ ≤ C‖Λψ(y)‖,∀y ∈ Nψ}

Then, for any ξ in D(αH, ψ), there exists a bounded operator Rα,ψ(ξ) from Hψ to H,

defined, for all y in Nψ by

Rα,ψ(ξ)Λψ(y) = α(y)ξ

which intertwines the actions of N .

If ξ, η are bounded vectors, we define the operator product

< ξ, η >α,ψ= Rα,ψ(η)∗Rα,ψ(ξ)

belongs to πψ(N)′, which, thanks to Tomita-Takesaki theory, will be identified to the

opposite von Neumann algebra No.

If now β is a non-degenerate faithful antirepresentation of N on a Hilbert space K,

the relative tensor product K β⊗α
ψ

H is the completion of the algebraic tensor product

K �D(αH, ψ) by the scalar product defined, if ξ1, ξ2 are in K, η1, η2 are in D(αH, ψ),

by the following formula:

(ξ1 � η1|ξ2 � η2) = (β(< η1, η2 >α,ψ)ξ1|ξ2)
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If ξ ∈ K, η ∈ D(αH, ψ), we shall denote by ξ β⊗α
ψ

η the image of ξ � η into K β⊗α
ψ

H,

and writing ρβ,αη (ξ) = ξ β⊗α
ψ

η, we get a bounded linear operator from K into K β⊗α
ν

H,

which is equal to 1K ⊗ψ Rα,ψ(η).

Changing the weight ψ will give an isomorphic Hilbert space, but the isomorphism

will not exchange elementary tensors!

We shall denote by σψ the relative flip, which is a unitary sending K β⊗α
ψ

H onto

H α⊗β
ψo

K, defined, for any ξ in D(Kβ , ψ
o), η in D(αH, ψ), by

σψ(ξ β⊗α
ψ

η) = η α⊗β
ψo

ξ.

In x ∈ β(N)′, y ∈ α(N)′, it is possible to define an operator x β⊗α
ψ

y on K β⊗α
ψ

H, with

natural values on the elementary tensors. As this operator does not depend upon the

weight ψ, it will be denoted x β⊗α
N

y.

We define a relative flip ςN from L(K) β∗α
N

L(H) onto L(H) α∗β
No

L(K) by ςN (X) =

σψX(σψ)∗, for any X ∈ L(K) β∗α
N

L(H) and any normal semi-finite faithful weight ψ

on N .

If P is a von Neumann algebra on H, with α(N) ⊂ P , and Q a von Neumann algebra

on K, with β(N) ⊂ Q, then we define the fiber product Q β∗α
N

P as {x β⊗α
N

y, x ∈ Q′,

y ∈ P ′}′.
Moreover, this von Neumann algebra can be defined independently of the Hilbert

spaces on which P and Q are represented; if (i = 1, 2), αi is a faithful non-degenerate

homomorphism from N into Pi, βi is a faithful non-degenerate antihomomorphism from

N into Qi, and Φ (resp. Ψ) a homomorphism from P1 to P2 (resp. from Q1 to Q2) such

that Φ ◦ α1 = α2 (resp. Ψ ◦ β1 = β2), then, it is possible to define a homomorphism

Ψ β1
∗α1

N

Φ from Q1 β1
∗α1

N

P1 into Q2 β2
∗α2

N

P2.

The operators θα,ψ(ξ, η) = Rα,ψ(ξ)Rα,ψ(η)∗, for all ξ, η in D(αH, ψ), generates a

weakly dense ideal in α(N)′. Moreover, there exists a family (ei)i∈I of vectors in D(αH, ψ)

such that the operators θα,ψ(ei, ei) are pairwise orthogonal projections (θα,ψ(ei, ei) being

then the projection on the closure of α(N)ei). Such a family is called an orthogonal

(α,ψ)-basis of H.

2.2. Measured quantum groupoids ([L], [E5]). Following ([Val2], [EVal] 6.5), a

quintuplet (N,M,α, β,Γ) will be called a Hopf bimodule,, if N , M are von Neumann alge-

bras, α a faithful non-degenerate representation of N into M , β a faithful non-degenerate

antirepresentation of N into M , with commuting ranges, and Γ an injective involutive

homomorphism from M into M β∗α
N

M such that, for all X in N :

(i) Γ(β(X)) = 1 β⊗α
N

β(X).

(ii) Γ(α(X)) = α(X) β⊗α
N

1.
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(iii) Γ satisfies the co-associativity relation:

(Γ β∗α
N

id)Γ = (id β∗α
N

Γ)Γ.

This last formula makes sense, thanks to the two preceding ones and 2.1. The von Neu-

mann algebra N will be called the basis of (N,M,α, β,Γ).

If (N,M,α, β,Γ) is a Hopf bimodule, it is clear that (No,M, β, α, ςN ◦ Γ) is another

Hopf bimodule, we shall call the symmetrized of the first one. (Recall that ςN ◦ Γ is a

homomorphism from M to M α∗β
No

M).

If N is abelian, α = β, Γ = ςN ◦ Γ, then the quadruplet (N,M,α, α,Γ) is equal to its

symmetrized Hopf bimodule, and we shall say that it is a symmetric Hopf bimodule.

A measured quantum groupoid is an octuplet G = (N,M,α, β,Γ, T, T ′, ν) such that

([E5], 3.8):

(i) (N,M,α, β,Γ) is a Hopf bimodule.

(ii) T is a left-invariant normal, semi-finite, faithful operator valued weight T from

M to α(N) (to be more precise, from M+ to the extended positive elements of α(N) (cf.

[T] IX.4.12)), which means that, for any x ∈M+
T , we have (id β∗α

ν

T )Γ(x) = T (x) β⊗α
N

1.

(iii) T ′ is a right-invariant normal, semi-finite, faithful operator-valued weight T ′ from

M to β(N), which means that, for any x ∈M+
T ′ , we have (T ′ β∗α

ν

id)Γ(x) = 1 β⊗α
N

T ′(x).

(iv) ν is normal semi-finite faithful weight on N , which is relatively invariant with

respect to T and T ′, which means that the modular automorphism groups of the weights

Φ = ν ◦ α−1 ◦ T and Ψ = νo ◦ β−1 ◦ T ′ commute.

We shall write H = HΦ, J = JΦ, and for all n ∈ N , β̂(n) = Jα(n∗)J , α̂(n) = Jβ(n∗)J .

The weight Φ will be called the left-invariant weight on M .

Examples are described and explained in 2.3.

Then, G can be equipped with a pseudo-multiplicative unitary W which is a unitary

from H β⊗α
ν

H onto H α⊗β̂
νo

H ([E5], 3.6), which intertwines α, β̂, β in the following way:

for all X ∈ N , we have

W (α(X) β⊗α
N

1) = (1 α⊗β̂
No

α(X))W,

W (1 β⊗α
N

β(X)) = (1 α⊗β̂
No

β(X))W,

W (β̂(X) β⊗α
N

1) = (β̂(X) α⊗β̂
No

1)W,

W (1 β⊗α
N

β̂(X)) = (β(X) α⊗β̂
No

1)W,

and the operator W satisfies:

(1 α⊗β̂
No

W )(W β⊗α
N

1H) = (W α⊗β̂
No

1)σ2,3
α,β(W β̂⊗α

N

1)(1 β⊗α
N

σνo)(1 β⊗α
N

W ).
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Here, σ2,3
α,β goes from (H α⊗β̂

νo
H) β⊗α

ν

H to (H β⊗α
ν

H) α⊗β̂
νo

H, and 1 β⊗α
N

σνo goes from

H β⊗α
ν

(H α⊗β̂
νo

H) to H β⊗α
ν

H β̂⊗α
ν

H.

All the intertwining properties properties allow us to write such a formula, which will

be called the ”pentagonal relation”. Moreover, W , M and Γ are related by the following

results:

(i) M is the weakly closed linear space generated by all operators of the form (id ∗
ωξ,η)(W ), where ξ ∈ D(αH, ν), and η ∈ D(Hβ̂ , ν

o) ([E5], 3.8(vii)).

(ii) For any x ∈M , we have Γ(x) = W ∗(1 α⊗β̂
No

x)W ([E5], 3.6).

2.2.1. Lemma. Let G be a measured quantum groupoid, W its pseudo-multiplicative

unitary, ξ ∈ D(αH, ν) and η ∈ D(Hβ̂ , ν
o). Then

Γ((id ∗ ωξ,η)(W )) = (id β∗α
N

id ∗ ωξ,η)(σ2,3
α,β(W β̂⊗α

N

1)(1 β⊗α
N

σνo)(1 β⊗α
N

W )).

Proof. This is clear, using the pentagonal relation, and the formula linking Γ and W .

Moreover, it is also possible to construct many other data, namely a co-inverse R,

a scaling group τt, an antipode S, a modulus δ, a scaling operator λ, a managing operator

P , and a canonical one-parameter group γt of automorphisms on the basis N ([E5], 3.8).

Instead of G, we shall mostly use (N,M,α, β,Γ, T,RTR, ν) which is another measured

quantum groupoid, denoted G, which is equipped with the same data (W,R, . . .) as G.

A dual measured quantum group Ĝ, denoted (N, M̂, α, β̂, Γ̂, T̂ , R̂T̂ R̂, ν), can be con-

structed, and we have
̂̂
G = G.

In particular, from the fact that ν is relatively invariant with respect to T and R◦T ◦R,

is obtained the definition of the modulus and the scaling operator by the formula

(DΦ ◦R : DΦ)t = λit
2/2δit.

Then, thanks to [V1], we obtain that, if a ∈M is such that the operator aδ1/2 is bounded

and its closure aδ1/2 belongs to NΦ, then a belongs to NΦ◦R, and that we can identify

HΦ◦R with H by writing then ΛΦ◦R(a) = ΛΦ(aδ1/2).

Canonically associated to G, can be defined also the opposite measured quantum

groupoid is Go = (No,M, β, α, ςNΓ, RTR, T, νo) and the commutant measured quantum

groupoid Gc = (No,M ′, β̂, α̂,Γc, T c, RcT cRc, νo); we have (Go)o = (Gc)c = G, Ĝo =

(Ĝ)c, Ĝc = (Ĝ)o, and Goc = Gco is canonically isomorphic to G ([E5], 3.12).

The pseudo-multiplicative unitary of Ĝ (resp. Go, Gc) will be denoted Ŵ (resp. W o,

W c). The left-invariant weight on Ĝ (resp. Go, Gc) will be denoted Φ̂ (resp. Φo, Φc). For

simplification, we shall write Ĵ for JΦ̂.

We have Ŵ = σνoW
∗σν which is a unitary from H β̂⊗α

ν

H onto H α⊗β
νo

H. The

algebra M̂ is generated by the operators (ωξ,η ∗ id)(W ), where ξ belongs to D(Hβ̂ , ν
o)

and η belongs to D(αH, ν). In ([E5]4.8) was proved that such an element belongs to NΦ̂

if and only if ξ belongs to D(π′(η)∗), where π′(η)∗ is the adjoint of the (densely defined)
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operator π′(η) defined on ΛΦ(NΦ) by π′(η)ΛΦ(x) = xη, and we have then:

Φ̂[(ωξ,η ∗ id)(W )∗(ωξ,η ∗ id)(W )] = ‖π′(η)∗ξ‖2

which allows us to identify HΦ̂ with H by writing ΛΦ̂((ωξ,η ∗ id)(W )) = π′(η)∗ξ, or, for

any x ∈ NΦ:

(ΛΦ(x)|ΛΦ̂((ωξ,η ∗ id)(W ))) = (xη|ξ).

The pseudo-multiplicative unitary W o is equal to (Ĵ α⊗β̂
No

Ĵ)W (Ĵ α⊗β
No

Ĵ) ([E5], 3.12(v)),

which is a unitary from H α⊗β
νo

H onto H β⊗α̂
ν

H, where, for all n ∈ N , α̂(n) = Jβ(n∗)J .

Therefore, applying this result about NΦ̂ to the duality between Go and Ĝc, we obtain

that the operator (ωξ,η ∗ id)(W o) = (ωξ,η ∗ id)[(Ĵ α⊗β̂
No

Ĵ)W (Ĵ α⊗β
No

Ĵ)] belongs to NΦ̂c if

and only if Ĵξ belongs to D(π′(Ĵη)∗), and then we get

ΛΦ̂c(ωξ,η ∗ id)(W o) = ΛΦ̂c [(ωξ,η ∗ id)[(Ĵ α⊗β̂
No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]] = Ĵπ′(Ĵη)∗Ĵξ

and if moreover η belongs to D(δ−1/2), we get, for any x ∈ NΦ:

(ΛΦ(x)|ΛΦ̂c(ωξ,η ∗ id)(W o)) = (ΛΦ(x)|ΛΦ̂c [(ωξ,η ∗ id)[(Ĵ α⊗β̂
No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]])

= (xδ−1/2η|ξ).

Let aHb be an N − N -bimodule, i.e. a Hilbert space H equipped with a normal faithful

non-degenerate representation a of N on H and a normal faithful non-degenerate antirep-

resentation b on H, such that b(N) ⊂ a(N)′. A corepresentation of G on aHb is a unitary

V from H a⊗β
νo

H onto H b⊗α
ν

H, satisfying, for all n ∈ N :

V (b(n) a⊗β
No

1) = (1 b⊗α
N

β(n))V,

V (1 a⊗β
No

α(x)) = (a(n) b⊗α
N

1)V,

V (1 a⊗β
No

β̂(n)) = (1 b⊗α
N

β̂(n))V,

such that, for any ξ ∈ D(aH, ν) and η ∈ D(Hb, ν
o), the operator (ωξ,η ∗ id)(V ) belongs

to M (then, it is possible to define (id ∗ θ)(V ), for any θ in Mα,β
∗ which is the linear

set generated by the ωξ, with ξ ∈ D(αH, ν) ∩ D(Hβ , ν
o)), and such that the map θ →

(id ∗ θ)(V ) from Mα,β
∗ into L(H) is multiplicative ([E5], 5.1, 5.5).

2.2.2. Lemma. Let G be a measured quantum groupoid; we have, for any ξ ∈ D(Hβ , ν
o)

and η ∈ D(αH, ν), t ∈ R:

σΦ̂
t [(ωξ,η ∗ id)(W )] = (ωP itξ,δ−itP itη ∗ id)(W ).

Proof. Let ζ1 ∈ D(αH, ν), and ζ2 ∈ D(Hβ̂ , ν
o); we have, using successively [E5], 3.10(vii),
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3.8(vii), 3.11(iii), 3.8(vi) and again 3.11(iii):

σΦ̂
t ((ωξ,η ∗ id)(W )ζ1|ζ2) = (W (ξ β⊗α

ν

∆−it
Φ̂
ζ1)|η α⊗β̂

νo
∆−it

Φ̂
ζ2)

= (W (ξ β⊗α
ν

P−itJδitJζ1)|η α⊗β̂
νo

P−itJδitJζ2)

= (W (P itξ β⊗α
ν

JδitJζ1)|P itη α⊗β̂
νo

JδitJζ2)

= (ĴP itη β⊗α
ν

δitJζ2|W ∗(ĴP itξ α⊗β̂
νo

δitJζ1))

= (ĴP itη β⊗α
ν

δitJζ2|(δit β⊗α
N

δit)W ∗(ĴP itξ α⊗β̂
νo

Jζ1))

= (Ĵδ−itP itη β⊗α
ν

Jζ2|W ∗(ĴP itξ α⊗β̂
νo

Jζ1))

= (W (P itξ β⊗α
ν

ζ1)|δ−itP itη α⊗β̂
νo

ζ2)

from which we get the result.

2.2.3. Lemma. Let G be a measured quantum groupoid, and m ∈ M̂ ′. Then

Ŵ (1 β̂⊗α
N

m)Ŵ ∗ = W o∗(ĴR̂c(m∗)Ĵ β⊗α̂
N

1)Ŵ o.

Proof. By definition, we have

Ŵ (1 β̂⊗α
N

m)Ŵ ∗ = σW ∗σ((1 β̂⊗α
N

m)σWσ = σW ∗(m α⊗β̂
No

1)Wσ

and using ([E5], 3.11(iii), 3.10 (iii), 3.12(v) and 3.11(iii) again), we get it is equal to

σ(Ĵ β⊗α
N

J)W (ĴmĴ β⊗α
N

1)W ∗(Ĵ β⊗α̂
N

J)σ = σ(Ĵ β⊗α
N

J)ςΓ̂(ĴmĴ)(Ĵ β⊗α̂
N

J)σ

= (J α⊗β
No

Ĵ)Γ̂(ĴmĴ)(J α̂⊗β
No

Ĵ)

= W o∗(ĴR̂c(m∗)Ĵ β⊗α̂
N

1)Ŵ o.

2.3. Examples of measured quantum groupoids. Examples of measured quantum

groupoids are the following:

(i) Locally compact quantum groups, as defined and studied by J. Kustermans and

S. Vaes ([KV2], [KV2], [V2]); these are, trivially, the measured quantum groupoids with

the basis N = C.

(ii) Measured groupoids, equipped with a left Haar system and a quasi-invariant

measure on the set of units, as studied mostly by T. Yamanouchi ([Y1], [Y2], [Y3], [Y4]);

it was proved in [E8] that these measured quantum groupoids are exactly those whose

underlying von Neumann algebra is abelian. This example has been presented in full

details in ([E5], 3.4 and 3.13).

(iii) The finite dimensional case has been studied by D. Nikshych and L. Vainermann

([NV2]) and J.-M. Vallin ([Val3], [Val4]); in that case, non-trivial examples are given.

(iv) Continuous fields of (C∗-version of) locally compact quantum groups, as studied

by E. Blanchard in ([Bl1], [Bl2]); it was proved in [E8] that these measured quantum
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groupoids are exactly those whose basis is central in the underlying von Neumann algebras

of both the measured quantum groupoid and its dual.

(v) In ([L], 17.1), be given a family Gi = (Ni,Mi, αi, βi,Γi, Ti, T
′
i , νi) a measured

quantum groupoids, Lesieur showed that it is possible to construct another measured

quantum groupoid

⊕i∈IGi = (⊕i∈INi,⊕i∈IMi,⊕i∈Iαi,⊕i∈Iβi,⊕i∈IΓi,⊕i∈ITi,⊕i∈IT ′i ,⊕i∈Iνi).

(vi) In [DC1], K. De Commer proved that, in the case of a monoidal equivalence

between two locally compact quantum groups (which means that each of these locally

compact quantum group has an ergodic and integrable action on the other one), it is

possible to construct a measured quantum groupoid of basis C2 which contains all the

data. Moreover, he proved that such measured quantum groupoids are exactly those whose

basis C2 is central in the underlying von Neumann algebra of the measured quantum

groupoid, but not in the underlying von Neumann algebra of the dual measured quantum

groupoid.

(vii) In [E5] was described how, from an action (b, a) of a measured quantum groupoid

G, it is possible to construct another measured quantum groupoid G(a); as a particular

case, this allows to canonically associate to any action a of a locally compact quantum

group G on a von Neumann algebra A, a measured quantum groupoid G(a).

(viii) In [VV] was given a specific procedure to construct locally compact quantum

groups, starting from a locally compact group G, whose almost all elements belong to

the product G1G2 (where G1 and G2 are closed subgroups of G such that G1∩G2 = {e},
where e is the neutral element of G); such (G1, G2) is called a ”matched pair” of locally

compact groups. Then, G1 acts naturally on L∞(G2) (and vice versa), and the two crossed

products obtained bear the structure of two locally compact quantum groups in duality.

In [Val5], J.-M. Vallin generalizes this constructions up to groupoids, and then obtains

examples of measured quantum groupoids; more specific examples are then given by the

action of a matched pair of groups on a locally compact space, and also more exotic

examples.

(ix) In [L], 9.5.5, was given the following exemple, called ”quantum space quantum

groupoid”; let N be a von Neumann algebra; let us consider M = No⊗Z(N)N , the repre-

sentation α of N into M given by (n ∈ N) α(n) = 1⊗Z(N) n, and the antirepresentation

β given by β(n) = no ⊗Z(N) 1. Then if τ is a normal semi-finite faithful trace on Z(N),

ν a normal faithful semi-finite weight on N , let Tν be the normal faithful semi-finite

operator-valued weight from N onto Z(N) such that ν = τ ◦ Tν , we can easily get that

the relative tensor product (Hν ⊗τ Hν) β⊗α
ν

(Hν ⊗τ Hν) is canonically isomorphic to

Hν ⊗τ Hν ⊗τ Hν and this isomorphism sends M β∗α
N

M onto No ⊗τ Z(N)⊗τ N ; we can

therefore identify M β∗α
N

M with M , and verify that (N,M,α, β, id) is a Hopf bimodule.

Moreover, we can get that G(N) = (N,M,α, β, id, T oν ⊗Z(N) id, id ⊗Z(N) Tν , ν) is a

measured quantum groupoid. We shall call it the N -measured quantum groupoid.

The dual Ĝ(N) = (N,Z(N)′, α, β̂, id, (T oν )−1, T−1
ν , ν), where β̂(n) = Jνn

∗Jν , T−1
ν is

the canonical operator-valued weight from Z(N)′ to N ′ given from Tν , and (T oν )−1 is
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the canonical operator-valued weight from Z(N)′ to N given from T oν . This measured

quantum groupoid will be called the dual N -measured quantum groupoid.

(x) If Gi=(Ni,Mi, αi, βi,Γi, Ti, T
′
i , νi) (i=1, 2) are two measured quantum groupoids,

then we can define another measured quantum groupoid G1 ⊗G2:

(N1 ⊗N2,M1 ⊗M2, α1 ⊗ α2, β1 ⊗ β2, (id⊗ ς ⊗ id)(Γ1 ⊗ Γ2), T1 ⊗ T2, T
′
1 ⊗ T ′2, ν1 ⊗ ν2).

Moreover, it easy to get that ̂G1 ⊗G2 = Ĝ1 ⊗ Ĝ2.

(xi) The SU(2) dynamical quantum group, as studied in particular by E. Koelink and

H. Rosengren ([KR]) can be lifted, thanks to [Ti], to the level of operator algebras, and

give another example of a measured quantum groupoid.

(xii) Last but not least, De Commer studied Morita equivalence between the quantum

group SUq(2), and various quantum groups ([DC2], [DC3]). In a new work ([DC4]), he

obtains an integrable Galois action of SUq(2) which is not ergodic. Therefore, this leads

to a measured quantum groupoid (6.12.4).

2.4. Action of a measured quantum groupoid ([E5]). An action ([E5], 6.1) of G

on a von Neumann algebra A is a couple (b, a), where:

(i) b is an injective ∗-antihomomorphism from N into A;

(ii) a is an injective ∗-homomorphism from A into A b∗α
N

M ;

(iii) b and a are such that, for all n in N :

a(b(n)) = 1 b⊗α
N

β(n)

(which allow us to define a b∗α
N

id from A b∗α
N

M into A b∗α
N

M β∗α
N

M) and such that

(a b∗α
N

id)a = (id b∗α
N

Γ)a.

If we start from a measured groupoid, we get the usual notion of action of a groupoid

([E5], 6.3).

The invariant subalgebra Aa is defined by

Aa = {x ∈ A ∩ b(N)′; a(x) = x b⊗α
N

1}.

As Aa ⊂ b(N)′, A (and L2(A)) is a Aa −No-bimodule.

Let us write, for any x ∈ A+, Ta(x) = (id b∗α
ν

Φ)a(x); this formula defines a normal

faithful operator-valued weight from A onto Aa; the action a will be called integrable if

Ta is semi-finite ([E5], 6.11, 12, 13 and 14).

If the von Neumann algebra A acts on a Hilbert space H, and if there exists a repre-

sentation a of N on H such that b(N) ⊂ A ⊂ a(N)′, a corepresentation V of G on the

bimodule aHb will be called an implementation of a if we have a(x) = V (x a⊗b
No

1)V ∗, for

all x ∈ A ([E5], 6.6); moreover, if ψ is a normal semi-finite faithful weight on A, we shall

define a representation a of N on Hψ by a(n) = Jψb(n
∗)Jψ, for all n ∈ N , and we shall

look after an implementation V of a on a(Hψ)b such that ([E5], 6.9):

V ∗ = (Jψ α⊗β
νo

JΦ̂)V (Jψ b⊗α
ν

JΦ̂).
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If the weight ψ is δ-invariant, which means that, for all η ∈ D(αH, ν)∩D(δ1/2) such that

δ1/2η belongs to D(Hβ , ν
o), and x ∈ Nψ, we have

ψ[(id b∗α
N

ωη)a(x∗x)] = ‖Λψ(x) a⊗β
νo

δ1/2η‖2

and if, moreover, ψ has the density property, (i.e. D((Hψ)b, ν
o) ∩D(aHψ, ν) is dense in

Hψ), then such an implementation Vψ was constructed in [E5], 8.8); more precisely ([E5],

8.4), if x ∈ Nψ, ξ ∈ D(αH, ν) and η is as above, we get that (id b∗α
N

ωη,ξ)a(x) belongs to

Nψ and that

Λψ[(id b∗α
N

ωη,ξ)a(x)] = (id ∗ ωδ1/2η,ξ)(Vψ)Λψ(x).

In ([E6], 7.6) was introduced the notion of invariant weight by an action; a normal faithful

semi-finite weight φ on A will be called invariant by a if, for all η ∈ D(αH, ν)∩D(Hβ , ν
o),

and x ∈ Nφ, we have

φ[(id b∗α
N

ωη)a(x∗x) = ‖Λφ(x) a⊗β
νo

η‖2.

If, moreover, φ has the density property, a similar implementation V ′φ was constructed

also in ([E6], 7.7). Moreover, with these hypothesis, it is possible to prove that there exists

a normal semi-finite operator-valued weight T from A onto b(N) (we shall say that the

action is ”weighted”), such that φ = νo ◦ b−1 ◦T. This operator-valued weight T satisfies,

for all positive x in A:

(T b∗α
N

id)a(x) = a(T(x)) = 1 b⊗α
N

β ◦ b−1T(x).

Note that, if we define, for n ∈ N , bo(n) = b(n)o, we obtain a ∗-homomorphism from

N into Ao; moreover, for x ∈ A, let us write ao(xo) = (.o b∗α
N
R)◦a(x); it is straightforward

to get that (bo, ao) is an action of Go on Ao.

Of course, one should write in this section ”right action” instead of simply action. At

some stage of this paper, we shall need left actions. A left action of G on a von Neumann

algebra A is a couple (a, b), where:

(i) a is an injective *-homomorphism from N into A;

(ii) b is an injective ∗-homomorphism from A into M β∗a
N

A;

(iii) a and b are such that, for all n in N :

b(a(n)) = α(n) β⊗a
N

1, (id β∗a
N

b)b = (Γ β∗a
N

id)b.

Then, it is clear that (a, ςNb) is an action (a right action) of Go on A, and (ao, (σNb)o)

is an action (a right action) of G on Ao. Conversely, if (b, a) is an action of G on A, then,

(bo, σNoa
o) is a left action of G on Ao.

The invariant subalgebra Ab is defined by

Ab = {x ∈ A ∩ a(N)′; b(x) = 1 β⊗a
N

x}

and Tb = (Φ β∗a
ν

id)b is a normal faithful operator-valued weight from A onto Ab; the

action b will be called integrable if Tb is semi-finite. It is clear that b is integrable if and

only if (σNb)o is integrable.
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If (b, a) is an action of G1 = (N1,M1, α1, β1,Γ1, T1, T
′
1, ν1) on a von Neumann algebra

A, and (a, b) a left action of G2 = (N2,M2, α2, β2,Γ2, T2, T
′
2, ν2) on A, such that a(N2) ⊂

b(N1)′, then, we shall say that the actions a and b commute if we have

b(N1) ⊂ Ab, a(N2) ⊂ Aa, (b b∗α1

N1

id)a = (id β2∗a
N2

a)b.

Let us remark that the first two properties allow us to write the fiber products b b∗α1

N1

id

and id β2∗a
N2

a.

2.5. Crossed product ([E5]). The crossed product of A by G via the action a is the

von Neumann algebra generated by a(A) and 1 b⊗α
N

M̂ ′ ([E5], 9.1) and is denoted AoaG;

then there exists ([E5], 9.3) an integrable action (1 b⊗α
N

α̂, ã) of (Ĝ)c on Aoa G.

The biduality theorem ([E5], 11.6) says that the bicrossed product (Aoa G)oã Ĝ
o is

canonically isomorphic to A b∗α
N

L(H); more precisely, this isomorphism is given by

Θ(a b∗α
N

id)(A b∗α
N

L(H)) = (Aoa G) oã Ĝ
o

where Θ is the spatial isomorphism between L(H b⊗α
ν
H β⊗α

ν

H) and L(H b⊗α
ν
H α̂⊗β

νo
H)

implemented by 1H b⊗α
ν

σνW
oσν ; the biduality theorem says also that this isomorphism

sends the action (1 b⊗α
N

β̂, a) of G on A b∗α
N

L(H), defined, for any X ∈ A b∗α
N

L(H), by

a(X) = (1 b⊗α
N

σνoWσνo)(id b∗α
N

ςN )(a b∗α
N

id)(X)(1 b⊗α
N

σνoWσνo)
∗

to the bidual action (of Gco) on (Aoa G) oã Ĝ
o.

We have (Aoa G)ã = a(A) ([E5], 11.5), and therefore the normal faithful semi-finite

operator-valued weight Tã sends A oa G onto a(A); therefore, starting with a normal

semi-finite weight ψ on A, we can construct a dual weight ψ̃ on A oa G by the formula

ψ̃ = ψ ◦ a−1 ◦ Tã ([E5], 13.2).

Moreover ([E5], 13.3), the linear set generated by all the elements (1 b⊗α
N

a)a(x), for

all x ∈ Nψ, a ∈ NΦ̂c ∩ NT̂ c , is a core for Λψ̃, and it is possible to identify the GNS

representation of A oa G associated to the weight ψ̃ with the natural representation on

Hψ b⊗α
ν

H by writing

Λψ(x) b⊗α
ν

ΛΦ̂c(a) = Λψ̃[(1 b⊗α
N

a)a(x)]

which leads to the identification of Hψ̃ with Hψ b⊗α
ν

H.

If the weight ψ is δ-invariant (resp. invariant) and has the density property, then the

implementation Vψ (resp. V ′ψ) recalled in 2.4 is equal to Jψ̃(Jψ a⊗β
No

JΦ̂) ([E6], 3.2). More

generally, if we write V = Jψ̃(Jψ a⊗β
No

JΦ̂), we have

V ∗ = (Jψ α⊗β
νo

JΦ̂)V (Jψ b⊗α
ν

JΦ̂)
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and if it is an implementation of a, we shall call it a standard implementation of a. It has

been proved that it is the case, for any normal semi-finite faithful weight ψ on A, whenever

the action is weighted (i.e. if there exists a normal semi-finite faithful operator-valued

weight from A onto b(N)).

If (a, b) is a left action of G on A, we shall define the crossed product Gnb A as the

von Neumann algebra generated by M̂ β⊗a
N

1 and b(A); therefore, it is the image under

σN of the crossed product AoσNb G
o.

2.6. Basic Construction. Let M0 ⊂ M1 be an inclusion of σ-finite von Neumann

algebras, equipped with a normal faithful semi-finite operator-valued weight T1 from M1

to M0. Let ψ0 be a normal faithful semi-finite weight on M0, and ψ1 = ψ0 ◦ T1.

Following ([J], 3.1.5(i)), the von Neumann algebra M2 = Jψ1
M ′0Jψ1

defined on the

Hilbert space Hψ1
will be called the basic construction made from the inclusion M0 ⊂M1.

We have M1 ⊂M2, and we shall say that the inclusion M0 ⊂M1 ⊂M2 is standard.

Let us write r for the inclusion of M0 into M1 (or the representation of M0 on Hψ1

given by the restriction of πψ1
to M0), and let us define s, for any x ∈ M0, by s(x) =

Jψ1
r(x)∗Jψ1

; s is a normal faithful antirepresentation of M0 on Hψ1
, and M2 = s(M0)′.

Therefore (2.1), the operators θs,ψ
o
0 (ξ, η), for all ξ, η in D((Hψ1)s, ψ

o
0) generate a dense

ideal in M2.

Following ([EN], 10.6), for x in NT1
, we shall define ΛT1

(x) by the following formula,

for all z in Nψ0
:

ΛT1
(x)Λψ0

(z) = Λψ1
(xz).

This operator belongs to HomMo
0
(Hψ0

, Hψ1
); if x, y belong to NT1

, then ΛT1
(x)ΛT1

(y)∗

belongs to M2, and ΛT1
(x)∗ΛT1

(y) = T1(x∗y) ∈M0.

Using then Haagerup’s construction ([T], IX.4.24), it is possible to construct a nor-

mal semi-finite faithful operator-valued weight T2 from M2 to M1 ([EN], 10.7), which

will be called the basic construction made from T1. If x, y belong to NT1
, then the oper-

ators ΛT1
(x)ΛT1

(y)∗ form a dense sub-∗algebra of M2, included into MT2
, and we have

T2(ΛT1
(x)ΛT1

(y)∗) = xy∗. The operator-valued weight T2 is characterized by the equality

([EN], 10.3):
dψ1 ◦ T2

dψo0
=

dψ1

d(ψ0 ◦ T1)o
= ∆ψ1

from which, writing ψ2 = ψ1 ◦ T2, we get that

σψ2

t (ΛT1(x)ΛT1(y)∗) = ΛT1(σψ1

t (x))ΛT1(σψ1

t (y∗))∗.

The operator-valued weight T2 from M2 to M1 will be called the basic construction made

from the operator-valued weight T1 from M1 to M0. Using ([EN], 3.7 and 10.6 (v)), we

easily get that, for any x, y in NT1 ∩Nψ1 ∩N∗T1
∩N∗ψ1

, we have T2(ΛT1(x)ΛT1(y∗)∗) = xy,

and

‖Λψ2
(ΛT1

(x)ΛT1
(y∗)∗)‖ = ‖Λψ1

(x) s⊗r
ψ0

Λψ1
(y)‖

where r is the inclusion of M0 into M1, and for a ∈ M0, s(a) = Jψ1
a∗Jψ1

; so, we can

identify Hψ2
with Hψ1 s⊗r

ψ0

Hψ1
by writing Λψ2

(ΛT1
(x)ΛT1

(y∗)∗) = Λψ1
(x) s⊗r

ψ0

Λψ1
(y);
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then, we identify ∆it
ψ2

with ∆it
ψ1 s
⊗r
ψ0

∆it
ψ1

(here, this relative tensor product of operators

means that there exists a bounded operator with natural values on elementary tensors)

and Jψ2
with σMo

0
(Jψ1 s⊗r

M0

Jψ1).

Then, for any ξ ∈ D((Hψ1
)s, ψ

o
0) and η ∈ D((Hψ1

)s, ψ
o
0)∩D(∆

1/2
ψ1

) such that ∆
−1/2
ψ1

η

belongs to D((Hψ1
)s, ψ

o
0), we have Λψ2

(θs,ψ
o
0 (ξ, η)) = ξ s⊗r

ψ0

Jψ1
∆

1/2
ψ1
η.

Using similar arguments as in ([E6], 4.7(ii)), we can prove that there exists a family

(ei)i∈I , which is an orthogonal (s, ψo0)-basis of Hψ1
, such that each vector ei belongs to

D(∆
1/2
ψ1

); we can prove then, as in ([E6], 4.7(iii)), that ψ2 =
∑
i ω∆

1/2
ψ1

ei
.

Let Tψ1,T1 be the Tomita algebra associated to the operator-valued weight T1 and the

weight ψ1 ([EN], 10.12, and [E5], 2.2.1), which is made of elements x in Nψ1
∩N∗ψ1

∩NT1
∩

N∗T1
, which are analytic with respect to σψ1

t , and such that, for any z ∈ C, σψ1
z (x) belongs

to Nψ1 ∩N∗ψ1
∩NT1 ∩N∗T1

; such elements are a dense ∗ subalgebra of M1. Moreover, it

is possible to prove ([DC1], 1.4) that an element X ∈ M2 belongs to Nψ2
if and only if

there exists Ξ ∈ Hψ2 such that, for any x, y in Tψ1,T1 , we have

(Λψ1
(x) s⊗r

ψ0

Λψ1
(y)|Ξ) = (Λψ1

(x)|XΛψ1
(σψ1

−i(y
∗)))

and then we have Ξ = Λψ2
(X).

3. Integrable actions of a measured quantum groupoid. In that chapter are gen-

eralized, up to measured quantum groupoids, results about integrable actions (([V2], 5.3,

[DC1], 2.1); namely, if (b, a) is an integrable action of G on a von Neumann algebra A

(the definition has been given in 2.4), we construct then a representation πa of the crossed

product on the Hilbert space L2(A)(3.6), whose image is the von Neumann algebra s(Aa)′

given by the standard construction made from the inclusion Aa ⊂ A; moreover is con-

structed an isometry G from L2(s(Aa)′) into L2(Aoa G) (3.8), which is a unitary if and

only if the representation πa is faithful; following ([DC1], 2.7), we say that the integrable

action (b, a) is then Galois (3.11).

3.1. Lemma. Let (b, a) be an integrable action of a measured quantum groupoid on a von

Neumann algebra A; let ψ0 be a normal faithful semi-finite weight on Aa, and ψ1 = ψ0◦Ta
be the lifted normal semi-finite faithful weight on A; let (ξi)i∈I be a family of vectors in

D((Hψ1
)b, ν

o) such that ψ0(x) =
∑
i ωξi(x), for all positive x ∈ Aa. Then there exists an

isometry V from Hψ1 into ⊕i(Hψ1 b⊗α
ν

H) = (Hψ1 b⊗α
ν

H)⊗ l2(I) such that:

(i) For all y ∈ A, (a(y)⊗ 1l2(I))V = Vy;

(ii) For all n ∈ N , (1 b⊗α
N

α̂(n)⊗ 1l2(I))V = Va(n).

Proof. Let (ηj)j∈J be an orthogonal (b, νo) basis of Hψ1 ; we have, for any i, j and

x ∈ Nψ1
:

[(ωξi,ηj b∗α
N

id)a(x)]∗[(ωξi,ηj b∗α
N

id)a(x)] = (ωξi b∗α
N

id)[a(x∗)(θb,ν
o

(ηj , ηj) b⊗α
N

1)a(x)]
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and therefore

Φ([(ωξi,ηj b∗α
N

id)a(x)]∗[(ωξi,ηj b∗α
N

id)a(x)]) ≤ Φ[(ωξi b∗α
N

id)a(x∗x)]

= ωξi ◦ Ta(x∗x) ≤ ψ1(x∗x).

So, for any i, j and x ∈ Nψ1
, (ωξi,ηj b∗α

N
id)a(x) belongs to NΦ; moreover, we have

Φ([
∑
j

(ωξi,ηj b∗α
N

id)a(x)]∗[
∑
j

(ωξi,ηj b∗α
N

id)a(x)]) = ωξi ◦ Ta(x∗x)

and therefore∑
i

Φ([
∑
j

(ωξi,ηj b∗α
N

id)a(x)]∗[
∑
j

(ωξi,ηj b∗α
N

id)a(x)]) = ψ1(x∗x)

which proves that we can define now V, for all x ∈ Nψ1
by

VΛψ1
(x) = ⊕i

∑
j

ηj b⊗α
ν

ΛΦ((ωξi,ηj b∗α
N

id)a(x)).

As, for x ∈ Nψ1
, we have ‖VΛψ1

(x)‖2 = ψ1(x∗x), we can extend V to an isometry from

Hψ1
into ⊕i∈I(Hψ1 b⊗α

ν
H) = (Hψ1 b⊗α

ν
H)⊗ l2(I). Let now y be in A; we have

(a(y)⊗ 1l2(I))VΛψ1(x) = ⊕i
∑
j

a(y)(ηj b⊗α
ν

ΛΦ((ωξi,ηj b∗α
N

id)a(x)))

= ⊕i
∑
j

∑
k

ηk b⊗α
N

(ωηk,ηj b∗α
N

id)a(y)ΛΦ((ωξi,ηj b∗α
N

id)a(x))

= ⊕i
∑
j

∑
k

ηk b⊗α
N

ΛΦ((ωηk,ηj b∗α
N

id)a(y)(ωξi,ηj b∗α
N

id)a(x))

= ⊕i
∑
k

ηk b⊗α
N

ΛΦ(ωξi,ηk b∗α
N

id)a(yx)) = VΛψ1
(yx)

and therefore (a(y)⊗ 1l2(I))V = Vy.

Let n be in the Tomita algebra of the weight ν; we have

(1 b⊗α
N

α̂(n))⊗ 1l2(I))VΛψ1
(x) = ⊕i

∑
j

ηj b⊗α
ν

α̂(n)ΛΦ((ωξi,ηj b∗α
N

id)a(x))

= ⊕i
∑
j

ηj b⊗α
ν

ΛΦ((ωξi,ηj b∗α
N

id)a(x)β(σν−i/2(n))

= ⊕i
∑
j

ηj b⊗α
ν

ΛΦ((ωξi,ηj b∗α
N

id)a(xb(σν−i/2(n))))

= VΛψ1(xb(σν−i/2(n)) = Va(n)Λψ1(x)

which, by continuity, remains true for all n ∈ N .

3.2. Theorem. Let (b, a) be an integrable action of a measured quantum groupoid on

a von Neumann algebra A; let ψ0 be a normal faithful semi-finite weight on Aa, and

ψ1 = ψ0 ◦ Ta be the lifted normal semi-finite faithful weight on A. Then the weight ψ1 is

δ-invariant, and has the density property, in the sense of 2.4.
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Proof. Let’s use the notations of 3.1; let x be in Nψ1 , and η ∈ D(αH, ν) ∩D(δ1/2), such

that δ1/2η belongs to D(Hβ , ν
o); we have, using the isometry V and ([E5], 8.2):

‖Λψ1(x) b⊗α
ν

δ1/2η‖2 = ⊕i‖
∑
j

ηj b⊗α
ν

ΛΦ((ωξi,ηj b∗α
N

id)a(x)) α̂⊗β
νo

δ1/2η‖2

= ⊕‖ΛΦ(α(< ηj , ηj >b,νo)(ωξi,ηj b∗α
N

id)a(x)) α̂⊗β
νo

δ1/2η‖2

= ⊕‖ΛΦ((ωξi,ηj b∗α
N

id)a(x)) α̂⊗β
νo

δ1/2η‖2

=
∑
i

Φ(
∑
j

(id b∗α
N

ωη)Γ[(ωξi,ηj b∗α
N

id)a(x)∗(ωξi,ηj b∗α
N

id)a(x)]

=
∑
i

Φ[(id b∗α
N

ωη)Γ(ωξi b∗α
N
∗id)a(x∗]

=
∑
i

ωξi ◦ Ta(id b∗α
N

ωη)a(x∗x)) = ψ1[(id b∗α
N

ωη)a(x∗x)]

which proves that ψ1 is δ-invariant; moreover, if we take the Tomita algebra relative to

the weight ψ1 and the operator-valued weight Ta, we get that the weight ψ1 has the

density property.

3.3. Proposition. Let Gi = (Ni,Mi, αi, βi,Γi, Ti, T
′
i , νi) (i = 1, 2) be two measured

quantum groupoids, (b, a) an action of G1 on a von Neumann algebra A, and (a, b) a left

action of G2 on A; let us suppose that the actions a and b commute. Then:

(i) The operator-valued weight Tb from A onto Ab satisfies:

(Tb b∗α1
ν1

id)a = a ◦ Tb.

(ii) If b is integrable and if Ab = b(N1), the weight φ1 = ν1 ◦ b−1 ◦ Tb is a normal

semi-finite faithful weight on A, invariant under the action a, δG2
-invariant under the

action b, and has the density property.

Proof. Result (i) is straightforward, using the definition of commuting actions. With the

hypothesis of (ii), we get that Tb is a normal semi-finite faithful operator-valued weight

from A onto b(N1), that φ1 is a normal semi-finite faithful weight on A which satisfies,

for all x ∈ A+:

(Tb b∗α1
ν1

id)a(x) = a◦Tb(x) = 1 b⊗α1

N1

β1 ◦b−1 ◦Tb(x), (φ1 b∗α1
ν1

id)a(x) = β1 ◦b−1 ◦Tb(x),

from which we get that φ1 is invariant by a. On the other hand, φ1 is δG2-invariant under

the action b, and has the density property by 3.2.

3.4. Lemma. Let G be a measured quantum groupoid; let V be a corepresentation of G

on an N -N bimodule aHb ([E5], 5.1), and let (b, a) the canonical action implemented by

V on a(N)′ by a(x) = V (x a⊗β
No

1)V ∗ ([E5], 6.6). Then

(a(N)′)a = a(N)′ ∩ b(N)′ ∩ {(id ∗ ωξ,η)(V ), ξ ∈ D(αH, ν), η ∈ D((Hφ)β , ν
o)}′.

Proof. Clear.
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3.5. Lemma. Let (b, a) be an integrable action of a measured quantum groupoid G on

a von Neumann algebra A, and let ψ0 be a normal semi-finite faithful weight on Aa, and

ψ1 = ψ0 ◦ Ta be the normal semi-finite faithful lifted weight on A; let Vψ1 be the standard

implementation of a defined in 2.4: let s(Aa)′ = Jψ1
(Aa)′Jψ1

the basic construction made

from the inclusion Aa ⊂ A (cf. 2.6). Then

s(Aa)′ = (A ∪ a(N) ∪ {(id ∗ ωη,ξ)(V ∗ψ1
), ξ ∈ D(αH, ν), η ∈ D(Hβ , ν

o)})′′.

Proof. Using 3.4, we get Aa =A∩b(N)′∩{(id∗ωξ,η)(Vψ1), ξ∈D(αH, ν), η∈D((Hφ)β , ν
o)}′,

and therefore Jψ1
AaJψ1

is equal to

A′ ∩ a(N)′ ∩ Jψ1
{(id ∗ ωξ,η)(Vψ1

), ξ ∈ D(αH, ν), η ∈ D((Hφ)β , ν
o)}′Jψ1

.

As Vψ1
(Jψ1 b⊗α

N
Ĵ) = (Jψ1 b⊗α

N
Ĵ)V ∗ψ1

, we have

Jψ1(id ∗ ωξ,η)(Vψ1)Jψ1 = (id ∗ ωĴξ,Ĵη)(V ∗ψ1
)

and we get

Jψ1
AaJψ1

= A′ ∩ a(N)′ ∩ {(id ∗ ωη,ξ)(V ∗ψ1
), ξ ∈ D(αH, ν), η ∈ D(Hβ , ν

o)}′

from which we get the result.

3.6. Theorem. Let (b, a) be an integrable action of a measured quantum groupoid G on

a von Neumann algebra A, let Vψ1
be the standard implementation of a, as defined in 2.5;

let us denote by r the injection of Aa into A, and let us write s(x) = Jψ1
r(x)∗Jψ1

for any

x ∈ Aa. Then s(Aa)′ is the basic construction made from the inclusion Aa ⊂ A (cf. 2.6).

Moreover, there exists a normal surjective ∗-homomorphism πa from the crossed product

Aoa G onto s(Aa)′, called the Galois homomorphism associated to the integrable action

(b, a), such that, for all x ∈ A, n ∈ N , ξ ∈ D(αH, ν), η ∈ D(Hβ , ν
o):

πa(a(x)) = x, πa(1 b⊗α
N

α̂(n)) = a(n),

πa(1 b⊗α
N

(ωη,ξ ∗ id)[(W o)∗]) = (id ∗ ωη,ξ)(Vψ1
).

For simplification, we shall write µ(m) = πa(1 b⊗α
N

m), for any m ∈ M̂ ′, and we obtain

this way a representation of M̂ ′ on L(Hψ1
).

Proof. Let us use the notations of 3.1 and 3.2; let’s suppose that η belongs also to

D(δ−1/2) and that δ−1/2η belongs to D(αH, ν). Then

(1 b⊗α
N

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)])⊗ 1l2(I))VΛψ1
(x) =

⊕i
∑
j

ηj b⊗α
ν

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)])ΛΦ((ωξi,ηj b∗α
N

id)a(x))

which, using ([E5], 3.10(ii) applied to Go, 3.8(vi)), and the identification of HΦ◦R with

H made in 2.2) is equal to

⊕i
∑
j

ηj b⊗α
ν

ΛΦ((id β∗α
N

ωδ−1/2η,ξ)Γ[(ωξi,ηj b∗α
N

id)a(x)])
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or, to

⊕i
∑
j

ηj b⊗α
ν

ΛΦ((ωξi,ηj b∗α
N

id)a[(id β∗α
N

ωδ−1/2η,ξ)a(x)])

which is, using ([E5], 8.4), equal to

VΛψ1
[(id β∗α

N

ωδ−1/2η,ξ)a(x)]) = V(id ∗ ωη,ξ)(Vψ1
)Λψ1

(x)

from which, by density, we get that

(1 b⊗α
N

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)])⊗ 1l2(I))V = V(id ∗ ωη,ξ)(Vψ1
)

which, by density and continuity, remains true for any η in D(Hβ , ν
o). Using now 2.2, we

get that the weak closure of the linear span of all operators of the form

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)]

for all ξ ∈ D(αH, ν), η ∈ D(Hβ , ν
o), is equal to the von Neumann algebra M̂ ′; therefore,

we get that, for any y ∈ M̂ ′, the image of (1 b⊗α
N

y ⊗ 1l2(I))V is included in the image

of V, which means that VV∗(1 b⊗α
N

y ⊗ 1l2(I))V = (1 b⊗α
N

y ⊗ 1l2(I))V; therefore, we have,

for any y ∈ M̂ ′, VV∗(1 b⊗α
N

y⊗ 1l2(I))VV
∗ = (1 b⊗α

N
y⊗ 1l2(I))VV

∗, which proves that VV∗

commutes with 1 b⊗α
N

M̂ ′ ⊗ 1l2(I). Using 3.1, we easily get that VV∗ commutes also with

a(A)⊗ 1l2(I), and therefore that it commutes with Aoa G⊗ 1l2(I). Let us write now, for

any z ∈ Aoa G:

πa(z) = V∗(z ⊗ 1l2(I))V.

Thanks to this commutation property, πa is a ∗-homomorphism from AoaG into L(Hψ1).

Using now 3.5, we get that the image of πa is s(Aa)′.

3.7. Lemma. With the notations of 3.6, we have, for all m ∈ M̂ ′:

πa(1 b⊗α
N

R̂c(m)) = Jψ1
πa(1 b⊗α

N
m∗)Jψ1

.

Proof. Let ξ ∈ D(αH, ν), η ∈ D(Hβ , ν
o); using 3.6, we get that

Jψ1
πa(1 b⊗α

N
(ωη,ξ ∗ id)[(Ĵ β⊗α

N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)])∗Jψ1

is equal to Jψ1
(id ∗ ωη,ξ)(Vψ1

)∗Jψ1
, which (2.4) is equal to (i ∗ ωĴξ,Ĵη)(Vψ1

), and using

3.6 again, is equal to

πa(1 b⊗α
N

(ωĴξ,Ĵη ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)])

which is πa((1 b⊗α
N

Ĵ(ωξ,η ∗ id)(W ∗)Ĵ), and using ([E5], 3.11(iii)), is equal to

πa(1 b⊗α
N

J(ωξ,η ∗ id)[(Ĵ α⊗β̂
No

Ĵ)W (Ĵ α⊗β̂
No

Ĵ)]J)

which is

πa(1 b⊗α
N

J(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)])∗J)
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which is πa(1 b⊗α
N

R̂c[(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)]]); we get then the result by

density.

3.8. Theorem. Let (b, a) an integrable action of G on a von Neumann algebra A, πa
the Galois homomorphism associated by 3.6; let ψ0 be a normal semi-finite faithful weight

on Aa, and ψ1 = ψ0 ◦ Ta; let a be the representation of N on Hψ1
defined, for n ∈ N , by

a(n) = Jψ1
b(n∗)Jψ1

.

Let us write r for the injection of Aa into A, and s for the antirepresentation of Aa on

Hψ1 given, for a ∈ Aa, by s(a) = Jψ1r(a
∗)Jψ1 . Then:

(i) There exists an isometry G from Hψ1 s⊗r
ψ0

Hψ1 into Hψ1 b⊗α
ν

H, such that

G(Λψ1
(x) s⊗r

ψ0

ζ) =
∑
i

ei b⊗α
ν

ΛΦ[(ωζ,ei b∗α
N

id)a(x)]

for all x in NTa
∩Nψ1

, ζ ∈ D((Hψ1
)b, ν

o), and for all (b, νo)-orthogonal basis (ei)i∈I of

Hψ1
. Moreover, for any n ∈ N , a ∈ Aa, we have

G(b(n) s⊗r
Aa

1) = (1 b⊗α
N

β(n))G,

G(1 s⊗r
Aa

b(n)) = (1 b⊗α
N

β̂(n))G,

G(1 s⊗r
Aa

a(n)) = (a(n) b⊗α
Aa

1)G,

G(r(a) s⊗r
Aa

1) = (r(a) b⊗α
Aa

1)G,

G(1 s⊗r
Aa

s(a)) = (s(a) b⊗α
Aa

1)G.

(ii) For any e ∈ NΦ, we have

(1 b⊗α
N

JΦeJΦ)G(Λψ1
(x) s⊗r

ψ0

ζ) = a(x)(ζ b⊗α
ν

JφΛΦ(e)).

(iii) For all ζ ′ in D((Hψ1
)b, ν

o), (ωζ,ζ′ b∗α
N

id)a(x) belongs to NΦ, and we have

ΛΦ[(ωζ,ζ′ b∗α
N

id)a(x)] = (ωΛψ1
(x),ζ′ ∗ id)(G)ζ.

(iv) For any a′ ∈ A, Y ∈ M̂ ′, we have

a(a′)G = G(a′ s⊗r
Aa

1), (1 b⊗α
N

Y )G = G(πa(1 b⊗α
N

Y )s⊗r1).

(v) The projection GG∗ commutes with Aoa G, and for any X ∈ Aoa G, we have

πa(X) s⊗r
Aa

1Hψ1
= G∗XG.

(vi) For any t ∈ R, we have ∆it
ψ̃1
G = G∆it

ψ2
.

(vii) For all t ∈ R, we have

G̃(∆it
ψ1 s⊗r

ψ0

∆it
ψ1

) = ((δ∆Φ̂)−it α⊗b
νo

∆it
ψ1

)G̃.
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Proof. As

[(ωζ,ei b∗α
N

id)a(x)]∗[(ωζ,ei b∗α
N

id)a(x)] ≤ (ωζ b∗α
N

id)a(x∗x)

we get that

Φ([(ωζ,ei b∗α
N

id)a(x)]∗[(ωζ,ei b∗α
N

id)a(x)]) ≤ Φ[(ωζ b∗α
N

id)a(x∗x)] = ωζ ◦ Ta(x∗x)

and we get that [(ωζ,ei b∗α
N
id)a(x)] belongs to NΦ; defining G by the formula given in (i),

we obtain, for x, x′, in NTa
∩Nψ1

, ζ, ζ ′ in D(Hψ1
)b, ν

o), that

(G(Λψ1
(x) s⊗r

ψ0

ζ)|G(Λψ1
(x′) s⊗r

ψ0

ζ ′))

is equal to∑
i

(ΛΦ[(ωζ,ei b∗α
N

id)a(x)]|ΛΦ[(ωζ′,ei b∗α
N

id)a(x′)]) = (Ta(x′∗x)ζ|ζ ′)

or, to (Λψ1
(x) s⊗r

ψ0

ζ|Λψ1
(x′) s⊗r

ψ0

ζ ′) which implies that this formula defines an isometry

which can be extended by continuity to Hψ1 b⊗a
ψ0

Hψ1
and does not depend upon the

choice of the basis, which is the first result of (i). If n is a unitary in N , (a(n)ei)i∈I is

another orthogonal (b, νo)-basis of Hψ1 , and the independence of G from the basis gives

the second and the third formula of (i); let us remark that, for all n ∈ N , b(n) belongs

to A and therefore commutes with s, and that it commutes with Aa, and therefore to r;

moreover, as a(b(n)) = 1 b⊗α
N

β(n), we easily get the first formula linking G with b(n). If

we suppose now that n is analytic with respect to ν, we obtain

G(1 s⊗r
Aa

b(n))(Λψ1(x) s⊗r
ψ0

ζ) =
∑
i

ei b⊗α
ν

ΛΦ[(ωb(n)ζ,ei b∗α
N

id)a(x)]

=
∑
i

ei b⊗α
ν

ΛΦ[(ωζ,ei b∗α
N

id)a(x)α(σν−i/2(n))]

=
∑
i

ei b⊗α
ν

JΦα(n∗)JΦΛΦ[(ωζ,ei b∗α
N

id)a(x)]

= (1 b⊗α
N

β̂(n))G(Λψ1(x) s⊗r
ψ0

ζ)

which, by continuity, finishes the proof of (i). We then obtain

(1 b⊗α
N

JΦeJΦ)G(Λψ1
(x) s⊗r

ψ0

ζ) =
∑
i

ei b⊗α
ν

JΦeJΦΛΦ((ωζ,ei b∗α
N

a(x))

=
∑
i

ei b⊗α
ν

(ωζ,ei b∗α
N

id)a(x)JΦΛΦ(e)

= a(x)(ζ b⊗α
ν

JΦΛΦ(e))

which is (ii). We then get

(ωζ,ζ′ b∗α
N

id)a(x)JΦΛΦ(e) = JΦeJΦ(id ∗ ωΛψ1
(x),ζ′)(G)ζ

from which we deduce (iii).
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On the other hand, using again (ii), we get

(1 b⊗α
N

JΦeJΦ)a(a′)G(Λψ1(x) s⊗r
ψ0

ζ) = a(a′)(1 b⊗α
N

JΦeJΦ)G(Λψ1(x) s⊗r
ψ0

ζ)

= a(a′)a(x)(ζ b⊗α
ν

JφΛΦ(e))

= a(a′x)(ζ b⊗α
ν

JφΛΦ(e))

= (1 b⊗α
N

JΦeJΦ)G(Λψ1
(a′x) s⊗r

ψ0

ζ)

= (1 b⊗α
N

JΦeJΦ)G(a′ s⊗r
Aa

1)(Λψ1
(x) s⊗r

ψ0

ζ)

from which we get, by continuity:

(1 b⊗α
N

JΦeJΦ)a(a′)(G) = (1 b⊗α
N

JΦeJΦ)G(a′ s⊗r
Aa

1)

and making e go weakly to 1, we get the first result of (iv).

Let ξ ∈ D(αH, ν), η ∈ D(Hβ , ν
o) ∩D(δ−1/2), such that δ−1/2η belongs to D(αH, ν);

using (iii), we get that

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)](ωΛψ1
(x),ζ′ ∗ id)(G)ζ

is equal to

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)]ΛΦ[(ωζ,ζ′ b∗α
N

id)a(x)]

which, using ([E5], 4.3), is equal to

ΛΦ[(id β∗α
N

ωδ−1/2η,ξ)Γ((ωζ,ζ′ b∗α
N

id)a(x))] = ΛΦ[(ωζ,ζ′ b∗α
N

id)a((id β∗α
N

ωδ−1/2η,ξ)a(x)]

which, using (iii) again, and ([E5], 8.4), is equal to

(ωΛψ1
[(idβ∗α

N

ω
δ−1/2η,ξ

)a(x)],ζ′ ∗ id)(G)ζ = (ω(id∗ωη,ξ)(Vψ)Λψ1
(x),ζ′ ∗ id)(G)ζ

from which we get, by continuity:

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)](ωΛψ1
(x),ζ′ ∗ id)(G) = (ω(id∗ωη,ξ)(Vψ)Λψ1

(y),ζ′ ∗ id)(G)

which, by continuity and density, remains true for any η ∈ D(Hβ , ν
o).

Using 3.6, we get, by continuity and density:

(1 b⊗α
N

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)])G

= G(πa(1 b⊗α
N

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)]) s⊗r
Aa

1).

Using now 2.2, we get that the weak closure of the linear span of all operators of the form

(ωη,ξ ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)], for all ξ ∈ D(αH, ν), η ∈ D(Hβ , ν
o), is equal to the

von Neumann algebra M̂ ′; therefore, we get, for all Y ∈ M̂ ′, that

(1 b⊗α
N

Y )G = G(πa(1 b⊗α
N

Y ) s⊗r
Aa

1)

which finishes the proof of (iv).
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From (iv), we get that

(1 b⊗α
N

Y )GG∗ = G(πa(1 b⊗α
N

Y ) s⊗r
Aa

1)G∗

and that the projection GG∗ commutes with 1 b⊗α
N

M̂ ′; using same arguments, we get

that GG∗ commutes with a(A), and therefore it commutes with Aoa G. So, we get that

the map which sends Z ∈ A oa G on G∗ZG is a ∗-homomorphism, which is equal to

πa(Z) for any Z = 1 b⊗α
N

Y , with Y ∈ M̂ ′; using 3.6, we get that the same property holds

if Z = a(a′); therefore, it is true for any Z ∈ Aoa G, which is (v).

Let us remark that, because ψ1 is δ-invariant (3.2), we have ([E6], 3.2(ii)):

∆it
ψ̃1

= ∆it
ψ1 b⊗α

N
(δ∆Φ̂)−it

where this relative tensor product of operators means that it is possible to define a

bounded operator with natural values on elementary tensors. With the same definition

of relative tensors of operators, we have (2.6) ∆it
ψ2

= ∆it
ψ1 s
⊗r
Aa

∆it
ψ1

. Using these remaks,

we get, using (iii), for any x in Nψ1
∩NTa

and ζ, ζ ′ in D((Hψ1
)b, ν

o), that

(ωΛψ1
(x),ζ′ ∗ id)(∆it

ψ̃1
G∆−itψ2

)ζ = (δ∆Φ̂)−it(ω∆−itψ1
Λψ1

(x),∆−itψ1
ζ′ ∗ id)(G)∆−itψ1

ζ

= (δ∆Φ̂)−itΛΦ((ω∆−itψ1
ζ,∆−itψ1

ζ′ b∗α
N

id)a(σψ1

−t(x))).

As ψ1 is δ-invariant, we have ([E5], 88(iii)), for all t ∈ R and x ∈ A:

a(σψ1

t (x)) = (σψ1

t b∗α
N

τ−tσ
Φ◦R
−t σΦ

t )a(x)

and therefore we have, using (iii):

(ωΛψ1
(x),ζ′ ∗ id)(∆it

ψ̃1
G∆−itψ2

)ζ = (δ∆Φ̂)−itΛΦ(τtσ
Φ◦R
t σΦ

−t[(ωζ,ζ′ b∗α
N

id)a(x)])

which, using using ([E5], 3.8(vii) and (vi)) is equal to

(δ∆Φ̂)−itλ−t/2P itΛΦ(σΦ◦R
t σΦ

−t[(ωζ,ζ′ b∗α
N

id)a(x)])

= (δ∆Φ̂)−itλ−t/2P itλt/2δitJΦδ
itJΦΛΦ[(ωζ,ζ′ b∗α

N
id)a(x)])

which, using ([E5], 3.10 (vii)) and again (iii), is equal to

ΛΦ[(ωζ,ζ′ b∗α
N

id)a(x)]) = (ωΛψ1
(x),ζ′ ∗ id)(G)ζ

which gives (vi). As (vii) has been proved as well, this finishes the proof.

3.9. Theorem. Let (b, a) an integrable action of G on a von Neumann algebra A, πa
the Galois homomorphism associated by 3.6 from the crossed product A oa G onto the

von Neumann algebra s(Aa)′ obtained by the basic construction made from the inclusion

Aa ⊂ A; let ψ0 be a normal semi-finite faithful weight on Aa, and ψ1 = ψ0 ◦ Ta; let us

define the representation a of N on Hψ1
by, for n ∈ N :

a(n) = Jψ1
b(n∗)Jψ1

.

Let us write r for the injection of Aa into A, and s for the antirepresentation of Aa

on Hψ1
given, for a ∈ Aa, by s(a) = Jψ1

r(a∗)Jψ1
, and let G be the isometry from
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Hψ1 s⊗r
ψ0

Hψ1 into Hψ1 b⊗α
ν
H constructed in 3.8; let ψ2 be the weight ψ1 ◦ T2 where T2 is

the operator-valued weight from s(Aa)′ onto A obtained by the basic construction (2.6).

Then:

(i) For any ξ ∈ D(αH, ν), η ∈ D(Hβ , ν
o) such that (ωξ,η ∗ id)(W o) belongs to NΦ̂c ,

and for any z in Nψ1
, we have

G∗(Λψ1(z) b⊗α
N

ΛΦ̂c [(ωξ,η ∗ id)(W o)] = Λψ2 [πa((1 b⊗α
N

(ωξ,η ∗ id)(W o))a(z)].

(ii) For any X ∈ Nψ̃1
, πa(X) belongs to Nψ2

, and

G∗Λψ̃1
(X) = Λψ2

(πa(X)).

(iii) G∗Jψ̃1
= Jψ2

G∗.

(iv) The projection GG∗ is equal to the support p of πa; let us consider πa as an

isomorphism between (AoaG)p and s(Aa)′; then, this isomorphism sends the weight ψ̃1p

to ψ2.

Proof. Let x, y be in the Tomita algebra Tψ1,T1 ; we get that the scalar product

(G∗(Λψ1
(z) b⊗α

N
ΛΦ̂c [(ωξ,η ∗ id)[(Ĵ α⊗β̂

No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]])|Λψ1
(x) s⊗r

ψ0

Λψ1
(y))

is equal to

(Λψ1
(z) b⊗α

N
ΛΦ̂c [(ωξ,η ∗ id)[(Ĵ α⊗β̂

No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]]|G(Λψ1
(x) s⊗r

ψ0

Λψ1
(y)))

or, to

(ΛΦ̂c [(ωξ,η ∗ id)[(Ĵ α⊗β̂
No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]]|(ωΛψ1
(x),Λψ1

(z) ∗ id)(G)Λψ1
(y))

which, using 3.8(iii), is equal to

(ΛΦ̂c [(ωξ,η ∗ id)[(Ĵ α⊗β̂
No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]]|ΛΦ((ωΛψ1
(y),Λψ1

(z) b∗α
N

id)a(x)).

If, moreover, η belongs to D(δ−1/2), we get, using 2.2, that it is equal to

(ξ|(ωΛψ1
(y),Λψ1

(z) b∗α
N

id)a(x)δ−1/2η)

and if moreover δ−1/2η belongs to D(αH, ν), this is equal to

(Λψ1
(z)|(id b∗α

N
ωδ−1/2η,ξ)a(x)Λψ1

(y) = ψ1(y∗(id b∗α
N

ωξ,δ−1/2η)a(x∗)z)

= ψ1((id b∗α
N

ωξ,δ−1/2η)a(x∗)zσψ1

−i(y
∗))

= (zΛψ1(σψ1

−i(y
∗))|Λψ1((id b∗α

N
ωδ−1/2η,ξ)a(x))

which, using 2.4 and the standard implementation associated to the weight ψ1, thanks

to 3.2, is equal to

(zΛψ1
(σψ1

−i(y
∗))|(id ∗ ωη,ξ)(Vψ1

)Λψ1
(x))
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and, by continuity, we get that the equality

(G∗(Λψ1
(z) b⊗α

N
ΛΦ̂c [(ωξ,η ∗ id)[(Ĵ α⊗β̂

No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]])|Λψ1
(x) s⊗r

ψ0

Λψ1
(y))

= (zΛψ1(σψ1

−i(y
∗))|(id ∗ ωη,ξ)(Vψ1)Λψ1(x))

= ((id ∗ ωξ,η)(V ∗ψ1
)zΛψ1(σψ1

−i(y
∗))|Λψ1

(x))

remains true for the initial hypothesis on ξ and η. Therefore, we get, using 3.6, that this

scalar product is equal to

(πa[(1 b⊗α
N

[(ωξ,η ∗ id)[(Ĵ α⊗β̂
No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]]a(z)]Λψ1(σψ1

−i(y
∗))|Λψ1(x))

which, using 2.6, is equal to

Λψ2
(πa[(1 b⊗α

N
[(ωξ,η ∗ id)[(Ĵ α⊗β̂

No

Ĵ)W (Ĵ α⊗β
No

Ĵ)]]a(z)])|Λψ1
(x) s⊗r

ψ0

Λψ1
(y))

which, by continuity and density, gives (i). By density, we get, using 2.5, that, for any

z ∈ Nψ1
and a ∈ NΦ̂c ∩NT̂ c , we have

G∗Λψ̃1
((1 b⊗α

N
a)a(z)) = G∗(Λψ1(z) b⊗α

N
ΛΦ̂c(a)) = Λψ2

(πa[(1 b⊗α
N

a)a(z)]).

The linear set generated by elements of the form (1 b⊗α
N

a)a(z), with a ∈ NΦ̂c ∩ NT̂ c

and z ∈ Nψ1 , is a core for Λψ̃1
([E5], 10.8(ii)). So, if X ∈ Nψ̃1

, there exists elements

ai ∈ NΦ̂c ∩ NT̂ c and zi ∈ Nψ1
such that the finite sums

∑
i(1 b⊗α

N
ai)a(zi) are weakly

converging to X, and
∑
i Λψ̃1

[(1 b⊗α
N

ai)a(zi)] is converging to Λψ̃1
(X). But then, on one

hand, πa(
∑
i(1b⊗α

N
ai)a(zi)) is converging to πa(X), and on the other hand, the finite sums∑

i Λψ2(πa[(1 b⊗α
N

ai)a(zi)]) =
∑
iG
∗(Λψ̃1

[(1 b⊗α
N

ai)a(zi)] are converging. So, applying

the closed graph theorem to the closed map Λψ2 , we get (ii). If now X ∈ Nψ̃1
∩N∗

ψ̃1
, we

get that πa(X) belongs to Nψ2 ∩N∗ψ2
, and that G∗Sψ̃1

Λψ̃1
(X) = Sψ2G

∗Λψ̃1
(X). So, we

have G∗Sψ̃1
⊂ Sψ2

G∗; using now 3.8(vii), we get (iii).

Using (iii), we get that Jψ̃1
GG∗Jψ̃1

= GG∗; as, in 3.8(v), we have obtained that GG∗

belongs to (A oa G)′, we get that GG∗ ∈ Z(A oa G). Using then 3.8(v) again, we see

that, for any X ∈ AoaG, we have XGG∗ = Gπa(X)G∗, and therefore that πa(X) = 0 if

and only if XGG∗ = 0, from which we get that GG∗ is equal to the support of πa. Using

then (ii), we finish the proof.

3.10. Lemma. With the hypothesis and notations of 3.9, we get, for any m ∈ M̂ ′:

1 s⊗r
Aa

πa(1 b⊗α
N

m) = G∗Vψ1 [1 a⊗β
N

ĴR̂c(m∗)Ĵ ]V ∗ψ1
G.

Proof. Using 3.7, 3.9(iii), 3.8(iv) and 2.5, we get

G[1 s⊗r
Aa

πa(1 b⊗α
N

m)] = G[1 s⊗r
Aa

Jψ1πa(1 b⊗α
N

R̂c(m∗))Jψ1 ]

= GJψ2
[πa(1 b⊗α

N
R̂c(m∗)) s⊗r

N
1]Jψ2

= Jψ̃1
G[πa(1 b⊗α

N
R̂c(m∗)) s⊗r

N
1]Jψ2
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= Jψ̃1
[1 b⊗α

N
R̂c(m∗)]GJψ2 = Jψ̃1

[1 b⊗α
N

R̂c(m∗)]Jψ̃1
G

= Vψ1
[1 a⊗β

No
ĴR̂c(m∗)Ĵ ]V ∗ψ1

G

from which, G being an isometry, we get the result.

3.11. Definitions. Let (b, a) be an integrable action of a measured quantum groupoid

G on a von Neumann algebra A, Aoa G be the crossed product, πa be the Galois homo-

morphism from A oa G onto the algebra s(Aa)′ obtained by the standard construction

made from the inclusion Aa ⊂ A (3.6), and G be the isometry constructed in 3.8; then,

using 3.9(iv), we get that the following properties are equivalent:

(i) πa is an isomorphism between Aoa G and s(Aa)′;

(ii) the isometry G is a unitary;

(iii) the inclusion Aa
b⊗α
N

1H ⊂ a(A) ⊂ A oa G is standard, and the operator-valued

weight Tã is obtained from Ta by this standard construction.

In that situation, following [DC1], we shall say that (b, a) is a Galois action of G, and

that the Aa − No-bimodule A will be called a Galois bimodule for G, and the unitary

G̃ = σνG from Hψ1 s⊗r
ψ0

Hψ1
onto H α⊗b

νo
Hψ1

will be called its Galois unitary. Then, it

is clear that the representation µ of M̂ ′ on Hψ1
, defined in 3.6, is faithful.

Moreover, a normal semi-finite faithful weight ψ0 on Aa will be called a-relatively

invariant, if there exists a normal semi-finite faithful weight φ on A, invariant by a,

and having the density property, such that the two automorphism groups σφ and σψ1

on A commute (where ψ1 = ψ0 ◦ Ta). In that situation, we shall say that the 5-uple

(A, b, a, φ, ψ0) is a Galois system for G. Then, thanks to [V1], we know that there exists

a positive operator δA affiliated to A, and a positive operator λA affiliated to Z(A) such

that

(Dφ : Dψ1)t = λ
it2/2
A δitA

We shall call δA the modulus of the action (b, a), and λA the scaling operator of the

action.

Starting from a left action (a, b), we get the notion of left Galois system and that

(A, a, b, φ, ψ0) is left Galois if and only if (Ao, ao, (σNb)o, φo, ψo0) is Galois, and (A, b, a,

φ, ψ0) is Galois if and only if (Ao, bo, σNao, φo, ψo0) is left-Galois.

3.12. Examples. (i) Let (b, a) be any action of G on a von Neumann algebra A; then

(2.5), there exists an action (1 b⊗α
N

α̂, ã) of Ĝc on the crossed product AoaG. This action

is integrable ([E5], 9.8); we have (A oa G)ã = a(A) ([E5], 11.5), and as the inclusion

a(A) ⊂ AoaG ⊂ Ab∗α
N

L(H) is depth 2 ([E5], 13.8), we obtain by ([E5], 13.9) that the dual

action (1b⊗α
N

α̂, ã) is a Galois action of Ĝc, with α(A) ⊂ AoaG and 1b⊗α
N

α̂(N) ⊂ AoaG

as Galois bimodule.

(ii) In particular ([E5], 9.5) we get that (β,Γ) is a Galois action of G, with α(N) ⊂M
and β(N) ⊂M as Galois bimodule. Moreover, we get that (M,β,Γ,Φ ◦R, ν) is a Galois

system for G. Then, we can easily check that MΓ = α(N), that the operator-valued
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weight TΓ is equal to the left-invariant weight TL, and therefore that ψ1 = Φ, a = α̂,

r = α, s = β̂, Vψ1
= σW o∗σ, πΓ = id, and G̃ = Ŵ .

(iii) If (b, a) is an integrable outer action of G on A, then, (b, a) is Galois: let G be the

isometry constructed in 3.8; as, by definition ([E7]), we have AoaG∩a(A)′ = 1b⊗α
N

α̂(N),

we get, by 3.9, that there exists a projection p ∈ Z(N) such that GG∗ = 1 b⊗α
N

α̂(p) is

the support of πa; using 3.8, we get that p = 1, which gives the injectivity of πa.

3.13. Lemma. (i) Let (b, a) be a Galois action of the measured quantum groupoid G

on the von Neumann algebra A; let ψ1 = ψ0 ◦ Ta, Vψ1
the standard implementation of a

associated to ψ1 (2.5), and G̃ the Galois unitary of the Galois system. Then

G̃σψo0 (Jψ1 s⊗r
Aa

Jψ1
) = σνVψ1

σνo(Ĵ α⊗b
No

Jψ1
)G̃.

(ii) Let W be the pseudo-multiplicative unitary of G, W o be the pseudo-multiplicative

unitary of Go, Ŵ be the pseudo-multiplicative unitary of Ĝ. We have

Ŵσνo(J β̂⊗α
N

J) = W o∗(Ĵ α⊗β
No

J)Ŵ .

Proof. Using 3.9(iii) and 2.5, we have

σνG̃σψo0 (Jψ1 s⊗r
Aa

Jψ1
) = GJψ2

= Jψ̃1
G = Vψ1

(Jψ1 b⊗α
N

Ĵ)G = Vψ1
σνo(Ĵ α⊗b

No
Jψ1

)G̃

from which we get (i). Using 3.12(ii), we obtain (ii).

4. From Galois actions to Galois systems and back. In this chapter, we suppose

that we have a Galois action (b, a) of a measured quantum groupoid G on a von Neumann

algebra A, and a normal semi-finite faithful weight ψ0 on Aa, such that the subspace

D((Hψ1
)b, ν

o) ∩ D(rHψ1
, ψ0) is dense in Hψ1

, where ψ1 = ψ0 ◦ Ta. We then prove that

right leg of the Galois unitary introduced in 3.11 generates A and that this unitary satisfies

a pentagonal relation (4.2). This allows us to prove, in some particular cases (4.6, 4.7)

that there exists then a normal semi-finite faithful weight φ on A such that (A, b, a, φ, ψ0)

is a Galois system for G. Conversely, if there exists a Galois system (A, b, a, φ, ψ0) for G,

then the weight ψ0 satisfies this density property (4.11).

4.1. Definition. Let (b, a) be a Galois action of the quantum groupoid G on a von

Neumann algebra A; let ψ0 a normal semi-finite faithful weight on Aa; let us write ψ1 =

ψ0 ◦ Ta, r for the injection of Aa into A. We shall say that the weight ψ0 has the Galois

density property if the subspace D((Hψ1
)b, ν

o) ∩D(rHψ1
, ψ0) is dense in Hψ1

.

4.2. Theorem. Let (b, a) be a Galois action of the measured quantum groupoid G on a

von Neumann algebra A; let ψ0 a normal semi-finite faithful weight on Aa, having the

Galois density property, in the sense of 4.1; let G̃ be the Galois unitary of (b, a), from

Hψ1 s⊗r
ψ0

Hψ1
onto H α⊗b

νo
Hψ1

, as defined in 3.11. We have:

(i) For any ζ ∈ D((Hψ1
)b, ν

o) ∩ D(rHψ1
, ψ0), ζ ′ in D((Hψ1

)b, ν
o), η ∈ H, x in

Nψ1 ∩NTa
, we have

(G̃(Λψ1
(x) s⊗r

ψ0

ζ)|η α⊗b
νo

ζ ′) = (ΛΦ[(ωζ,ζ′ b∗α
N

id)a(x)]|η)
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and therefore

(id ∗ ωζ,ζ′)(G̃)Λψ1
(x) = ΛΦ[(ωζ,ζ′ b∗α

N
id)a(x)].

(ii) For any x ∈ Nψ1 ∩NTa
, y ∈ NΦ ∩NT , ξ ∈ D(αH, ν), we have

(ωΛψ1
(x),JΦy∗JΦξ ∗ id)(G̃) = (id b∗α

N
ωJΦΛΦ(y),ξ)a(x).

(iii) For any x ∈ Nψ1
∩N∗ψ1

, y, z in NΦ ∩NT , we have

(ωΛψ1
(x),JΦΛΦ(y∗z) ∗ id)(G̃)∗ = (ωΛψ1

(x∗),JΦΛΦ(z∗y) ∗ id)(G̃).

(iv) The two unitaries (1 α⊗b
No

G̃)(G̃ s⊗r
Aa

1) and

(Ŵ α⊗b
No

1)σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)(1 s⊗r

Aa
G̃)

from Hψ1 s⊗r
ψ0

Hψ1 s⊗r
ψ0

Hψ1
to H α⊗β

νo
H α⊗b

νo
Hψ1

, are equal.

Proof. Using 3.8(iii) and the definition of G̃, we get (i) by a direct calculation. Using (i),

we then get

((ωΛψ1
(x),JΦy∗JΦξ ∗ id)(G̃)ζ|ζ ′) = (G̃(Λψ1

(x) s⊗r
ψ0

ζ)|JΦy
∗JΦξ α⊗b

νo
ζ ′)

= (ΛΦ(ωζ,ζ′ b∗α
N

id)a(x))|JΦy
∗JΦξ)

= (JΦyJΦΛΦ(ωζ,ζ′ b∗α
N

id)a(x))|ξ)

= ((ωζ,ζ′ b∗α
N

id)a(x)JΦΛΦ(y)|ξ)

= ((id b∗α
N

ωJΦΛΦ(y),ξ)a(x)ζ|ζ ′)

from which we get (ii). Using (ii), we get

(ωΛψ1
(x),JΦΛΦ(y∗z) ∗ id)(G̃)∗ = (id b∗α

N
ωJΦΛΦ(y),JΦΛΦ(z))a(x)∗

= (id b∗α
N

ωJΦΛΦ(z),JΦΛΦ(y))a(x∗)

= (ωΛψ1
(x∗),JΦΛΦ(z∗y) ∗ id)(G̃)

from which we get (iii).

Let v ∈ D(Hβ , ν
o), w ∈ D(αH, ν) ∩ D(Hβ , ν

o), ζ ∈ D((Hψ1
)b, ν

o) ∩ D(rHψ1
, ψ0),

x ∈ Nψ1 ∩NTa
; we have, using (i) and ([E5], 3.10 (i)):

(i ∗ ωv,w)(Ŵ )(id ∗ ωζ,ζ′)(G̃)Λψ1
(x) = (i ∗ ωv,w)(Ŵ )ΛΦ[(ωζ,ζ′ b∗α

N
id)a(x)]

= ΛΦ[(ωv,w β∗α
N

id)Γ[(ωζ,ζ′ b∗α
N

id)a(x)]]

= ΛΦ[(ωζ,ζ′ b∗α
N

ωv,w β∗α
N

id)(a b∗α
N

id)a(x)]

= ΛΦ[((ωv,w α∗b
No

ωζ,ζ′) ◦ ςNa)a(x)].

Using 3.8(iv), we get that, for all y ∈ A:

(ωv,w α∗b
No

ωζ,ζ′) ◦ ςNa)(y) = (G̃(y s⊗r
Aa

1)G̃∗(v α⊗b
νo

ζ)|w α⊗b
νo

ζ ′)
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Let (ei)i∈I be an orthogonal (r, ψ0)-basis for Hψ1 ; there exists (vi)i∈I and (wi)i∈I in Hψ1 ,

such that

G̃∗(v α⊗b
νo

ζ) =
∑
i

vi s⊗r
ψ0

ei, G̃∗(w α⊗b
νo

ζ ′) =
∑
i

wi s⊗r
ψ0

ei.

Using the intertwining properties given in 3.8(i), we get, for all n ∈ N :∑
i

‖b(n)vi‖2 = ‖
∑
i

b(n)vi s⊗r
ψ0

ei‖2 = ‖(b(n) s⊗r
Aa

1)G̃∗(v α⊗b
νo

ζ)‖2

= ‖G̃∗(β(n)v α⊗b
νo

ζ)‖2 = ‖β(n)v α⊗b
νo

ζ‖2

and therefore as ζ is in D((Hψ1)b, ν
o) and v is in D(Hβ , ν

o), we get that each vi is in

D((Hψ1
)b, ν

o), and the same result holds for the wis.

On the other hand, for any z ∈ Aa, we get∑
i

‖r(z)vi‖2 = ‖
∑
i

r(z)vi s⊗r
ψ0

ei‖2

= ‖(r(z) s⊗r
Aa

1)G̃∗(v α⊗b
νo

ζ)‖2

= ‖G̃∗(v α⊗b
νo

r(z)ζ)‖2 = ‖v α⊗b
νo

r(z)ζ‖2

and therefore as v is in D(αH, ν) and ζ is in D(rHψ1
, ψ0), we get that each vi is in

D(rHψ1 , ψ0).

So, we get that there exists vi inD((Hψ1
)b, ν

o)∩D(rHψ1
, ψ0), and wi inD((Hψ1

)b, ν
o),

such that, for all y ∈ A, we have

(ωv,w α∗b
No

ωζ,ζ′) ◦ ςNa(y) =
∑
i

(yvi|wi)

and therefore (ωv,w α∗b
No

ωζ,ζ′) ◦ ςNa =
∑
i ωvi,wi . So, we get

(i ∗ ωv,w)(Ŵ )(id ∗ ωζ,ζ′)(G̃)Λψ1
(x) = ΛΦ[((ωv,w α∗b

No
ωζ,ζ′) ◦ ςNa)a(x)]

=
∑
i

ΛΦ[(ωvi,wi b∗α
N

id)a(x)]

=
∑
i

(i ∗ ωvi,wi)(G̃)Λψ1
(x)

and therefore for all η ∈ H, we have

((i ∗ ωv,w)(Ŵ )(id ∗ ωζ,ζ′)(G̃)Λψ1
(x)|η) =

∑
i

((i ∗ ωvi,wi)(G̃)Λψ1
(x)|η)

=
∑
i

(G̃(Λψ1(x) s⊗r
ψ0

vi)|η α⊗b
νo

wi)

which is equal to∑
i

((G̃ s⊗r
Aa

1)(Λψ1
(x) s⊗r

ψ0

vi s⊗r
ψo

ei)|η α⊗b
νo

wi s⊗r
ψ0

ei)

= ((G̃ s⊗r
Aa

1)(1 s⊗r
Aa

G̃∗)(Λψ1
(x) s⊗r

ψ0

(v α⊗b
νo

ζ))|(1 α⊗b
No

G̃∗)(η α⊗β̂
νo

w α⊗b
νo

ζ ′)).
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On the other hand, we get that

((i ∗ ωv,w)(Ŵ )(id ∗ ωζ,ζ′)(G̃)Λψ1
(x)|η) = ((id ∗ ωζ,ζ′)(G̃)Λψ1

(x)|(i ∗ ωv,w)(Ŵ )∗η)

= (G̃(Λψ1
(x) s⊗r

ψ0

ζ)|(i ∗ ωv,w)(Ŵ )∗η α⊗b
νo

ζ ′)

is, using again 3.8(i), equal to

(σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)[Λψ1

(x) s⊗r
ψ0

(v α⊗b
νo

ζ)]|(Ŵ ∗ α⊗b
No

1)(η α⊗β̂
νo

w α⊗b
νo

ζ ′)

where σ2,3

α,β̂
is the flip from (H α⊗b

No
Hψ1

) β̂⊗α
N

H onto (H β̂⊗α
N

H) α⊗b
No

Hψ1
, exchanging

the second and the third leg, and α with β̂.

From which we get that

((1 α⊗b
No

G̃)(G̃ s⊗r
Aa

1)(1 s⊗r
Aa

G̃∗)([Λψ1(x) s⊗r
ψ0

(v α⊗b
νo

ζ)]|η α⊗β̂
νo

w α⊗b
νo

ζ ′)

is equal to

(Ŵ α⊗b
No

1)σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)[Λψ1(x) s⊗r

ψ0

(v α⊗b
νo

ζ)]|η α⊗β̂
νo

w α⊗b
νo

ζ ′)

and therefore that

(Ŵ α⊗b
No

1)σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)(1 s⊗r

Aa
G̃) = (1 α⊗b

No
G̃)(G̃ s⊗r

Aa
1).

4.3. Corollary. Let (b, a) be a Galois action of the measured quantum groupoid G on

a von Neumann algebra A; let ψ0 a normal semi-finite faithful weight on Aa, having the

Galois density property defined in 4.1; let us write ψ1 = ψ0 ◦ Ta, and let us write r for

the injection of Aa in A, and s for the antirepresentation s(x) = Jψ1r(x
∗)Jψ1 of Aa on

Hψ1
; let G̃ be the Galois unitary of (b, a), from Hψ1 s⊗r

ψ0

Hψ1
onto H α⊗b

νo
Hψ1

, as defined

in 3.11. Then, the linear space generated by the elements of the form (ωζ,ζ′ ∗ id)(G̃), for

all ζ in D((Hψ1)s, ψ
o
0), and ζ ′ ∈ D(αH, ν) is weakly dense in A.

Proof. Let us first look at the product of two elements of that form. Let ζ1∈D((Hψ1)s, ψ
o
0)

and ζ ′1 ∈ D(αH, ν); let ξ, η be in Hψ1
. Then

((ωζ,ζ′ ∗ id)(G̃)(ωζ1,ζ′1 ∗ id)(G̃)ξ|η)

= ([σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)(1 s⊗r

Aa
G̃)](ζ s⊗r

ψ0

ζ1 s⊗r
ψ0

ξ)|(ζ ′ β̂⊗α
ν

ζ ′1) α⊗b
ψo0

η)

which, using 4.2(iv), is equal to

((1 α⊗b
No

G̃)(G̃ s⊗r
Aa

1)(ζ s⊗r
ψ0

ζ1 s⊗r
ψ0

ξ)|(Ŵ α⊗b
(Aa)o

1)[(ζ ′ β̂⊗α
ν

ζ ′1) α⊗b
ψo0

η]).

Let (ei)i∈I be an orthogonal (α, ν)-basis. As in ([E3], 3.4), we can prove that there exist

(ζi)i∈I ∈ D((Hψ1)s, ψ
o
0) and (ζ ′i)i∈I ∈ D(αH, ν) such that

G̃(ζ s⊗r
ψ0

ζ1) =
∑
i

ei α⊗b
νo

ζ1, Ŵ (ζ ′ β̂⊗α
ν

ζ ′1) =
∑
i

ei α⊗β
νo

ζ ′i,
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and therefore we get that

((ωζ,ζ′ ∗ id)(G̃)(ωζ1,ζ′1 ∗ id)(G̃)ξ|η) =
∑
i

(ωζi,ζ′i ∗ id)(G̃)ξ|η)

which proves that the product (ωζ,ζ′ ∗ id)(G̃)(ωζ1,ζ′1 ∗ id)(G̃) is the weak limit of the finite

sums (ωζi,ζ′i ∗ id)(G̃). So, by continuity, we get that the weak closure of the linear space

generated by the elements of the form (ωζ,ζ′ ∗ id)(G̃), for all ζ in D((Hψ1
)s, ψ

o
0), and

ζ ′ ∈ D(αH, ν) is an algebra.

Using 4.2(ii), we get, on one hand, that all the operators of the form (ωζ2,ζ′ ∗ id)(G̃)

(with ζ2 ∈ D((Hψ1
)s, ψ

o
0)) belong to A, and on the other hand, that the closure of the

linear set generated by these operators is the closure of the set of all operators (id b∗α
N

ωζ′′,ζ′)a(x), for all ζ ′, ζ ′′ in D(αH, ν), and x ∈ A, and is therefore invariant by taking

the adjoint, and that it contains all operators b(< ζ ′′, ζ ′′ >b,νo) = (id b∗α
N

ωζ′′,ζ′)a(1).

Therefore, it is a sub-von Neumann algebra B of A which contains b(N). If now X ∈ B′,
we get that X b⊗α

N
1 belongs to a(A)′ ∩ b(N)′ b⊗α

N
1 = a(A)′ ∩L(Hψ1) b∗α

N
α(N), which is

equal to the commutant (a(A) ∪ 1Hψ1
b⊗α
N

α(N)′)′. Thanks to ([E5], 11.5(ii)), we have

(a(A) ∪ 1Hψ1
b⊗α
N

α(N)′)′′ = A b∗α
N

L(H)

and therefore we get that (a(A) ∪ 1Hψ1
b⊗α
N

α(N))′ = A′ b⊗α
N

1. So, any X ∈ B′ belongs

to A′, and we finally get that B = A, which finishes the proof.

4.4. Proposition. With the assumptions of 4.3, let us write

Kit = G̃∗(JΦδ
itJΦ α⊗b

No
1)G̃.

Let T2 be the canonical operator-valued weight from s(Aa)′ onto A obtained by the basic

construction from Ta, and ψ2 = ψ1 ◦ T2. Then:

(i) The one-parameter group of unitaries Kit on Hψ1 s⊗r
ψ0

Hψ1 belongs to A′ s∗r
Aa

A.

(ii) There exists a one-parameter group of automorphisms ρt of s(Aa)′ such that, for

all y ∈ s(Aa)′, we have

Kit(y s⊗r
Aa

1)K−it = ρt(y) s⊗r
Aa

1

with ρt(x) = x, for all x ∈ A.

(iii) For any y ∈ s(Aa)′+, we have ψ2 ◦ ρt(y) = ψ2(b(q)−ty), where q belongs to Z(N)

and is such that the scaling operator of G is λ = α(q) = β(q), and b(q) ∈ Z(A), and

T2(ρt(y)) = b(q)−tT2(y).

(iv) Let us identify Hψ2
and Hψ1 s⊗r

ψ0

Hψ1
(2.6); then Kit is the standard implemen-

tation of ρt, and therefore

KitΛψ2
(X) = Λψ2

(b(q)t/2ρt(X))

for any X ∈ Nψ2
, and

σψo0 (Jψ1 s⊗r
Aa

Jψ1)Kit(Jψ1 r⊗s
(Aa)o

Jψ1)σψ0 = Kit
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(v) It is possible to define a one-parameter group of unitaries Kit
1s⊗r
Aa

b⊗α
ν

δit on

Hψ1 s⊗r
ψ0

Hψ1 b⊗α
ν

H, with natural values on elementary tensors; moreover, we have

(id s∗r
Aa

a)(Kit) = Kit
1s⊗r
Aa

b⊗α
ν

δit.

(vi) For any s,t in R, we have (∆it
ψ1 s
⊗r
ψ0

∆it
ψ1

)(Kis)(∆−itψ1
s⊗r
ψ0

∆−itψ1
) = Kis.

Proof. By a straightforward application of 4.2(iv), we get that Kit belongs to L(Hψ1
)s∗r
Aa

A; moreover, using 3.8(v), we get, for any X ∈ Aoa G, that

Kit(πa(X) s⊗r
Aa

1)K−it = KitG∗XGK−it

and therefore if X = a(x), with x ∈ A, we have, using 3.8(iv):

Kit(x s⊗r
Aa

1)K−it = G∗(1 b⊗α
N

JΦδ
itJΦ)a(x)(1 b⊗α

N
JΦδ

−itJΦ)G = G∗a(x)G = x s⊗r
Aa

1

from which we finish the proof of (i).

Using ([E5], 3.11(ii)), we get that, for any a ∈ M , that δ̂itaδ̂−it = τ−tσ
Φ◦R
−t (a), and

applying this result to Ĝ, we get that δitbδ−it = τ̂−tσ
Φ̂◦R̂
−t (b), for any b in M̂ ; moreover,

using now ([E5], 3.10(iv)), we get that

JΦδ
itJΦbJΦδ

−itJΦ = τ̂−tσ
Φ̂
t (b)

and that, for any c in M̂ ′, JΦδ
itJΦcJΦδ

−itJΦ belongs to M̂ ′, and more precisely, that

JΦδ
itJΦcJΦδ

−itJΦ = τ̂ c−tσ
Φ̂c

t (c)

from which we infer that the one-parameter group of unitaries 1 b⊗α
N

JΦδ
itJΦ implements

a one-parameter group of automorphisms of Aoa G; which gives (ii), thanks to 3.8(iv).

Then, using ([E5], 13.4, and 3.8(vii) applied to Ĝc), we get that, for any x ∈ Nψ1 and

c ∈ NΦ̂c , we get that

ψ̃1[(1 b⊗α
N

JΦδ
itJΦ)a(x∗)(1 b⊗α

N
c∗c)a(x)(1 b⊗α

N
JΦδ

−itJΦ) =

‖Λψ1
(x) b⊗α

ν
ΛΦ̂c(τ̂

c
−tσ

Φ̂c

t (c))‖2 = ‖Λψ1
(x) b⊗α

ν
ΛΦ̂c(λ

−t/2c)‖2

= ψ̃1[a(x∗)(1 b⊗α
N

λ−tc∗c)a(x)]

from which we get, using again ([E5], 13.4), that

ψ̃1[(1 b⊗α
N

JΦδ
itJΦ)X(1 b⊗α

N
JΦδ

−itJΦ)] = ψ̃1((1 b⊗α
N

λ−t)X)

for any X ∈M+

ψ̃1
.

As λ = α(q) = β(q) is affiliated to Z(M) ([E5], 3.8(vi)), we get that 1 b⊗α
N

λ = a(b(q)),

and that b(q) is affiliated to Z(A). Using now 3.9, we get the result.

Using now ([E5], 3.10(vii) and again 13.4), we get that (1b⊗α
N

JΦδ
itJΦ) is the standard

implementation of Ad((1 b⊗α
N

JΦδ
itJΦ)|AoaG on Hψ1 b⊗α

ν
H (which is identified with Hψ̃1
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by ([E5], 13.4). Therefore, using again 3.9, we get that Kit is the standard implementation

of ρt; thanks to (iii), we finish the proof of (iv).

Similarly, using again ([E5], 3.8 (i) and (v)), we get α(n)δit = δitα(γtσ
ν
t (n)); as ν is

invariant under γt ([E5], 3.8 (v)), there exists a one-parameter group of unitaries hit on

Hν , such that, for all n ∈ Nν , we gave Λν(γtσ
ν
t (n)) = hitΛν(n), and hitmh−it = γtσ

ν
t (m),

for all m ∈ N ; therefore, if η is in D(αH, ν), it is straightforward to get that δitη belongs

also to D(αH, ν); more precisely, we have then:

Rα,ν(δitη)Λν(n) = α(n)δitη = δitα(γtσ
ν
t (n))η = δitRα,ν(η)hitΛν(n)

from which we infer that Rα,ν(δitη) = δitRα,ν(η)hit, and if η, η′ belong to D(αH, ν),

we get that < δitη, δitη′ >oα,ν= γ−tσ
ν
−t(< η, η′ >oα,ν). From which we get, for all ξ, ξ′ in

Hψ1 s⊗r
ψ0

Hψ1
, using (ii), that

(Kitξ 1s⊗r
Aa

b⊗α
ν

δitη|Kitξ′ 1s⊗r
Aa

b⊗α
ν

δitη′) = ((1 s⊗r
Aa

b(γ−tσ
ν
−t(< η, η′ >oα,ν)))Kitξ|ξ′)

= (Kit(1 s⊗r
Aa

b(< η, η′ >oα,ν))ξ|Kitξ′)

= (ξ 1s⊗r
Aa

b⊗α
ν

η|ξ′ 1s⊗r
Aa

b⊗α
ν

η′)

from which we get the first result of (v).

Using now 3.8(iv) and 4.2(iv), we get that (id s∗r
Aa

ςNa)(Kit) is equal to

[(Ŵ α⊗b
No

1)σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)]

∗(1 α⊗b
N

G̃)(JΦδ
itJΦ α⊗b

N
1 s⊗r
Aa

1)(1 α⊗b
N

G̃)∗ . . .

. . . (Ŵ α⊗b
No

1)σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)

and is therefore equal to

[σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)]

∗(Ŵ ∗(JΦδ
itJΦ α⊗β

No
1)Ŵ α⊗b

No
1) . . .

. . . [σ2,3

α,β̂
(G̃ b⊗α

N
1)(1 s⊗r

Aa
σνo)].

Using ([E5], successively 3.10 (vii), 3.11 (iii), 3.6 and 3.8 (vi)) we get

Ŵ ∗(JΦδ
itJΦ α⊗β

No
1)Ŵ = σνoW (1 β⊗α

N

JΦδ
itJΦ)W ∗σνo

= σνo(Ĵ β⊗α
ν

JΦ)W ∗(1 β⊗α
N

δit)W (Ĵ α⊗β̂
νo

JΦ)σνo

= σνo(Ĵ β⊗α
ν

JΦ)Γ(δit)(Ĵ α⊗β̂
νo

JΦ)σνo

= σνo(Ĵ β⊗α
ν

JΦ)(δit β⊗α
ν

δit)(Ĵ α⊗β̂
νo

JΦ)σνo

= JΦδ
itJΦ β̂⊗α

N

ĴδitĴ = JΦδ
itJΦ β̂⊗α

N

δit

from which we get the second result of (v).



140 M. ENOCK

Using (iv) and ([E5], 3.11(ii)), we get that (∆it
ψ1 s⊗r

ψ0

∆it
ψ1

)(Kis)(∆−itψ1
s⊗r
ψ0

∆−itψ1
) is

equal to

(∆it
ψ1 s⊗r

ψ0

∆it
ψ1

)G̃∗(JΦδ
isJΦ α⊗b

νo
1)G̃(∆−itψ1

s⊗r
ψ0

∆−itψ1
)

= G̃∗((δ∆Φ̂)−itJΦδ
isJΦ(δ∆Φ̂)it α⊗b

νo
1)G̃ = G̃∗(JΦδ

isJΦ α⊗b
νo

1)G̃

which is (vi).

4.5. Theorem. Let’s suppose again the assumptions of 4.3 and 4.4; let Kit be the one-

parameter group of unitaries on Hψ1 s⊗r
ψ0

Hψ1
defined in 4.4; let us suppose that there

exists a positive non-singular operator δA affiliated to A such that we have, for all t ∈ R:

Kit = Jψ1
δitAJψ1 s⊗r

Aa
δitA.

Then:

(i) It is possible to define a one-parameter group of unitaries δitA b⊗α
ν
δit on Hψ1 b⊗α

ν
H,

with natural values on elementary tensors; moreover,

a(δitA) = δitA b⊗α
ν

δit.

(ii) For all s, t in R, we have σψ1
s (δitA) = b(q)istδitA.

(iii) There exists a normal semi-finite faithful weight φ on A such that (A, b, a, φ, ψ0)

is a Galois system. Moreover, the modulus of this Galois action is the operator δA, and

the scaling operator is equal to b(q), where q ∈ Z(N) is such that α(q) = β(q) = λ, the

scaling operator of G.

Proof. Using 4.4(v), we easily get (i). Using now [E5], 8.8(iii), we get that a(σψ1
s (δA)it) =

σψ1
s (δA)it b⊗α

ν
δit, and therefore that σψ1

s (δA)itδ−itA belongs to r(Aa).

So, there exists kηr(Aα) such that σψ1
s (δitA) = kistδitA = δitAk

ist.

Let us write k =
∫∞

0
λdeλ, and let us put fn =

∫ n
1/n

deλ; then using ([E5], 2.2.2), we

get that, for any x ∈ Nψ1
∩ NTa

, xfnk
−t/2 is bounded and belongs to NTa

∩ Nψ1
, and

with same arguments, we get that xfnk
−t/2δ−itA belongs also to NTa ∩Nψ1

. We then get

that

Jψ1δ
it
AJψ1ΛTa

(xfn) = ΛTa
(xfnk

−t/2δ−itA )

and therefore with the notations of 4.4(ii):

ρt(ΛTa
(xfn)ΛTa

(xfn)∗) = ΛTa
(xfnk

−t/2δ−itA )ΛTa
(xfnk

−t/2δ−itA )∗

from which we get that

T2ρt(ΛTa
(xfn)ΛTa

(xfn)∗) = xfnk
−tx∗

and, on the other hand, using 4.4(iii), we have, using the fact that b(q) is affiliated to

Z(A):

T2ρt(ΛTa
(xfn)ΛTa

(xfn)∗) = b(q)−txfnx
∗ = xfnb(q)

−tx∗

from which we easily deduce that k = b(q), which finishes the proof of (ii).



MORITA EQUIVALENCE OF MEASURED QUANTUM GROUPOIDS 141

Using [V1], we get that there is a normal semi-finite faithful weight φ on A, such

that (Dφ : Dψ1)t = b(q)it
2/2δitA, and that the modular groups σφ and σψ1 commute. If

x ∈ Nφ is such that xδ
1/2
A is bounded, then this last operator belongs to Nψ1

and we

can identify Λφ(x) with Λψ1(xδ
1/2
A ) and Jφ with b(q)i/4Jψ1 ; we shall denote, for n ∈ N ,

a(n) = Jψ1
b(n∗)Jψ1

= Jφb(n
∗)Jφ.

For x ∈ Nφ and η ∈ D(αH, ν) ∩ D(Hβ , ν
o) ∩ D(δ1/2), such that δ−1/2η belongs to

D(αH, ν), we have, using these remarks, and the fact that ψ1 is δ-invariant, 4.6(iii):

‖Λφ(x) a⊗β
νo

η‖2 = ‖Λψ1(xδ
1/2
A ) a⊗β

νo
η‖2

= (ψ1 b∗α
N

ωδ−1/2η)(a(δ
1/2
A x∗xδ

1/2
A )]

= (ψ1 b∗α
N

ωδ−1/2η)[(δ
1/2
A b⊗α

ν
δ1/2)a(x∗x)(δ

1/2
A b⊗α

ν
δ1/2)]

= (φ b∗α
N

ωη)[a(x∗x)]

which remains true for any η ∈ D(αH, ν) ∩D(Hβ , ν
o), and gives then, using ([E6], 7.6)

that the weight φ is invariant under a, which finishes the proof.

4.6. Corollary. Let (b, a) be a Galois action of the measured quantum groupoid G on a

von Neumann algebra A; let ψ0 be a normal semi-finite faithful weight on Aa, having the

Galois density property defined in 4.1; let ρt be the one-parameter group of automorphisms

of s(Aa)′ defined in 4.4. Let us suppose that this one-parameter group is inner. Then:

(i) there exists a non-singular positive operator δA affiliated to A ∩ r(Aa)′ such that

Kit = Jψ1δ
it
AJψ1 s⊗r

Aa
δitA.

(ii) There exists a normal semi-finite faithful weight φ on A such that (A, b, a, φ, ψ0)

is a Galois system.

Proof. As ρt(x) = x for all x ∈ A, we get that there exists a positive non-singular operator

δA affiliated to A ∩ r(Aa)′ such that, for all x ∈ s(Aa)′, we have

ρt(x) = Jψ1
δitAJψ1

xJψ1
δ−itA Jψ1

and then, using 4.4(iv), we have (i). Result (ii) is then a direct corollary of 4.5(iii).

4.7. Corollary. Let (b, a) be a Galois action of the measured quantum groupoid G on

a von Neumann algebra A; let us suppose that the invariant subalgebra Aa is a finite

sum of factors (in particular, if Aa is finite dimensional); let ψ0 be a normal semi-finite

faithful weight on Aa, having the Galois density property defined in 4.1; then, there exists

a normal semi-finte faithful weight φ on A such that (A, b, a, φ, ψ0) is a Galois system.

Proof. The center Z(s(Aa)′) is equal to s(Z(Aa)); if Aa = ⊕i∈IFi (with a finite set I), we

get that Z(Aa) = ⊕i∈IC, and that any automorphism of Z(s(Aa)′) gives a permutation

in the set I; therefore, the restriction of the one-parameter group ρt defined in 4.4 to

this center gives a continuous function ρ from R to the set S(I) (with the pointwise

topology); as ρ−1(id) is open, closed, non-empty, we get that ρt acts identically on the

center Z(s(Aa)′); therefore, ρt is inner, by ([StZ], 8.11), and we get the result by 4.6.
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4.8. Theorem. Let (b, a) be a Galois action of the measured quantum groupoid G on a

von Neumann algebra A; let ψ0 be a normal semi-finite faithful weight on Aa, having the

Galois density property defined in 4.1; let G̃ be the Galois unitary of (b, a), as defined in

3.11; let ψ1 = ψ0 ◦ Ta, and ψ̃1 its dual weight on the crossed product Aoa G. Then:

(i) For all s, t in R, we have

σψ̃1

t (1 b⊗α
N

Ĵ δ̂isĴ) = 1 b⊗α
N

Ĵ δ̂isĴ .

(ii) There exists a one-parameter group of unitaries P itA = ∆it
ψ1
πa((1 b⊗α

N
Ĵ δ̂−itĴ)

on Hψ1
, which defines a one-parameter group τAt of automorphism of A defined, for all

X ∈ A, by τAt (X) = P itAAP
−it
A . For any x ∈ Aa, we have τAt (x) = σψ0

t (x), and for all

n ∈ N , we have τAt (b(n)) = b(σνt (n)).

(iii) For all t ∈ R, we have

a(τAt (X)) = (σψ1

t b∗α
N

σΦ◦R
t )a(X) = (τAt b∗α

N
τt)a(X),

a(σψ1

t (X)) = (τAt b∗α
N

σΦ
t )a(X).

(iv) We have, for any positive X ∈ A:

ψ1 ◦ τAt (X) = ψ1(b(q)−tX)

where q is the positive non-singular operator affiliated to N such that the scaling operator

λ of G satisfies λ = α(q) = β(q) ([E5], 3.8(vi)).

(v) For any X ∈ Nψ1 , we have P itAΛψ1(X) = b(q)t/2Λψ1(τAt (X)). So, P itA is the

standard implementation of τAt , and Jψ1
P itA = P itA Jψ1

.

(vi) There exists a one-parameter group of unitaries P itA s⊗r
Aa

P itA on Hψ1 s⊗r
ψ0

Hψ1 , with

natural values on elementary tensors, and a one-parameter group of unitaries P it α⊗b
No

P itA

on H α⊗b
νo

Hψ1
, with natural values on elementary tensors, and we have, for all t ∈ R:

G̃(P itA s⊗r
Aa

P itA ) = (P it α⊗b
No

P itA )G̃.

Proof. We know ([E6], 3.2) that ∆it
ψ̃1

= ∆it
ψ1 b
⊗α
N

(δ∆−it
Φ̂

); from which, using ([E5], 3.11

(ii), (vii) and (iv)) we get that

σψ̃1

t (1 b⊗α
N

Ĵ δ̂isĴ) = (∆it
ψ1 b⊗α

N
(δ∆−it

Φ̂
))(1 b⊗α

N
Ĵ δ̂isĴ)(∆−itψ1

b⊗α
N

(δ∆it
Φ̂

))

= 1 b⊗α
N

(δ̂∆Φ)it(Ĵ δ̂isĴ)(δ̂∆Φ)−it

= 1 b⊗α
N

∆it
Φ(Ĵ δ̂isĴ)∆−itΦ

= 1 b⊗α
N

P it(Ĵ δ̂itĴ)(Ĵ δ̂isĴ)(Ĵ δ̂−itĴ)P−it

= 1 b⊗α
N

P it(Ĵ δ̂isĴ)P−it = 1 b⊗α
N

Ĵ τ̂t(δ̂
is)Ĵ = 1 b⊗α

N
Ĵ δ̂isĴ
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which gives (i). From (i), and 3.9(iv) and 3.11, we get that

σψ2

t (πa(1 b⊗α
N

Ĵ δ̂isĴ)) = πa(1 b⊗α
N

Ĵ δ̂isĴ)

from which we get

∆it
ψ1

(πa(1 b⊗α
N

Ĵ δ̂isĴ)∆−itψ1
= πa(1 b⊗α

N
Ĵ δ̂isĴ)

which gives the commutation of the two one-parameter groups of unitaries ∆it
ψ1

and

πa(1 b⊗α
N

Ĵ δ̂isĴ), and the existence of the one-parameter group of unitaries P itA .

We easily get that ã[(1 b⊗α
N

Ĵ δ̂−itĴ)a(X)(1 b⊗α
N

Ĵ δ̂itĴ)] is equal to

(1 b⊗α
N

Ĵ δ̂−itĴ α̂⊗β
No

Ĵ δ̂−itĴ)(a(X)α̂⊗β1)(1 b⊗α
N

Ĵ δ̂itĴ α̂⊗β
No

Ĵ δ̂itĴ)

= [(1 b⊗α
N

Ĵ δ̂−itĴ)a(X)(1 b⊗α
N

Ĵ δ̂itĴ)] α̂⊗β
No

1

from which we get, using ([E5], 10.12), that (1 b⊗α
N

Ĵ δ̂−itĴ)a(X)(1 b⊗α
N

Ĵ δ̂itĴ) belongs to

a(A), and therefore, that πa(1 b⊗α
N

Ĵ δ̂−itĴ)Xπa(1 b⊗α
N

Ĵ δ̂itĴ) belongs to A, from which it

is straightforward to get that P itAXP
−it
A belongs to A, and gives the existence of τA.

We have

a(τAt (x)) = a[πa(1 b⊗α
N

Ĵ δ̂−itĴ)σψ0

t (x)πa(1 b⊗α
N

Ĵ δ̂itĴ)]

= (1 b⊗α
N

Ĵ δ̂−itĴ)(σψ0

t (x) b⊗α
N

1)(1 b⊗α
N

Ĵ δ̂itĴ) = σψ0

t (x) b⊗α
N

1 = a(σψ0

t (x))

from which we get that τAt (x) = σψ0

t (x).

We have, for all n ∈ N :

a(τAt (b(n))) = a[πa(1 b⊗α
N

Ĵ δ̂−itĴ)σψ1

t (b(n))πa(1 b⊗α
N

Ĵ δ̂itĴ)]

= a[πa(1 b⊗α
N

Ĵ δ̂−itĴ)δ−itA σφt (b(n))δitAπa(1 b⊗α
N

Ĵ δ̂itĴ)]

= a[πa(1 b⊗α
N

Ĵ δ̂−itĴ)δ−itA b(σν−t(n))δitAπa(1 b⊗α
N

Ĵ δ̂itĴ)]

=(1 b⊗α
N

Ĵ δ̂−itĴ)(δ−itA b⊗α
N

δ−it)(1 b⊗α
N

β((σν−t(n)))(δitA b⊗α
N

δit)(1 b⊗α
N

Ĵ δ̂itĴ)

= 1 b⊗α
N

Ĵ δ̂−itĴδ−itβ((σν−t(n)))δitĴ δ̂itĴ

= 1 b⊗α
N

Ĵ δ̂−itĴσΦ◦R
−t σΦ

t (β((σν−t(n))))Ĵ δ̂itĴ

= 1 b⊗α
N

Ĵ δ̂−itĴβ(γt(n))Ĵ δ̂itĴ

and therefore we get

a(τAt (b(n))) = 1 b⊗α
N

Ĵ δ̂−itα(γt(n
∗))δ̂itĴ = 1 b⊗α

N
ĴσΦ̂◦R̂
−t σΦ̂

t (α(γt(n
∗)))Ĵ

= 1 b⊗α
N

Ĵα(σνt (n∗))Ĵ = 1 b⊗α
N

β(σνt (n)) = a(b(σνt (n)))

which finishes the proof of (ii).



144 M. ENOCK

As, using ([E5], 3.10(vi)), we get that Ĵ δ̂−itĴ is equal to P it∆−itΦ , and therefore

implements τtσ
Φ
−t, we get, using ([E5], 8.8), that

a(τAt (X)) = (σψ1

t b∗α
N

σΦ◦R
−t )a(X).

Using ([E5], 3.8 (i) and (ii)), we get that Γ ◦ σΦ◦R
−t = (σΦ◦R

−t b∗α
N
τt)Γ, from which we infer

(a b∗α
N

id)a(τAt (x)) = (id b∗α
N

Γ)a(τAt (X))

= (id b∗α
N

Γ)(σψ1

t b∗α
N

σΦ◦R
−t )a(X)

= (σψ1

t b∗α
N

σΦ◦R
−t b∗α

N
τt)(id b∗α

N
Γ)a(X)

= (σψ1

t b∗α
N

σΦ◦R
−t b∗α

N
τt)(a b∗α

N
id)a(X)

= (a b∗α
N

id)(τAt b∗α
N

τt)a(X)

from which we get that a(τAt (X)) = (τAt b∗α
N

τt)a(X).

Finally, we have

a(σψ1

t (X)) = (1 b⊗α
N

Ĵ δ̂itĴ)a(τAt (X))(1 b⊗α
N

Ĵ δ̂−itĴ)

= (id b∗α
N

τ−tσ
Φ
t )(τAt b∗α

N
τt)a(X) = (τAt b∗α

N
σΦ
t )a(X)

which finishes the proof of (iii).

We have, for any positive X ∈ A:

Ta(τAt (X)) = (id b∗α
N

Φ)a(τAt (X))

= (id b∗α
N

Φ)(τAt b∗α
N

τt)a(X) = τAt (id b∗α
N

Φ ◦ τt)a(X).

As Φ ◦ τt(Y ) = Φ(λ−tY ) for any positive Y ∈M ([E5], 3.8 (vii)), we get that it is equal

to τAt [Ta(b(q)−tX)], and using (ii), to σψ0

t [Ta(b(q)−tX)]; from which we get (iv).

If ζ is in D(rHψ1 , ψ0), we have, using (3.8(i) and (iv)), and then (iii):

G(πa(1 b⊗α
N

Ĵ δ̂−itĴ)(Λψ1
(X) s⊗r

ψ0

ζ) = (1 b⊗α
N

Ĵ δ̂−itĴ)
∑
i

ei b⊗α
N

ΛΦ((ωζ,ei b∗α
N

id)a(X))

=
∑
i

ei b⊗α
N

P it∆−itΦ ΛΦ((ωζ,ei b∗α
N

id)a(X))

=
∑
i

ei b⊗α
N

λ−t/2ΛΦ[τtσ
Φ
−t(ωζ,ei b∗α

N
id)a(X)]

=
∑
i

ei b⊗α
N

ΛΦ((ωζ,ei b∗α
N

id)a(τAt σ
ψ1

t X))

= (1 b⊗α
N

λ−t/2)G(Λψ1(τAt σ
ψ1

−t(X)) s⊗r
ψ0

ζ)

from which we get that

πa(1 b⊗α
N

Ĵ δ̂−itĴ)Λψ1
(X) = b(q)−t/2Λψ1

(τAt σ
ψ1

−t(X))

which gives (v).
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Thanks to (ii), one can easily get that if ζ belongs to D(rHψ1 , ψ0), so does, for all

t ∈ R, P itA ζ, and that Rr,ψ0(P itA ζ) = P itAR
r,ψ0(ζ)∆−itψ0

. Using then (v), we obtain easily the

existence of the first one-parameter group of unitaries. Using again (ii), we get that, if ζ ′

belongs to D((Hψ1
)b, ν

o), so does P itA ζ
′, and that Rb,ν

o

(P itA ζ
′) = P itAR

b,νo(ζ ′)∆−itν , from

which one gets the existence of the second one-parameter group of unitaries. Moreover,

using successively (v), 4.2(i), (iii), [E6], 3.8(vii) and (vi), and again 4.2(i), we get, for all

ζ ∈ D(rHψ1
, ψ0) ∩D((Hψ1

)b, ν
o), ζ ′ ∈ D((Hψ1

)b, ν
o), x ∈ NTa

∩Nψ1
:

(id ∗ ωP itA ζ,P itA ζ′(G̃)P itAΛψ1
(x) = (id ∗ ωP itA ζ,P itA ζ′(G̃)b(q)t/2Λψ1

(τAt (x))

= ΛΦ((ωP itA ζ,P itA ζ′ b∗αN
id)a(b(q)t/2τAt (x))

= ΛΦ(β(q)t/2τAt (ωζ,ζ′ b∗α
N

id)a(x))

= P itΛΦ(ωζ,ζ′ b∗α
N

id)a(x)) = P it(id ∗ ωζ,ζ′)(G̃)Λψ1
(x)

from which we get the formula we were looking for, and which finishes the proof.

4.9. Theorem. Let (b, a) be a Galois action of the measured quantum groupoid G on

a von Neumann algebra A; let ψ0 be a normal semi-finite faithful weight on Aa, having

the Galois density property defined in 4.1; let ψ1 = ψ0 ◦ Ta, and G̃ be its Galois unitary.

Let us suppose that there exist two strongly commuting positive non-singular operators δA
and λA, affiliated to A, such that the normal semi-finite faithful weight φ on A defined

by (Dφ : Dψ1)t = λ
it2/2
A δitA (by [V1], 5.1) is invariant under a. Then:

(i) There exists a one-parameter group of unitaries δitA b⊗α
N

δit on Hψ1 b⊗α
ν
H, having

natural values on elementary tensors, such that, for all t ∈ R:

a(δitA) = δitA b⊗α
N

δit.

(ii) There exists a one-parameter group of unitaries Jψ1
δitAJψ1 s⊗r

Aa
δitA on Hψ1 s⊗r

ψ0

Hψ1
,

having natural values on elementary tensors, such that, for all t ∈ R:

Jψ1δ
it
AJψ1 s⊗r

Aa
δitA = Kit = G̃∗(JδitJ α⊗b

No
1)G̃.

(iii) We have λA = b(q), where q is the positive non-singular operator affiliated to

Z(N), such that λ = α(q) = β(q) ([E5], 3.8(vi)); the operator λA is affiliated to Z(A),

and (A, b, a, φ, ψ0) is a Galois system for G.

(iv) We have τAt (δisA ) = δisA .

Proof. By definition, (Dφ : Dψ1)t = λ
it2/2
A δitA, and therefore, a(λ

it2/2
A )a(δitA) = (Dφ :

Dψ1)t where φ (resp. ψ1) is the weight on A b∗α
N

L(H) given by the bidual weight on

the bicrossed product (which is isomorphic to A b∗α
N

L(H)) ([E5], 11.6). As the weight φ

is invariant with respect to a, the weight φ is equal to another weight φ ([E6], 7.7(x)),

which is defined by the formula
dφ

dφo = ∆
1/2
φ b⊗α

N
∆
−1/2

Φ̂
([E6], 4.4). On the other hand,

using ([E5], 13.7), and ([E6], 3.2), we get that dψ1

dψo1
= ∆

1/2
ψ1

b⊗α
N

(δ∆Φ̂)−1/2.
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Finally, we get

a(λ
it2/2
A )a(δitA) = (∆it

φ b⊗α
N

∆−it
Φ̂

)[(Dφo : Dψo1)t b⊗α
N

1](∆−itψ1
b⊗α
N

(δ∆Φ̂)it)

= (Dφ : Dψ1)t b⊗α
N

δit = λ
it2/2
A δitA b⊗α

N
δit

from which we get (i), and that λA is affiliated to Aa.

It is straightforward to get that there exists on Hψ1 s⊗r
ψ0

Hψ1
a one-parameter group

of unitaries Jψ1
δitAJψ1 s⊗r

Aa
δitA, having natural values on elementary tensors; using 3.8(i),

we get, for any x ∈ NTa
∩Nψ1

, ζ ∈ D((Hψ1
)b, ν

o) and (ei)i∈I an orthogonal (b, νo)-basis

of Hψ1
:

G̃(Jψ1
δitAJψ1 s⊗r

Aa
δitA)(Λψ1

(x) s⊗r
ψ0

ζ) = G̃(Λψ1
(xλ
−t/2
A δ−itA ) s⊗r

ψ0

δitAζ)

=
∑
i

ΛΦ(ωδitAζ,ei b∗αN
id)a(xλ

−t/2
A δ−itA ) α⊗b

νo
ei

which, using (i) and the fact that λA is affiliated to Aa, is equal to∑
i

ΛΦ((ω
λ
−t/2
A ζ,ei b

∗α
N

id)a(x)δ−it) α⊗b
νo

ei =∑
i

JδitJλt/2ΛΦ((ω
λ
−t/2
A ζ,ei b

∗α
N

a(x)) α⊗b
νo

ei =

(JδitJλt/2 α⊗b
No

1)G̃(Λψ1
(x) s⊗r

ψ0

λ
−t/2
A ζ) =

(JδitJ α⊗b
No

1)G̃(πa(1 b⊗α
N

λt/2)Λψ1(x) s⊗r
ψ0

λ
−t/2
A ζ)

from which we get that (Jψ1δ
it
AJψ1 s⊗r

Aa
δitA)(Λψ1(x) s⊗r

ψ0

ζ) is equal to

G̃∗(JδitJ α⊗b
No

1)G̃(πa(1 b⊗α
N

λt/2)Λψ1(x) s⊗r
ψ0

λ
−t/2
A ζ).

So, the map Q which sends Λψ1
(x)s⊗r

ψ0

ζ on πa(1b⊗α
N
λt/2)Λψ1

(x)s⊗r
ψ0

λ
−t/2
A ζ is bounded; as

it is clearly positive, by the unicity of polar decomposition, we get (ii), and the fact that

Q = 1; from which one gets that λA is affiliated to Z(Aa), and that λ
t/2
A = πa(1 b⊗α

N
λt/2),

and therefore that

λ
t/2
A b⊗α

N
1 = a(λ

t/2
A ) = 1 b⊗α

N
λt/2 = 1 b⊗α

N
β(qt/2) = a(b(qt/2))

from which we get that λA = b(q). Then, we get, for all x ∈ A:

a(λitAxλ
−it
A ) = (1 b⊗α

N
λit)a(x)(1 b⊗α

N
λ−it) = a(x)

because λ is affiliated to Z(M); so we get that λA is affiliated to Z(A), and by [V1] 5.2,

that the modular groups of σφ and σψ1 commute; which, thanks to 4.5, gives (iii).
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We have

τAt (δisA ) = πa(1 b⊗α
N

Ĵ δ̂−itĴ)σψ1

t (δisA )πa(1 b⊗α
N

Ĵ δ̂−itĴ)

= πa(1 b⊗α
N

Ĵ δ̂−itĴ)λistA δisAπa(1 b⊗α
N

Ĵ δ̂−itĴ)

and therefore using 4.9 (i) and (iii):

a(τAt (δisA )) = (1 b⊗α
N

Ĵ δ̂−itĴ)(1 b⊗α
N

λist)(δisA b⊗α
N

δis)(1 b⊗α
N

Ĵ δ̂−itĴ)

= δisA b⊗α
N

λistτtσ
Φ
−t(δ

is) = δisA b⊗α
N

λistλ−istδis = δisA b⊗α
N

δis = a(δisA )

from which we get (iv) and finish the proof.

4.10. Corollary. Let (b, a) be a Galois action of the measured quantum groupoid G on a

von Neumann algebra A; let ψ0 be a normal semi-finite faithful weight on Aa, having the

Galois density property defined in 4.1; let ψ1 = ψ0◦Ta. Then the following are equivalent:

(i) There exists a positive non-singular operator δA affiliated to A such that, for all

t ∈ R, we have Kit = Jψ1
δitAJψ1 s⊗r

Aa
δitA.

(ii) There exists two strongly commuting positive non-singular operator δA and λA,

affiliated to A, such that the normal semi-finite faithful weight φ on A defined by (Dφ :

Dψ1)t = λ
it2/2
A δitA (by [V1], 5.1) is invariant under a.

(iii) There exists a normal semi-finite faithful weight φ on A, such that (A, b, a, φ, ψ0)

is a Galois system.

Moreover, δA is the modulus of the action (b, a), and λA = b(q), where qηZ(N) is

such that λ = α(q) = β(q).

Proof. We have obtained in 4.5 that (i) implies (iii); in 4.9, we have obtained that (ii)

implies (i) and (iii); and applying 4.9 to (iii), we obtain (ii).

4.11. Proposition. Let (A, b, a, φ, ψ0) be a Galois system for the measured quantum

groupoid G; let ψ1 = ψ0 ◦ Ta, T be the normal semi-finite faithful weight from A onto

b(N) such that φ = νo ◦ b−1 ◦ T, and r the canonical injection of Aa into A. Then:

(i) The left ideal Nψ1 ∩NTa
∩Nφ ∩NT is dense in A.

(ii) The subspace Λφ(Nψ1
∩NTa

∩Nφ ∩NT) is dense in Hφ.

(iii) The subspace D((Hψ1)b, ν
o) ∩D(rHψ1 , ψ0) is dense in Hψ1 , i.e. ψ0 satisfies the

Galois density property defined in 4.1.

Proof. Using [V1], we know that, if x in A is such that xδ
1/2
A is bounded and its closure

xδ
1/2
A belongs to Nφ, then x belongs to Nψ1

; we can then (and we shall) identify Λψ1
(x)

with Λφ(xδ
1/2
A ) and Jψ1

with λ
i/4
A Jφ. In particular, using the selfadjoint elements of A

given by the formula

en =
2n2

Γ(1/2)Γ(1/4)

∫
R2

e−n
2x2−n4y4

λixA δ
iy
A dxdy
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which are analytic with respect to σφ and such that, for any z ∈ C, the sequence σφz (en)

is bounded and strongly converges to 1, we get that for any x ∈ Nφ, x(enδ
1/2
A ) belongs

to Nψ1 .

Let T be the normal faithful semi-finite operator-valued weight from A onto b(N)

such that φ = νo ◦ b−1 ◦ T. Let us suppose that x is positive in the Tomita algebra Tφ,T
([E5], 2.2.1) associated to φ and T (i.e. x belongs to Nφ ∩NT, is analytical with respect

to σφ, and for all z ∈ C, σφz (x) belongs to Nφ ∩N∗φ ∩NT ∩N∗T. As in ([L], 5,17), let us

define

xp,q = fp

√
d

π

∫ +∞

−∞
e−qt

2

σψ1

t (x)dt

with fp =
∫ p

1/p
det, where λA =

∫∞
0
tdet and we get that xp,q belongs to Tφ,T, is analytical

with respect to σψ1 , and that, for all z ∈ C, σψ1
z (xp,q) belongs to Tφ,T. As σψ1

t σφ−t = AdδitA,

we get that, for all z in C, δizA xp,qδ
−iz
A belongs to Tφ,T; in particular, δ

−1/2
A xp,qδ

1/2
A belongs

to Tφ,T and enxp,qδ
1/2
A = (δ

1/2
A en)δ

−1/2
A xp,qδ

1/2
A belongs to Nφ ∩NT. We prove this way

that the set Tψ1

φ,T of elements x in Nφ ∩N∗φ ∩NT ∩N∗T which are analytic with respect,

both, of σφ and σψ1 , and such that xδ
1/2
A is bounded and belongs to Nφ ∩NT is weakly

dense in A, and its image under Λφ is a dense subspace of Hφ.

Let us take x ∈ Tψ1

φ,T; using the fact that ψ1 is a δ-invariant weight with respect to a

(2.5), we get (where a is the representation of N on Hψ1 given by a(n) = Jψ1b(n
∗)Jψ1)

that

(Ta b∗α
N

id)a(x∗x) = δ1/2β(< Λψ1
(x),Λψ1

(x) >a,ν)δ1/2

= δ1/2β(< Jψ1
Λψ1

(x), Jψ1
Λψ1

(x) >b,νo)δ
1/2

= δ1/2β(< λ
i/4
A JφΛφ(xδ

1/2
A ), λ

i/4
A JφΛφ(xδ

1/2
A ) >b,νo)δ

1/2

and therefore if η belongs to D(αH, ν) ∩D(δ1/2), we get that (id b∗α
N

ωη)a(x∗x) belongs

to M+
Ta

(and to M+
ψ1

by similar arguments).

Using now the fact that φ is invariant with respect to a, we get (where a means here

the representation of N on Hφ given by a(n) = Jφb(n
∗)Jφ) that

(T b∗α
N

id)a(x∗x) = β(< Λφ(x),Λφ(x) >a,ν) = β(< JφΛφ(x), JφΛφ(x) >b,νo)

and we get that (id b∗α
N

ωη)a(x∗x) belongs also to M+
T ∩M+

φ . So, we get that, for any

x ∈ Tψ1

φ,T, ξ ∈ D(αH, ν), η ∈ D(αH, ν) ∩D(δ1/2), the operator (id b∗α
N

ωη,ξ)a(x) belongs

to NTa
∩Nψ1

∩NT ∩Nφ.

So, we get that the weak closure of NTa
∩Nψ1 ∩NT ∩Nφ contains all elements of the

form (id b∗α
N

ωη,ξa(x) for any ξ, η in D(αH, ν) and x ∈ A; using now [E5], 11.5(ii), we

get (i).

Let us suppose now that ζ ∈ Hφ is orthogonal to Λφ(NTa
∩Nψ1

∩NT ∩Nφ). Using

2.4 and ([E6], 7.7), we get that

(V ′φ(Λφ(x) a⊗β
No

η)|ζ b⊗α
N

ξ) = 0
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for all x ∈ Tψ1

φ,T, η ∈ DαH, ν) ∩D(δ1/2), ξ ∈ D(α, ν). As Λφ(Tψ1

φ,T) is dense in Hφ and V ′φ
is a unitary, we get that ζ b⊗α

N
ξ) = 0 for all ξ ∈ D(αH, ν), and therefore, that ζ = 0;

which is (ii).

We know that JφΛφ(Nφ ∩ NT) ⊂ D((Hφ)b, ν
o) and that Jψ1

Λψ1
(Nψ1

∩ NTa
) ⊂

D(rHψ1
, ψo). As the canonical isomorphism between Hφ and Hψ1

exchanges the rep-

resentations of A (and, therefore, of b(N)), and sends Jφ on Jψ1
λ
i/4
A , we get that

Jψ1
Λψ1

(Nψ1
∩NTa

∩Nφ ∩NT) ⊂ D((Hψ1
)b, ν

o) ∩D(rHψ1
, ψ0)

from which we get (iii).

5. Through the looking-glass. In this chapter, we use the reflection technic intro-

duced by De Commer in [DC1]; if we start from a Galois action (b, a) of a measured

quantum groupoid G on a von Neumann algebra A, we obtain a co-involutive Hopf bi-

module which has Aa as basis (5.4). If we start from a Galois system (A, b, a, φ, ψ0),

we then construct a left-invariant operator-valued weight on this co-involutive Hopf bi-

module, and obtain this way, ”through the Galois system”, another measured quantum

groupoid. More precisely, we get in fact two measured quantum groupoids, one with basis

Aa, called the reflected measured quantum groupoid of G, through the Galois system,

whose underlying von Neumann algebra acts on Hψ1
(5.11), and another one which will

be a von Neumann algebra acting on Hψ1
⊕H, with the basis Aa⊕N , and will be called

the linking measured quantum groupoid, between the preceding two (5.12).

5.1. Notations. Let (b, a) be a Galois action of a measured quantum groupoid G on a

von Neumann algebra A; let ψ0 be a normal semi-finite faithful weight on Aa satisfying

the density condition. Let us now consider the von Neumann algebra Ñ = Aa ⊕ N ,

equipped with a normal faithful semi-finite weight ψ0 ⊕ ν, its representation α̃ = r ⊕ α,

and its antirepresentation
˜̂
β = s ⊕ β̂ on the Hilbert space Hψ1

⊕ H. For any m′ ∈ M̂ ′,
let us write µ(m′) = πa(1 b⊗α

N
m′), and consider the operator $(m′) = µ(m′) ⊕m′ on

Hψ1
⊕H; we define this way a normal faithful representation $ of M̂ ′ on Hψ1

⊕H, and

a faithful normal antirepresentation $o of M̂ given, for any m ∈ M̂ by

$o(m) = µ(Ĵm∗Ĵ)⊕ Ĵm∗Ĵ .
We shall denote by Q̂ the commutant $o(M̂)′. We shall use matrix notation for elements

in Q̂, or, more generally, in L(Hψ1
⊕H). In particular, we shall write

Q̂ =

(
P̂ Î

Î∗ M̂

)
where P̂ = πa(1 b⊗α

N
M̂ ′)′, and Î is the following closed linear set of intertwiners:

Î = {X ∈ L(H,Hψ1
), Xm = πa(1 b⊗α

N
m)X,∀m ∈ M̂ ′}

We see that r(Aa) ⊂ P̂ and s(Aa) ⊂ P̂ , and therefore, α̃(Ñ) ⊂ Q̂ and
˜̂
β(Ñ) ⊂ Q̂.

Let us remark that, for any ξ ∈ D((Hψ1)µo , Φ̂
o), the operator Rµ

o,Φ̂o(ξ) belongs to Î

(which implies that Î is not reduced to {0}). Using 3.7, we get that, if X ∈ Î, we have,
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for any m ∈ M̂ ′:

Jψ1
XJm = Jψ1

XR̂c(m∗)J = Jψ1
πa(1 b⊗α

N
R̂c(m∗))XJ = πa(1 b⊗α

N
m)Jψ1

XJ

from which we get that Jψ1
XJ belongs to Î.

In particular, for any n ∈ N , we get that X ∈ Î satisfies b(n)X = Xβ(n), and we can

define 1H α⊗β
No

X from H α⊗β
N

H to H α⊗b
N

Hψ1 . Applying this result to Jψ1XJ , we get

that

Xα̂(n) = XJβ(n∗)J = Jψ1
b(n∗)Jψ1

X = a(n)X

and we can define X α̂⊗β
N

1H from H α̂⊗β
νo

H to Hψ1 a⊗β
νo

H, and X β⊗α
N

1H from H β⊗α
ν

H

to Hψ1 b⊗α
ν

H.

Using then 3.6, we get that

V ∗ψ1
(X β⊗α

N

1H) = (X α̂⊗β
N

1H)(σ(Ĵ ⊗ Ĵ)W (Ĵ ⊗ Ĵ)σ),

Vψ1(X α̂⊗β
N

1H) = (X β⊗α
N

1H)(σ(Ĵ ⊗ Ĵ)W ∗(Ĵ ⊗ Ĵ)σ).

Let us denote e1 = 1Aa ∈ Ñ , and e2 = 1N ∈ Ñ ; we get that α̃(e1) =
˜̂
β(e1) = PHψ1

∈ P̂ ,

and that α̃(e2) =
˜̂
β(e2) = PH ∈ M̂ , and P̂ = Q̂α̃(e1), M̂ = Q̂α̃(e2). We can verify that

s(Aa) ⊂ P̂ and r(Aa) ⊂ P̂ .

Let us describe now the fiber product Q̂ ˜̂
β
∗α̃
Ñ

Q̂. This von Neumann algebra is defined

on the Hilbert space

(Hψ1
⊕H) ˜̂

β
⊗α̃

ψ0⊕ν

(Hψ1
⊕H) = (Hψ1 s⊗r

ψ0

Hψ1
)⊕ (H β̂⊗α

ν

H)

where this direct sum decomposition can be seen with the projections

PHψ1s
⊗r
ψ0

Hψ1
= α̃(e1) ˜̂

β
⊗α̃

ψ0⊕ν

1 = 1 ˜̂
β
⊗α̃

ψ0⊕ν

α̃(e1) = α̃(e1) ˜̂
β
⊗α̃

ψ0⊕ν

α̃(e1),

PHβ̂⊗α
ν

H = α̃(e2) ˜̂
β
⊗α̃

ψ0⊕ν

1 = 1 ˜̂
β
⊗α̃

ψ0⊕ν

α̃(e2) = α̃(e2) ˜̂
β
⊗α̃

ψ0⊕ν

α̃(e2).

So, we can also use matrix notations for elements in Q̂ ˜̂
β
∗α̃
Ñ

Q̂, or, more generally, in

L((Hψ1
⊕H) ˜̂

β
⊗α̃

ψ0⊕ν

(Hψ1
⊕H)). In particular, we shall get

Q̂ ˜̂
β
∗α̃
Ñ

Q̂ =

 P̂ s∗r
Aa

P̂ Î β̂∗α
N

Î

(Î β̂∗α
N

Î)∗ M̂ β̂∗α
N

M̂


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where Î β̂∗α
N

Î is the closed set of intertwiners:

Î β̂∗α
N

Î = {Y ∈ L(H β̂⊗α
ν

H,Hψ1 s⊗r
ψ0

Hψ1), Y (m1 β̂⊗α
N

m2)

= (µ(m1) s⊗r
Aa

µ(m2))Y,∀m1,m2 ∈ M̂ ′}.

5.2. Lemma. Let’s use the notations of 5.1. Then we have, for all X ∈ Î and m ∈ M̂ ′:
G̃∗(1 α⊗β

No
X)Ŵ (m β̂⊗α

N

1) = [πa(1 b⊗α
N

m] s⊗r
Aa

1)G̃∗(1 α⊗β
No

X)Ŵ ,

G̃∗(1 α⊗β
No

X)Ŵ (1 β̂⊗α
N

m) = [1 s⊗r
Aa

πa(1 b⊗α
N

m)]G̃∗(1 α⊗β
No

X)Ŵ ,

and therefore G̃∗(1 α⊗β
No

X)Ŵ belongs to Î β̂∗α
N

Î. We obtain also that, for any v ∈

D((Hψ1
)s, ψ

o
0) and ξ ∈ D(Hβ̂ , ν

o), the operator (ωv,ξ ∗ id)[G̃∗(1 α⊗β
No

X)Ŵ ] belongs to Î.

Proof. Using ([E5], 3.6(ii)) applied to Ĝ, and 3.8(iv), we get the first formula.

Using 3.10, we get that

[1 s⊗r
Aa

πa(1 b⊗α
N

m)]G∗ = G∗Vψ1 [1 a⊗β
No

ĴR̂c(m∗)Ĵ ]V ∗ψ1

and therefore using 3.10, 5.1 and 2.2.3:

[1 s⊗r
Aa

πa(1 b⊗α
N

m)]G̃∗(1 α⊗β
No

X) = G∗Vψ1
[1 a⊗β

No
ĴR̂c(m∗)Ĵ ]V ∗ψ1

(X b⊗α
N

1)σνo

= G∗Vψ1
[1 a⊗β

No
ĴR̂c(m∗)Ĵ ](X α̂⊗β

No
1H)(σW oσ)σ

= G∗Vψ1
(X α̂⊗β

No
1H)[1 α̂⊗β

No
ĴR̂c(m∗)Ĵ ](σW oσ)σ

= G∗((X β⊗α
N

1H)(σW oσ)∗[1 a⊗β
No

ĴR̂c(m∗)Ĵ ](σW oσ)σ

= G̃∗(1 α⊗β
No

X)W o∗(ĴR̂c(m∗)Ĵ β⊗α̂
N

1)W o

= G̃∗(1 α⊗β
No

X)Ŵ (1 β̂⊗α
N

m)Ŵ ∗

from which we get the second formula and finish the proof.

5.3. Proposition. With the notations of 5.1, for any X ∈ Î, we have

G̃∗(1 α⊗β
No

Jψ1XJ)Ŵ = ςN [(Jψ1 s⊗r
Aa

Jψ1)G̃∗(1 α⊗β
No

X)Ŵ (J β̂⊗α
N

J)].

Proof. Using 3.13 (i), we get that (Jψ1 r⊗s
Aao

Jψ1)σψ0G̃
∗(1 α⊗β

No
X)Ŵσνo(J β̂⊗α

N

J) is equal

to

G̃∗(Ĵ β⊗a
N

Jψ1
)σνoV

∗
ψ1
σνo(1 α⊗β

No
X)Ŵσνo(J β̂⊗α

N

J)

= G̃∗(Ĵ β⊗a
N

Jψ1
)σνoV

∗
ψ1

(X β⊗α
N

1)σνoŴσνo(J β̂⊗α
N

J).
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Using now 5.1, we get it is equal to

G̃∗(Ĵ β⊗a
N

Jψ1
)σνo(X α̂⊗β

No
1)(σW oσ)σνoŴσνo(J β̂⊗α

N

J)

which, by 3.13(ii), is equal to G̃∗(1 α⊗β
No

Jψ1
XJ)Ŵ .

5.4. Proposition. (i) With the notations of 5.1, for any element

(
A X

Y ∗ m

)
in Q̂, let

us write

ΓQ̂(

(
A X

Y ∗ m

)
) =

 G̃∗(1 α⊗b
No

A)G̃ G̃∗(1 α⊗β
No

X)Ŵ

Ŵ ∗(1 α⊗b
No

Y ∗)G̃ Γ̂(m)

 .

Then, we define a mapping ΓQ̂ from Q̂ into Q̂ ˜̂
β
∗α̃
Ñ

Q̂ which is a coproduct. So, (Ñ , Q̂, α̃,

˜̂
β,ΓQ̃) is a Hopf bimodule.

(ii) Let us write

RQ̂(

(
A X

Y ∗ m

)
) =

(
Jψ1

A∗Jψ1
Jψ1

Y J

JX∗Jψ1
Jm∗J

)
.

Then, we define an involutive ∗-anti-isomorphism RQ̂ of Q̂, which a co-involution for the

coproduct ΓQ̂.

(iii) For any A ∈ P̂ , let us write ΓP̂ (A) = G̃∗(1 α⊗b
No

A)G̃, and RP̂ (A) = Jψ1
A∗Jψ1

;

then (Aa, P̂ , r, s,ΓP̂ ) is a Hopf bimodule, and RP̂ is a co-involution for ΓP̂ .

Proof. We have got in 5.2 that G̃∗(1 α⊗β
N

X)Ŵ belongs to Î β̂∗α
N

Î; so, for any ξ, η in

D(µHψ1
, Φ̂′), we get that G̃∗(1 α⊗b

N
θµ,Φ̂

′
(ξ, η))G̃ commutes with µ(M̂ ′) s⊗r

Aa
µ(M̂ ′), and

therefore, belongs to P̂ s∗r
Aa

P̂ ; by continuity and density, this remains true for any A in

P̂ . So, we have got that ΓQ̂ is an injective ∗-homomorphism from Q̂ into Q̂ ˜̂
β
∗α̃
Ñ

Q̂. The

fact that it is a coassociative coproduct is given by 4.2(iv), which gives (i).

We have seen in 5.1 that Jψ1Y J belongs to Î; therefore, for any ξ, η in D(µHψ1 , Φ̂
′),

we get that Jψ1
θµ,Φ̂

′
(ξ, η)Jψ1

belongs to P̂ , and by density, that remains true for any

A in P̂ . The fact that we obtain a co-involution is given by 5.3, which gives (ii). As

P̂ = Q̂α̃(e1), we easily get (iii).

5.5. Proposition. Let (A, b, a, φ, ψ0) be a Galois system for G; let ψ1 = ψ0 ◦ Ta; let δA
be the modulus introduced in 3.11, and PA be the generator of the one-parameter group

of unitaries introduced in 4.8. Then:

(i) There exists a one-parameter group of unitaries ∆̂it
A = P itA Jψ1

δitAJψ1
.

(ii) We have, for all t ∈ R and m ∈ M̂ ′:

πa(1 b⊗α
N

σΦ̂c

t (m)) = ∆̂−itA πA(1 b⊗α
N

m)∆̂it
A
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and, in particular, for any n ∈ N :

∆̂−itA b(n)∆̂it
A = b(σν−t(n)).

(iii) We have

(∆it
Φ α⊗b

N
∆̂it
A)G̃ = G̃(∆it

ψ1 s⊗r
Aa

∆̂it
A), (∆it

Φ̂ α⊗b
N

P itA )G̃ = G̃(∆̂it
A s⊗r

Aa
P itA δ

it
A).

Proof. Using 4.8(vi), we get that P itA commutes with Jψ1 ; using 4.8(v), we get that P itA
commutes with δisA ; so, we get (i).

Let now x ∈ Nψ1 , and let ξ be in D(αH, ν) and η in D(αH, ν) ∩D(δ1/2), such that

δ1/2η belongs to D(Hβ , ν
o). We have then, using 4.8(v), [E5], 8.4(iii), 4.9(i) and (iii), and

again 4.8(v) and [E5], 8.4(iii):

(id ∗ ωη,ξ)(Vψ1
)∆̂−itA Λψ1

(x) = (id ∗ ωη,ξ)(Vψ1
)Λψ1

(λ
−t/2
A τAt (x)δ−itA )

= Λψ1 [(id b∗α
N

ωδ1/2η,ξ)a(λ
−t/2
A τAt (x)δ−itA )]

= Λψ1 [λ
−t/2
A τAt (id b∗α

N
ωP−itδ−itδ1/2η,P−itξ)a(x)δ−itA ]

= ∆̂A

−it
Λψ1

((id b∗α
N

ωP−itδ−itδ1/2η,P−itξ)a(x))

= ∆̂A

−it
(id ∗ ωP−itδ−itη,P−itξ)(Vψ1

)Λψ1
(x).

Therefore, using 3.2 and 2.2.2 applied to Go, we get that

∆̂−itA πa(1 b⊗α
N

(ωξ,η ∗ id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)])∆̂it
A

is equal to πa(1b⊗α
N

σΦ̂c

t (ωξ,η ∗id)[(Ĵ β⊗α
N

Ĵ)W ∗(Ĵ β⊗α̂
N

Ĵ)]) and, by density and continuity,

we get (ii).

Using 3.8 and 4.8(iii) and (ii), we get, where x is in Nψ1
, ζ in D((Hψ1

)b, ν
o) and

(ei)i∈I is an orthogonal (b, νo)-basis of Hψ1 :

G̃(∆it
ψ1

Λψ1
(x) α⊗b

N
∆̂it
Aζ) =

∑
i

ΛΦ[(ω∆̂it
Aζ,ei

b∗α
N

id)a(σψ1

t (x))] α⊗b
νo

ei

=
∑
i

ΛΦ[(ω∆̂it
Aζ,ei

b∗α
N

id)(τAt b∗α
N

σΦ
t )a(x)] α⊗b

νo
ei

=
∑
i

∆it
ΦΛΦ[(ωP itA ∆̂it

Aζ,P
−it
A ei b

∗α
N

a(x)] α⊗b
νo

ei

=
∑
i

∆it
ΦΛΦ[(ωJψ1

δitAJψ1
ζ,P−itA ei b

∗α
N

a(x)] α⊗b
νo

ei

=
∑
i

∆it
ΦΛΦ[(ωζ,P−itA Jψ1

δitAJψ1
ei b
∗α
N

a(x)] α⊗b
νo

ei

and, using the fact that (P−itA Jψ1
δitAJψ1

ei)i∈I is another orthogonal (b, νo)-basis of Hψ1
,

and that the sum does not depend on the choice of the basis, we get it is equal to∑
i

∆it
ΦΛΦ[(ωζ,ei b∗α

N
a(x)] α⊗b

νo
P−itA Jψ1

δitAJψ1
ei = (∆it

ψ1 s⊗r
Aa

∆̂it
A)G̃(Λψ1

(x) α⊗b
N

ζ)

which gives the first formula of (iii).
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Finally, we have, using similar arguments:

G̃(∆̂it
A s⊗r

Aa
P itA δ

it
A)(Λψ1

(x) s⊗r
ψ0

ζ) = G̃(P itA Jψ1
δitAJψ1

Λψ1
(x) s⊗r

ψ0

P itA δ
it
Aζ)

= G̃(λ
−t/2
A P itAΛψ1

(xδ−itA ) s⊗r
ψ0

P itA δ
it
Aζ)

= G̃(Λψ1
(τAt (xδ−itA )) s⊗r

ψ0

P itA δ
it
Aζ)

=
∑
i

ΛΦ[(ωP itA δitAζ,ei b∗αN
id)a(τAt (xδ−itA )] α⊗b

νo
ei

=
∑
i

ΛΦ[(ωP itA δitAζ,ei b∗αN
id)(τAt b∗α

N
τt)a(xδ−itA )] α⊗b

νo
ei

=
∑
i

λ
−t/2
A P itΛΦ[(ωζ,P−itA ei b

∗α
N

id)a(x)δ−it] α⊗b
νo

ei

=
∑
i

P itJΦδ
itJΦΛΦ[(ωζ,P−itA ei b

∗α
N

id)a(x)] α⊗b
νo

ei

=
∑
i

P itJΦδ
itJΦΛΦ[(ωζ,ei b∗α

N
id)a(x)] α⊗b

νo
P itA ei

= (∆it
Φ̂ α⊗b

No
P itA )G̃(Λψ1(x) s⊗r

ψ0

ζ)

which finishes the proof.

5.6. Proposition. Let (A, b, a, φ, ψ0) be a Galois system for G; let ψ1 = ψ0 ◦ Ta, and

let ∆̂A be the operator introduced in 5.5. Then:

(i) There exists a normal semi-finite faithful weight ΦP̂ on P̂ such that
dΦP̂
dΦ̂c

= ∆̂A;

(ii) There exists a normal faithful semi-finite operator valued weight T P̂L from P̂ on

r(Aa), such that ΦP̂ = ψ0 ◦ r−1 ◦ T P̂L .

Proof. Using 5.5(ii) and the definition of the spatial derivative ([T], IX.3.11), one gets

(i). Moreover, we then get that, for all t ∈ R and x ∈ Aa, we have, using 4.8:

σ
ΦP̂
t (r(x)) = P itA Jψ1δ

it
AJψ1r(x)Jψ1δ

−it
A Jψ1P

−it
A = P itA r(x)P−itA = r(σψ0

t (x))

which gives (ii).

5.7. Notations. (A, b, a, φ, ψ0) be a Galois system for G; let ψ1 = ψ0 ◦ Ta, and let ∆̂A

be the operator introduced in 5.5; let ΦP̂ the normal semi-finite faithful weight on P̂

introduced in 5.6(i), and let T P̂L be the normal faithful semi-finite operator valued weight

from P̂ on r(Aa), introduced in 5.6(ii), such that ΦP̂ = ψ0 ◦ r−1 ◦ T P̂L .

Let us denote by ΦQ̂ the diagonal faithful normal semi-finite weight ΦP̂⊕Φ̂ on the von

Neumann algebra introduced in 5.1. Let us first remark that we can also define a diagonal

normal faithful semi-finite operator-valued weight T Q̂L from Q̂ to α̃(Ñ), defined, for any

positive element

(
A X

Y ∗ m

)
in Q̂+ (which implies that A ∈ P̂+, m ∈ M̂+ and Y = X), by

T Q̂L

((
A X

X∗ m

))
= T P̂L (A)⊕ T̂L(m)

and we get that ΦP̂ ⊕ Φ̂ = (ψ0 ⊕ ν) ◦ T Q̂L .
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It is straightforward to get that

(
A X

Y ∗ m

)
in Q̂ belongs to NQ̂ if and only if A

belongs to NP̂ , m belongs to NΦ̂, X is such that Φ̂(X∗X) < ∞, and Y is such that

ΦP̂ (Y Y ∗) ≤ ∞.

Let us consider the polar decomposition X = u|X|; then u belongs to Î, and |X|
belongs to NΦ̂. Writing ξ = uΛΦ̂(|X|), we get that, for all m ∈ NΦ̂, we have

Jψ1
πa(1 b⊗α

N
m∗)Jψ1ξ = Jψ1πa(1 b⊗α

N
m∗)Jψ1uΛΦ̂(|X|)

= uĴm∗ĴΛΦ̂(|X|) = u|X|ĴΛΦ̂(m)

which means that ξ ∈ D((Hψ1)µo , Φ̂
o) and X = Rµ

o,Φ̂o(ξ).

If now we suppose that

(
A X

Y ∗ m

)
belongs to NQ̂ ∩ N∗

Q̂
, we get that there exists

η in D((Hψ1
)µo , Φ̂

o), such that Y = Rµ
o,Φ̂o(η), and Y Y ∗ = θµ

o,Φ̂o(η, η); by definition

of the spatial derivative, the fact that ΦP̂ (Y Y ∗) < ∞ implies that η ∈ D(∆̂
1/2
A ), and

ΦP̂ (θµ
o,Φ̂o(η, η)) = ‖∆̂1/2

A η‖2; more precisely, there exists an antilinear involutive isome-

try J̃ on Hψ1 such that J̃∆̂
1/2
A = ∆̂

−1/2
A J̃ , and we can write

ΛΦQ̂
(

(
A Rµ,Φ̂

′
(ξ)

Rµ,Φ̂
′
(η)∗ m

)
) = ΛΦP̂

(A)⊕ ξ ⊕ J̃∆̂
1/2
A η ⊕ ΛΦ̂(m)

and we identify this way HΦQ̂
with HΦP̂

⊕Hψ1
⊕Hψ1

⊕H; for simplification, we shall

identify ΛΦQ̂
(

(
A 0

0 0

)
) with ΛΦP̂

(A), ΛΦQ̂
(

(
0 0

0 m

)
) with ΛΦ̂(m). We shall write p1,2

Hψ1

for the projection on the first subspace Hψ1
of HΦQ̂

, and p2,1
Hψ1

, for the projection on the

second subspace Hψ1
.

If X ∈ Î is such that Φ̂(X∗X) < ∞, let us write Λ1,2(X) = ΛΦQ̂
(

(
0 X

0 0

)
) (and,

therefore, Λ1,2(Rµ,Φ̂
′
(ξ)) = ξ for all ξ ∈ D(µHψ1

, Φ̂′)).

If Y ∈ Î is such that ΦP̂ (Y Y ∗) < ∞, let us write Λ2,1(Y ∗) = ΛΦQ̂
(

(
0 0

Y ∗ 0

)
), and

therefore, if η ∈ D(µ(Hψ1), Φ̂′) ∩D(∆̂
1/2
A ), we have Λ2,1(Rµ,Φ̂

′
(η)∗) = J̃∆̂

1/2
A η.

The identification of HΦQ̂
with HΦP̂

⊕Hψ1
⊕Hψ1

⊕H leads also to write

∆ΦQ̂
= ∆ΦP̂

⊕ ∆̂
1/2
A ⊕ ∆̂

1/2
A ⊕∆Φ̂

and JΦQ̂
= JΦP̂

⊕ (J̃ ⊕ J̃) ◦ τ ⊕ Ĵ , where τ(ξ ⊕ η) = η ⊕ ξ, for any ξ, η in Hψ1 .

For any n ∈ N , x ∈ Aa, we get that

πΦQ̂
(α̃(x⊕ n))ΛΦQ̂

(

(
A Rµ,Φ̂

′
(ξ)

Rµ,Φ̂
′
(η)∗ m

)
) = ΛΦQ̂

(

(
r(x)A r(x)Rµ,Φ̂

′
(ξ)

α(n)Rµ,Φ̂
′
(η)∗ α(n)m

)
)

Using 2.1, we get, for any n ∈ N , analytical with respect to ν, that

Rµ,Φ̂
′
(η)α(n) = Rµ,Φ̂

′
(µ(σΦ̂′

i/2(β(n))η) = Rµ,Φ̂
′
(µ(β(σνi/2(n))η) = Rµ,Φ̂

′
(b(σνi/2(n))η)
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and therefore that

Λ2,1(α(n)Rµ,Φ̂
′
(η)∗) = J̃∆̂

1/2
A b(σνi/2(n∗))η

and, using 5.5(i), we get that

Λ2,1(α(n)Rµ,Φ̂
′
(η)∗) = J̃b(n∗)∆̂

1/2
A η

which, by continuity, remains true for all n ∈ N ; from which we obtain

πΦQ̂
(α̃(x⊕ n)) = πΦP̂

(r(x))⊕ r(x)⊕ ã(n)⊕ α(n)

where we define ã(n) = J̃b(n∗)J̃ .

With similar arguments, we obtain

πΦQ̂
(
˜̂
β(x⊕ n)) = πΦP̂

(s(x))⊕ s(x)⊕ b̃(n)⊕ β̂(n)

where we define b̃(n) = J̃a(n∗)J̃ . Therefore, we get that πΦQ̂
(e1) = pHΦ

P̂
+ p1,2

Hψ1
and

πΦQ̂
(e2) = p2,1

Hψ1
+ pH .

5.8. Proposition. Let’s use the notations of 5.1 and 5.7. Then:

(i) For any η ∈ D((Hψ1
)µo , Φ̂

o), v ∈ D(αH, ν) ∩D(Hβ̂ , ν
o), ξ ∈ D((Hψ1

)s, ψ
o
0), the

element X = (ωv,ξ ∗ id)[G̃∗(1 α⊗β
N

Rµ
o,Φ̂o(η))Ŵ ], which belongs to Î by 5.2, is such that(

0 X

0 0

)
belongs to NΦQ̂

.

(ii) Let (ξi)i∈I be an orthogonal (s, ψo0)-basis of Hψ1 ; there exists ηi ∈ D((Hψ1)µo , Φ̂
o)

such that

(ωv,ξi ∗ id)[G̃∗(1 α⊗β
N

Rµ
o,Φ̂o(η))Ŵ ] = Rµ

o,Φ̂o(ηi).

Moreover,

‖v α⊗b
νo

η‖2 =
∑
i

‖ηi‖2 = ‖
∑
i

ξi s⊗r
ψ0

ηi‖2.

(iii) We have

G̃∗(v α⊗b
νo

η) =
∑
i

ξi s⊗r
ψ0

ηi.

(iv) We have

Λ1,2(X) = (ωv,ξ ∗ id)(G̃∗)η.

Proof. We have

X∗X = ((ωv,ξ ∗ id)[G̃∗(1 α⊗β
No

Rµ
o,Φ̂o(η))Ŵ ])∗(ωv,ξ ∗ id)[G̃∗(1 α⊗β

No
Rµ

o,Φ̂o(η))Ŵ ]

= (ωv β̂∗α
N

id)[Ŵ ∗(1 α⊗b
No

Rµ
o,Φ̂o(η))∗G̃(θs,ψ

o
0 (ξ, ξ) s⊗r

Aa
1)G̃∗(1 α⊗β

N

Rµ
o,Φ̂o(η))Ŵ ]

≤ ‖Rs,ψ0(ξ)‖2(ωv β̂∗α
N

id)[Ŵ ∗(1α⊗β
No

< η, η >µo,Φ̂o)Ŵ ]

= ‖Rs,ψ0(ξ)‖2(ωv β̂∗α
N

id)(Γ̂(< η, η >µo,Φ̂o))
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and therefore using the left-invariance of T̂L, then, using 5.7:

Φ̂(X∗X) ≤ ‖Rs,ψ0(ξ)‖2(T̂L(< η, η >µo,Φ̂o)v|v)

= ‖Rs,ψ0(ξ)‖2‖v α⊗β
No

ΛΦ̂(Rµ
o,Φ̂o(η))‖2 = ‖Rs,ψ0(ξ)‖2‖v α⊗b

No
η‖2

from which we get that X∗X belongs to M+

Φ̂
, and using 5.7, we finish the proof of (i).

The same calculation with Xi = (ωv,ξi ∗ id)[G̃∗(1 α⊗β
No

Rµ
o,Φ̂o(η))Ŵ ] shows that∑

i

X∗i Xi = (ωv β̂∗α
N

id)Γ̂(< η, η >µo,Φ̂o)

and then we get Φ̂(
∑
iX
∗
i Xi) = ‖v α⊗b

No
η‖2.

Using again 5.7, we get that there exists ηi ∈ D((Hψ1
)µo , Φ̂

o) such that Xi =

Rµ
o,Φ̂o(ηi); from which we get that∑

i

‖ηi‖2 =
∑
i

‖ΛΦ̂(Rµ
o,Φ̂o(ηi))‖2 =

∑
i

Φ̂(X∗i Xi) = ‖v α⊗b
No

η‖2

which is (ii). Let now m ∈ NΦ̂; we have

(Ĵm∗Ĵ α⊗b
No

1)G̃(ξi s⊗r
ψo0

ηi) = G̃(ξi s⊗r
ψo0

µ(Ĵm∗Ĵ)ηi) = G̃(ξi s⊗r
ψo0

Rµ
o,Φ̂o(ηi)ĴΛΦ̂(m))

= G̃(ξi s⊗r
ψo0

XiĴΛΦ̂(m))

and therefore

(Ĵm∗Ĵ α⊗b
No

1)G̃
∑
i

(ξi s⊗r
ψo0

ηi)

= G̃
∑
i

(ξi s⊗r
ψo0

(ωv,ξi ∗ id)[G̃∗(1 α⊗β
N

Rµ
o,Φ̂o(η))Ŵ ]ĴΛΦ̂(m)

= (1 α⊗β
N

Rµ
o,Φ̂o(η))Ŵ (v β̂⊗α

N

ĴΛΦ̂(m))

Therefore, taking now ζ1 ∈ D(αH, ν) and ζ2 ∈ D((Hψ1)b, ν
o), we get that

((Ĵm∗Ĵ α⊗b
No

1)G̃
∑
i

(ξi s⊗r
ψo0

ηi)|ζ1 α⊗b
νo

ζ2)

= ((1 α⊗β
N

Rµ
o,Φ̂o(η))Ŵ (v β̂⊗α

N

ĴΛΦ̂(m))|ζ1 α⊗b
νo

ζ2)

= (Rµ
o,Φ̂o(η)(ωv,ζ1 ∗ id)(Ŵ )ĴΛΦ̂(m)|ζ2)

and, using now ([E5], 3.10(ii) applied to Ĝ, and 3.11(iii)), we get it is equal to

(Rµ
o,Φ̂o(η)ĴΛΦ̂(ωJζ1,Jv ∗ id)Γ̂(m))|ζ2) = (µ(Ĵ(ωJζ1,Jv ∗ id)Γ̂(m)∗Ĵ)η|ζ2).

Taking the limit when m goes to 1, we get

(G̃(
∑
i

ξi s⊗r
ψo0

ηi)|ζ1 α⊗b
νo

ζ2) = (β(< Jv, Jζ1 >β̂,νo)η|ζ2)

= (β(< ζ1, v >α,ν)η|ζ2) = (v α⊗b
νo

η|ζ1 α⊗b
νo

ζ2)
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from which we get that G̃(
∑
i ξi s⊗r

ψo0

ηi) = v α⊗b
νo

η, which is (iii); this can be written

(ωv,ξi ∗ id)(G̃∗)η = ηi = Λ1,2(Xi)

which, by linearity and continuity, gives (iv).

5.9. Proposition. Let us use the notations of 5.1, 5.7, 5.8 and take η ∈ D((Hψ1
)µo , Φ̂

o)

∩D(∆̂
1/2
A ); let us define the antirepresentation s̃ of Aa on Hψ1

by s̃(x) = J̃r(x∗)J̃ , for

all x ∈ Aa; let us define the representation ã of N on Hψ1 by ã(n) = J̃b(n∗)J̃ , for all

n ∈ N ; then, for any v ∈ D(Hβ̂ , ν
o) and ξ ∈ D((Hψ1

)s, ψ
o
0) ∩D(rHψ1

, ψ0) the element

X = (ωv,ξ ∗ id)[G̃∗(1 α⊗β
No

Rµ
o,Φ̂o(η))Ŵ ]

is such that

(
0 0

X∗ 0

)
belongs to NΦQ̂

, and we have

Λ2,1(X∗) = (ωξ,v ∗ id)[(J α⊗b
No

J̃)G̃(Jψ1 r⊗s̃
Aao

J̃)]Λ2,1(Rµ
o,Φ̂o(η)).

Proof. Let us first take η such that ΛΦQ̂
(

(
0 Rµ

o,Φ̂o(η)

0 0

)
) belongs to the Tomita alge-

bra TΦQ̂
, x in the Tomita algebra Tψ1,Ta

, and y, z in TΦ,TL . Then, Λψ1(x) belongs to

D((Hψ1
)s, ψ

o
0), and JΛΦ(y∗z) belongs to D(αH, ν)∩D(Hβ̂ , ν

o). Therefore, we can apply

5.8(i) to the element

X = (ωJΛΦ(y∗z),Λψ1
(x) ∗ id)[G̃∗(1 α⊗β

No
Rµ

o,Φ̂o(η))Ŵ ].

Using 5.7 and ([E5], 3.11 applied to G), we get that σ
ΦQ̂
t (

(
0 X

0 0

)
) is of the form(

0 Xt

0 0

)
, with Xt = ∆̂it

AX∆−it
Φ̂

. Using now 5.5(iii), we get that

Xt = (ω∆it
ΦJΛΦ(y∗z),∆−itψ1

Λψ1
(x) ∗ id)[G̃∗(1 α⊗β

No
∆̂it
AR

µo,Φ̂o(η)∆̂−it)Ŵ ]

and the hypothesis on η, x, y, z give that the function t 7→ Xt extends to an analytic

function; in particular, we get that Λ1,2(X) belongs to D(∆̂
1/2
A ), and using 5.8(iv) and

4.2(iii), we get

∆̂
1/2
A Λ1,2(X) = Λ1,2(X−i/2) = (ω

∆
1/2
Φ JΛΦ(y∗z),∆

−1/2
ψ1

Λψ1
(x)
∗ id)(G̃∗)J̃∆̂

1/2
A η

= (ω
∆
−1/2
ψ1

Λψ1
(x),∆

1/2
Φ JΛΦ(y∗z)

∗ id)(G̃)∗J̃∆̂
1/2
A η

= (ωJψ1
Λψ1

(x),ΛΦ(y∗z) ∗ id)(G̃)J̃∆̂
1/2
A η

and therefore

Λ2,1(X∗) = J̃∆̂
1/2
A Λ1,2(X) = J̃(ωJψ1

Λψ1
(x),ΛΦ(y∗z) ∗ id)(G̃)J̃∆̂

1/2
A η

= (ωΛψ1
(x),JΛΦ(y∗z) ∗ id)[(J α⊗b

No
J̃)G̃(Jψ1 r⊗s̃

Aao
J̃)]Λ2,1(Rµ

o,Φ̂o(η)∗)
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As ΛQ̂ (and therefore Λ2,1) is closed, we get, for any v ∈ D(Hβ̂ , ν
o) and ξ ∈ D((Hψ1)s, ψ

o
0)

∩D(rHψ1
, ψ0), that X = (ωv,ξ ∗ id)[G̃∗(1 α⊗β

No
Rµ

o,Φ̂o(η))Ŵ ] is such that X∗ belongs to

D(Λ2,1) and that

Λ1,2(X∗) = (ωξ,v ∗ id)[(J α⊗b
No

J̃)G̃(Jψ1 r⊗s̃
Aao

J̃)]Λ2,1(Rµ
o,Φ̂o(η)∗).

Using again the closedness of Λ2,1, we get that this result remains true for any η such

that

(
0 Rµ

o,Φ̂o(η)

0 0

)
belongs to NΦQ̂

∩N∗ΦQ̂ (i.e., using 5.7, if η belongs to D(∆̂
1/2
A )).

5.10. Theorem. The operator-valued weight T P̂L is left-invariant.

Proof. Let η in D((Hψ1
)µo, Φ̂o) ∩ 1/2

A ); let (vi)i∈I a (β̂, νo) orthogonal basis of H, and ξ

in D((Hψ1
)s, ψ

o
0) ∩D(rHψ1

, ψ0); let us write

Xi = (ωvi,ξ ∗ id)[G̃∗(1 α⊗β
No

Rµ
o,Φ̂o(η))Ŵ ].

We then get

ωξ(id ∗ ΦP̂ )(ΓP̂ (θµ
o,Φ̂o(η, η))) = ΦP̂ (ωξ ∗ id)[G̃(1 α⊗b

No
θµ

o,Φ̂o(η, η))G̃∗]

is equal to∑
i

ΦP̂ ((ωξ ∗ id)(G̃(1 α⊗β
N

Rµ
o,Φ̂o(η))Ŵ (θβ̂(vi, vi) β̂⊗α

N

1)Ŵ ∗(1 α⊗b
No

Rµ
o,Φ̂o(η)∗G̃∗]

which can be written, using 5.9:∑
i

ΦP̂ (XiX
∗
i ) =

∑
i

‖Λ2,1(X∗i )‖2

=
∑
i

‖(ωξ,vi ∗ id)[(J α⊗b
No

J̃)G̃(Jψ1 r⊗s̃
Aao

J̃)]Λ2,1(Rµ
o,Φ̂o(η))‖2

=
∑
i

‖vi β̂⊗α
N

(ωξ,vi ∗ id)[(J α⊗b
No

J̃)G̃(Jψ1 r⊗s̃
Aao

J̃)]Λ2,1(Rµ
o,Φ̂o(η))‖2

= ‖[(J α⊗b
No

J̃)G̃(Jψ1 r⊗s̃
Aao

J̃)](ξ r⊗s̃
Aao

Λ2,1(Rµ
o,Φ̂o(η))‖2

= ‖ξ r⊗s̃
Aao

Λ2,1(Rµ
o,Φ̂o(η))‖2 = (T P̂L (θµ

o,Φ̂o(η, η))ξ|ξ)

from which we get that (id∗ΦP̂ )(ΓP̂ (θµ
o,Φ̂o(η, η))) = T P̂L (θµ

o,Φ̂o(η, η)). As any element in

M+
ΦP̂

can be approximated from below by finite sums of operators of the form θµ
o,Φ̂o(η, η),

we get the result.

5.11. Theorem. With the notations of 5.1 and 5.7, we have:

(i) (Aa, P̂ , r, s,ΓP̂ , T
P̂
L , RP̂ ◦ T

P̂
L ◦RP̂ , ψ0) is a measured quantum groupoid. We shall

denote this measured quantum groupoid by G1(A, b, a, φ, ψ0), or simply by G1(a). Follow-

ing [DC1], its dual Ĝ1(a) will be called the reflected measured quantum groupoid of G

through the Galois system (A, b, a, φ, ψ0), or simply, through a.
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(ii) (Ñ , Q̂, α̃,
˜̂
β,ΓQ̂, T

Q̂
L , RQ̂ ◦ T

Q̂
L ◦RQ̂, ψ0 ⊕ ν) is a measured quantum groupoid. We

shall denote this measured quantum groupoid by G2(A, b, a, φ, ψ0), or simply by G2(a).

Proof. By 5.4(iii), we know that (Aa, P̂ , r, s,ΓP̂ ) is a Hopf bimodule, and by 5.10, that

T P̂L is left-invariant. Using again 5.4(iii), we get that RP̂ ◦T
P̂
L ◦RP̂ is right-invariant. The

only result needed is that the modular automorphism groups σΦP̂ and σΦP̂ ◦RP̂ commute.

By definition, we have, for all A ∈ P̂ , we have, using 5.5(i) σ
ΦP̂
t (A) = ∆̂it

AA∆̂−itA =

P itA Jψ1
δitAJψ1

AJψ1
δ−itA Jψ1

P−itA , and, using 5.5(i) and 4.8(v) and (vi):

σ
ΦP̂ ◦RP̂
s (A) = RP̂ ◦ σ

ΦP̂
−s ◦RP̂ (A) = Jψ1∆̂−isA Jψ1AJψ1∆̂is

AJψ1

= Jψ1
P−isA Jψ1

δ−isA AδisAJψ1
P isA Jψ1

= P−isA δ−isA AδisAP
is
A

and, as P itA Jψ1
δitAJψ1

commutes with P−isA δ−isA , we obtain the result, and we finish the

proof of (i).

We have obtained in 5.4(i), that (Ñ , Q̂, α̃,
˜̂
β,ΓQ̂) is a Hopf bimodule; using 5.10 and

the definition of T Q̂L (5.7), we get that T Q̂L is left-invariant; using 5.4(ii), we get that

RQ̂ ◦ T
Q̂
L ◦ RQ̂ is right-invariant. The calculation made in (i) proves as well that the

automorphism groups σΦQ̂ and σΦQ̂◦RQ̂ commute, which finishes the proof.

5.12. Theorem. Let G a measured quantum groupoid, and (A, b, a, φ, ψ0) a Galois sys-

tem for G; let us denote by (Ñ ,Q, α̃, β̃,ΓQ, T
Q
L , RQT

Q
L RQ, ψ0 ⊕ ν) the dual measured

quantum groupoid Ĝ2(a). This measured quantum groupoid will be called the linking mea-

sured quantum groupoid between G and the reflected measured quantum groupoid Ĝ1(a).

We shall consider that the von Neumann algebra Q acts on HΦQ̂
= HΦP̂

⊕Hψ1
⊕Hψ1

⊕H.

Then:

(i) α̃(e1), α̃(e2), β̃(e1), β̃(e2) belong to Z(Q).

(ii) We have pHΦ
P̂

= α̃(e1)β̃(e1); p1,2
Hψ1

= α̃(e1)β̃(e2); p2,1
Hψ1

= α̃(e2)β̃(e1), and pH =

α̃(e2)β̃(e2); all these projections belong to Z(Q).

(iii) We have QpHΦ
P̂

= P , Qp1,2
Hψ1

= A, Qp2,1
Hψ1

= J̃AJ̃ , and QpH = M . Therefore, we

have Q = P ⊕A⊕Ao ⊕M .

(iv) If x ∈ P , y ∈M , z ∈ A, we have

ΓP (x) = ΓQ(x)α̃(e1)β̃(e1)β̃⊗α̃
Ñ

α̃(e1)β̃(e1),

Γ(y) = ΓQ(y)α̃(e2)β̃(e2)β̃⊗α̃
Ñ

α̃(e2)β̃(e2),

a(z) = ΓQ(z)α̃(e1)β̃(e2)β̃⊗α̃
Ñ

α̃(e2)β̃(e2).

(v) Let R (resp. RP , resp. RQ) be the co-inverse of G (resp. of the reflected measured

quantum groupoid, resp. of the linking measured quantum groupoid); let τt, τ
P
t , τQt be

the scaling groups of these measured quantum groupoids, γt, γ
P
t , γQt be the automorphism

groups on the basis of these measured quantum groupoids, as defined in 2.2 or [E5], 3.8(i),

(ii) and (v); we have, for any x ∈ P , y ∈M , z1, z2 in A, n ∈ N , u ∈ Aa:

RQ(x⊕ z1 ⊕ zo2 ⊕ y) = RP (x)⊕ z2 ⊕ zo1 ⊕R(y),
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τQt (x⊕ z1 ⊕ zo2 ⊕ y) = τPt (x)⊕ ∆̂it
Az1∆̂−itA ⊕ (∆̂it

Az2∆̂−itA )o ⊕ τt(y),

γQt (u⊕ n) = γPt (u)⊕ γt(n).

Proof. As α̃(e1) =
˜̂
β(e1) (5.1), we get that α̃(e1) belongs to Z(Q); so α̃(e2) = 1− α̃(e1)

belongs also to Z(Q), and as β̃(e1) = RQ(α̃(e1)) and β̃(e2) = RQ(α̃(e2)), we get (i).

We have seen in 5.7 that πΦQ̂
(α̃(e1) = pHΦ

P̂
+ p1,2

Hψ1
(as we shall consider that Q

is acting on HΦQ̂
, we shall now skip the representation πΦQ̂

). Using now the formula

obtained for JQ̂, we obtain

α̃(e1) = pHΦ
Q̂

+ p1,2
Hψ1

,

α̃(e2) = p2,1
Hψ1

+ pH ,

β̃(e1) = pHΦ
Q̂

+ p2,1
Hψ1

,

β̃(e2) = p1,2
Hψ1

+ pH ,

from which we get (ii).

Let WQ̂ be the pseudo-multiplicative unitary associated to G2(A, b, a,Φ, ψ0); then, Q

is the weak closure of the linear set generated by all operators of the form (ωw,v∗id)(W ∗
Q̂

),

for all v ∈ D(α̃HΦQ̂
, ν⊕ψ0)∩D((HΦQ̂

) ˜̂
β
, ν⊕ψ0), and w ∈ D((HΦQ̂

) ˜̂
β
, ν⊕ψ0). Using now

[E5], 3.10 (ii), we get that, for A in NΦP̂
, ξ ∈ D(µHψ1

, Φ̂′), η ∈ D(µHψ1
, Φ̂′) ∩D(∆̂

1/2
A )

and m ∈ NΦ̂′ :

pHΦ
P̂

(ωw,v ∗ id)(W ∗
Q̂

)pHΦ
P̂

ΛΦQ̂
(

(
A Rµ,Φ̂

′
(ξ)

Rµ,Φ̂
′
(η)∗ m

)
)

is, using 5.4(i) and (iii), equal to

pHΦ
P̂

ΛΦQ̂
[(ωw,v ˜̂

β
∗α̃
Ñ

id)ΓQ̂(

(
A 0

0 0

)
)] = ΛΦP̂

[(ωpHΦ
P̂
w,pHΦ

P̂
v s∗r
Aa

id)ΓP̂ (A)]

= (ωpHΦ
P̂
w,pHΦ

P̂
v ∗ id)(W ∗

P̂
)ΛΦP̂

(A)

from which we get that QpHΦ
P̂

= P . The proof for QpH is similar.

The same way, we get that

p1,2
Hψ1

(ωw,v ∗ id)(W ∗
Q̂

)p1,2
Hψ1

ΛΦQ̂
(

(
A Rµ,Φ̂

′
(ξ)

Rµ,Φ̂
′
(η)∗ m

)
)

is equal, using 5.8(iv) to (ωpHw,p1,2
Hψ1

v ∗ id)(G̃∗)ξ, and therefore, using 4.2(iv), we get

that A is the the weak closure of the linear set generated by all elements of the form

p1,2
Hψ1

(ωw,v ∗ id)(W ∗
Q̂

)p1,2
Hψ1

. For Qp2,1
Hψ1

, the proof is the same, using 5.9, which finishes the

proof of (iii).

The restriction of (pHΦ
P̂
β̃⊗α̃
Ñ

pHΦ
P̂

)W ∗
Q̂

((pHΦ
P̂
α̃⊗ ˜̂

β

Ño

pHΦ
P̂

) to HΦP̂ r
⊗s
ψ0

HΦP̂
is equal to

W ∗
P̂

, that the restriction of (pH β̃⊗α̃
Ñ

pH)W ∗
Q̂

(pH α̃⊗ ˜̂
β

Ño

pH) to H α⊗β̂
νo

H is equal to Ŵ , and
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the restriction of (p1,2
Hψ1 β̃

⊗α̃
Ñ

p1,2
Hψ1

)W ∗
Q̂

(pH α⊗b
No

p1,2
Hψ1

) to H α⊗b
νo

Hψ1
is equal to G̃∗. Then

the result (iv) comes from ([E5], 3.6(ii)) applied to Ĝ2(a), Ĝ1(a) and G, and 3.8(iv).

For any X ∈ Q, we have RQ(X) = JΦQ̂
X∗JΦQ̂

([E5], 3.10(v)), and τQt (X) =

∆it
ΦQ̂
X∆−itΦQ̂

([E5], 3.10 (vii)). So, the result about RQ (resp. τQt ) is then given by the

formula about JΦQ̂
(resp. ∆ΦQ̂

) obtained in 5.7. Let’s look at the automorphism group

γQ̂t ; we have, using 5.1 and 5.7:˜̂
β(γQ̂t (u⊕ n)) = σ

ΦQ̂
t (

˜̂
β(u⊕ n)) = σ

ΦQ̂
t (s(u)⊕ β̂(n))

= s(γPt (u))⊕ β̂(γ̂t(n)) =
˜̂
β(γPt (u)⊕ γ̂t(n))

from which we get γQ̂t (u ⊕ n) = γPt (u)) ⊕ γ̂t(n), and using [E5]3.10 (vii), γQt (u ⊕ n) =

γPt (u)⊕ γt(n).

5.13. Proposition. Let G be a measured quantum groupoid, and (A, b, a, φ, ψ0) be a

Galois system for G; let A ⊂ Ã be a unital inclusion of von Neumann algebras, and (b, ã)

be an action of G on Ã; let us suppose that Ãã = Aa, and that ã|A = a. Then Ã = A.

Proof. As the restriction of Tã to A is equal to Ta, we get clearly that ã is integrable. Let

now ψ0 be a normal faithful semi-finite weight on Aa, and ψ1 = ψ0 ◦ Ta, ψ̃1 = ψ0 ◦ Tã;

clearly, we get that theses two weights are normal faithful semi-finite, and that ψ1 is

equal to the restriction of ψ̃1 to A; from which we get that there exists a normal faithful

conditional expectation E from Ã onto A, such that ψ̃1 = ψ1 ◦ E, and a projection p in

L(Hψ̃1
) such that pΛψ̃1

(x) = Λψ̃1
(Ex), for any x ∈ Nψ̃1

; moreover, as ψ̃1 is δ-relatively

invariant and has the density property (3.2), we get, using the implementation Vψ̃1
of ã

recalled in 2.4, that, for any x ∈ Nψ̃1
, ξ ∈ D(αH, ν) and η ∈ D(αH, ν) ∩ D(δ1/2) such

that δ1/2η belongs to D(Hβ , ν
o), we get

Λψ̃1
[(id b∗α

N
ωη,ξ)ã(x)] = (id ∗ ωδ1/2η,ξ)(Vψ̃1

)Λψ̃1
(x)

from which we get that

(id ∗ ωδ1/2η,ξ)(Vψ̃1
)pΛψ̃1

(x) = (id ∗ ωδ1/2η,ξ)(Vψ̃1
)Λψ̃1

(Ex) = Λψ̃1
[(id b∗α

N
ωη,ξ)ã(Ex)]

= Λψ̃1
[E(id b∗α

N
ωη,ξ)ã(Ex)] = pΛψ̃1

[(id b∗α
N

ωη,ξ)ã(Ex)]

= p(id ∗ ωδ1/2η,ξ)(Vψ̃1
)pΛψ̃1

(x)

from which we get (id ∗ ωδ1/2η,ξ)(Vψ̃1
)p = p(id ∗ ωδ1/2η,ξ)(Vψ̃1

)p. Using now 3.6 and 2.2,

we get that p belongs to πã(1 b⊗α
N

M̂ ′)′. Returning to the same calculation, we then get

that

Λψ̃1
[(id b∗α

N
ωη,ξ)ã(Ex)] = (id ∗ ωδ1/2η,ξ)(Vψ̃1

)pΛψ̃1
(x)

= p(id ∗ ωδ1/2η,ξ)(Vψ̃1
)Λψ̃1

(x)

= pΛψ̃1
[(id b∗α

N
ωη,ξ)ã(x)]

= Λψ̃1
[E(id b∗α

N
ωη,ξ)ã(x)]
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from which we get that a ◦ E = (E b∗α
N

id)ã. Hence, E b∗α
N

id can be extended to a

faithful conditional expectation from ÃoãG onto AoaG, and we easily get that, for any

X ∈ Ãoã G, πa(E b∗α
N

id)(X) = pπã(X)p; as the action a is Galois by hypothesis, πa is

faithful, and we then get that πã is also faithful, and therefore that ã is also Galois. Let

G̃ã be its Galois unitary, as defined in 3.11.

Moreover, if T is the normal faithful semi-finite operator-valued weight from A onto

b(N) such that φ = ν ◦ b−1 ◦T, we get that E ◦T is a normal faithful semi-finite operator-

valued weight from Ã onto b(N), which satisfies (E◦Tb∗α
N
id)ã = (E b∗α

N
id)a◦T = a◦E◦T,

which gives that φ ◦ E is invariant by a. For all t ∈ R, using the notations of 3.11, we

get that (Dφ ◦ E : Dψ̃1)t = (Dφ : Dψ1)t = λ
it2/2
A δitA, which proves that the modular

automorphism groups of φ ◦ E and ψ̃1 commute, and therefore we have obtained that

(Ã, b, ã, φ ◦ E,ψ0) is a Galois system for G.

So, using 5.11, we get that p ∈ P̂ , where (Aa, P̂ , r, s,ΓP̂ , T
P̂
L , RP̂ ◦ T

P̂
L ◦RP̂ , ψ0) is the

measured quantum groupoid G1(Ã, b, ã, φ ◦ E,ψ0); more precisely, using the definition

of p, we get that p ∈ r(Aa)′ ∩ b(N)′, and that Jψ̃1
pJψ̃1

= p, which gives (5.4(iii)) that

RP̂ (p) = p, and therefore that p ∈ s(Aa)′; using now the definition of Gα̃ given in 3.8,

we get that Gã(p s⊗r
Aa

p) = (p b⊗α
N

1)Gã, which gives then, using again 5.4(iii), that

ΓP̂ (p) = p s⊗r
Aa

p ≤ 1 s⊗r
Aa

p. Applying now the faithful operator valued weight id s∗r
Aa

T P̂L

to the positive operator 1 s⊗r
Aa

p− ΓP̂ (p), we obtain that ΓP̂ (p) = 1 s⊗r
Aa

p, and therefore

that p s⊗r
Aa

p = 1 s⊗r
Aa

p, and p = 1; from which we infer the result.

6. Morita equivalence for measured quantum groupoids. In that chapter, we

begin (6.1 and 6.2) by the converse result of 5.11; starting from a measured quantum

groupoid with a basis of the form N1 ⊕ N2, we see under which conditions it is a link-

ing measured quantum groupoid between a measured quantum groupoid G1 (with basis

N1) and a measured quantum groupoid G2 (with basis N2). This leads to some techni-

cal additional results about the reflected groupoid of a measured quantum groupoid G

through some Galois system (6.3 and 6.4). Then, we can define Morita equivalence of

measured quantum groupoids (6.5), prove it is indeed an equivalence relation (6.7), and

give a complete link between Morita equivalence and Galois systems (6.10). We finish

this chapter by giving some examples of Morita equivalences between locally compact

quantum groups and measured quantum groupoids (6.12).

6.1. Proposition. Let G1,2 be a measured quantum groupoid with a basis which is a

sum N1⊕N2, we shall denote (N1⊕N2,M, α, β,Γ, T,RTR, ν1⊕ν2), with a co-inverse R;

we shall identify Hν1⊕ν2
with Hν1

⊕Hν2
; let us denote by e1 the unit of N1, considered

as a projection in N1 ⊕N2, and e2 = 1− e1. Let us suppose that α(e1) belongs to Z(M);

let us denote by αi (resp. βi) the restriction of α (resp. β) to Ni (i = 1, 2). Let us write

Φ = (ν1 ⊕ ν2) ◦ α−1 ◦ T , and H = HΦ. Let us write Mi,j = Mα(ei)β(ej). Let M̂ be the

underlying von Neumann algebra of the dual measured quantum groupoid Ĝ1,2. Then:



164 M. ENOCK

(i) The projections α(e2), β(e1) and β(e2) belong to Z(M). Moreover, the projection

α(e1) belongs to Z(M̂) if and only if α(e1)β(e2) = 0.

(ii) If η belongs to D(αH, ν1 ⊕ ν2), then α(ei)η belongs to D(αiH, νi) (i = 1, 2), and

Rα,ν1⊕ν2(η) = Rα1,ν1(α(e1)η)⊕Rα2,ν2(α(e2)η)

and for η1, η2 in D(αH, ν), < η1, η2 >
o
α,ν1⊕ν2

is equal to

< α(e1)η1, α(e1)η2 >
o
α1,ν1

e1+ < α(e2)η1, α(e2)η2 >
o
α2,ν2

e2.

(iii) The map which sends (for η ∈ D(αH, ν1 ⊕ ν2) and ξ in H) the vector ξ β⊗α
ν1⊕ν2

η

on (β(e1)ξ β1
⊗α1

ν1

α(e1)η)⊕ (β(e2)ξ β2
⊗α2

ν2

α(e2)η) extends to an isometry, which leads to

the identification of H β⊗α
ν1⊕ν2

H with

(β(e1)H β1
⊗α1

ν1

α(e1)H)⊕ (β(e2)H β2
⊗α2

ν2

α(e2)H)

and for all (i, j) = 1, 2, we have

Γ(α(ei)β(ej)) = [α(ei)β(e1) β1
⊗α1

N1

α(e1)β(ej)]⊕ [α(ei)β(e2) β2
⊗α2

N2

α(e2)β(ej)]

and R(Mα(ei)β(ej)) = Mα(ej)β(ei).

(iv) For (i, j) = 1, 2, let us write Mi,j = Mα(ei)β(ej); we can define ∗-anti-isomor-

phisms Ri,j from Mi,j onto Mj,i by writing Ri,j(xα(ei)β(ej)) = R(x)α(ej)β(ei). So, we get

that Mj,i is isomorphic to Mo
i,j; using (i), we get that M1,2 6= {0} if and only if α(e1)

does not belong to Z(Ĝ1,2). Moreover, we can define, for all x ∈M :

Γ1
i,j(xα(ei)β(ej)) = Γ(x)α(ei)β(e1)β1

⊗α1
N1

α(e1)β(ej),

Γ2
i,j(xα(ei)β(ej)) = Γ(x)α(ei)β(e2)β2

⊗α2
N2

α(e2)β(ej),

which satisfies, for k = 1, 2, for any ni ∈ Ni, and nj ∈ Nj:

Γki,j(αi(ni)) = αi(ni) βk⊗αk
Nk

1, Γki,j(βj(nj)) = 1 βk⊗αk
Nk

βj(nj),

and Γki,j are normal injective ∗-homomorphisms from Mi,j into Mi,k βk∗αk
Nk

Mk,j. These

homomorphisms satisfy:

(Γii,i αi∗βi
Ni

id)Γii,i = (id αi∗βi
Ni

Γii,i)Γ
,
i,ii,

(Γji,j βj∗αj
Nj

id)Γji,j = (id βj∗αj
Nj

Γjj,j)Γ
j
i,j ,

(Γii,i βi∗αi
Ni

id)Γii,j = (id βi∗αi
Ni

Γii,j)Γ
i
i,j ,

(Γii,j βj∗αj
Nj

id)Γji,j = (id βi∗αi
Ni

Γji,j)Γ
i
i,j ,

and therefore (Ni,Mi,i, αi, βi,Γ
i
i,i) is a Hopf bimodule, with Ri,i as a co-inverse, and if

α(e1) does not belong to Z(Ĝ1,2), (βj ,Γ
j
i,j) is an action of (Nj ,Mj,j , αj , βj ,Γ

j
j,j) on Mi,j,
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and (αi,Γ
i
i,j) is a left action of (Ni,Mi,i, αi, βi,Γ

i
i,i) on Mi,j. Moreover, these two actions

commute.

Proof. As α(e2) = 1−α(e1), β(e1) = R(α(e1)), β(e2) = R(α(e2)), the beginning of (i) is

clear. If α(e1) belongs to Z(Ĝ1,2), we have α(e1) = β(e1), and therefore α(e1)β(e2) = 0.

Conversely, if α(e1)β(e2) = 0, we have α(e1) ≤ β(e1), and α(e1) = α(e1)β(e1). Ap-

plying R, we get β(e1) = α(e1)β(e1), and therefore α(e1) = β(e1), from which we get

that α(e1) belongs to Z(Ĝ1,2), which finishes the proof of (i). Result (ii) and (iii) are

straightforward.

6.2. Proposition. Let’s use the notations of 6.1. Then:

(i) Let us remark that, for any (i, j) = 1, 2, we have T (Mα(ei)β(ej)) = α(Ni), and

RTR(Mα(ei)β(ej)) = β(Nj); this leads to define normal semi-finite faithful operator

valued weights Ti,j from Mi,j onto αi(Ni), and T ′i,j = Rj,iTj,iRi,j from Mi,j onto βj(Nj).

Moreover, the left-invariance of T (resp. the right-invariance of RTR) gives then the

following formulae, for any xi,j ∈M+
i,j:

(id β1
∗α1

N1

T1,1)Γ1
1,1(x1,1) = T1,1(x1,1),

(T ′1,1 β1
∗α1

N1

id))Γ1
1,1(x1,1) = T ′1,1(x1,1),

(id β2
∗α2

N2

T2,2)Γ2
2,2(x2,2) = T2,2(x2,2),

(T ′2,2 β2
∗α2

N2

id)Γ2
2,2(x2,2) = T ′2,2(x2,2),

(id β2
∗α2

N2

T2,2)Γ2
1,2(x1,2) = T1,2(x1,2),

(T ′1,2 β2
∗α2

N2

id)Γ2
1,2(x1,2) = T ′1,2(x1,2),

(id β1
∗α1

N1

T1,1)Γ1
2,1(x2,1) = T2,1(x2,1),

(T ′2,1 β1
∗α1

N1

id)Γ1
2,1(x2,1) = T ′2,1(x2,1),

from which we get that T1,1 (resp. T ′1,1) is left-invariant (resp. right-invariant) with respect

to Γ1
1,1, that T2,2 (resp. T ′2,2) is left-invariant (resp. right-invariant) with respect to Γ2

2,2,

and that (if α(e1) does not belong to Z(Ĝ1,2)) both actions Γ2
1,2 and Γ1

2,1 are integrable

and have invariant weights.

(ii) Let us define

Φ1 = ν1 ◦ α−1
1 ◦ T1,1,

Ψ1 = ν1 ◦ β−1
1 ◦ T ′1,1,

Φ2 = ν2 ◦ α−1
2 ◦ T2,2,

Ψ2 = ν2 ◦ β−1
2 ◦ T ′2,2,

ψ1,2 = ν1 ◦ α−1
1 ◦ T1,2,

φ1,2 = ν2 ◦ β−1
2 ◦ T ′1,2,

ψ2,1 = ν2 ◦ α−1
2 ◦ T2,1,

φ2,1 = ν1 ◦ β−1
1 ◦ T ′2,1.

The fact that ν1 ⊕ ν2 is relatively invariant leads to the commutation of σΦ1 and σΨ1 , of

σΦ2 and σΨ2 , of σψ1,2 and σφ1,2 , and of σψ2,1 and σφ2,1 .

(iii) Gi = (Ni,Mi,i, αi, βi,Γ
1
i,i, Ti,i, T

′
i,i, νi) (i = 1, 2) are two measured quantum

groupoids. Moreover, Ri,i is the co-inverse of Gi.

(iv) If α(e1) ∈ Z(Ĝ1,2), then G1,2 = G1 ⊕ G2; if α(e1) does not belong to Z(Ĝ1,2),

then (M1,2, β2,Γ
2
1,2, φ1,2, ν1) is a Galois system for G2 (and G1 is the measured quantum

groupoid reflected from G2 through this Galois system), and (M2,1, β1,Γ
1
2,1, φ2,1, ν2) is a

Galois system for G1 (and G2 is the measured quantum groupoid reflected from G1 through

this Galois system). Moreover, the left action (α1,Γ
1
1,2) of G1 on M1,2 leads (2.4) to an
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action (α1, ςN1Γ1
1,2) of Go1 on Mo

1,2, which, by the identification of M2,1 with Mo
1,2 made

in 6.1(iii), is equal to (β1,Γ
1
2,1)o.

Proof. Results (i), (ii), (iii) are straightforward. If α(e1) ∈ Z(Ĝ1,2), then M1,2 = M2,1 =

{0}, and we get that G1,2 = G1 ⊕G2 (in the sense of 2.3(v)). Otherwise, we have got in

(i) that (β2,Γ
2
1,2) is an integrable action of G2 on M1,2, with an invariant normal faithful

semi-finite weight φ1,2; moreover, the invariant algebra M
Γ2

1,2

1,2 is α1(N1), and the modular

automorphism group of the lifted weight ψ1,2 commutes with the modular automorphism

group φ1,2, which gives that ν1 is Γ2
1,2-relatively invariant, in the sense of 3.11. Therefore,

to get that (M1,2, β2,Γ
2
1,2, φ1,2, ν1) is a Galois system for G2, we have only to prove that

the Galois homomorphism πΓ2
1,2

is faithful, or, equivalently (3.9(iv)), that the isometry

G constructed in 3.8 from Γ2
1,2 is surjective. As Γ2

1,2 is ”part of ” Γ, we get, using 3.12(ii)

that ςG is the restriction and co-restriction of

(α(e1)β(e2) β̂⊗α
ν

α(e2)β(e2))W ∗(α(e1)β(e2) α⊗β
νo

α(e2)β(e2))

which is a unitary. The proof for (β1,Γ
1
2,1) is identical.

6.3. Theorem. Let G be a measured quantum groupoid, (A, b, a, φ, ψ0) a Galois system

for G, and G1 be the measured quantum groupoid reflected from G through (A, b, a, φ, ψ0);

let’s use the notations of 5.12; then, for z ∈ A, let us write

b(z) = ΓQ(z)α̃(e1)β̃(e1)β̃⊗α̃
Ñ

α̃(e1)β̃(e2).

Then, b(z) belongs to P ŝ∗r
Aa

A, with ŝ(x) = JΦP̂
r(x)∗JΦP̂

for all x ∈ Aa, and (r, b) is a

left action of G1 on A, with Ab = b(N); the left action (r, b) commutes with a, and leads

to a Galois system for G1.

Proof. Let us denote by (Ñ ,Q, α̃, β̃,ΓQ, T
Q
L , RQT

Q
L RQ, ψ0 ⊕ ν) the linking measured

quantum groupoid between G and G1, as in 5.12. Then, the result comes from 6.2(iv).

6.4. Theorem. Let G be a measured quantum groupoid, (A, b, a, φ, ψ0) a Galois system

for G, and G1 be the measured quantum groupoid reflected from G through (A, b, a, φ, ψ0),

and G2 the linking measured groupoid between G and G1; we have, for x ∈ P+, y ∈M+,

z1, z2 in A+:

(i) TQL (x ⊕ z1 ⊕ zo2 ⊕ y) = (TL(x) + r ◦ Ta(z1)) ⊕ (TL(y) + α ◦ b−1T(z2)), where T

is the normal semi-finite faithful operator-valued weight from A onto b(N) defined by

φ = ν ◦ b−1 ◦ T.

(ii) δQ = δP ⊕ δA ⊕ (δ−1
A )o ⊕ δ.

(iii) λP = λA = r(b ◦ β−1(λ)).

Proof. Applying 6.2(i) to the measured quantum groupoid G2, we see that the map

x 7→ TQL (x) is a left-invariant weight on (P,ΓP ); moreover, using 5.12(v), we get that, for

all t ∈ R, we have τQt |P = τPt and (γQt )|Aa = γPt ; therefore, we can use Lesieur’s theorem

([L], 5.21), and we get that there exists a non-singular positive operator h affiliated to

Z(Aa) such that, for all x ∈ P+, we have TQL (x) = TPL (r(h)x). Therefore, we have then

ΦQ(x) = ΦP (r(h)x); but using now the link between W ∗
Q̂

and W ∗
P̂

found in 5.12, we get,
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using [E5], 3.10(v), that, for an operator of the form x = (ω ∗ id)(W ∗
P̂

), with ω ∈ IΦP̂
(with the notations of [E5], 3.10 (v)), we have ΦQ(x∗x) = ΦP (x∗x), from which we infer

that h = 1, and TQL (x) = TPL (x), for all x ∈ P+.

The fact that TQL (y) = TL(y), for all y ∈M+, is proved by similar arguments.

Using now 5.12(iv) and 6.2(i), we get that TQL (z1) = Ta(z1); we have obtained that

ΦQ(x) = ΦP (x), ΦQ(y) = Φ(y), ΦQ(z1) = ψ1(z1), and using 5.12(v), that ΦQ ◦RQ(x) =

ΦP ◦RP (x), ΦQ ◦RQ(y) = Φ ◦R(y), ΦQ ◦RQ(z2) = ψ1(z2).

Let’s look now at the operator P itQ which is the canonical implementation of τQt ;

using the results obtained for ΦQ and for τQt (6.2(v)), we easily get that (PQ)HΦ
P̂

= PP ,

(PQ)HΦ
= P , and using 4.8(v), that (PQ)H1,2

ψ1

= PA. With same arguments, we get that

(λQ)HΦ
P̂

= λP , (λQ)HΦ
= λ and (λQ)H1,2

ψ1

= λA. But using now [E5], 3.10 (vii), and the

result about ∆Φ̂ obtained in 5.7, we get that (δQ)HΦ
P̂

= δP , (δQ)HΦ
= δ and using 5.5(i),

that (δQ)H1,2
ψ1

= δA.

So, we get, for all t ∈ R, using 3.11:

(D(ΦQ ◦RQ)|A : D(ΦQ)|A)t = λ
it2/2
A δitA = (Dφ : Dψ1)t

from we we infer that ΦQ ◦RQ(z1) = φ(z1), for all positive z1 in A; so, we have ΦQ(zo2) =

φ(z2) for all positive z2 in A, from which we finish the proof of (i).

Now we have

(D(ΦQ ◦RQ)|Ao : D(ΦQ)|Ao)t = (DΦo : Dψo1)t = [(λA)o]it
2/2[(δA)o]−it

from which we get (ii). Finally, there is p ∈ Z(N) such that λ = α(p) = β(p), and

u ∈ Z(Aa) such that λP = r(u) = ŝ(u); on the other hand, there are q ∈ Z(N) and

v ∈ Z(Aa) such that λQ = r(v)⊕α(q) = ŝ(v)⊕β(q). From all our calculations above, we

infer that q = p, v = u, λA = r(v) and λoA = α(p); from which we get (iii).

6.5. Definition. For i = 1, 2, let Gi = (Ni,Mi, αi, βi, Ti, T
′
i , νi) be a measured quantum

groupoid. We shall say that G1 is Morita equivalent to G2 if there exists a von Neumann

algebra A, a Galois action (b, a) of G1 on A, a Galois left action (a, b) of G2 on A, such

that

(i) Aa = a(N2), Ab = b(N1), and the actions (b, a) and (a, b) commute;

(ii) the modular automorphism groups of the normal semi-finite faithful weights ν1 ◦
b−1 ◦ Tb and ν2 ◦ a−1 ◦ Ta commute.

Then A (or, more precisely, (A, b, a, a, b)) will be called the imprimitivity bi-comodule

for G1 and G2.

6.6. Remark. Then, using 3.3, we get that the system (A, b, a, ν1 ◦ b−1 ◦ Tb, ν2 ◦ a−1)

is Galois for G1 and that the system (A, a, b, ν2 ◦ a−1 ◦ Ta, ν1 ◦ b−1) is left-Galois for G2.

Therefore, we can construct, following 5.12, the reflected measured quantum groupoid G̃2

of G1 through the Galois system (A, b, a, ν1◦b−1◦Tb, ν2◦a−1), and the reflected measured

quantum groupoid G̃1 of G2 through the left-Galois system (A, a, b, ν2◦a−1◦Ta, ν1◦b−1),

and using 6.3, an action ã1 of G̃1 on A, and a left action of G̃2 on A; let us first remark

that the basis of G̃2 is Aa = a(N2) and is therefore isomorphic to N2 which is the basis

of G2. Similarly, the G1 and G̃1 has the same basis.
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As the action ã1 is Galois, the homomorphism πã1
is an isomorphism from the crossed

product A oã G̃1 onto the algebra Ã2 constructed by basic construction made from

the inclusion Aã ⊂ A; as Aã = a(N2) = Aa, we get that Ã2 is equal to the algebra

s(Aa)′ constructed by basic construction made from the inclusion Aa ⊂ A, which is

isomorphic, via π−1
a , to Aoa G1; therefore, there exists an isomorphism I1 from Aoa G1

onto Aoã G̃1 such that I1 ◦a = ã; similarly, there exists an isomorphism I2 from AnbG2

onto Anb̃ G̃2 such that I2 ◦b = b̃; using all these remarks, we easily get that (A, b, ã, a, b̃)

is an imprimitivity bi-comodule between G̃1 and G̃2; we can prove also that if A is an

imprimitivity bi-comodule for G̃1 and G̃2, it is also an imprimitivity bi-comodule for G1

and G2.

6.7. Theorem. Morita equivalence is indeed an equivalence relation.

Proof. Using the Galois system (M,β,Γ,Φ ◦ R, ν) (3.12(ii)), we get the left-Galois sys-

tem (M,α,Γ,Φ, ν), and that G is Morita equivalent to G, with M as imprimitivity

bi-comodule; so, Morita equivalence is indeed reflexive.

If G1 is Morita equivalent to G2, with A as imprimitivity co-bimodule, we get, using

3.11, that (bo, σNao) and (ao, (σNb)o) make G2 be Morita equivalent to G1, with Ao as

imprimitivity co-bimodule; so, Morita equivalence is indeed symmetric.

Let us suppose now that G1, G2, G3 are three measured quantum groupoids, and that

(A1, b1, a1, a1, b1) is an imprimitivity bi-comodule for G1 and G2, and (A2, b2, a2, a2, b2)

is an imprimitivity bi-comodule for G2 and G3. Using 6.6, we know there exists an

action (b1, ã1) of the reflected measured quantum groupoid G̃1 of G2 through the Galois

system (A1, a1, b1, ν2 ◦ a−1
1 ◦ Ta, ν1 ◦ b−1

1 ) such that (A1, b1, ã1, a1, b1) is an imprimitivity

bi-comodule between G̃1 and G2; similarly, we shall consider (A2, b2, a2, a2, b̃2) which is

an imprimitivity bi-comodule between G2 and the reflected measured quantum groupoid

G̃3 of G2 through the left Galois system (A2, a2, b2, ν3 ◦ a−1
2 ◦ Ta, ν2 ◦ b−1

2 ).

Let A3 = {X ∈ A2 b2∗a2

N2

A1; (id b2∗a2

N2

b1)(X) = (a2 b2∗a2

N2

id)(X)}. It is straightforward

to check that a2(N3) b2∗a2

N2

1 ⊂ A3 and 1 b2∗a2

N2

b1(N1) ⊂ A3, and that:

(i) (1 b2∗a2

N2

b1, (id b2∗a2

N2

ã1)|A3
is an action of G̃1 on A3, we shall denote it by (b3, a3)

for simplification.

(ii) (a2 b2∗a2

N2

1, (b̃2 b2∗a2

N2

id)|A3
) is a left action of G̃3 on A3, we shall denote it by

(a3, b3) for simplification.

(iii) We have Aa3
3 = a3(N3), and Ab3

3 = b3(N1), and the actions a3 and b3 commute.

To prove that we get an imprimitivity system, we shall make a detour.

So, let us consider a Galois system for G2, with G̃1 as reflected measured quantum

groupoid, and another Galois system for G2, with G̃3 as reflected measured quantum

groupoid. Let us consider now, as in 5.1, the representation µ1 of M̂2

′
on H1 and the rep-

resentation µ3 of M̂2

′
on H3, and the representation $ of M̂2

′
on H3⊕H2⊕H1 given by
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µ3⊕id⊕µ1, and Q̂ = $(M̂ ′)′; using again matrix notations for elements in Q̂, we get that

Q̂ =


̂̃M3 Q̂2,3 Q̂1,3

Q̂∗2,3 M̂2 Q̂1,2

Q̂∗1,3 Q̂∗1,3
̂̃M1


where, for instance:

Q̂1,3 = {X ∈ L(H1, H3), Xµ1(m) = µ3(m)X,∀m ∈ M̂2

′
}.

We have clearly Q̂2,3Q̂1,2 ⊂ Q̂1,3; using again an orthogonal basis as in the proof of

5.4(i), we get that the linear set generated by the products in Q̂2,3Q̂1,2 is weakly dense

in Q̂1,3. But, as in 5.2, we can construct a coproduct from Q̂1,2 into Q̂1,2 β̂1
∗α1

N1

Q̂1,2 and

a coproduct from Q̂2,3 β̂2
∗α2

N2

Q̂2,3, and, by product, we obtain therefore a coproduct from

Q̂1,3 into Q̂1,3 β̂1
∗α1

N1

Q̂1,3, then, as in 5.4, a coproduct for Q̂. The proof that Q̂ has a

structure of measured quantum groupoid is completely similar to 5.8, 5.9 and 5.10. So, as

in 5.12, we can look at the dual measured quantum groupoid, which will be on the basis

N1 ⊕N2 ⊕N3; let us denote by αQ and βQ the canonical homomorphism and antihomo-

morphism from N1 ⊕N2 ⊕N3 into Q; as in 5.12, we can prove that αQ(ei) ∈ Z(Q) and

βQ(ei) ∈ Z(Q), where, for (i = 1, 2, 3), ei is the unit of Ni, considered as a projection

in N1 ⊕ N2 ⊕ N3. Then, it is easy to get that the reduced algebra on H1 ⊕ H3 has a

structure of measured quantum groupoid, over the basis N1 ⊕ N3. As Q̂1,3 6= {0}, we

can use 6.2(iv), and we get the existence of a Galois system for G̃3, with G̃1 as reflected

measured quantum groupoid, which means that G̃3 is Morita equivalent to G̃1 (and, by

the reflexivity, that G̃1 is Morita equivalent to G̃3); using then arguments analogous to

6.6, we get that G1 is Morita equivalent to G3, which proves the transitivity. To get

the imprimitivity bi-comodule, we must look at the dual Q = ⊕3
i,j=1Qi,j , which has a

coproduct ΓQ, which can be split into maps (ΓQ)ki,j : Qi,j 7→ Qi,k ∗Qk,j .
We know that Q1,1 = M̃1, Q2,2 = M2, Q3,3 = M3, Q2,1 = A1, Q3,2 = A2, and

we are looking for Q3,1. We know also that (ΓQ)1
1,1 = Γ̃1, (ΓQ)2

2,2 = Γ2, (ΓQ)3
3,3 = Γ̃3,

(ΓQ)1
2,1 = ã1, (ΓQ)2

2,1 = b1, (ΓQ)2
3,2 = a2, (ΓQ)3

3,2 = b̃2.

So, (ΓQ)2
3,1 sends Q3,1 into A2 ∗A1, and it is easy, with the co-associativity condition

of ΓQ, to get that (ΓQ)2
3,1 sends Q3,1 into A3, and that (ΓQ)2

3,1 sends the action (ΓQ)1
3,1

on id b2∗a2

N2

ã1 and the left action (ΓQ)3
3,1 on b̃2 b2∗a2

N2

id; using then 5.13, we get that A3

is the image of (ΓQ)2
3,1, which allow us to identify Q3,1 with A3, (ΓQ)1

3,1 with a3, and

(ΓQ)3
3,1 with b3. By these identifications, we prove that (A3, a3, b3) is an imprimitivity

bi-comodule between G̃1 and G̃3. By similar arguments to 6.6, we get an imprimitivity

bi-comodule between G1 and G3.

6.8. Notations. Let G1, G2, G3 be three measured quantum groupoids; let us suppose

that G1 is Morita equivalent to G2, with (A1, a1, b1) (or A1 for simplification) as imprim-

itivity bi-comodule and that G2 is Morita equivalent to G3 with (A2, a2, b2) (or simply

A2) as imprimitivity co-bimodule; we have proved in 6.7 that G1 is Morita equivalent to
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G3, with (A3, a3, b3) as imprimitivity co-bimodule, with

A3 = {X ∈ A2 b2∗a2

N2

A1; (id b2∗a2

N2

b1)(X) = (a2 b2∗a2

N2

id)(X)}

and a3 = (id b2∗a2

N2

a1)|A3
, b3 = (b2 b2∗a2

N2

1)|A3
.

We shall write (A3, a3, b3) = (A2, a2, b2) ◦ (A1, a1, b1), or, simply A3 = A2 ◦ A1; we

can check that this product is associative, and that, if we write M1 for the imprimitivity

bi-comodule (M1,Γ1,Γ1) between G1 and itself, we easily get that A1 ◦M1 = A1 and

M2 ◦A1 = A1.

6.9. Proposition. Let G, G1, G2 be measured quantum groupoids; let us use the nota-

tions of 6.8.

(i) Suppose that G1 is Morita equivalent to G2 with an imprimitivity co-bimodule A.

Then Ao ◦A = M1.

(ii) Suppose that G is Morita equivalent to G with an imprimitivity co-bimodule A;

then A = M .

(iii) Suppose that G1 is Morita equivalent to G2 with an imprimitivity co-bimodule

A1, and with another imprimitivity co-bimodule A2; then A1 = A2.

(iv) Suppose that G1 is Morita equivalent to G2 with an imprimitivity bi-comodule

(A, a, b); then G2 is the reflected measured quantum groupoid of G1 through the Galois

system (A, b, a, ν1 ◦ b−1 ◦ Tb, ν2 ◦ a−1).

Proof. Let us use the Galois system (A, b, a, ν1 ◦ b−1 ◦ Tb, ν2 ◦ a−1), and apply the con-

structions and results of 5.11 applied to this Galois system; for any y ∈M1, the operator

ΓQ(y)α̃(e2)β̃(e1)β̃⊗α̃
Ñ

α̃(e1)β̃(e2) belongs to Ao ao2∗a2

N2

A, and more precisely, using the coasso-

ciativity of the coproduct ΓQ, we can check it belongs to the subagebra Ao ◦A; we define

this way an injective morphism from M1 into Ao ◦A, which sends Γ1 to the action (and

on the left action) canonically defined on Ao ◦A; therefore, using 5.13, we get (i).

Let us now use the Galois system (A, b, a, ν ◦ b−1 ◦ Tb, ν ◦ a−1), and apply the con-

structions and results of 5.11 to this Galois system. Then, for x ∈ A, the operator

ΓQ(x)α̃(e2)β̃(e1)β̃⊗α̃
Ñ

α̃(e1)β̃(e2) belongs to Ao ◦ A, and therefore, using (i), to M ; we define

this way an injective morphism from A into M , which sends a to Γ; using again 5.13, we

get (ii).

As Ao2 ◦A1 is an imprimitivity bi-comodule for a Morita equivalence between G1 and

G1, we get, using (ii), that Ao2 ◦A1 = M1; therefore, we have, using (i):

A1 = M2 ◦A1 = A2 ◦Ao2 ◦A1 = A2 ◦M1 = A2

which is (iii).

Let G̃2 be the reflected measured quantum groupoid of G1 through the Galois system

(A, b, a, ν1 ◦ b−1 ◦ Tb, ν2 ◦ a−1); there exists a left action b̃ of G̃2 on A, and Ã = (A, a, b̃)

is an imprimitivity bi-comodule which makes G1 and G̃2; therefore, using 6.8, we get

that Ã ◦ Ao (whose underlying von Neumann algebra is M2 by (i), and that we shall

denote by P ) is an imprimitivity bi-comodule between G̃2 and G2; we then get, using

again (i), that P o ◦P = M̃2 and P ◦P o = M2, which leads, using 5.11, to define injective
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morphisms M2 7→ M̃2 and M̃2 7→ M2 as parts of the coproduct of the same measured

quantum groupoid. Using then the co-associativity of this coproduct, we get that these

mappings are each other’s inverse, which leads to the isomorphism of M2 and M̃2, which

is (iv).

6.10. Theorem. Let Gi = (Ni,Mi, αi, βi,Γi, Ti, T
′
i , νi) (i = 1, 2) be two measured quan-

tum groupoids. Then the following are equivalent:

(i) G1 and G2 are Morita equivalent, with a imprimitivity bi-comodule (A, a, b).

(ii) There exists a Galois system (A, b, a, φ, ψ0) for G1, such that G2 is the reflected

measured groupoid of G1 through this Galois system.

(iii) There exists a measured quantum groupoid

G1,2 = (N1 ⊕N2,M, α, β,Γ, T, T ′, ν1 ⊕ ν2)

such that α(e1) belongs to Z(M), and does not belong to Z(M̂), where e1 is the unit of

N1, considered as a projection in N1 ⊕N2, and (G1,2)α(e1) = G1, (G1,2)α(1−e1) = G2.

Proof. The result (i) implies (ii) by 6.9(iv); the result (ii) implies (i) was obtained in 6.3;

the result (ii) implies (iii) is given by 5.11(ii), and 6.1 gives that (iii) implies (ii).

6.11. Remark. A morphism between an action (b1, a1) of G on a von Neumann algebra

A1, and an action (b2, a2) on a von Neumann algebra A2 will be a ∗-homomorphism h

from A1 in A2 such that h◦b1 = b2, and (hb1∗α
N

id)a1 = a2; clearly this leads to a category

A(G); it is easy to get that , if G1 and G2 are two measured quantum groupoids which

are Morita equivalent, then these categories A(G1) and A(G2) are equivalent too.

6.12. Examples of locally compact quantum groups Morita equivalent to mea-

sured quantum groupoids. Here we are looking to examples of locally compact quan-

tum groups which are Morita equivalent to measured quantum groupoids. I am indebted

to S. Vaes who called my attention to this question. We first give two constructions in

which any locally compact quantum group is Morita equivalent to a measured quantum

groupoid, whose basis is a given factor N (6.12.2, 6.12.3). More convincing is K. De Com-

mer’s example (6.12.4, [DC4]): he proves that the compact quantum SUq(2) is Morita

equivalent to some measured quantum groupoid (whose basis is a finite sum of type I

factors).

6.12.1. Ampliation of a locally compact quantum group. If G= (M,Γ, ϕ, ψ) is

a locally compact quantum group, and N is a von Neumann algebra, we shall call the

measured quantum groupoid G(N) ⊗G the ampliation of G by N , where G(N) is the

N -measured quantum groupoid defined in 2.3(viii) and the tensor product of measured

quantum groupoids has been defined in 2.3(ix). Morover, the measured quantum groupoid

Ĝ(N)⊗G is, using also 2.3(viii) and (ix), another measured quantum groupoid, we shall

call the dual ampliation of G by N .

6.12.2. Theorem. Let G= (M,Γ, ϕ, ψ) be a locally compact quantum group, N a factor,

G(N) ⊗ G the ampliation of G by N , as defined in 6.12.1. Then, the locally compact

quantum group G and the measured quantum groupoid G(N)⊗G are Morita equivalent.
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Proof. Let us consider the von Neumann algebra N ⊗M ; then, (id ⊗ Γ) is an action of

G on this algebra; we get that the invariant subalgebra is (N ⊗M)(id⊗Γ) = N ⊗ C, and

that the crossed product is N ⊗L(Hϕ). Therefore, we get also that this action is Galois,

and that Tid⊗Γ = id⊗ϕ. Let us choose a normal semi-finite faithful trace ν on N ; we get

ν ◦ Tid⊗Γ = ν ⊗ ϕ.

Taking now on this algebra the restriction of the coproduct of G(N)⊗G, we obtain

a left action b of G(N) ⊗ G on N ⊗ M , and we get that Tb = ν ⊗ ψ. (Taking for

τ the canonical finite trace on C = Z(N), we get that the operator-valued weight Tν
defined in 2.3(viii) is ν). So, we then get that b is ergodic and Galois. Moreover, as the

modular groups of ϕ and ψ commute, we get, by the definition (6.5) that the locally

compact quantum group G and the measured quantum groupoid G(N)⊗G are Morita

equivalent, with N ⊗M as imprimitivity bi-comodule.

6.12.3. Proposition. Let G = (M,Γ, ϕ, ψ) be a locally compact quantum group, N a

factor, Ĝ(N)⊗G the dual ampliation of G by N , as defined in 6.12.1. Then, the locally

compact quantum group G and the measured quantum groupoid Ĝ(N) ⊗G are Morita

equivalent.

Proof. The proof is very similar to 6.12.2.

6.12.4. Another example. In [DC2], [DC3], Kenny De Commer has studied Morita

equivalences between the compact quantum group SUq(2) and various quantum groups,

and, in [DC4], with a mesurable quantum groupoid. Indeed, he constructs an integrable

Galois action of a SUq(2), which is not ergodic (the subalgebra of invariants is then a

finite sum of type I factors), and therefore, this construction leads to measured quantum

groupoid (whose basis is that finite sum of factors), which is Morita equivalent to the

initial compact quantum group. This construction is a particular case of 4.7.

7. Application to deformation of a measured quantum groupoid by a 2-cocycle.

In this section, we try to answer the problem of deformation of a measured quantum

groupoid by a 2-cocycle. With this deformed coproduct constructed in 7.2, does this

new Hopf bimodule still has a left-invariant (and a right-invariant) Haar operator-valued

weight, and therefore remains a measured quantum groupoid? Following De Commer’s

strategy, we are able to answer this question positively for any 2-cocycle only in the case

when the basis N is a finite sum of factors (7.7(xii)). In the general case, we can ob-

tain (7.9) sufficient conditions, which leads to positive answers in particular cases (7.11,

7.12).

7.1. Definition. Let (N,M,α, β,Γ) be a Hopf bimodule, in the sense 2.2; a unitary Ω

in (M ∩ α(N)′ β∗α
N

(M ∩ β(N)′) is called a 2-cocycle for (N,M,α, β,Γ) if Ω satisfies the

following relation:

(1 β⊗α
N

Ω)(id β∗α
N

Γ)(Ω) = (Ω β⊗α
N

1)(Γ β∗α
N

id)(Ω).

If G is a measured qroupoid, equipped with a left Haar system and a quasi-invariant

mesure on the set of units, and if Ω is a 2-cocycle for the measured quantum groupoid
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G(G)(2.3(ii)), then Ω is just a measurable function from G(2) to T, such that, for all

(g1, g2) and (g2, g3) in G(2):

Ω(g2, g3)Ω(g1, g2g3) = Ω(g1, g2)Ω(g1g2, g3)

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, and let Ω be a 2-

cocycle for G; let us define, for any t ∈ R:

Ωt = (τt β∗α
N

τt)(Ω),

Ω′t = (δit β⊗α
N

δit)Ω(δ−it β⊗α
N

δ−it) = (σΦ◦R
t σΦ

−t β∗α
N

σΦ◦R
t σΦ

−t)(Ω).

One can easily check that Ωt and Ω′t are also 2-cocycles for G.

7.2. Proposition. Let (N,M,α, β,Γ) be a Hopf bimodule, and let Ω be a 2-cocycle for

(N,M,α, β,Γ); let us write, for all x ∈M :

ΓΩ(x) = ΩΓ(x)Ω∗.

Then, (N,M,α, β,ΓΩ) is a Hopf bimodule, that we shall call the deformation of the initial

one by Ω.

Proof. We have, thanks to the definition of a 2-cocycle, for any n ∈ N :

ΓΩ(α(n)) = α(n) β⊗α
N

1, ΓΩ(β(n)) = 1 β⊗α
N

β(n)

which allows us to write

(ΓΩ β∗α
N

id)ΓΩ(x) = (ΓΩ β∗α
N

id)(ΩΓ(x)Ω∗)

= (ΓΩ β∗α
N

id)(Ω)(ΓΩ β∗α
N

id)Γ(x)(ΓΩ β∗α
N

id)(Ω)∗.

But

(ΓΩ β∗α
N

id)(Ω) = (Ω β⊗α
N

1)(Γ β∗α
N

id)(Ω)(Ω β⊗α
N

1)∗

and therefore

(ΓΩ β∗α
N

id)ΓΩ(x) = (Ω β⊗α
N

1)(Γ β∗α
N

id)(Ω)(Γ β∗α
N

id)Γ(x)(Γ β∗α
N

id)(Ω)∗(Ω β⊗α
N

1)∗

and, by a similar calculation, we get

(id β∗α
N

ΓΩ)ΓΩ(x) = (1 β⊗α
N

Ω)(id β∗α
N

Γ)(Ω)(id β∗α
N

Γ)Γ(x)(id β∗α
N

Γ)(Ω)∗(1 β⊗α
N

Ω)∗

which is equal, thanks to the definition of a 2-cocycle, and the coassociativity of Γ.

7.3. Proposition. Let G be a measured quantum groupoid, and Ω be a 2-cocycle for G;

let W be the pseudo-multiplicative unitary associated to G; let us write W̃ = WΩ∗, which

is a unitary from H β⊗α
ν

H onto H α⊗β̂
νo

H. Then:

(i) The operator W̃ satisfies

(1 α⊗β̂
No

W̃ )(W̃ β⊗α
N

1) = (W α⊗β̂
No

1)σ2,3
α,β(W̃ β̂⊗α

N

1)(1 β⊗α
N

σνo)(1 β⊗α
N

W̃ )

(with the notations of 2.2).
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(ii) For all ξ, ξ′ in D(Hβ , ν
o), η, η′ in D(αH, ν), we have

(ωξ,ξ′ β∗α
N

id)[W̃ ∗((id ∗ ωη,η′)(σνoW ) α⊗β̂
No

1)W̃ ] = ω
(ωξ,η′∗id)(W̃ )∗ξ′,η

∗ id)(W̃ )∗.

(iii) The weakly closed linear space generated by the operators of the form (ωξ,η ∗
id)(W̃ ), for all ξ ∈ D(Hβ , ν

o) and η ∈ D(αH, ν) is a non-degenerate involutive algebra,

therefore a von Neumann algebra on H, we shall denote AΩ.

(iv) We have α(N) ⊂ AΩ, β̂(N) ⊂ AΩ, and AΩ ⊂ β(N)′, AΩ ⊂ α̂(N)′.

(v) A unitary v on H belongs to A′Ω if and only if v ∈ α(N)′ ∩ β̂(N)′ and

W̃ (1 β⊗α
N

v) = (1 α⊗β̂
No

v)W̃ .

(vi) For any x ∈M , we have

ΓΩ(x) = W̃ ∗(1 α⊗β̂
νo

x)W̃

and the weakly closed linear space generated by the operators of the form (id∗ωζ1,ζ2)(W̃ ),

for ζ1 ∈ D(αH, ν) and ζ2 ∈ D(Hβ̂ , ν
o) is equal to M .

Proof. We have, using the definition of a 2-cocycle,

(1 α⊗β̂
No

W̃ )(W̃ β⊗α
N

1) = (1 α⊗β̂
No

W )(1 α⊗β̂
No

Ω∗)(W β⊗α
N

1)(Ω∗ β⊗α
N

1)

= (1 α⊗β̂
No

W )(W β⊗α
N

1)(W ∗ β⊗α
N

1)(1 α⊗β̂
No

Ω∗)(W β⊗α
N

1)(Ω∗ β⊗α
N

1)

= (1 α⊗β̂
No

W )(W β⊗α
N

1)(Γ β∗α
N

id)(Ω∗)(Ω∗ β⊗α
N

1)

= (1 α⊗β̂
No

W )(W β⊗α
N

1)(id β∗α
N

Γ)(Ω∗)(1 β⊗α
N

Ω∗)

which is equal to

(1 α⊗β̂
No

W )(W β⊗α
N

1)(1 β⊗α
N

W ∗)(1 β⊗α
N

σν)(Ω∗ β̂⊗α
N

1)(1 β⊗α
N

σνo)(1 β⊗α
N

W )(1 β⊗α
N

Ω∗)

and, using the pentagonal equation for W , is equal to

(W α⊗β̂
No

1)σ2,3
α,β(WΩ∗ β̂⊗α

N

1)(1 β⊗α
N

σνo)(1 β⊗α
N

WΩ∗)

which is (i).

For ζ, ζ ′ in H, we get that

((ωξ,ξ′ β∗α
N

id)[W̃ ∗[(id ∗ ωη,η′)(σνoW ) α⊗β̂
No

1)]W̃ ]ζ|ζ ′)

is equal to

(W̃ ∗[(id ∗ ωη,η′)(σνoW ) α⊗β̂
No

1)]W̃ (ξ β⊗α
ν

ζ)|ξ′ β⊗α
ν

ζ ′) =

[(ωη,η′ ∗ id)(Wσν) α⊗β̂
No

1)]W̃ (ξ β⊗α
ν

ζ)|W̃ (ξ′ β⊗α
ν

ζ ′)) =
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((W α⊗β̂
No

1)(σν α⊗β̂
No

1)(η α⊗β̂
νo

W̃ (ξ β⊗α
ν

ζ)|η′ α⊗β̂
νo

W̃ (ξ′ β⊗α
ν

ζ ′)) =

((1 α⊗β̂
No

W̃ ∗)(W α⊗β̂
No

1)(σν α⊗β̂
No

1)(1 α⊗β̂
No

W̃ )(η α⊗β̂
νo

ξ β⊗α
ν

ζ)|η′ α⊗β̂
νo

ξ′ β⊗α
ν

ζ ′)

which, using (i), is equal to

((W̃ β⊗α
N

1)(1 β⊗α
N

W̃ ∗)(ξ β⊗α
ν

(η α⊗β̂
νo

ζ)|η′ α⊗β̂
νo

ξ′ β⊗α
ν

ζ ′)

= (ξ β⊗α
ν

W̃ ∗(η α⊗β̂
νo

ζ)|W̃ ∗(η′ α⊗β̂
νo

ξ′) β̂⊗α
ν

ζ ′).

Let (fi)i∈I be an orthogonal (β, νo)-basis of H; there exist δi such that

W̃ ∗(η′ α⊗β̂
ν

ξ′) =
∑
i

fi β⊗α
ν

δi

and, as in ([E3], 3.11), we can prove that
∑
i α(< fi, ξ >β,νo)δi is equal to (ωξ,η′ ∗

id)(W̃ )∗ξ′, and therefore

(ξ β⊗α
ν

W̃ ∗(η α⊗β̂
νo

ζ)|W̃ ∗(η′ α⊗β̂
νo

ξ′) β̂⊗α
ν

ζ ′)

= (ξ β⊗α
ν

W̃ ∗(η α⊗β̂
νo

ζ)|
∑
i

fi β⊗α
ν

δi β̂⊗α
ν

ζ ′)

= (W̃ ∗(η α⊗β̂
νo

ζ)|
∑
i

fi β⊗α
ν

δi β̂⊗α
ν

ζ ′)

= (W̃ ∗(η α⊗β̂
νo

ζ)|(ωξ,η′ ∗ id)(W̃ )∗ξ′ β̂⊗α
ν

ζ ′)

from which we get (ii).

We have

((ωξ,η ∗ id)(W̃ )(ωξ′,η′ ∗ id)(W̃ )ζ|ζ ′) = (W̃ (ξ β⊗α
ν

(ωξ′,η′ ∗ id)(W̃ )ζ)|η α⊗β̂
νo

ζ ′)

= (ξ β⊗α
ν

(ωξ′,η′ ∗ id)(W̃ )ζ|W̃ ∗(η α⊗β̂
νo

ζ ′))

which is equal to

((1 β⊗α
N

σνoW̃ )(ξ β⊗α
ν

ξ′ β⊗α
ν

ζ)|W̃ ∗(η α⊗β̂
νo

ζ ′) β̂⊗α
ν

η′)

= ((W̃ β̂⊗α
N

1)(1 β⊗α
N

σνoW̃ )(ξ β⊗α
ν

ξ′ β⊗α
ν

ζ)|(η α⊗β̂
νo

ζ ′) β⊗α
N

η′)

= (σ2,3
α,β(W̃ β̂⊗α

N

1)(1 β⊗α
N

σνo)(1 β⊗α
N

W̃ )(ξ β⊗α
ν

ξ′ β⊗α
ν

ζ)|(η β⊗α
ν

η′) α⊗β̂
νo

ζ ′)

and, using (i), is equal to

((1 α⊗β̂
No

W̃ )(W̃ β⊗α
N

1)(ξ β⊗α
ν

ξ′ β⊗α
ν

ζ)|(W (η β⊗α
ν

η′) α⊗β̂
νo

ζ ′).

Let now (ei)i∈I be an orthogonal (α, ν)-basis. As in ([E3], 3.4), we can prove that there
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exist a family (ηi)i∈I in D(αH, ν) such that

W (η β⊗α
ν

η′) =
∑
i

ei α⊗β̂
νo

ηi

and a family (ξi)i∈I in D(Hβ , ν
o) such that

W̃ (ξ β⊗α
ν

ξ′) =
∑
i

ei α⊗β̂
νo

ξi

and we get that

((ωξ,η ∗ id)(W̃ )(ωξ′,η′ ∗ id)(W̃ )ζ|ζ ′) = (
∑
i

(ωξi,ηi ∗ id)(W̃ )ζ|ζ ′)

from which we get that (ωξ,η∗id)(W̃ )(ωξ′,η′ ∗id)(W̃ ) is equal to the weak limit of the finite

sums
∑n

1 (ωξi,ηi ∗ id)(W̃ ). From which we get that the weakly closed linear set generated

by the operators of the form (ωξ,η ∗ id)(W̃ ) is an algebra AΩ.

Let us now use (ii); the weak regularity of the pseudo-multiplicative unitary W

([E5], 3.8) means that α(N)′ is the closed linear space generated by the operators

(id ∗ ωη,η′)(σνoW ), for all η, η′ in D(αH, ν) ([E3], 4.1); in particular, there exists a

family in the linear space generated by these operators which weakly converges to 1.

Using then (ii), we get that, for any ξ, ξ′ in D(Hβ , ν
o), there exists a family in the linear

space generated by the operators of the form (ω
(ωξ,η′∗id)(W̃ )∗ξ′,η

∗ id)(W̃ ), for all η, η′ in

D(αH, ν), which is weakly converging to α(< ξ, ξ′ >β,νo); therefore, we get by density

that α(N) is included in AΩ, and therefore that 1 belongs to AΩ.

So, there exists a family of operators of the form (with finite sums)
∑
i(ωξi,η′i ∗

id)(W̃ ) which is weakly converging to 1. Using now the intertwining properties of W

and the definition of Ω, that (ωξ,η′ ∗ id)(W̃ )∗ commutes with β(N), and we get that

Rβ,ν
o

(
∑
i(ωξi,η′i ∗ id)(W̃ )∗ξ′) =

∑
i(ωξi,η′i ∗ id)(W̃ )∗Rβ,ν

o

(ξ′) is converging to Rβ,ν
o

(ξ′);

finally, we get that AΩ is the weakly closed linear set generated by all operators of the

type (ω
(ωξ,η′∗id)(W̃ )∗ξ′,η

∗ id)(W̃ ), for all ξ, ξ′ in D(Hβ , ν
o) and η, η′ in D(αH, ν); using

again (ii) and the weak regularity of W , we get that AΩ is closed under the involution,

which finishes the proof of (iii).

For any n ∈ N , we have, using ([E5], 3.2):

((ωξ,η ∗ id)(W̃ )β̂(n)ζ1|ζ2) = (W̃ (ξ β⊗α
ν

β̂(n)ζ1)|η α⊗β̂
νo

ζ2)

= (W̃ (ξ β⊗α
ν

ζ1)|β(n∗)η α⊗β̂
νo

ζ2)

= ((ωξ,β(n∗)η ∗ id)(W̃ )ζ1|ζ2)

from which we get that (ωξ,η ∗ id)(W̃ )β̂(n) = (ωξ,β(n∗)η ∗ id)(W̃ ), which gives that β̂(n)

belongs to AΩ.

We have seen that β(n) commutes with (ωξ,η ∗ id)(ΩW ∗); using then ([E5], 3.11 (iii)),

we get also that α̂(n) commutes with (ωξ,η ∗ id)(ΩW ∗), which finishes the proof of (iv).

Then, using (iii), the proof of (v) is clear.

It is clear that (id ∗ ωζ1,ζ2)(W̃ ) belongs to M . Let us denote by MΩ the closed linear

set generated by these operators. Using (i), we get, for ζ ′1 ∈ D(αH, ν) and ζ ′2 ∈ D(Hβ̂ , ν
o),
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that

(id ∗ ωζ′1,ζ′2)(W )(id ∗ ωζ1,ζ2)(W̃ ) = [id ∗ ω
W̃∗(ζ′1α⊗β̂

ν

ζ1),W̃∗(ζ′2α⊗β̂
ν

ζ2)
](W̃ β⊗α

N

1)

which belongs to MΩ. By linearity and weak closure, we get that MΩ is a left ideal of M .

Moreover, the formula ΓΩ(x) = W̃ ∗(1 α⊗β̂
νo

x)W̃ is clear by the definition of ΓΩ (7.2)

and W̃ . Using that, we get, for any (β̂, νo)-orthogonal basis (ei)i∈I of H, and any η ∈
D(αH, ν), by taking x = 1:

β(< η, η >α,ν) = (id β∗α
N

ωη)ΓΩ(1) =
∑
i

(id ∗ ωη,ei)(W̃ )∗(id ∗ ωη,ei)(W̃ )

from which we get that β(< η, η >α,ν) belongs to MΩ; by density, we get that β(N)

belongs to MΩ, and therefore that 1 ∈MΩ, which finishes the proof.

7.4. Theorem. Let G be a measured quantum groupoid, and Ω be a 2-cocycle for G; let

W be the pseudo-multiplicative unitary associated to G, AΩ the von Neumann algebra on

H defined in 7.3; let us write W̃ = WΩ∗, and, for any x ∈ AΩ, let us write

a(x) = W c(x α̂⊗β̂
No

1)(W c)∗.

Then:

(i) For any ξ ∈ D(Hβ , ν
o) and η ∈ D(αH, ν) ∩D(Hβ , ν

o), we have

a[(ωξ,η ∗ id)(W̃ )] = (ωξ,η ∗ id ∗ id)[(1 α⊗β̂
No

σνo)(W α⊗β̂
No

1)σ2,3
β,α(W̃ β̂⊗α

No

1)].

(ii) (β̂, a) is an action of Ĝ on AΩ.

(iii) This action is integrable and Galois.

Proof. Using ([E5], 5.6), we get that W c is a corepresentation of Ĝ on α̂Hβ̂ . Therefore,

the formula, for y ∈ α̂(N)′:

a(y) = W c(y α̂⊗β̂
No

1)(W c)∗

leads to an action (β̂, a) of Ĝ on α̂(N)′. Using ([E5], 3.12), we get, for any n ∈ N that

a(α(n)) = Γ̂(α(n)) = α(n) β̂⊗α
N

1, and a(β̂(n)) = Γ̂(β̂(n)) = 1 β̂⊗α
N

β̂(n).

For any orthogonal (β, νo)-basis (ei)i∈I of H, we get

a((ωξ,η ∗ id)(W̃ )) = W c((ωξ,η ∗ id)(W̃ ) α̂⊗β̂
No

1)W c∗

=
∑
i

W c[(ωei,η β∗α
N

id)(W )(ωξ,ei ∗ id)(Ω∗) α̂⊗β
No

1]W c∗

=
∑
i

Γ̂((ωei,η β∗α
N

id)(W ))[(ωξ,ei ∗ id)(Ω∗) β̂⊗α
N

1].

Applying 2.2.1 to Ĝ, we get that Γ̂[(id ∗ ωη,ei)(σW ∗σ)] is equal to

(id β̂∗α
N

id ∗ ωη,ei)[σ
2,3

α,β̂
(σW ∗σ β⊗α

N

1)(1 β̂⊗α
N

σνo)(1 β̂⊗α
N

σW ∗σ)]
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from which we get that

Γ̂[(ωη,ei ∗ id)(W ∗)] = (ωη,ei ∗ id β̂∗α
N

id)[(W ∗ α⊗β̂
No

1)σ2,3

β̂,α
(W ∗ α⊗β̂

No

1)(1 α⊗β̂
No

σν)]

and, for any orthogonal (α, ν)-basis (fj)j∈J of H, it is equal to∑
j

((ωfj ,ei ∗ id)(W ∗) β⊗α
N

1)(ωη,fj ∗ id ∗ id)[σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σν)]

and therefore a((ωξ,η ∗ id)(W̃ )) is equal to∑
i,j

[(ωfj ,η ∗ id ∗ id)[(1 α⊗β̂
No

σνo)(W α⊗β̂
No

1)σ2,3
β,α] . . .

. . . (ωei,fj ∗ id)(W ) β̂⊗α
N

1)(ωξ,ei β∗α
N

id)(Ω∗) β̂⊗α
N

1]

which is equal to∑
j

[(ωfj ,η ∗ id ∗ id)[(1 α⊗β̂
No

σνo)(W α⊗β̂
No

1)σ2,3
β,α](ωξ,fj ∗ id)(W̃ ) β̂⊗α

N

1]

from which we get (i).

For any δ1, δ2 in D(Hβ̂ , ν
o), we get that

(ωη,fj ∗ ωδ1,δ2 ∗ id)[σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σν)]

= (ωη,fj ∗ id)[(α(< δ1, δ2 >β̂,νo β⊗α
N

1)W ∗]

= (ωη,fj ∗ id)(W ∗)α(< δ1, δ2 >β̂,νo)

as β̂(N) ⊂ AΩ, any unitary u ∈ A′Ω commutes with β̂(N), and we have

< uδ1, uδ2 >β̂,νo=< δ1, δ2 >β̂,νo

from which we get that (ωη,fj ∗id∗id)[σ2,3

β̂,α
(W ∗α⊗β̂

N

1)(1α⊗β̂
No

σν)] commutes with A′Ω β̂⊗α
N

1,

and therefore belongs to AΩ β̂∗α
N

L(H), and more precisely to AΩ β̂∗α
N

M̂ .

Then, using 7.3, we easily get that a((ωξ,η ∗ id)(W̃ )) belongs to AΩ β̂∗α
N

M̂ ; using again

7.3, we get a(AΩ) ⊂ AΩ β̂∗α
N

M̂ , which gives (ii).

Using ([E5], 11.2), we know that the von Neumann algebra AΩ β̂∗α
N

L(H) is isomorphic

to the double crossed product (Aoa Ĝ)oãG
c and that this isomorphism sends the bidual

action to the action a defined, for any X ∈ AΩ β̂∗α
N

L(H) by

a(X) = (1 β̂⊗α
N

W ∗)(id β̂∗α
N

ςN )(a β̂∗α
N

id)(X)(1 β̂⊗α
N

W )

Let us define I(X) = ςN (W̃ ∗)XςN (W̃ ); then I is an isomorphism from AΩ β̂∗α
N

L(H) onto
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AΩ α∗β
No

L(H), and the above calculations show that

(J β̂∗α
N

id)a(X) = (id β̂∗α
N

ςN )(a α∗β
No

id)(I(X))

from which we get that (id β̂∗α
N

ςN )(a α∗β
No

id) is an integrable and Galois action of Ĝ

on AΩ α∗β
No

L(H). As (AΩ α∗β
No

L(H))
(idβ̂∗α

N

ςN )(aα∗β
No

id)

= Aa
Ω α∗β

No
L(H), we easily get that

T(idβ̂∗α
N

ςN )(aα∗β
No

id) = Ta α∗β
No

L(H); as T(idβ̂∗α
N

ςN )(aα∗β
No

id) is semi-finite, we get that Ta is

also semi-finite, and a is integrable; moreover, as (AΩ α∗β
No

L(H)) o(idβ̂∗α
N

ςN )(aα∗β
No

id) Ĝ =

(id β̂∗α
N

ςN )[(Aoa Ĝ) α∗β
No

L(H)], we get that π(idβ̂∗α
N

ςN )(aα∗β
No

id) = (πa α∗β
No

id)(id β̂∗α
N

ςN ).

As π(idβ̂∗α
N

ςN )(aα∗β
No

id) is injective, we easily get that πa is injective also, which is (iii).

7.5. Proposition. Let G be a measured quantum groupoid, Ω a 2-cocycle for G, let W

be the pseudo-multiplicative unitary associated to G, AΩ the von Neumann algebra on H

defined in 7.3 and (β̂, a) the action of Ĝ on AΩ defined in 2.4; let us write W̃ = WΩ∗.

Then, for ξ ∈ D(Hβ , ν
o) and η ∈ D(αH, ν) such that ωξ,η belongs to IΦ, in the sense of

([E3], 4.1), which implies ([E3], 4.6) that (ωξ,η ∗ id)(W ) belongs to NΦ̂, we have:

(i) Let Pη be the element of the positive extension of M ′ defined in ([E3], 4.1); then,

Rβ,ν
o

(ξ)∗PηR
β,νo(ξ) belongs to the positive extension of N , and we have

Ta[((ωξ,η ∗ id)(W̃ ))∗((ωξ,η ∗ id)(W̃ ))] = α(Rβ,ν
o

(ξ)∗PηR
β,νo(ξ)).

(ii) Aa
Ω = α(N).

(iii) Let us write ψ1 = ν ◦α−1 ◦Ta; then ψ1 is a normal semi-finite faithful weight on

AΩ, δ̂-invariant with respect to a, satisfying the density condition, and we have

ψ1[((ωξ,η ∗ id)(W̃ ))∗((ωξ,η ∗ id)(W̃ ))] = Φ̂[(ωξ,η ∗ id)(W )∗(ωξ,η ∗ id)(W )].

For all n ∈ N and t ∈ R, we have σψ1

t (α(n)) = α(σνt (n)) and σψ1

t (β̂(n)) = β̂(γ−t(n)).

(iv) There exists a unitary u from H onto Hψ1
such that

uΛΦ̂((ωξ,η ∗ id)(W )) = Λψ1((ωξ,η ∗ id)(W̃ ))

and we have, for all n ∈ N :

uα(n) = πψ1
(α(n))u,

uβ̂(n) = πψ1
(β̂(n))u,

uβ(n) = Jψ1
πψ1

(α(n∗))Jψ1
u,

uα̂(n) = Jψ1
πψ1

(β̂(n∗))Jψ1
u.

(v) The normal faithful semi-finite weight ν ◦ α−1 on α(N) = Aa
Ω satisfies the Galois

density condition defined in 4.1 for the Galois action (β̂, a) of Ĝ on AΩ.

(vi) The operator (u β̂⊗α
N

1)W c(u∗ α̂⊗β̂
No

1) is the standard implementation Vψ1 of the

action (β̂, a) associated to the weight ψ1 on AΩ.

(vii) For any x ∈ AΩ, we have πψ1
(x) = uxu∗.
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(viii) If N is a finite sum of factors, then there exists a normal semi-finite faithful

weight φ on AΩ such that (AΩ, β̂, a, φ, ν) is a Galois system.

Proof. Using the calculations made in 2.4, with an orthogonal (α, ν)-basis (fj)j∈J of H,

we get that a[((ωξ,η ∗ id)(W̃ ))∗((ωξ,η ∗ id)(W̃ ))] is equal to∑
j,j′

((ωξ,fj′ ∗ id)(W̃ )∗ β̂⊗α
N

1)(ωη,fj′ ∗ id ∗ id)[σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σνo)] . . .

. . . (ωfj ,η ∗ id ∗ id)([σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σνo)]
∗)((ωξ,fj ∗ id)(W̃ ) β̂⊗α

N

1)

and therefore Ta[((ωξ,η ∗ id)(W̃ ))∗((ωξ,η ∗ id)(W̃ ))] is equal to∑
j,j′

((ωξ,fj′ ∗ id)(W̃ )∗) . . .

. . . (id β̂∗α
N

Φ̂)[(ωη,fj′ ∗ id ∗ id)[σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σνo)] . . .

. . . (ωfj ,η ∗ id ∗ id)([σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σνo)]
∗)] . . .

. . . ((ωξ,fj ∗ id)(W̃ ) β̂⊗α
N

1).

Let δ be in D(Hβ̂ , ν
o), and let (δi)i∈I be an orthogonal (β̂, νo)-basis of H, we get that

(ωδ β̂∗α
N

Φ̂)[(ωη,fj′ ∗ id ∗ id)[σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σνo)] . . .

. . . (ωfj ,η ∗ id ∗ id)([σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σνo)]
∗)]

is equal to∑
i

Φ̂(ωη,fj′ ∗ ωδi,δ ∗ id)[σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σνo)] . . .

. . . (ωfj ,η ∗ ωδ,δi ∗ id)([σ2,3

β̂,α
(W ∗ α⊗β̂

N

1)(1 α⊗β̂
No

σνo)]
∗)

which, using the calculations made in 2.4, is equal to∑
i

Φ̂[(ωη,fj′ ∗ id)(W ∗)α(< δi, δ >β̂,νo)α(< δ, δi >β̂,νo)(ωfj ,η ∗ id)(W )]

= Φ̂[(ωη,fj′ ∗ id)(W ∗)α(< δ, δ >β̂,νo)(ωfj ,η ∗ id)(W )].

Therefore, if fj and fj′ are in D(π′(η)), we finally get that it is equal to

(α(< δ, δ >β̂,νo)ΛΦ̂[(ωfj ,η ∗ id)(W )]|ΛΦ̂[(ωfj′ ,η ∗ id)(W )])

= (α(< δ, δ >β̂,νo)π
′(η)∗fj |π′(η)f∗j′)

= (δ β̂⊗α
ν

π′(η)∗fj |δ β̂⊗α
ν

π′(η)∗fj′)

= (π′(η)∗fj α⊗β̂
νo

δ|π′(η)∗fj′ α⊗β̂
νo

δ).
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Let now δ′k ∈ D(Hβ̂ , ν
o) be an orthogonal basis of H; then

< Ta[((ωξ,η ∗ id)(W̃ ))∗((ωξ,η ∗ id)(W̃ ))]), ωδ >

is equal to∑
k,j,j′

(W̃ ∗(f ′j α⊗β̂
νo

δ′k))|ξ β⊗α
ν

δ)(π′(η)∗fj α⊗β̂
νo

δ′k|π′(η)∗fj′ α⊗β̂
νo

δ′k) . . .

. . . (W̃ (ξ β⊗α
ν

δ)|fj′ α⊗β̂
νo

δ′k).

As the family (fjα ⊗β̂ δ
′
k)(k,j)

No

is an orthogonal basis of Hα⊗β̂
νo

H, we can use the Plancherel

formula, which gives that

< Ta[((ωξ,η ∗ id)(W̃ ))∗((ωξ,η ∗ id)(W̃ ))]), ωδ >= (W̃ (ξ β⊗α
ν

δ)|W̃ (Pηξ β⊗α
ν

δ))

= (ξ β⊗α
ν

δ|(Pηξ β⊗α
ν

δ) = ‖π′(η)∗ξ β⊗α
ν

δ‖2

from which one gets (i).

We have seen in 2.4 that α(N) ⊂ Aa
Ω; on the other side, if x ∈ M+

Ta
, using 7.3,

one gets that x is the upper limit of an increasing positive sum of elements of the form

(ωξ,η∗id)(W̃ ))∗((ωξ,η∗id)(W̃ )); therefore, Ta(x) is, by (i), the upper limit of an increasing

sequence of elements in α(N), and therefore we get that Ta(x) ∈ α(N); as Ta(MTa
) is

dense in AΩ, we get (ii). Thanks to (ii), one can define the lifted weight ψ1 = ν ◦α−1 ◦Ta,

which is δ-invariant with respect to a by 3.2. Moreover, using (i), one gets that

ψ1[(ωξ,η ∗ id)(W̃ ))∗((ωξ,η ∗ id)(W̃ ))] = Φ̂[(ωξ,η ∗ id)(W ))∗(ωξ,η ∗ id)(W ))]

which gives the first formula of (iii); the formula σψ1

t (α(n)) = α(σνt (n)) is clear by def-

inition of ψ1; as ψ1 is δ-invariant, using ([E5], 8,8) and 2.4, we get that σψ1

t (β̂(n)) =

σΦ̂
t (β̂(n)) = β̂(γ−t(n)), which finishes the proof of (iii).

Using (iii), we get the existence of an isometry u from H into Hψ1 such that

uΛΦ̂((ωξ,η ∗ id)(W )) = Λψ1((ωξ,η ∗ id)(W̃ )).

Let us write P for the projection on Imu; using 7.3, we get that πψ1(AΩ)P = Pπψ1(AΩ)P ,

and therefore that P ∈ πψ1
(AΩ)′ = Jψ1

πψ1
(AΩ)Jψ1

. Using Kaplansky’s theorem, one can

find a family ωn in IΦ, such that ‖(ωn ∗ id)(W̃ )‖ ≤ 1 and Jψ1
πψ1

[(ωn ∗ id)(W̃ )]Jψ1
is

weakly converging to 1− P ; then, we get

πψ1 [(ωξ,η ∗ id)(W̃ )]Jψ1Λψ1 [(ωn ∗ id)(W̃ )] = Jψ1
πψ1

[(ωn ∗ id)(W̃ )]Jψ1
Λψ1

[(ωξ,η ∗ id)(W̃ )]

is converging to 0, because Jψ1
πψ1

[(ωn ∗ id)(W̃ )]Jψ1
is weakly converging to 1−P ; using

now the weak density of the linear combinations of elements of the form πψ1
[(ωξ,η∗id)(W̃ )]

in πψ1(AΩ), we get that Λψ1 [(ωn ∗ id)(W̃ )] is converging to 0; from which one gets that

ψ1(Jψ1
(1− P )Jψ1

) = 0 and that P = 1, which proves that u is a unitary.
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Moreover, we have

uα(n)ΛΦ̂((ωξ,η ∗ id)(W )) = uΛΦ̂[(ωξ,η ∗ id)((1 α⊗β̂
No

α(n))W )]

= uΛΦ̂[(ωξ,η ∗ id)(W (α(n) β⊗α
N

1))]

= uΛΦ̂((ωα(n)ξ,η ∗ id)(W )) = Λψ1((ωα(n)ξ,η ∗ id)(W̃ ))

= Λψ1 [(ωξ,η ∗ id)(W̃ (α(n) β⊗α
N

1))]

= Λψ1 [(ωξ,η ∗ id)((1 α⊗β̂
No

α(n))W̃ )]

= πψ1(α(n))Λψ1((ωξ,η ∗ id)(W̃ )).

Let us suppose now that n ∈ N is analytic with respect to ν and let’s use (ii). Then:

uβ̂(n)ΛΦ̂((ωξ,η ∗ id)(W )) = uΛΦ̂[(ωξ,η ∗ id)((1 α⊗β̂
No

β̂(n))W )]

= uΛΦ̂[(ωξ,η ∗ id)((α(σνi/2(n)) α⊗β̂
No

1)W )]

= uΛΦ̂[(ωξ,α(σ−i/2(n∗))η ∗ id)(W )]

= Λψ1 [(ωξ,α(σ−i/2(n∗))η ∗ id)(W̃ )]

= uΛΦ̂[(ωξ,η ∗ id)((α(σνi/2(n)) α⊗β̂
No

1)W̃ )]

= uΛΦ̂[(ωξ,η ∗ id)((1 α⊗β̂
No

β̂(n))W̃ )]

= πψ1(β̂(n))uΛΦ̂((ωξ,η ∗ id)(W ))

and

uβ(n)ΛΦ̂((ωξ,η ∗ id)(W )) = uJΦ̂α(n∗)JΦ̂ΛΦ̂((ωξ,η ∗ id)(W ))

= uΛΦ̂[(ωξ,η ∗ id)(W )(1 β⊗α
N

α(σ−i/2(n))]

= uΛΦ̂[(ωξ,η ∗ id)(W )(β(n) β⊗α
N

1)]

= uΛΦ̂[ωβ(n)ξ,η ∗ id)(W )]

= Λψ1 [ωβ(n)ξ,η ∗ id)(W̃ )]

= Λψ1
[(ωξ,η ∗ id)(W̃ )(β(n) β⊗α

N

1)]

= Λψ1
[(ωξ,η ∗ id)(W̃ )(1 β⊗α

N

α(σ−i/2(n))]

= Jψ1
α(n∗)Jψ1

Λψ1
((ωξ,η ∗ id)(W̃ ))

= Jψ1
α(n∗)Jψ1

uΛΦ̂((ωξ,η ∗ id)(W )).
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If now we suppose that n is analytic with respect to γ, and use again (ii), we shall get

uα̂(n)ΛΦ̂((ωξ,η ∗ id)(W )) = uJΦ̂β̂(n∗)JΦ̂ΛΦ̂((ωξ,η ∗ id)(W ))

= uΛΦ̂[(ωξ,η ∗ id)(W )(1 β⊗α
N

β̂(γi/2(n))]

= uΛΦ̂[(ωξ,η ∗ id)((β(γi/2(n) α⊗β̂
N

1)W ))]

= uΛΦ̂[(ωβ(γi/2(n))∗ξ,η ∗ id)(W ))]

= Λψ1 [(ωβ(γi/2(n))∗ξ,η ∗ id)(W̃ ))]

= Λψ1
[(ωξ,η ∗ id)((β(γi/2(n) α⊗β̂

N

1)W̃ ))]

= Λψ1 [(ωξ,η ∗ id)(W̃ )(1 β⊗α
N

β̂(γi/2(n))]

= Jψ1 β̂(n∗)Jψ1Λψ1 [(ωξ,η ∗ id)(W̃ )]

= Jψ1 β̂(n∗)Jψ1uΛΦ̂((ωξ,η ∗ id)(W ))

which, by continuity, finishes the proof of (iv).

The weight ν ◦ α−1 satisfies the density condition if the subspace

D((Hψ1
)πψ1

◦β̂ , ν
o) ∩D(πψ1

◦αHψ1
, ν)

is dense in Hψ1 . Using now (iv), we get that this subspace is the image by u of D(Hβ̂ , ν
o)∩

D(αH, ν) which is dense in HΦ by ([E4], 2.3), from which we get (v), using (iv) again.

In ([E5], 8.2), one gets that Ŵ o = Ŵ c is the standard implementation of the action

(β,Γ) of G on M , associated to the δ-invariant weight Φ. So, W c is the standard im-

plementation of the action (β̂, Γ̂) on M̂ , associated to the δ̂-invariant weight Φ̂. Which

means that, for any orthogonal (α, ν)-basis of H, any ζ in D(αH, ν) ∩D(δ̂1/2) such that

δ̂1/2 belongs to D(Hβ̂ , ν
o), any x in NΦ̂, we have

W c(ΛΦ̂(x) α̂⊗β̂
νo

δ̂1/2ζ) =
∑
i

ΛΦ̂[(id β̂∗α
N

ωζ,ei)Γ̂(x)] β̂⊗α
ν

ei

and therefore in particular:

W c(ΛΦ̂(ωξ,η ∗ id)(W )) α̂⊗β̂
νo

δ̂1/2ζ)

=
∑
i

ΛΦ̂[(id β̂∗α
N

ωζ,ei)Γ̂((ωξ,η ∗ id)(W ))] β̂⊗α
ν

ei

=
∑
i

ΛΦ̂(ωξ,η ∗ id ∗ ωζ,ei)[(1 α⊗β̂
No

σνo)(W α⊗β̂
No

1)σ2,3
β,α(W β̂⊗α

No

1)] β̂⊗α
ν

ei.

Using now (iv), we then get that (u β̂⊗α
N

1)W c(ΛΦ̂(ωξ,η ∗ id)(W )) α̂⊗β̂
νo

δ̂1/2ζ) is equal to

∑
i

Λψ1(ωξ,η ∗ id ∗ ωζ,ei)[(1 α⊗β̂
No

σνo)(W α⊗β̂
No

1)σ2,3
β,α(W̃ β̂⊗α

No

1)] β̂⊗α
ν

ei

which, thanks to 2.4(i), is equal to∑
i

Λψ1 [(id β̂∗α
N

ωζ,ei)a((ωξ,η ∗ id)(W̃ )) β̂⊗α
ν

ei
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and therefore we have, where we denote by Vψ1 the standard implementation of (β̂, a)

associated to the weight ψ1:

(u β̂⊗α
N

1)W c(u∗ α̂⊗β̂
No

1)(Λψ1(ωξ,η ∗ id)(W̃ )) α̂⊗β̂
νo

δ̂1/2ζ)

=
∑
i

Λψ1
[(id β̂∗α

N

ωζ,ei)a((ωξ,η ∗ id)(W̃ )) β̂⊗α
ν

ei

= Vψ1(Λψ1(ωξ,η ∗ id)(W̃ )) α̂⊗β̂
νo

δ̂1/2ζ)

from which we get (vi), by density.

Let ξ′ ∈ D(Hβ , ν
o), η′ ∈ D(αH, ν), we get, with an orthogonal (β, νo)-basis (ei)i∈I of

H, that (ωξ′,η′ ∗ id)(W̃ )ΛΦ̂[(ωξ,η ∗ id)(W )] is equal to∑
i

(ωei,η′ ∗ id)(W )(ωξ′,ei β∗α
N

id)(Ω∗)π′(η)∗ξ

=
∑
i

(ωei,η′ ∗ id)(W )π′(η)∗(ωξ′,ei β∗α
N

id)(Ω∗)ξ

=
∑
i

(ωei,η′ ∗ id)(W )ΛΦ̂(ω(ωξ′,eiβ∗α
N

id)(Ω∗)ξ,η ∗ id)(W )

=
∑
i

ΛΦ̂[(ωei,η′ ∗ id)(W )(ω(ωξ′,eiβ∗α
N

id)(Ω∗)ξ,η ∗ id)(W )].

Let now (fj)j∈J be an orthogonal (α, ν)-basis of H; we know that there exist ξi,j , ηj in

H such that

W (ei β⊗α
ν

(ωξ′,ei β∗α
N

id)(Ω∗)ξ) =
∑
j

fj α⊗β̂
νo

ξi,j ,

W (η′ β⊗α
ν

η) =
∑
j

fj α⊗β̂
νo

ηj ,

and then we get that

(ωξ′,η′ ∗ id)(W̃ )ΛΦ̂[(ωξ,η ∗ id)(W )] =
∑
i,j

ΛΦ̂[(ωξi,j ,ηj ∗ id)(W )]

which implies that∑
j

fj α⊗β̂
νo

∑
i

ξi,j = W
∑
i

(ei β⊗α
ν

(ωξ′,ei β∗α
N

id)(Ω∗)ξ)

= WΩ∗(ξ′ β⊗α
ν

ξ)

and finally

(ωξ′,η′ ∗ id)(W̃ )ΛΦ̂[(ωξ,η ∗ id)(W )] =
∑
j

ΛΦ̂[(ωξ′j ,ηj ∗ id)(W )]

where W̃ (ξ′ β⊗α
ν

ξ) =
∑
j fj α⊗β̂

νo
ξ′j . But, using again the calculation already made in
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7.3(iii), we get that

u(ωξ′,η′ ∗ id)(W̃ )ΛΦ̂[(ωξ,η ∗ id)(W ) =
∑
j

Λψ1 [(ωξ′j ,ηj ∗ id)(W )]

= Λψ1
[(ωξ′,η′ ∗ id)(W̃ )(ωξ,η ∗ id)(W̃ )]

= πψ1
((ωξ′,η′ ∗ id)(W̃ ))Λψ1

[(ωξ,η ∗ id)(W̃ )]

= πψ1
((ωξ′,η′ ∗ id)(W̃ ))uΛΦ̂[(ωξ,η ∗ id)(W )

from which, by density, we get (vii).

Moreover, (viii) is a direct application of 4.7 to (ii), which finishes the proof.

7.6. Theorem. Let G be a measured quantum groupoid, Ω a 2-cocycle for G; let W be

the pseudo-multiplicative unitary associated to G, AΩ the von Neumann algebra on H

defined in 7.3 and (β̂, a) the Galois action of Ĝ on AΩ defined in 2.4 whose invariant

subalgebra Aa
Ω is equal to α(N) (7.5(ii)); let us write W̃ = WΩ∗; moreover, the weight

ν ◦ α−1 on α(N) has the Galois density property defined in 4.1, by 7.5(vi). Let us write

ψ1 = ν ◦ α−1 ◦ Ta. Let u be the unitary from H onto Hψ1
introduced in 7.5(iv).

The canonical representation r of Aa
Ω on Hψ1

is the restriction of πψ1
to α(N); using

7.5(iv), we get that the canonical antirepresentation s of α(N) (identified to N for sim-

plification) on Hψ1
is s(n) = uβ(n)u∗ (n ∈ N); for simplification again, we shall write α

for πψ1 ◦α and β̂ for πψ1 ◦ β̂. Then the Galois unitary G̃ is a unitary from Hψ1 s⊗α
ν
Hψ1

onto H α⊗β̂
νo

Hψ1 . Then

(1 α⊗β̂
No

u∗)G̃(u β⊗α
N

u) = W̃ .

Proof. Let ξ ∈ D(αH, ν), η ∈ D(Hβ̂ , ν
o); let ξ′ ∈ D(Hβ , ν

o) and η′ ∈ D(αH, ν) such

that ωξ′,η′ belongs to IΦ (in the sense of [E3], 4.1), which implies that (ωξ′,η′ ∗ id)(W )

belongs to NΦ̂, and using 7.5(iii), that (ωξ′,η′ ∗ id)(W̃ ) belongs to Nψ1 . We have then,

using 7.5(iv), and 4.2(i):

(id ∗ ωξ,η ◦ πψ1)(G̃)uΛΦ̂[(ωξ′,η′ ∗ id)(W )] = (id ∗ ωξ,η ◦ πψ1)(G̃)Λψ1 [(ωξ′,η′ ∗ id)(W̃ )]

= ΛΦ̂[(ωξ,η β̂∗α
N

id)a((ωξ′,η′ ∗ id)(W̃ ))].

Using now 2.4(i), we get that (ωξ,η β̂∗α
N

id)a((ωξ′,η′ ∗ id)(W̃ )) is equal to

(ωξ′,η′ ∗ ωξ,η ∗ id)[(1 α⊗β̂
No

σνo)(W α⊗β̂
No

1)σ2,3
β,α(W̃ β̂⊗α

No

1)].

Let now (ξi)i∈I be an orthogonal (α, ν)-basis of H; we get then that this last expression

is equal to
∑
i(ωξ′,η′ ∗ ωξ,ξi ∗ ωξi,η ∗ id)(W1,4W1,3Ω∗1,2), where we use the leg numbering

notation, for simplification. But we get then that it is equal to∑
i

(ω(idβ∗α
N

ωξ,ξi )(Ω
∗)ξ′,η′ ∗ ωξi,η ∗ id)[(1 α⊗β̂

No

σνo)(W α⊗β̂
No

1)σ2,3
β,α(W β̂⊗α

No

1)]

which is
∑
i(ωξi,η β̂∗α

N

id)Γ̂(ω(idβ∗α
N

ωξ,ξi )(Ω
∗)ξ′,η′ ∗ id)(W )). For any i ∈ I, the operator

(ωξi,η β̂∗α
N

id)Γ̂(ω(idβ∗α
N

ωξ,ξi )(Ω
∗)ξ′,η′ ∗ id)(W ) belongs to NΦ̂, and, by [E3], 3.10 (ii) applied
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to Ĝ, then, [E3], 4.6 and 4.1, we get that

ΛΦ̂[(ωξi,η β̂∗α
N

id)Γ̂(ω(idβ∗α
N

ωξ,ξi )(Ω
∗)ξ′,η′ ∗ id)(W )]

= (ωξi,η ∗ id)(Ŵ ∗)(id β∗α
N

ωξ,ξi)(Ω
∗)ΛΦ̂(ωξ′,η′ ∗ id)(W ))

= (id ∗ ωξi,η)(W )(id β∗α
N

ωξ,ξi)(Ω
∗)ΛΦ̂(ωξ′,η′ ∗ id)(W )

whose sum is weakly converging to (id ∗ ωξ,η)(W̃ )ΛΦ̂[(ωξ′,η′ ∗ id)(W )]. As the map ΛΦ̂ is

closed, we get that

ΛΦ̂[(ωξ,η β̂∗α
N

id)a((ωξ′,η′ ∗ id)(W̃ ))] = (id ∗ ωξ,η)(W̃ )ΛΦ̂(ωξ′,η′ ∗ id)(W )

from which we deduce that

(id ∗ ωξ,η ◦ πψ1
)(G̃) = (id ∗ ωξ,η)(W̃ )

which gives the result, thanks to 7.5(viii).

7.7. Corollaries. Let G be a measured quantum groupoid, Ω a 2-cocycle for G; let W

be the pseudo-multiplicative unitary associated to G, AΩ the von Neumann algebra on H

defined in 7.3 and (β̂, a) the Galois action of Ĝ on AΩ defined in 2.4 whose invariant

subalgebra Aa
Ω is equal to α(N) (7.5(ii)); let us write W̃ = WΩ∗; moreover, the weight

ν ◦ α−1 on α(N) has the Galois density property defined in 4.1, by 7.5(vi). Let us write

ψ1 = ν ◦ α−1 ◦ Ta. Let u be the unitary from H onto Hψ1 introduced in 7.5(iii).

The canonical representation r of Aa
Ω on Hψ1 is the restriction of πψ1 to α(N); us-

ing 7.5(iv), we get that the canonical antirepresentation s of α(N) (identified to N for

simplification) on Hψ1
is s(n) = uβ(n)u∗ (n ∈ N); let ρt be the one-parameter group of

automorphisms of s(N)′ and Kit its standard implementation defined in 4.4; for simpli-

fication again, we shall write α for πψ1
◦ α and β̂ for πψ1

◦ β̂. Then:

(i) For any x ∈ AΩ, we have

a(x) = σνoW̃σνo(1 α⊗β
N

x)σνW̃
∗σν .

(ii) For any y ∈M ′, we have πa(1 β̂⊗α
N

y) = uyu∗.

(iii) For all t ∈ R, we have

Kit = (u β⊗α
N

u)Ω(Ĵ δ̂itĴ β⊗α
N

δ̂it)Ω∗(u∗ β⊗α
N

u∗).

(iv) For all t ∈ R, we have P itAΩ
= ∆it

ψ1
uJδitJu∗.

(v) We have, for all t ∈ R:

W̃ (u∗P itAΩ
u β⊗α

N

uP itAΩ
u∗) = (P it α⊗β̂

No

uP itAΩ
u∗)W̃ .

(vi) For any ξ ∈ D(Hβ , ν
o) and η ∈ D(αH, ν), we have

τAΩ
t [(ωξ,η ∗ id)(W̃ )] = (ωu∗P itAΩ

uξ,P−itη ∗ id)(W̃ ) = (ωu∗∆it
ψ1
uξ,∆−it

Φ̂
η ∗ id)(W̃ ).
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(vii) For any x ∈ Nψ1 ∩N∗ψ1
, y, z in NΦ̂ ∩NT̂ , we have

(ωu∗Λψ1
(x),ĴΛΦ̂(y∗z) ∗ id)(W̃ )∗ = (ωu∗Λψ1

(x∗),ĴΛΦ̂(z∗y) ∗ id)(W̃ ).

(viii) For any ζ1, ζ2 in D(αH, ν) ∩D(Hβ̂ , ν
o), ξ ∈ D(∆

1/2
ψ1

), η ∈ D(∆
−1/2

Φ̂
), we have

((id ∗ ωζ1,ζ2)(W̃ )u∗ξ|η) = ((id ∗ ωζ2,ζ1)(W̃ )∗Ĵ∆
−1/2

Φ̂
η|u∗Jψ1

∆
1/2
ψ1
ξ).

(ix) The operator ∆
1/2

Φ̂
(id ∗ ωζ2,ζ1)(W̃ )u∗∆

−1/2
ψ1

u is bounded, and we have

(id ∗ ωζ1,ζ2)(W̃ ) = Ĵ∆
1/2

Φ̂
(id ∗ ωζ2,ζ1)(W̃ )u∗∆

−1/2
ψ1

uu∗Jψ1
u.

(x) For any ξ ∈ D(Hβ , ν
o) ∩D(u∆

1/2
ψ1
u∗), and η ∈ D(αH, ν) ∩D(∆

−1/2

Φ̂
), we have

(ωξ,η ∗ id)(W̃ )∗ = (ω
u∗Jψ1

∆
1/2
ψ1

uξ,Ĵ∆
−1/2

Φ̂
η
∗ id)(W̃ ).

(xi) For all t ∈ R, we have

W̃ (u∗∆it
ψ1
u β⊗α

N

u∗∆it
ψ1
u) = [(δ∆Φ̂)it α⊗β̂

No

u∗∆it
ψ1
u]W̃ .

(xii) For all t ∈ R, we have

σψ1

t [(ωξ,η ∗ id)(W̃ )] = (ωu∗∆it
ψ1
uξ,(δ∆Φ̂)−itη ∗ id)(W̃ ).

(xiii) If N is a finite sum of factors, there exists a normal semi-finite faithful operator

weight TΩ from M to α(N), (resp. T ′Ω from M to β(N)) such that

GΩ = (N,M,α, β,ΓΩ, TΩ, T
′
Ω, ν)

is a measured quantum groupoid.

Proof. Result (i) is just the application of 7.6 to 3.8(iv).

Let us apply 3.8(v) to the action (β̂, a) of Ĝ on AΩ. We get that

πa(1 β̂⊗α
N

y) s⊗α
N

1 = G̃∗(y α⊗β̂
No

1)G̃

= (u β⊗α
N

1)W̃ ∗(y α⊗β̂
No

1)W̃ (u∗ β⊗α
N

1) = uyu∗ s⊗α
N

1

from which we get (ii).

Applying now 7.6 to 4.4, and successively [E5], 3.11(iii) and [E5], 3.8 (vi) applied to

Ĝ, one gets

Kit = G̃∗(Ĵ δ̂itĴ α⊗β̂
No

1)G̃ = (u β⊗α
N

u)ΩW ∗(Ĵ δ̂itĴ α⊗β̂
No

1)WΩ∗(u∗ β⊗α
N

u∗)

which is equal to

(u β⊗α
N

u)Ω(Ĵ α⊗β̂
No

J)W (Ĵ α⊗β̂
No

J)(Ĵ δ̂itĴ α⊗β̂
No

1) . . . (Ĵ β⊗α
N

J)W ∗(Ĵ β⊗α
N

J)Ω∗(u∗ β⊗α
N

u∗)
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and to

(u β⊗α
N

u)Ω(Ĵ α⊗β̂
No

J)W (δ̂it β⊗α
N

1)W ∗(Ĵ β⊗α
N

J)Ω∗(u∗ β⊗α
N

u∗)

= (u β⊗α
N

u)Ω(Ĵ α⊗β̂
No

J)(δ̂it α⊗β̂
No

δ̂it)(Ĵ β⊗α
N

J)Ω∗(u∗ β⊗α
N

u∗)

= (u β⊗α
N

u)Ω(Ĵ δ̂itĴ β⊗α
N

δ̂it)Ω∗(u∗ β⊗α
N

u∗)

which is (iii).

Applying (ii) to 4.8(ii), one gets (iv). Applying again (i) to 4.8(vi), one gets (v). Then,

the first equality of (vi) is a direct corollary of (v), and the second equality is a corollary

of (iv) and [E6], 3.10(vii). Result (vii) is a direct corollary of 4.2(iii) applied to 7.6. Then

(ix) is an easy corollary from (viii), and (x) from (ix). Result (xi) is given by 3.8(vii) and

([E6], 3.11(ii)), applied to 7.6, and (xii) is a direct corollary of (xi).

If N is a finite sum of factors, we can apply 2.4(iv), and therefore we obtain, by 5.11,

a measured quantum groupoid G1(a), whose underlying Hopf bimodule has been defined

in 5.4(iii). Using now (ii), we get that the von Neumann algebra is (up to u) equal to

M ; using 7.5(ii), we get that the basis is (up to α) equal to N , and, by 7.5(iv), that the

imbedding of N into M are α and β. Using now 7.6, we get that the coproduct is ΓΩ, as

defined in 7.2, which finishes the proof.

7.8. Proposition. Let G be a measured quantum groupoid, Ω a 2-cocycle for G; let

W be the pseudo-multiplicative unitary associated to G, AΩ the von Neumann algebra

on H defined in 7.3 and (β̂, a) the action of Ĝ on AΩ defined in 2.4 whose invariant

subalgebra Aa
Ω is equal to α(N) (7.5(ii)); let us write W̃ = WΩ∗; moreover, the weight

ν ◦ α−1 on α(N) has the Galois density property defined in 4.1, by 7.5(v). Let us write

ψ1 = ν ◦ α−1 ◦ Ta. Let u be the unitary from H onto Hψ1 introduced in 7.5(iv), and let

us write, for all t ∈ R:

vΩ
t = u∗∆it

ψ1
u∆−it

Φ̂
.

For all t ∈ R, let us consider the 2-cocycle Ωt introduced in 7.1, the algebra AΩt associated,

the action (β̂, at) of Ĝ on AΩt , whose invariant is also equal to α(N). Let us denote ψ1,t

the weight ν ◦α−1 ◦Tat , and ut the canonical unitary from H to Hψ1,t
, which, by 7.5(vii)

applied to Ωt, implements πψ1,t
. Let us write W̃t = WΩ∗t . Then:

(i) vΩ
t is a unitary in M∩α(N)′∩β(N)′; moreover, the mapping t 7→ vΩ

t is a τt-cocycle.

(ii) We have

W̃ (vΩ
t β⊗α

N

vΩ
t ) = (1 α⊗β̂

N

vΩ
t )W̃t, Γ(vΩ

t )Ω∗t = Ω∗(vΩ
t β⊗α

N

vΩ
t ).

(iii) The map It : x 7→ vΩ
t x(vΩ

t )∗ is an isomorphism from AΩt to AΩ, and we have,

for all ξ ∈ D(Hβ , ν
o) and η ∈ D(αH, ν):

It[(ωξ,η ∗ id)(W̃t)] = (ωvΩ
t ξ,η
∗ id)(W̃ ).

(iv) We have ψ1 ◦ It = ψ1,t; then uvΩ
t u
∗
t is the standard implementation of It.

(v) We have vΩt
s = τt(v

Ω
s ).
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(vi) If, for all t ∈ R, we have Ω = Ωt, then there exists a positive non-singular operator

kΩ affiliated to M , such that τt(kΩ) = kΩ and vΩ
t = kitΩ .

Proof. By definition of ψ1, we get that, for all t ∈ R and n ∈ N , we have σψ1

t (α(n)) =

α(σνt (n)) = σΦ̂
t (α(n)); therefore, we get that vΩ

t ∈ α(N)′.

We have, using first [E5], 3.10 (iv) and 3.8(i), then 7.5(vii), [E5], 3.8(ii) and 3.10(vii):

u∗∆it
ψ1
uβ(n)u∗∆−itψ1

u = u∗∆it
ψ1
uĴα(n∗)Ĵu∗∆−itψ1

u

= u∗∆it
ψ1
uu∗Jψ1uXΩα(n∗)X∗Ωu

∗Jψ1uu
∗∆−itψ1

u

= u∗Jψ1
uu∗∆it

ψ1
α(n∗)u∗∆−itψ1

uu∗Jψ1
u = XΩĴα(σνt (n∗))ĴX∗Ω

= XΩβ(σνt (n))X∗Ω = β(σνt (n)) = τt(β(n)) = ∆it
Φ̂
β(n)∆−it

Φ̂

from which we get that vΩ
t ∈ β(N)′.

Using 7.5(vi), and [E5], 8.8(ii), we get that

W c(u∗∆it
ψ1
u α⊗β̂

No

δ̂−itP−it) = (u∗∆it
ψ1
u β̂⊗α

N

δ̂−itP−it)W c

and, as we have also, applying [E5], 8.8(ii) to the weight Φ̂:

W c(∆it
Φ̂ α⊗β̂

No

δ̂−itP−it) = (∆it
Φ̂ α⊗β̂

No

δ̂−itP−it)W c

we get that

W c(vΩ
t α⊗β̂

No

1) = (vΩ
t α⊗β̂

No

1)W c

from which one gets that vΩ
t belongs to M , using [E5], 3.10(ii), applied to Ĝc.

We have, for s, t in R:

vΩ
s+t = u∗∆

i(s+t)
ψ1

u∆
−i(s+t)
Φ̂

= u∆is
ψ1
u∆−is

Φ̂
∆is

Φ̂
u∆it

ψ1
∆−it

Φ̂
∆−is

Φ̂
= vΩ

s τs(v
Ω
t )

which finishes the proof of (i).

Using now 7.7(iii) and [E5], 3.10(vii), we get that u∗P itAΩ
u = vΩ

t P
it; therefore, 7.7(iv)

can be written

W̃ (vΩ
t β⊗α

N

vΩ
t )(P it β⊗α

N

P it) = (P it α⊗β̂
No

vΩ
t P

it)W̃

or, using [E5], 3.8(vii):

W̃ (vΩ
t β⊗α

N

vΩ
t ) = (1 α⊗β̂

No

vΩ
t )W (τt β∗α

N

τt)(Ω
∗)

from which we get the first formula of (ii). The second formula of (ii) is just a straight-

forward corollary of the first formula. We then get that

(ωvΩ
t ξ,η
∗ id)(W̃ ) = vΩ

t (ωξ,η ∗ id)(W̃t)(v
Ω
t )∗

from which we get (iii). Using now the definitions of a and at, we get that (It β̂∗α
N

id)at =

a ◦ It, Tat = Ta ◦ It and ψ1,t = ψ1 ◦ It.
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If we suppose now that ωξ,η belongs to IΦ, we get

Λψ1
(It[ωξ,η ∗ id)(W̃t)]) = Λψ1

[(ωvΩ
t ξ,η
∗ id)(W̃ )] = uΛΦ̂(ωvΩ

t ξ,η
∗ id)(W )]

= uπ′(η)∗vΩ
t ξ = uvΩ

t π
′(η)∗ξ = uvΩ

t ΛΦ̂[(ωξ,η ∗ id)(W )]

= uvΩ
t u
∗
tΛψ1,t

[(ωξ,η ∗ id)(W̃t)]

which finishes the proof of (iv).

Using (iv), we get uvΩ
t u
∗
t∆

is
ψ1,t

= ∆is
ψ1
uvΩ
t u
∗
t , from which we infer

vΩ
t v

Ωt
s = vΩ

t u
∗
t∆

is
ψ1,t

ut∆
−is
Φ̂

= u∗∆is
ψ1
u∆−is

Φ̂
∆is

Φ̂
vΩ
t ∆−is

Φ̂
= vΩ

s τs(v
Ω
t ) = vΩ

s+t = vΩ
t τt(v

Ω
s )

from which we get (v).

Using (v), we get that, if Ω = Ωt, v
Ω
t is invariant under τs, and is a one-parameter

group of unitaries, which finishes the proof.

7.9. Theorem. Let G be a measured quantum groupoid, Ω a 2-cocycle for G; let W be the

pseudo-multiplicative unitary associated to G, AΩ the von Neumann algebra on H defined

in 7.3 and (β̂, a) the action of Ĝ on AΩ defined in 2.4 whose invariant subalgebra Aa
Ω is

equal to α(N) (7.5(ii)); let us write W̃ = WΩ∗; moreover, the weight ν◦α−1 on α(N) has

the Galois density property defined in 4.1, by 7.5(vi). Let us write ψ1 = ν ◦α−1 ◦Ta. Let u

be the unitary from H onto Hψ1 introduced in 7.5(iii). Then the following are equivalent:

(i) There exists a normal semi-finite faithful weight φ on AΩ such that (AΩ, β̂, a, φ, ν)

is a Galois system.

(ii) There exists a one-parameter group of unitaries δitΩ on H, such that it is possible

to define a one-parameter group of unitaries uJψ1
u∗δitΩuJψ1

u∗β⊗α
N

δitΩ , with natural values

on elementary tensors, and such that

uJψ1
u∗δitΩuJψ1

u∗ β⊗α
N

δitΩ = Ω(Ĵ δ̂itĴ β⊗α
N

δ̂it)Ω∗.

(iii) There exists a τ−sσ
Φ◦R
−s -cocycle t 7→ uΩ

t in M ∩ β(N)′, such that

Γ(uΩ
t ) = Ω∗(uΩ

t β⊗α
N

1)(τ−tσ
Φ◦R
−t β∗α

N

id)(Ω)

and uΩ
t is linked with the τs-cocycle vΩ

t introduced in 7.8 by the formula, for all s, t in R:

uΩ
t τ−tσ

Φ◦R
−t (vΩ

s ) = vΩ
s τs(u

Ω
t ).

In that situation, u∗δΩu is the modulus of the action (β̂, a), and we have δitΩ = uΩ
t δ̂

it.

Moreover, there exists then a normal semi-finite faithful operator weight TΩ from M to

α(N) (resp. T ′Ω from M to β(N)) such that

GΩ = (N,M,α, β,ΓΩ, TΩ, T
′
Ω, ν)

is a measured quantum groupoid.

Moreover, if N is a finite sum of factors, then any 2-cocycle satisfies these equivalent

conditions.

Proof. The equivalence between (i) and (ii) is just an application of 4.10, thanks to

7.7(iii). We then get that u∗δΩu is the modulus of the action (β̂, a) of Ĝ on AΩ, and

using 7.5(vii), we get that δΩ is affiliated to AΩ, and that there exists a one-parameter
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group of unitaries δitΩ β̂⊗α
N

δit such that, for all t ∈ R, we have a(δitΩ) = δitΩ β̂⊗α
N

δ̂it. Let us

write uΩ
t = δitΩ δ̂

−it. Using 7.3(iv), we get that ut ∈ β(N)′; moreover, using 2.4, and [E5],

3.12(v) and 3.8(vi), applied to Ĝ, we get that W c(uΩ
t α̂⊗β̂

No

1)(W c)∗ = uΩ
t β̂⊗α

N

1, which

gives that uΩ
t belongs to M , thanks to [E5], 3.10(ii) applied to Ĝc. As, for any x ∈ M ,

and t ∈ R, we have, using [E5], 3.11(ii), δ̂itxδ̂−it = τ−tσ
Φ◦R
−t (x), we get that t 7→ uΩ

t is

indeed a τ−sσ
Φ◦R
−s -cocycle.

Using now 7.7(i), we get that δ̂it α⊗β̂
No

δitΩ = W̃ (δitΩ β⊗α
N

1)W̃ ∗. And therefore

1 α⊗β
No

uΩ
t = (δ̂it α⊗β̂

No

δitΩ)(δ̂−it α⊗β̂
No

δ̂−it) = W̃ (δitΩ β⊗α
N

1)W̃ ∗(δ̂−it α⊗β̂
No

δ̂−it)

= W̃ (δitΩ β⊗α
N

1)ΩW ∗(δ̂−it α⊗β̂
No

δ̂−it) = W̃ (δitΩ β⊗α
N

1)Ω(δ̂−it β⊗α
N

1)W ∗

= W̃ (uΩ
t β⊗α

N

1)(τ−tσ
Φ◦R
−t β∗α

N

id)(Ω)W ∗

and therefore

Γ(uΩ
t ) = W ∗(1 α⊗β

No
uΩ
t )W = Ω∗(uΩ

t β⊗α
N

1)(τ−tσ
Φ◦R
−t β∗α

N

id)(Ω)

which gives the first formula of (iii).

Moreover, using 4.9(iii), we get that σψ1

t (δitΩ) = λistδitΩ . Using 7.8, and [E5], 3.8(vi)

applied to Ĝ, we have

σψ1

t (δitΩ) = vωs ∆̂isuΩ
t δ̂

it∆̂−is(vΩ
s )∗ = vΩ

s τs(u
Ω
t )σΦ̂

s (δ̂it)(vΩ
s )∗

= vΩ
s τs(u

Ω
t )λistδ̂it(vΩ

s )∗ = λistvΩ
s τs(u

Ω
t )δ̂it(vΩ

s )∗

from which we get uΩ
t δ̂

it = vΩ
s τs(u

Ω
t )δ̂it(vΩ

s )∗, which gives the the second formula of (iii).

Conversely, if we have (iii), we can define a one-parameter group of unitaries δitΩ by

writing δitΩ = uΩ
t δ̂

it. Now, from the first formula of (iii), taking the same calculation

upside down, we get that δ̂it α⊗β̂
No

δitΩ = W̃ (δitΩ β⊗α
N

1)W̃ ∗, which gives, by 7.3(iii), that δΩ

is affiliated to AΩ; so we have obtained that a(δitΩ) = δitΩ β̂⊗α
N

δ̂it.

From the second formula of (iii), using again the same calculation upside down, we

get that σψ1

t (δitΩ) = λistδitΩ , which proves that λ is affiliated to AΩ; by the definition of

δΩ, we see that the operators δΩ and λ strongly commute. Therefore, by [V1], 5.1, there

exists a normal semi-finite faithful weight φ on AΩ such that (Dφ : Dψ1)t = λit
2/2δitΩ .

Using now 7.5(iv) and [E5], 8.1, we get, for all x ∈ Nφ such that xδ
1/2
Ω is bounded (its

closure, denoted xδ
1/2
Ω belongs then to Nψ1

, and we identify Λφ(x) with Λψ1
(xδ

1/2
Ω )), for

all η in D(Hβ̂ , ν
o) ∩D(δ

−1/2
Ω ), such that δ

−1/2
Ω η belongs to D(αH, ν):

‖Λφ(x) α̂⊗β̂
No

η‖2 = ‖Λψ1(xδ
1/2
Ω ) α̂⊗β̂

No

η‖2 = (ψ1 β̂∗α
N

ω
δ
−1/2
Ω η

)a((xδ
1/2
Ω )∗xδ

1/2
Ω )

= (φ β̂∗α
N

ωη)a(x∗x)
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which, by continuity, remains true for all η ∈ D(αH, ν)∩D(Hβ̂ , ν
o) and all x ∈ Nφ, which

proves that φ is invariant by a. But now, we are in the situation of 4.9, which gives that

λ is affiliated to the center of AΩ; we then have (i).

7.10. Corollaries. Let G be a measured quantum groupoid, Ω a 2-cocycle for G; let W

be the pseudo-multiplicative unitary associated to G. Then the following are equivalent:

(i) Ω satisfies the equivalent conditions of 7.9.

(ii) For all t ∈ R, Ωt (resp. Ω′t) satisfies the equivalent conditions of 7.9.

(iii) There is t ∈ R such that Ωt (resp. Ω′t) satisfies the equivalent conditions of 7.9.

Proof. We can easily check that we can write τs(u
Ω
t ) = uΩs

t , and δisuΩ
t δ
−is = u

Ω′s
t , then

7.9 gives the result.

7.11. Theorem. Let G be a measured quantum groupoid, and Ω a 2-cocycle for G; let

us suppose that, for any t ∈ R, we have (τtσ
Φ
−t β∗α

N

τtσ
Φ◦R
t )(Ω) = Ω. Then, the cocycle

Ω satisfies the equivalent conditions of 7.9. In particular, there exists a normal semi-

finite faithful operator weight TΩ from M to α(N) (resp. T ′Ω from M to β(N)) such that

GΩ = (N,M,α, β,ΓΩ, TΩ, T
′
Ω, ν) is a measured quantum groupoid. Moreover, we get, for

all t ∈ R, that τ−tσ
Φ◦R
−t (vΩ

s ) = vΩ
s and (τ−tσ

Φ◦R
−t β∗α

N

id)(Ω) = Ω.

Proof. Using 7.7(iii), we get that

Ω(Ĵ δ̂itĴ β⊗α
N

δ̂it)Ω∗ = Ĵ δ̂itĴ β⊗α
N

δ̂it

from which, using 7.5(vii), we get that δ̂it belongs to AΩ, and by 4.4(v), that a(δ̂it) =

δ̂it β̂⊗α
N

δ̂it. Using now [E5] 8.8(iii), one gets that, for any s, t in R, we have

a(σψ1
s (δ̂it)) = σψ1

s (δ̂it) β̂⊗α
N

δ̂it

from which one gets that σψ1
s (δ̂it)δ̂−it belongs to Aa

Ω = α(N) by 7.5.

More precisely, if n ∈ N , we get that

σψ1
s (δ̂it)δ̂−itα(n) = σψ1

s (δ̂it)α(σνt γt(n))δ̂−it = σψ1
s (δ̂itα(σνt−sγt(n)))δ̂−it

= σψ1

t (α(σν−s(n))δ̂it)δ̂−it = α(n)σψ1
s (δ̂it)δ̂−it

and therefore we get that σψ1
s (δ̂it)δ̂−it belongs to α(Z(N)).

But, on the other hand, using 7.8, we get that

σψ1
s (δ̂it)δ̂−it = vΩ

s σ
Φ̂
s (δ̂it)(vΩ

s )∗δ̂−it = vΩ
s λ

istδ̂it(vΩ
s )∗δ̂−it = λistvΩ

s δ̂
it(vΩ

s )∗δ̂−it

from which, using [E5], 8.11 (ii), we get

σψ1
s (δ̂it)δ̂−it = λistvΩ

s τ−tσ
Φ◦R
−t (vΩ

s )∗

and, for all s, t in R, τ−tσ
Φ◦R
−t (vΩ

s )(vΩ
s )∗ belongs to α(Z(N)). Therefore, there exists a

one-parameter group of unitaries t 7→ µits in Z(N) such that τ−tσ
Φ◦R
−t (vΩ

s ) = α(µits )vΩ
s ;

and therefore σψ1
s (δ̂it) = λistα(µ−its )δ̂it. So, there exists a positive non-singular operator

µ affiliated to Z(N) such that σψ1
s (δ̂it) = λistα(µ−ist)δ̂it and τtσ

Φ◦R
t (vΩ

s ) = α(µist)vΩ
s .

But now, as, for all u ∈ R, we have τuσ
Φ◦R
u (α(µist)) = α(γu(µist)), we get that γu(µ) = µ,



MORITA EQUIVALENCE OF MEASURED QUANTUM GROUPOIDS 193

and therefore that δ̂ and λα(µ) strongly commute. Therefore, by [V1], 5.1, there exists a

normal semi-finite faithful weight φ on AΩ such that (Dφ : Dψ1)t = (λα(µ))it
2/2δ̂it.

Using now 7.5(iv) and [E5], 8.1, as in 7.9 that φ is invariant by a. But now, we are

in the situation of 4.9, which gives that µ = 1, and proves that we are in the situation

of 7.9, with, moreover, uΩ
t = 1; we then infer from 7.9 that τ−tσ

Φ◦R
−t (vΩ

s ) = vs(Ω),

(τ−tσ
Φ◦R
−t β∗α

N

id)(Ω) = Ω.

7.12. Theorem. Let G be a measured quantum groupoid, and Ω a 2-cocycle for G; let

us suppose that, for any t ∈ R, we have (τ−tσ
Φ◦R
−t β∗α

N

id)(Ω) = Ω. Then, the cocycle Ω

satisfies the equivalent conditions of 7.9. In particular, there exists a normal semi-finite

faithful operator weight TΩ from M to α(N) (resp. T ′Ω from M to β(N)) such that

GΩ = (N,M,α, β,ΓΩ, TΩ, T
′
Ω, ν)

is a measured quantum groupoid. Moreover, we get, for all t ∈ R, that τ−tσ
Φ◦R
−t (vΩ

s ) = vΩ
s

and (τtσ
Φ
−t β∗α

N

τtσ
Φ◦R
t )(Ω) = Ω.

Proof. The proof is similar to 7.11.

8. Examples, at last. In this last chapter, we construct a general situation in which

the deformations of a measured quantum groupoid by some 2-cocycles are still measured

quantum groupoids.

8.1. Measured quantum groupoids associated to a matched pair of groupoids.

In [Val6] was decribed a procedure for constructing measured quantum groupoids:

Let G be a locally compact groupoid, with G(0) as set of units, and r : G→ G(0) (resp.

s : G → G(0)) as range (resp. source) mapping, equipped with a Haar system (λu)u∈G(0)

and a quasi-invariant measure ν on G(0). Let us write µ =
∫
G(0) λ

u dν(u).

Let G1, G2 two closed subgroupoids of G, (with r1 = r|G1
, etc.) equipped with their

Haar systems (λu1 )u∈G(0) , (λu2 )u∈G(0) .

Then (G1,G2) is called a matched pair of groupoids if:

(i) G1 ∩ G2 = G(0).

(ii) The set G1G2 = {g1g2, g1 ∈ G1, g2 ∈ G
s(g1)
2 } is µ-conegligible in G.

(iii) There exists a measure ν on G(0) with is quasi-invariant for the three Haar systems.

Then, Vallin has constructed an action (s2, a) of G(G1) on L∞(G2, µ2), and put a

measured quantum groupoid structure on the crossed product.

Let G(G1,G2) = (L∞(G(0), ν), L∞(G2, µ2) oa G(G1),m, s,Γ, TL, TR, ν) be this mea-

sured quantum groupoid.

Moreover, there exists a right action (r1, â) of G(G2) on L∞(G1, µ1), which leads to a

measured quantum groupoid structure on L∞(G1, µ1)nâG(G2), we shall write G(G2,G1);

we have G(G2,G1) = ̂G(G1,G2)

This measured quantum groupoid G(G1,G2) has some properties:

(i) The scaling operator λ is equal to 1.

(ii) For any f ∈ L∞(G2, µ2), a(f) is invariant under σΦ
t ([Val6], 4.3.5).
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(iii) For any f ∈ L∞(G2, µ2), we have R(a(f)) = a(f̌), where R is the co-inverse of

G(G1,G2), and f̌(g2) = f(g−1
2 ), for any g2 ∈ G2. Therefore, using (i), we get that a(f) is

also invariant under σΦ◦R
t .

(iv) Using ([Val6], 4.1.1) and ([E5], 3.8(ii)), one can easily check that, for all t ∈ R,

and f ∈ L∞(G2, µ2), we have τt(a(f)) = a(f). Namely we have, using (ii):

(a s2∗r2
L∞(G(0),ν)

a)ΓG2(f) = Γ(a(f)) = Γ(σΦ
t (a(f))) = (τt s∗m

L∞(G(0),ν)

σΦ
t )Γ(a(f))

= (τt ◦ a s2∗r2
L∞(G(0),ν)

σΦ
t ◦ a)ΓG2

(f) = (τt ◦ a s2∗r2
L∞(G(0),ν)

a)ΓG2
(f)

from which we get the result. We refer to [Val6] for all details.

8.2. Theorem. Let G(G1,G2) be the measured quantum groupoid constructed from a

matched pair (G1,G2) of groupoids. Let us use all notations of 8.1. Let Ω be a 2-cocycle

for G(G2), as defined in 7.1. Then:

(i) (a s2∗r2
L∞(G(0),ν)

a)(Ω) is a 2-cocycle for G(G1,G2), we shall write Ωa for simplification.

(ii) There exists a left-invariant operator-valued weight TΩa
and a right-invariant

operator-valued weight T ′Ωa
such that

G(G1,G2)Ωa
= (L∞(G(0), ν), L∞(G2, µ2) oa G(G1),m, s,ΓΩa

, TΩa
, T ′Ωa

, ν)

is a measured quantum groupoid.

Proof. Using [Val6], 4.1.1, one gets (i). As, for all t ∈ R, τtσ
Φ
−t ◦a = a, and τtσ

Φ◦R
t ◦a = a,

we get that this cocycle Ωa satisfies the conditions of 7.11 or 7.12. So, we get (ii).

8.3. Matched pair of groups acting on a space. As a particular case of 8.1, we can

study, following ([Val6], 5.1) the case where G is a locally compact group acting (on the

right) on a locally compact space X, and G1, G2 a matched pair of closed subgroups of

G, in the sense of [BSV]. Then, we can define almost everywhere Borel functions pG1 from

G to G1 and pG2 from G to G2, such that

g = pG1 (g)pG2 (g).

Following [VV], we can construct an action a1 of G1 on L∞(G2), and put on the crossed

product L∞(G2)oa1
G1 a structure of a locally compact quantum group we shall denote

by G(G1, G2); let us denote by Γ̃ the coproduct of this locally compact quantum group.

Let us denote now by G (resp. G1, resp. G2) the locally compact groupoid given by the

action of G (resp. G1, resp. G2) on X. Then, it is easy to get that G1 and G2 are two closed

subgroupoids of G, which are a matched pair of groupoids as defined in 8.1. So, there is an

action a of the measured quantum groupoid G(G1) on L∞(G2), and a measured quantum

groupoid structure G(G1,G2) on the crossed product L∞(G2) oa G(G1). The action a

can be identified with an action ã of G1 on L∞(X ×G2) ([Val6], 5.1.2) and the crossed

product L∞(G2)oaG(G1) can be identified with the crossed product L∞(X×G2)oãG1,

which will be considered as bounded operators on L2(X ×G×G) ([Val6], 5.1.1).

We can identify L2(X ×G2) s2⊗r1
L∞(X)

L∞(X ×G1) with L2(X ×G2)⊗ L2(G1) ([Val6],

5.1.1); using these identifications, are given in ([Val6], 5.1.2) the formulae of the coproduct
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Γ we can put on this crossed product. For any f ∈ L∞(X×G2), h ∈ L∞(X), k ∈ L∞(G1),

we have

Γ(a(f))(x, g, g′) = f(x.pG1 (g), pG2 (g)pG2 (g′)),

Γ(1 s2⊗r1
L∞(X)

ρ(h⊗ k)) = M(h)(1⊗ Γ̃(1⊗ ρ1(k))),

where M(h) is the function M(h)(x, g, g′) = h(x.gpG2 (g′)).

Let’s see now how this coproduct can be deformed by a 2-cocycle Ω2 for G(G2) to a

new coproduct ΓΩ2
. For simplification, we shall restrict to a 2-cocycle Ω2 for G2, which

can be easily considered as a 2-cocycle for G(G2). Using then [VV], we can put on the

crossed product L∞(G2)oa1
G1 another structure of locally compact quantum group we

shall denote by G(G1, G2)Ω2 , with a deformed coproduct we shall denote ΓΩ2 .

By construction, we have

ΓΩ2
(a(f))(x, g, g′) = Γ(a(f))(x, g, g′) = f(x.pG1 (g), pG2 (g)pG2 (g′))

and

ΓΩ2(1 s2⊗r1
L∞(X)

ρ(h⊗ k)) = M(h)(1⊗ Γ̃Ω2(1⊗ ρ1(k)))

8.4. Looking back to Kac-Paljutkin’s examples. Following ([VV], 5.1.1), let’s look

at the particular case of 8.3 where G2 is a normal subgroup of G; then G1 acts on

G2 by (inner in G) automorphisms, the action of G2 on G1 is trivial, the map pG1 is a

homomorphism and G is the semi-direct product G2 o G1. Then we know that the old

Kac-Paljutkin’s examples can be obtained as locally compact quantum groups of the form

G(G1, G2)Ω2
.

(i) Taking G1 = Z/2Z acting on G2 = (Z/2Z)2 by permutations, the cocycle Ω has

been computed in ([BS], 8.26.1), in order to get that G(G1, G2)Ω2 is then the dimension

8 example constructed in [KP1]. Taking now an action of the semi-direct product G =

G2 oG1 on a locally compact space X, we obtain, by 8.3 applied to this particular case,

a measured quantum groupoid given by dimension 8 Kac-Paljutkin’s example and a right

action of (Z/2Z)2 o Z/2Z on a space X.

(ii) Taking G1 = R acting on G2 = R2 by ag(x) = exp(gK)(x) (x ∈ R2, K is a

real 2 × 2 matrix). Then the cocycle has been computed in ([VV], 8.26.2) and leads to

the infinite dimensional Kac-Paljutkin’s example ([KP2]). So, starting from this example,

and some right action of the Heisenberg group H3(R) = R2 oa R on X, we get, by 8.3,

another example of a measured quantum groupoid.
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