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Abstract. In a recent article, Kenny De Commer investigated Morita equivalence between
locally compact quantum groups, in which a measured quantum groupoid, of basis C2, was
constructed as a linking object. Here, we generalize all these constructions and concepts to the
level of measured quantum groupoids. As for locally compact quantum groups, we apply this
construction to the deformation of a measured quantum groupoid by a 2-cocycle.

1. Introduction

1.1. In two articles ([Vall], [Val2]), J.-M. Vallin has introduced two notions (pseudo-
multiplicative unitary, Hopf bimodule), in order to generalize, to the groupoid case, the
classical notions of multiplicative unitary [BS] and of Hopf-von Neumann algebras [ES]
which were introduced to describe and explain duality of groups, and led to appropriate
notions of quantum groups ([ES], [W1], [W2], [BS], [MN], [W3], [KV1], [KV2], [MNW]).

In another article [EVal|, J.-M. Vallin and the author have constructed, from a depth
2 inclusion of von Neumann algebras My C M, with an operator-valued weight T} satis-
fying a regularity condition, a pseudo-multiplicative unitary, which led to two structures
of Hopf bimodules, dual to each other. Moreover, we have then obtained an action of
one of these structures on the algebra M; such that M is the fixed point subalgebra,
the algebra M, given by the basic construction being then isomorphic to the crossed
product. There is on M5 an action of another structure, which can be considered as the
dual action.
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If the inclusion My C M; is irreducible, we recovered quantum groups, as proved and
studied in former papers ([EN], [E2]).

Therefore, this construction leads to a notion of ”"quantum groupoid”, and a duality
within ”quantum groupoids”.

1.2. In a finite-dimensional setting, this construction can be much simplified, and is
studied in [NV2], [BSz1], [BSz2], [Sz], [Val3], [Vald], [Valj], and examples are described.
In [NV3], the link between these ”finite quantum groupoids” and depth 2 inclusions of
IT factors is given, and in [D] it has been proved that any finite-dimensional connected
C*-quantum groupoid can act outerly on the hyperfinite 11; factor.

1.3. In [E3], the author studied, in whole generality, the notion of pseudo-multiplicative
unitary introduced by J.-M. Vallin in [Val2]; following the strategy given by [BS], with
the help of suitable fixed vectors, he introduced a notion of ”measured quantum groupoid
of compact type”. Then F. Lesieur in [L], starting from a Hopf bimodule (as introduced
in [Vall]), when there exist a left-invariant operator-valued weight and a right-invariant
operator-valued weight, mimicking in this wider setting the technics of Kustermans and
Vaes ([KV1], [KV2]), obtained a pseudo-multiplicative unitary, which, as in the quantum
group case, ”contains” all the information about the object (the von Neumann algebra,
the coproduct, the antipode, the co-inverse). Lesieur gave the name of ”measured quan-
tum groupoids” to these objects. A new set of axioms for these have been given in an
appendix of [E5]. Moreover, in [E4] it has been shown that, with suitable conditions, the
objects constructed in [EVal] from depth 2 inclusions, are ”measured quantum groupoids”
in the sense of Lesieur.

1.4. In [E5] have been developed the notions of action (already introduced in [EVall),
crossed product, etc, following what has been done for locally compact quantum groups
n ([E1], [ES1], [V2]); a biduality theorem for actions has been obtained in ([E5], 11.6).
Moreover, we proved in ([E5] 13.9) that, for any action of a measured quantum groupoid,
the inclusion of the initial algebra (on which the measured quantum groupoid is acting)
into the crossed product is depth 2, which leads, thanks to [E4], to the construction of
another measured quantum groupoid ([E5] 14.2). In [E6] was proved a generalization of
Vaes’ theorem ([V2], 4.4) on the standard implementation of an action of a locally com-
pact quantum group; namely, we have obtained such a result when there exists a normal
semi-finite faithful operator-valued weight from the von Neumann algebra on which the
measured quantum groupoid is acting, onto the copy of the basis of this measured quan-
tum groupoid which is put inside this algebra by the action.

1.5. In [E7] were studied outer actions of measured quantum groupoids. This notion was
used to prove that any measured quantum groupoid can be constructed from a depth 2
inclusion.

1.6. In [DCI], Kenny De Commer introduced a notion of monoidal equivalence between
two locally compact quantum groups, and constructed, in that situation, a measured
quantum groupoid of basis C? as a linking object between these two locally compact
quantum groups. More precisely, from a locally compact quantum group G; having a
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specific action ay, called a Galois action, on a von Neumann algebra A, he was able to
construct an important bunch of structures on A, and by a reflexion technique, inspired
by the work of P. Shauenburg in an algebraic context ([Sc]), a second locally compact
quantum group Gg, and more precisely, a measured quantum groupoid linking G; and
G. This leads to an equivalence relation between locally compact quantum groups.

1.7. In that article, we generalize De Commer’s construction to measured quantum
groupoids. We call this equivalence relation Morita equivalence; two measured quantum
groupoids &; and &5 are Morita equivalent if there exists a von Neumann algebra on
which &; acts on the right, &5 acts on the left, and the two actions commute and being
Galois, roughly speaking in a similar sense as De Commer’s. This von Neumann algebra
is then called an imprimitivity bi-comodule for these two measured quantum groupoids.
This definition is similar to Renault’s equivalence of locally compact groupoids, as de-
fined in [R1], and developed in [R2], in which he proved that the C*-algebras of these two
locally compact groupoids are then Morita equivalent. This is why we have chosen this
terminology of ”Morita equivalence”. In [DC2], De Commer uses also this terminology,
but two quantum groups are Morita equivalent in his sense if and only if their duals are
Morita equivalent in ours.

1.8. In fact, De Commer’s technics remain unchanged in the measured quantum groupoid
context, if we start from a measured quantum groupoid &, and a Galois action a of &
on a von Neumann algebra A, such that the invariant subalgebra A® is a finite sum of
factors. This was remarked also in [DC4]. In the general context, some extra hypothesis
is needed, and we had to introduce what we called a ”Galois system”, which is, roughly
speaking, a Galois action, equipped with an invariant weight.

1.9. De Commer used his construction to solve the problem of deforming a locally com-
pact quantum group by a 2-cocycle. Namely, if G is a locally compact quantum group, and
Q a 2-cocycle, it has been observed since years that it is possible to deform the coproduct
by using €. Is the deformation still a locally compact quantum group? or, equivalently,
is there, in that case, an existence theorem for a left (resp. right) Haar weight? This
problem was solved in several particular cases and examples ([EV], [V], [EV]) and De
Commer answered positively to this question in whole generality. Of course, the same
problem holds for measured quantum groupoids, and the answer is still positive when the
basis of the measured quantum groupoid is a finite sum of factors. In the general case, we
were able to give different sufficient conditions on the 2-cocycle, and give some examples,
based on the construction of matched pairs of groupoids ([Val6]).

1.10. This article is organized as follows:

In chapter 2] we recall as quickly as possible all the notations and results needed in
that article; we emphazise that this article should be understood as the continuation of
[E5] and [E6], and that reading this article needs having [E5] in hand.

In chapter[3] inspired by [V2] and [DCI], we prove specific results on integrable actions
of a measured quantum groupoid & and define Galois actions of & and Galois systems
for &.
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In chapter [4] inspired by [DCI], we associate to a Galois action of & several data
which will be useful in the sequel. In particular we discuss how it is possible to construct
a Galois system from a Galois action.

In chapter [5] we use the reflexion technique introduced in [DCI], in order to con-
struct, "through the Galois system”, another measured quantum groupoid &1, and more
precisely, a measured quantum groupoid linking & and &;.

Chapter [f] is devoted to several equivalent definitions of Morita equivalence of mea-
sured quantum groupoids. We finish that chapter by giving some examples and con-
structions of locally compact quantum groups Morita equivalent to measured quantum
groupoids (6.12]).

In chapter [7}, following K. De Commer, we tried to use Morita equivalence to solve
the problem of deforming a measured quantum groupoid by a 2-cocycle. This problem
is here solved if the basis of the measured quantum groupoid is a finite sum of factors.
In the general case, we obtain sufficient conditions, which will help, in chapter [§ to
give a new example of construction of measured quantum groupoids, using J.-M. Vallin’s
construction of matched pairs of groupoids ([Val@]).

2. Preliminaries. This article is a continuation of [E5]; preliminaries are to be found
in [E5], and we just recall herafter the following definitions and notations:

2.1. Spatial theory; relative tensor products of Hilbert spaces and fiber prod-
ucts of von Neumann algebras ([C1], [S], [T], [EVal]). Let N be a von Neumann
algebra, 1 a normal semi-finite faithful weight on N; we shall denote by Hy, My, ... the
canonical objects of the Tomita-Takesaki theory associated to the weight ; let a be a
non-degenerate faithful representation of N on a Hilbert space H; the set of ¥-bounded
elements of the left-module ,H is

D(aH, ) ={§ € H;3C < oo, [la(y)éll < CllAy (), Vy € Ny}

Then, for any ¢ in D(,H, 1), there exists a bounded operator R*¥ () from Hy to K,
defined, for all y in 91, by
R (©)Ay(y) = a(y)€
which intertwines the actions of V.
If £, n are bounded vectors, we define the operator product

<& >ap= RV () R ()

belongs to my(IN)’, which, thanks to Tomita-Takesaki theory, will be identified to the
opposite von Neumann algebra N°.

If now [ is a non-degenerate faithful antirepresentation of N on a Hilbert space X,
the relative tensor product X g®, H is the completion of the algebraic tensor product

P
K ® D(,H, 1) by the scalar product defined, if &, & are in K, 1y, 12 are in D(,H, ),
by the following formula:

(§1Om|&2 ©n2) = (B(< M1,m2 >a.y)611€2)
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If £ € K, n € D(o,H,), we shall denote by £ 3R, 1 the image of £ ® 1 into X sR, K,
P P

and writing p'g’“(f) = £ 3®q 1, we get a bounded linear operator from X into X s®4 H,
P v

which is equal to 1y ®, RYY(n).
Changing the weight ¢ will give an isomorphic Hilbert space, but the isomorphism
will not exchange elementary tensors!
We shall denote by oy the relative flip, which is a unitary sending X g®, H onto
»

H o® XK, defined, for any & in D(Ks,1°), n in D(,H, ), by
1/)0

oy (£ pRan) =1 a®g &
¥ o

Inz € B(N), y € a(N)', it is possible to define an operator z s®, y on X g®, H, with
P P
natural values on the elementary tensors. As this operator does not depend upon the

weight 1, it will be denoted z g®, .
N
We define a relative flip ¢y from £(XK) gxo £L(H) onto L(H) oz L(K) by on(X) =
N No
oy X (oy)*, for any X € L(K) g*q £(H) and any normal semi-finite faithful weight 1
N

on N.
If P is a von Neumann algebra on 3, with «(N) C P, and @ a von Neumann algebra
on X, with B(N) C @, then we define the fiber product @Q g%, P as {z sy, € @',
N N

y € P},

Moreover, this von Neumann algebra can be defined independently of the Hilbert
spaces on which P and @ are represented; if (i = 1,2), «; is a faithful non-degenerate
homomorphism from N into P;, §; is a faithful non-degenerate antihomomorphism from
N into @;, and ® (resp. ¥) a homomorphism from P; to Ps (resp. from @1 to @Q2) such
that ® o 1 = ag (resp. ¥ o 1 = fs), then, it is possible to define a homomorphism
U g, %q, ® from Q1 g, *, P1 into Q2 g, %, Po.

N N N

The operators %% (&,n) = RY(&)R*Y(n)*, for all £, n in D(,H, ), generates a
weakly dense ideal in a(N)’. Moreover, there exists a family (e;);er of vectors in D(o,H, )
such that the operators %% (e;, e;) are pairwise orthogonal projections (6% (e;, ;) being
then the projection on the closure of «(N)e;). Such a family is called an orthogonal
(a, 1)-basis of H.

2.2. Measured quantum groupoids ([L], [E5]). Following ([Val2], [EVal] 6.5), a
quintuplet (N, M, «, 5,T") will be called a Hopf bimodule,, if N, M are von Neumann alge-
bras, « a faithful non-degenerate representation of N into M, § a faithful non-degenerate
antirepresentation of N into M, with commuting ranges, and I' an injective involutive
homomorphism from M into M g*, M such that, for all X in N:

N

() P(8(X)) = 1 50 A(X).
(i) P(a(X)) = a(X) 5@ 1.
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(iii) T satisfies the co-associativity relation:

(F B*a Zd)F = (Zd B*a F)F
N N

This last formula makes sense, thanks to the two preceding ones and The von Neu-
mann algebra N will be called the basis of (N, M, «, 5,T).

If (N,M,a,p,T) is a Hopf bimodule, it is clear that (N°, M, 3, a, sy o T') is another
Hopf bimodule, we shall call the symmetrized of the first one. (Recall that ¢y oI" is a
homomorphism from M to M 4z M).

ND

If N is abelian, a = 3, I = ¢y o I', then the quadruplet (N, M, a, o, T') is equal to its
symmetrized Hopf bimodule, and we shall say that it is a symmetric Hopf bimodule.

A measured quantum groupoid is an octuplet & = (N, M, «, 8,T',T,T',v) such that

([EF], 3.8):

(i) (N, M,a,p,T) is a Hopf bimodule.
(ii) T is a left-invariant normal, semi-finite, faithful operator valued weight T from
M to a(N) (to be more precise, from M ™ to the extended positive elements of a(IN) (cf.
[T] IX.4.12)), which means that, for any z € MF, we have (id gx, T)T'(z) = T(2) 3®@q 1.
v N

(iii) 7" is a right-invariant normal, semi-finite, faithful operator-valued weight 7" from
M to B(N), which means that, for any x € 9., we have (T" g*, id)['(z) = 1 5@, T" ().
v N

(iv) v is normal semi-finite faithful weight on N, which is relatively invariant with
respect to T and T”, which means that the modular automorphism groups of the weights
®=voaloT and ¥ =1v°0 3! oT’ commute.

We shall write H = Hg, J = Jg, and for alln € N, B(n) = Ja(n*)J, &(n) = JB(n*)J.
The weight ® will be called the left-invariant weight on M.

Examples are described and explained in [2.3]

Then, & can be equipped with a pseudo-multiplicative unitary W which is a unitary
from H g®, H onto H a®s H ([E5], 3.6), which intertwines «, £, 8 in the following way:
for all X € N, we have '

W<a(X) B®a 1) = (1 a®ﬁ Oé(X))VV,
N Neo
W(l BQa B(X)) = (1 a®p 5(X))W»
N Ne
W(B(X) p®a 1) = (B(X) a®p nHw,
N No

W(1 s 300) = (BX) a3 DW,
N No

and the operator W satisfies:

(1a®5 W)W 84 1) = (W a®; D)2 5(W 380 1)(1 584 o) (1 500 W).
Neo N Ne N N N
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Here, ai’% goes from (HO‘®B H) 3®q H to (H 3Q4 H) a®s H, and 1 @4 0y0 goes from
Vo v v o N
Hﬁ@a (HQ®B H) to HB®0¢HB®0¢ H.
v Vo v v
All the intertwining properties properties allow us to write such a formula, which will

be called the ”pentagonal relation”. Moreover, W, M and I" are related by the following
results:

(i) M is the weakly closed linear space generated by all operators of the form (id %
we,n) (W), where § € D(oH,v), and n € D(Hg,v°) ([E5], 3.8(vii)).
(ii) For any = € M, we have I'(z) = W*(1 o®j )W ([E5], 3.6).
NO

2.2.1. Lemma. Let & be a measured quantum groupoid, W its pseudo-multiplicative
unitary, £ € D(oH,v) and n € D(HB,Z/O). Then

D ((id % we ) (W) = (id g id * we ) (025 (W 580 1)(1 584 0v0)(1 500 W)).
N ’ N N N

Proof. This is clear, using the pentagonal relation, and the formula linking I" and W. =

Moreover, it is also possible to construct many other data, namely a co-inverse R,
a scaling group 7, an antipode S, a modulus 9§, a scaling operator A\, a managing operator
P, and a canonical one-parameter group 7 of automorphisms on the basis N ([E5], 3.8).
Instead of &, we shall mostly use (N, M,«,5,T,T, RTR,v) which is another measured
quantum groupoid, denoted &, which is equipped with the same data (W, R,...) as .

A dual measured quantum group (’/5, denoted (N, M\, o, B, f, f, RTR, v), can be con-
structed, and we have G = &.

In particular, from the fact that v is relatively invariant with respect to T" and RoToR,
is obtained the definition of the modulus and the scaling operator by the formula

(D® o R: D), = \'* /2§t

Then, thanks to [V1], we obtain that, if a € M is such that the operator aé'/? is bounded
and its closure ad'/2 belongs to Mg, then a belongs to Naor, and that we can identify
Hgor with H by writing then Agor(a) = Ag(adl/2).

Canonically associated to &, can be defined also the opposite measured quantum
groupoid is &° = (N°, M, 8, a,syT', RTR, T, v°) and the commutant measured quantum
groupoid ¢ = (NO,M’,B,d,FC,Tc,RCTcRC,V"); we have ($°)° = (&°)° = &, ®o =
(QAS)C, &e = (QAﬁ)", and B°¢ = & is canonically isomorphic to & ([E3], 3.12).

The pseudo-multiplicative unitary of ® (resp. 8°, &°) will be denoted W (resp. We,
We). The left-invariant weight on & (resp. ®°, ) will be denoted 0 (resp. ®°, ®°). For
simplification, we shall write .J for Jg-

We have W = oy,oW*og, which is a unitary from H 5®a H onto H ,®g H. The

algebra M is generated by the operators (we,p * id)(W), where £ belongs to D(Hp,v°)
and 7 belongs to D(oH,v). In ([E5]4.8) was proved that such an element belongs to g
if and only if £ belongs to D(n'(n)*), where 7/(n)* is the adjoint of the (densely defined)
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operator 7'(n) defined on Ag(9Ms) by 7' (n)As(x) = zn, and we have then:
B((we . * id)(W)* (wep * id) (W) = |1’ (m)*€]1”

which allows us to identify Hg with H by writing Ag((we,, * id)(W)) = 7' (n)*¢, or, for
any ¢ € Mg:

(Aa (2)[Ag ((we p * id)(W))) = (2n][§).
The pseudo-multiplicative unitary W° is equal to (J a®j NW(J a®5 J) ([E5], 3.12(v)),
Neo Neo
which is a unitary from H ,®s H onto H g®4 H, where, for all n € N, &(n) = JB(n*)J.

Therefore, applying this result about 915 to the duality between &° and @56, we obtain
that the operator (we., * id)(W°) = (we.p * id)[(J o 3 YW (J o®p J)] belongs to Ng. if
Ne Neo

and only if J€ belongs to D(x'(Jn)*), and then we get

Mg (we o # id) (W) = Ag.[(wey *id)[(J o® 5 J)W (] a}g@ﬂ D) = Jr' (Jn)*Je
Ne 0
and if moreover 7 belongs to D(571/2), we get, for any = € Ng:

(Ao (@) Age (wey * id) (W) = (A (2)[Ag. [(we,n *id)[(J a0y W (] B D)

= (@6~ n[¢).

Let 4$, be an N — N-bimodule, i.e. a Hilbert space $) equipped with a normal faithful
non-degenerate representation a of N on $) and a normal faithful non-degenerate antirep-
resentation b on £, such that b(N) C a(N)'. A corepresentation of & on ,$; is a unitary
V from ) ,®s H onto $ ,®, H, satisfying, for all n € INV:

e 1%

V(b(n) a]%@ H)=Q bDa Bn)V,

V(1.®p a(z)) = (a(n) p@a 1)V,
N

V(1a® Al) = (1180 A)V,

such that, for any £ € D(,9,v) and n € D($),v°), the operator (we,, * id)(V) belongs
to M (then, it is possible to define (id x )(V), for any 6 in M which is the linear
set generated by the we, with £ € D(,H,v) N D(Hg,v°)), and such that the map § —
(id % 0)(V) from M into £(5) is multiplicative ([E5], 5.1, 5.5).

2.2.2. Lemma. Let ® be a measured quantum groupoid; we have, for any & € D(Hg, v°)
andn € D(,H,v), t € R:

0’?[(&]&77] * Zd)(W)] = (WPitg,(;—itPitT] * Zd)(W)

Proof. Let (; € D(oH,v),and (3 € D(HB’ v°); we have, using successively [E5], 3.10(vii),
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3.8(vii), 3.11(iii), 3.8(vi) and again 3.11(iii):

a7 (e *1d)(W)C1lG2) = (W (€ p®a A G0 a®j AF"C)

= (W(E p&a P~ I8 T 0 0@y P8 TCo)
= (W(P"€ p®4 JO"JC) P 0@ J6 T (o)

= (JP"n p@q 8" TG W*(JPE 4@ 67T 1))

_ (jPitn,B(X)a 6th€~2‘(6zt ﬁ®a 6Zt)W*(jPZt§ OL®B JCI))
v N o

v

= (JOT P 5®4 JGW (T PE 05 JG1))
= (W(P"¢ 504 )07 P a®5 Ca)

from which we get the result. m
2.2.3. Lemma. Let & be a measured quantum groupoid, and m € M'. Then

W1 ;@0 m)W* = W (JR(m*)J 05 1)W°.
N N

Proof. By definition, we have
/V[7(1 5®a m)/W* =oW"o((1 ;00 m)oWao =oW*(m s 1)Wo
N N Ne
and using ([E5], 3.11(iii), 3.10 (iii), 3.12(v) and 3.11(iii) again), we get it is equal to

o(J 3®a YW (JmJ 300 YW*(J 524 J)o = 0(J 04 J)SL(JmJ)(J 04 J)o
N N N N N
= (J o5 HE(ImI)(J 525 J)
Ne No
= W (JR(m*)J 304 HWC. m
N

2.3. Examples of measured quantum groupoids. Examples of measured quantum
groupoids are the following;:

(i) Locally compact quantum groups, as defined and studied by J. Kustermans and
S. Vaes ([KV2], [KV2], [V2]); these are, trivially, the measured quantum groupoids with
the basis N = C.

(ii) Measured groupoids, equipped with a left Haar system and a quasi-invariant
measure on the set of units, as studied mostly by T. Yamanouchi ([Y1], [Y2], [Y3], [Y4]);
it was proved in [ES] that these measured quantum groupoids are exactly those whose
underlying von Neumann algebra is abelian. This example has been presented in full
details in ([E5], 3.4 and 3.13).

(iii) The finite dimensional case has been studied by D. Nikshych and L. Vainermann
(INV2]) and J.-M. Vallin ([Val3|, [Vald]); in that case, non-trivial examples are given.

(iv) Continuous fields of (C*-version of) locally compact quantum groups, as studied
by E. Blanchard in ([BIl], [BI2]); it was proved in [E8] that these measured quantum
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groupoids are exactly those whose basis is central in the underlying von Neumann algebras
of both the measured quantum groupoid and its dual.

(v) In ([L], 17.1), be given a family &; = (N;, My, o, Bi, i, T3, T, v;) & measured
quantum groupoids, Lesieur showed that it is possible to construct another measured
quantum groupoid

Bic18; = (BicrNi, Dicr M;, Bicrvi, Bic1Bi, Dicrli, ®icr i, icr Ty, Bicrvi)-

(vi) In [DCI], K. De Commer proved that, in the case of a monoidal equivalence
between two locally compact quantum groups (which means that each of these locally
compact quantum group has an ergodic and integrable action on the other one), it is
possible to construct a measured quantum groupoid of basis C? which contains all the
data. Moreover, he proved that such measured quantum groupoids are exactly those whose
basis C? is central in the underlying von Neumann algebra of the measured quantum
groupoid, but not in the underlying von Neumann algebra of the dual measured quantum
groupoid.

(vii) In [E5] was described how, from an action (b, a) of a measured quantum groupoid
&, it is possible to construct another measured quantum groupoid ®(a); as a particular
case, this allows to canonically associate to any action a of a locally compact quantum
group G on a von Neumann algebra A, a measured quantum groupoid &(a).

(viii) In [VV] was given a specific procedure to construct locally compact quantum
groups, starting from a locally compact group G, whose almost all elements belong to
the product G1 G5 (where G and G5 are closed subgroups of G such that G; NG = {e},
where e is the neutral element of G); such (G1, G2) is called a "matched pair” of locally
compact groups. Then, G acts naturally on L>°(G3) (and vice versa), and the two crossed
products obtained bear the structure of two locally compact quantum groups in duality.
In [Val5], J.-M. Vallin generalizes this constructions up to groupoids, and then obtains
examples of measured quantum groupoids; more specific examples are then given by the
action of a matched pair of groups on a locally compact space, and also more exotic
examples.

(ix) In [[], 9.5.5, was given the following exemple, called ”quantum space quantum
groupoid”; let N be a von Neumann algebra; let us consider M = N°®zy N, the repre-
sentation o of N into M given by (n € N) a(n) = 1 ®z(n)n, and the antirepresentation
B given by B(n) = n° @z(ny 1. Then if 7 is a normal semi-finite faithful trace on Z(N),
v a normal faithful semi-finite weight on N, let 7, be the normal faithful semi-finite
operator-valued weight from N onto Z(N) such that v = 70 T,,, we can easily get that
the relative tensor product (H, ®, H,) s®4 (H, ®; H,) is canonically isomorphic to

H, ®; H, ®,; H, and this isomorphism sends M g%, M onto N° ®, Z(N) ®, N; we can
N
therefore identify M gx,, M with M, and verify that (N, M, «, 8,id) is a Hopf bimodule.
N

Moreover, we can get that &(N) = (N, M, a, 3,id, T ®@z(ny id,id @zn) T, V) is a
measured quantum groupoid. We shall call it the N-measured quantum groupoid.
The dual &(N) = (N, Z(NY, o, B,id, (T°)~L, T; 1, v), where B(n) = J,n*J,, T; ! is

the canonical operator-valued weight from Z(N)’ to N’ given from T,, and (T2)~! is
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the canonical operator-valued weight from Z(N)" to N given from 7). This measured
quantum groupoid will be called the dual N-measured quantum groupoid.

(x) £ &;=(N;, My, i, 55, T4, T3, T, v;) (=1, 2) are two measured quantum groupoids,
then we can define another measured quantum groupoid &; ® &,:

(N1 ® No, My @ Mo, a1 @ g, 81 @ B, (id ® ¢ ®id)(T1 @ o), Th @ T, T7 @ Th, 11 ® v3).

Moreover, it easy to get that Qimg = Q/i\l ® Q/S\g

(xi) The SU(2) dynamical quantum group, as studied in particular by E. Koelink and
H. Rosengren ([KR]) can be lifted, thanks to [Ti], to the level of operator algebras, and
give another example of a measured quantum groupoid.

(xii) Last but not least, De Commer studied Morita equivalence between the quantum
group SU,(2), and various quantum groups ([DC2|, [DC3]). In a new work ([DC4]), he
obtains an integrable Galois action of SU,(2) which is not ergodic. Therefore, this leads

to a measured quantum groupoid (6.12.4)).

2.4. Action of a measured quantum groupoid ([E5]). An action ([Ef], 6.1) of &
on a von Neumann algebra A is a couple (b, a), where:

(i) b is an injective *-antihomomorphism from N into A;
(ii) a is an injective *-homomorphism from A into A p*, M;
N
(iii) b and a are such that, for all n in N:
a(b(n)) =18 B(n)
(which allow us to define a %4 id from A p*o M into A p*o M g*q M) and such that
N N N N
(U. b¥a Zd)ﬂ = (Zd b*a F)Cl
N N

If we start from a measured groupoid, we get the usual notion of action of a groupoid
([E5], 6.3).

The invariant subalgebra A® is defined by
A ={z € ANDB(N);a(x) =z @, 1}
N

As A® CB(N)', A (and L%(A)) is a A® — N°-bimodule.
Let us write, for any x € AT, Ty(z) = (id p*o ®)a(z); this formula defines a normal

faithful operator-valued weight from A onto A%; the action a will be called integrable if
T, is semi-finite ([E5], 6.11, 12, 13 and 14).

If the von Neumann algebra A acts on a Hilbert space §), and if there exists a repre-
sentation a of N on $) such that b(N) C A C a(N)’, a corepresentation V of & on the
bimodule ,$, will be called an implementation of a if we have a(z) = V(z “ﬁg}b 1)Vv*, for

all z € A ([E5], 6.6); moreover, if ¢ is a normal semi-finite faithful weight on A, we shall
define a representation a of N on Hy by a(n) = Jyub(n*)Jy, for all n € N, and we shall
look after an implementation V' of a on ,(Hy), such that ([E5], 6.9):

V' = (J¢ a®g J@)V(Jw pPa J@).
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If the weight 1 is 6-invariant, which means that, for all € D(, H,v)ND(6'/?) such that
81/2p belongs to D(Hg,v°), and z € Ny, we have

Vl(id pro wy)a(@"@)] = [Av(2) a5 84/

and if, moreover, ¢ has the density property, (i.e. D((Hy)p,v°) N D(oHy,v) is dense in

Hy), then such an implementation V;, was constructed in [E5], 8.8); more precisely ([E5],

8.4),if v € My, £ € D(oH,v) and n is as above, we get that (id y*s wy,¢)a(z) belongs to
N

My and that
Ay[(id ba wn,e)a(z)] = (id * ws1/2,.¢) (Vi) Ay ().

In ([E6], 7.6) was introduced the notion of invariant weight by an action; a normal faithful
semi-finite weight ¢ on A will be called invariant by a if, for all n € D(,H,v)ND(Hg,v°),
and x € My, we have

[(id b¥a wy)a(zz) = [[Ap(2) «®p Ul

If, moreover, ¢ has the density property, a similar implementation V¢/> was constructed
also in ([E6], 7.7). Moreover, with these hypothesis, it is possible to prove that there exists
a normal semi-finite operator-valued weight ¥ from A onto b(/N) (we shall say that the
action is "weighted”), such that ¢ = v°ob~! o T. This operator-valued weight T satisfies,
for all positive x in A:

(T prq id)a(z) = a(T(x)) = 1 ,Q4 B o b 1T(x).
N N

Note that, if we define, for n € N, °(n) = b(n)°, we obtain a *-homomorphism from
N into A°; moreover, for z € A, let us write a°(x°) = (.%p%q R)oa(x); it is straightforward
N

to get that (b°,a°) is an action of B° on A°.

Of course, one should write in this section "right action” instead of simply action. At
some stage of this paper, we shall need left actions. A left action of & on a von Neumann
algebra A is a couple (a, b), where:

(i) a is an injective *-homomorphism from N into A;
(ii) b is an injective *-homomorphism from A into M g*, A;

(iii) @ and b are such that, for all n in N: N

bla(n)) = a(n) pRq 1,  (id gxq b)b = (I gx, 1d)b.
N N N
Then, it is clear that (a,snb) is an action (a right action) of ° on A, and (a®, (ocnb)°)
is an action (a right action) of & on A°. Conversely, if (b, a) is an action of & on A, then,
(b°,on00a®) is a left action of & on A°.
The invariant subalgebra A° is defined by

A ={zc Ana(N);b(z) =152, x}
N

and Ty = (® g%, id)b is a normal faithful operator-valued weight from A onto A®; the

action b will be called integrable if T}, is semi-finite. It is clear that b is integrable if and
only if (onb)° is integrable.
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If (b, a) is an action of &y = (Ny, My, a1, 1,11, T1, Ty, v1) on a von Neumann algebra
A, and (a, b) a left action of &9 = (N3, Ma, as, f2, T2, T, T4, v2) on A, such that a(Nz) C
b(N;)', then, we shall say that the actions a and b commute if we have

b(N1) C A®,  a(N2) C A%, (b kg, id)a = (id g,%4 a)b.
N1 N2
Let us remark that the first two properties allow us to write the fiber products b p*,, id
N
and id g, *q @
N

2.5. Crossed product ([E5]). The crossed product of A by & via the action a is the
von Neumann algebra generated by a(A4) and 1,8, M’ ([E5], 9.1) and is denoted A x4 &;
N

then there exists ([E5], 9.3) an integrable action (1 ,®, &, @) of ((’S)C on A x, 6.
N
The biduality theorem ([E5], 11.6) says that the bicrossed product (A x4 &) X; ®° is
canonically isomorphic to A p*, L(H); more precisely, this isomorphism is given by
N
O(a a0 id)(A o L(H)) = (A %o 8) xg ®°
N

where © is the spatial isomorphism between £($) b®a H 5®a H) and £($ b®a a®5 H)

implemented by 1g b®a o,W?ag,; the biduality theorem says also that this 1som0rphlsm

sends the action (1 b®a 57,) of & on A px, L(H), defined, for any X € A %, L(H), by
N N N

a(X) = (1,80 0ve Woye)(id yra cn) (@ pka id)(X)(1 p@a oy Woye)*
N N N N

to the bidual action (of ) on (A x4 &) x5 &0

We have (A x4 )% = a(A) ([E5], 11.5), and therefore the normal faithful semi-finite
operator-valued weight T; sends A x, & onto a(A); therefore, starting with a normal
semi-finite weight ¥ on A, we can construct a dual weight ¢ on A x4 & by the formula
$=1poaloTs (5, 13.2).

Moreover ([E5], 13.3), the linear set generated by all the elements (1 b®a a)a(z), for
all z € My, a € Ng. NN, is a core for A¢’ and it is possible to 1dent1fy the GNS

representation of A x4, & associated to the weight 1/1 with the natural representation on
Hy ,®q H by writing
1%

Ay (@) 180 Age(a) = Ag[(1 1@ a)a(2)]

which leads to the identification of H 3 with Hy 3®q H.

If the weight 1) is d-invariant (resp. invariant) and has the density property, then the
implementation Vi (resp. V) recalled in is equal to J;(Jy aj(\[@g J3) ([E6], 3.2). More

generally, if we write V' = J;(Jy “;f?f J3), we have

V* = (Jy a®p J&,)V(Jd, b®q J@)
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and if it is an implementation of a, we shall call it a standard implementation of a. It has
been proved that it is the case, for any normal semi-finite faithful weight ¢) on A, whenever
the action is weighted (i.e. if there exists a normal semi-finite faithful operator-valued
weight from A onto b(N)).
If (a,b) is a left action of & on A, we shall define the crossed product & x, A as the
von Neumann algebra generated by M s®q 1 and b(A); therefore, it is the image under
N

on of the crossed product A x,,p &°.

2.6. Basic Construction. Let My C M; be an inclusion of o-finite von Neumann
algebras, equipped with a normal faithful semi-finite operator-valued weight T; from M;
to My. Let ¥ be a normal faithful semi-finite weight on My, and 1 = g o T}.

Following ([J], 3.1.5(i)), the von Neumann algebra My = Jy, M(Jy, defined on the
Hilbert space Hy, will be called the basic construction made from the inclusion My C M;.
We have M; C Ms, and we shall say that the inclusion My C M; C M> is standard.

Let us write r for the inclusion of My into M; (or the representation of My on Hy,
given by the restriction of my, to My), and let us define s, for any « € My, by s(z) =
Jy,r(x)*Jy,; s is a normal faithful antirepresentation of My on Hy,, and My = s(My)'.
Therefore , the operators 6°¥0 (&, n), for all €, 1 in D((Hy,)s,¥§) generate a dense
ideal in Ms.

Following ([EN], 10.6), for x in 91r,, we shall define Ap, (z) by the following formula,
for all z in My, :

ATI (1’)A¢0 (2) = Al/’l (‘TZ)
This operator belongs to Homze (Hy,, Hy, ); if z, y belong to Nr,, then Ar, (z)Ar, (y)*
belongs to Ms, and Aq, (2)*Ar, (y) = Ti(x*y) € M.

Using then Haagerup’s construction ([T], IX.4.24), it is possible to construct a nor-
mal semi-finite faithful operator-valued weight T5 from My to M; ([EN], 10.7), which
will be called the basic construction made from 73. If z, y belong to My, , then the oper-
ators A, (x)Ar, (y)* form a dense sub-xalgebra of Ms, included into M, and we have
To(Ar, (2)Ar, (y)*) = zy*. The operator-valued weight T is characterized by the equality
([ENI, 10.3):

dipyoTy  diy A
- = B
wh - deedh)r

from which, writing o = 11 o T, we get that
02 (A, (2)Ar, (y)*) = Az (07 (@) Ary (07" (7))

The operator-valued weight T, from Ms to M; will be called the basic construction made
from the operator-valued weight T} from M; to My. Using ([ENI], 3.7 and 10.6 (v)), we
easily get that, for any x, y in Mz, NNy, NN NN, we have To (A1, (z)Ar, (y*)*) = 2y,
and

Ay, (A () Ay (%) )| = [[Ags, () s@r Ko W)l

where r is the inclusion of My into M, and for a € My, s(a) = Jy,a*Jy,; so, we can
identify Hy, with Hy, Sgér Hy, by writing Ay, (A7, (2)A7, (y*)*) = Ay, (z) Sggr Ay, (y);
0 0
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then, we identify A:Zz with Af]fl s®p Af]fl (here, this relative tensor product of operators
Yo

means that there exists a bounded operator with natural values on elementary tensors)
and Jw2 with O'M(‘)’(le sQp le).
Mg

Then, for any & € D((Hy,)s,¥5) and n € D((Hy,)s, ¥§) N D(All/f) such that A;jﬂn

belongs to D((Hy, )s,13), we have Ay, (05¥0(£,1)) = € (@, leAfpﬁQn.
Yo

Using similar arguments as in ([E6], 4.7(ii)), we can prove that there exists a family
(e;)ier, which is an orthogonal (s, 1§)-basis of Hy,, such that each vector e; belongs to
D(A}/f); we can prove then, as in ([E6], 4.7(iii)), that ¢ = ", WALz,

Let Ty, be the Tomita algebra associated to the operator-valued weight 77 and the

weight ¢y ([EN], 10.12, and [E5], 2.2.1), which is made of elements z in 9y, N9, NNy, N

917, , which are analytic with respect to 0? ! and such that, for any z € C, 0¥ (z) belongs

to Ny, NI, NNy, N NG, 5 such elements are a dense * subalgebra of M;. Moreover, it
is possible to prove ([DC1], 1.4) that an element X € M, belongs to My, if and only if
there exists 2 € Hy, such that, for any z, y in Ty, 1,, we have

(Ays, () 5@ Ay (W)|E) = (A, (@)X Ay, (074 (y7)))

and then we have = = Ay, (X).

3. Integrable actions of a measured quantum groupoid. In that chapter are gen-
eralized, up to measured quantum groupoids, results about integrable actions (([V2l, 5.3,
[DCI], 2.1); namely, if (b,a) is an integrable action of & on a von Neumann algebra A
(the definition has been given in, we construct then a representation m, of the crossed
product on the Hilbert space L? (A), whose image is the von Neumann algebra s(A®)’
given by the standard construction made from the inclusion A* C A; moreover is con-
structed an isometry G from L2(s(A%)’) into L?(A x4 &) , which is a unitary if and
only if the representation 7, is faithful; following ([DCI], 2.7), we say that the integrable

action (b, a) is then Galois (3.11)).

3.1. Lemma. Let (b, a) be an integrable action of a measured quantum groupoid on a von
Neumann algebra A; let 1y be a normal faithful semi-finite weight on A%, and 1 = pgoT,
be the lifted normal semi-finite faithful weight on A; let (&;)icr be a family of vectors in
D((Hy, )p, v°) such that 1po(x) = Y, we, (x), for all positive x € A®. Then there exists an
isometry V from Hy, into ®;(Hyp, 1®a H) = (Hy, 1@ H) ® 1*(I) such that:

(i) For ally € A, (a(y) ® 152(1))V = Vy;
(ii) For alln € N, (1,®4 &(n) @ 1j2(1))V = Va(n).
N

Proof. Let (n;)jes be an orthogonal (b,v°) basis of Hy,; we have, for any 4, j and
x € m¢11

[(@e.m, b0 id)a(@)]*[(We,n, v id)a(@)] = (we, v id)[a(z*) (0" (17,1;) 1@a Da(@)]
N N N N
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and therefore
O(((wern, vt iD)a(o)) (e, vt id)ala)) < Bl v id)a(a"o)]
=wg, 0 Ty(z"z) < Yr(z”z).

So, for any 4, j and x € Ny, , (We, n; v*a id)a(z) belongs to Ng; moreover, we have
N

‘P([Z(%,m b¥a id)a(w)]*[Z(%m]‘ via id)a(z)]) = we, o To(2"2)
J J

and therefore

@S, v i) Y e, 150 i)ala)]) = v (")

i j J
which proves that we can define now V, for all z € 9y, by
VAy, (x) =i > _n; b@a Ao ((We,m, pa id)a(x)).
J

As, for x € 9y, we have ||[VAy, (x)|? = ¢1(z*z), we can extend V to an isometry from
Hy, into @ier(Hy, 1®a H) = (Hy, 5®4 H) @ [>(I). Let now y be in A; we have

(a(y) ® Liz(1))VAy, (z) = &; Z a(y)(n; bPa Ao ((we; n; ba id)a(z)))
=& z]: zk: Nk b%a (wnk7ﬂj bxa id)a(y)A‘f—'((wﬁnﬁj bxﬂé Zd)a(x))

=®; Z Z Mk b%a A@((wnk,m b;’;oz zd)u(y) (wfh'ﬂj b;a zd)a(x))
i k

= &3 1 190 Ao (e, vt id)a(ye) = VAy, (42)
k

and therefore (a(y) ® 1;2(1))V = Vy.
Let n be in the Tomita algebra of the weight v; we have

(160 4(n)) @ Li2(1))VAy, (2) = &i Zm b@a (1) Ae((We, m, v%a id)a(z))

= ©: 3 1) 10 Aa((we. va id)a(x)B(0Y 1 5(n))
j g N
= &3 1 180 Ao, v id)alab(0 o (n))))
j v
= VA'le (xb<gzz/2(n)) = Va(n)Awl (‘r)
which, by continuity, remains true for alln € N. =

3.2. Theorem. Let (b,a) be an integrable action of a measured quantum groupoid on
a von Neumann algebra A; let ¥y be a normal faithful semi-finite weight on A%, and
1 = g o Ty be the lifted normal semi-finite faithful weight on A. Then the weight 1y is
d-invariant, and has the density property, in the sense of [2.]).



MORITA EQUIVALENCE OF MEASURED QUANTUM GROUPOIDS 123

Proof. Let’s use the notations of let z be in Ny, , and n € D(,H,v) N D(5'/2), such
that 0'/2n belongs to D(Hg,v°); we have, using the isometry V and ([E5], 8.2):

140, () 60 3 2)1* = @il D 15 4@ A ((we,m, v id)a(z)) a®p 51/ 2|?
j v ve
= @l Aa(a(< 15,15 >b00) (Wi, vha id)alz)) a®p 322

= ®llAa((we i, vt id)a(z)) 625 8t/

= Z ‘I)(Z(id b*a Wn)r[(w&:,nj bZa id)a(x)*(wii,m b]f[a id)a(x)]

- N
J

— Z ®[(id e wy)T(we, e sid)a(z*]
= zi:w& o Ty(id Pa wy)a(z*z)) = 1 [(id ba wy)a(z* )]

which proves that 1, is d-invariant; moreover, if we take the Tomita algebra relative to
the weight 1; and the operator-valued weight T,, we get that the weight ¢; has the
density property. m

3.3. Proposition. Let &, = (N;, M;,«;, 53;, T, T3, T!,v;) (1 = 1,2) be two measured
quantum groupoids, (b, a) an action of &1 on a von Neumann algebra A, and (a,b) a left
action of o on A; let us suppose that the actions a and b commute. Then:

(i) The operator-valued weight Ty from A onto A® satisfies:
(To p*a, td)a =aoTy.

vy

(ii) If b is integrable and if A® = b(Ny), the weight ¢; = vy 0o b=t o Ty is a normal
semi-finite faithful weight on A, invariant under the action a, d,-invariant under the
action b, and has the density property.

Proof. Result (i) is straightforward, using the definition of commuting actions. With the
hypothesis of (ii), we get that T} is a normal semi-finite faithful operator-valued weight
from A onto b(N7), that ¢1 is a normal semi-finite faithful weight on A which satisfies,
for all z € A™:

(Typ*ay id)a(z) = aoTy(z) = 140, frob " oTy(z),  (1p%a, id)a(z) = Brob~ o Ty(),

141 N, V1

from which we get that ¢, is invariant by a. On the other hand, ¢, is dg,-invariant under
the action b, and has the density property by "

3.4. Lemma. Let & be a measured quantum groupoid; let V' be a corepresentation of &
on an N-N bimodule . ([ES], 5.1), and let (b,a) the canonical action implemented by
V oon a(N) by a(z) =V (x .23 1)V* ([E5], 6.6). Then
NO
(a(N))® = a(N) Nb(N)' 0 {(id * we.n)(V),§ € D(aH,v),n € D((Hp)s, ")}
Proof. Clear. n
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3.5. Lemma. Let (b,a) be an integrable action of a measured quantum groupoid & on
a von Neumann algebra A, and let 1y be a normal semi-finite faithful weight on A%, and
1 = o o Ty be the normal semi-finite faithful lifted weight on A; let Vi, be the standard
implementation of a defined in[2.4) let s(A®) = Jy, (A®)' Jy, the basic construction made
from the inclusion A* C A (cf. @) Then

s(A%) = (AUa(N) U{(id * wye)(Vy), ), € € D(oH,v),n € D(Hg,v°)})".
Proof. Using we get A®=ANb(N)' N{(id*we ) (Vi ), E€D(oH,v),nED((Hg)s,v°)},
and therefore Jy, A®Jy, is equal to

AN a(N)’ N J¢1{(Zd * w&n)(le),f S D(aH, V), RS D((Hd,)@, Vo)}/le.

As Vi (T 480 J) = (g 400 J)V,, we have

Sy (id % we ) (Vyp, ) Ty, = (id x wje 3)(Vig,)
and we get
Jp, ATy, = A" Na(N) 0 {(id x wye) (V). & € D(oH,v),n € D(Hg,v°)}

from which we get the result. m

3.6. Theorem. Let (b, a) be an integrable action of a measured quantum groupoid & on
a von Neumann algebra A, let Vi, be the standard implementation of a, as defined in '
let us denote by r the injection of A® into A, and let us write s(x) = Jy,r(x)*Jy, for any
z € A®. Then s(A®) is the basic construction made from the inclusion A* C A (cf.[2.6).
Moreover, there exists a normal surjective x-homomorphism m, from the crossed product

A x4 6 onto s(A*), called the Galois homomorphism associated to the integrable action
(b,a), such that, for allz € A, n€ N, £ € D(oH,v), n € D(Hg,v°):

ma(a(z)) =z, ma(1 b &(n)) = a(n),
Ta(1 b%a (wi ¢ * id)[(W)*]) = (id * wy,e) (Vip,)-

For simplification, we shall write p(m) = wq(1 pQq m), for any m € M', and we obtain
N
this way a representation of M’ on L(Hy,).
Proof. Let us use the notations of and let’s suppose that n belongs also to
D(6-1/2) and that §~/25 belongs to D(,H,v). Then
(150 (wye * id)[(J @0 HYW*(J @4 J)]) @ Liz(1))VAy, (z) =
N N

@i Y 1 6@ (Wy e+ id)[(J p@a J)W(J 324 J)])Aa (we, n, p¥a id)a(z))
; v N N
which, using ([E5], 3.10(ii) applied to &°, 3.8(vi)), and the identification of Hgor with
H made in is equal to

©i Y1 v@a Aa((id g¥a Ws-1/2m )T [(We i, v id)a(z)])
. v N
J



MORITA EQUIVALENCE OF MEASURED QUANTUM GROUPOIDS 125

or, to

@i Y i 100 Ao ((we, ., pa id)a[(id p*o Ws-1/2, ¢ )a()])
- v N
J

which is, using ([E5], 8.4), equal to

VAy, [(id p¥a ws-1/25,¢)a(x)]) = V(id % wy e) (Vip, ) Ay, (2)
from which, by density, we get that

(16@a (wye * id)[(J 50 JHyW*(J 594 D)) @ Liz(ry)V = V(id * wy.e)(Vy, )
which, by density and continuity, remains true for any n in D(Hg,v°). Using now we
get that the weak closure of the linear span of all operators of the form
(@i * id)[(J g©a W (] 504 J)]
N N

forall ¢ € D(,H,v), n € Q&HB, v°), is equal to the von Neumann algebra J/\/[\'; therefore,
we get that, for any y € M’, the image of (1 ,®q4 ¥y ® 1j2(1))V is included in the image
of V, which means that VV*(1 b%a y® 132V g(l b%a Y ® 1;2(1))V; therefore, we have,
for any y € ]\//.7’, VV*(1 b%a y®@1p))VV=(1 b%a Yy ® 1;2(7))VV*, which proves that VV*
commutes with 1 b%a M'® 1j2(1). Using we easily get that VV* commutes also with

a(A) ® 121y, and therefore that it commutes with A %, & ® 1;2(7). Let us write now, for
any z € A x, &:

Thanks to this commutation property, 74 is a *-homomorphism from A x,® into L(Hy, ).
Using now we get that the image of 74 is s(A%)". m

3.7. Lemma. With the notations of we have, for allm € M':
ma(1 b%a RE(m)) = Jy, ma(1 b%a m*)Jy, -

Proof. Let £ € D(oH,v), n € D(Hg,v°); using (3.6 we get that
Ty ma(16®a (wne *id)[(J s@a YW (J 504 J)])* Ty,
N N N
is equal to Jy, (id * wy,¢)(Vip, )" Jy,, which (2.4) is equal to (i * wj, 7,)(Vy, ), and using
[3-6] again, is equal to
Ta(1 580 (Wje g, *id)[(J p@a )W (J p@4 J)))
N N N

which is 74 ((1 4®¢ J (we ., * id)(W*)J), and using ([E5], 3.11(iii)), is equal to
N

Ta(14@a J (wey xid)[(J @5 YW (] @5 J)]T)
N NO NO
which is
Ta(14@a J(wy e xid)[(J @0 )W (J p@4 J)])* )
N N N
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which is 74(1 4®a R[(wy,e * id)[(J pRa J)W*(J s®4 J)]]); we get then the result by
N N N
density. m

3.8. Theorem. Let (b,a) an integrable action of & on a von Neumann algebra A, mq
the Galois homomorphism associated by[3.6} let 1o be a normal semi-finite faithful weight
on A%, and 1 =g o Ty; let a be the representation of N on Hy, defined, forn € N, by

a(n) = le b(n*)J¢1 :

Let us write v for the injection of A® into A, and s for the antirepresentation of A® on
Hy, given, for a € A%, by s(a) = Jy,r(a*)Jy,. Then:

(1) There exists an isometry G from Hy, SS?T Hy, into Hy, 1®q H, such that
0 v
G(Ay, (2) SS?T Q)= Z € bQa A<1>[(‘*)C,€i b;kva id)a(z)]
0 i v

for all x in Ny, NNy, , ¢ € D((Hy, ), v°), and for all (b, v°)-orthogonal basis (e;)icr of
Hy,. Moreover, for any n € N, a € A%, we have

G(b(n) s@, 1) = (1@ B(n))G,
Ae N
G(1.@, b(n)) = (14®a B(n))G,
As N
G(1:@y a(n)) = (a(n) p®a 1)G,
As As
G(r(a) s®, 1) = (r(a) s®a 1)G,
Aa Aa
G(1 s®, s(a)) = (s(a) py®q 1)G.
Aea Aea
(i1) For any e € Na, we have
(1180 Joea)G(Ay, () o Q) =a(@)(Cv®a JsAa(e)).
(1it) For all ' in D((Hy, )y, v°), (we,cr p*a id)a(z) belongs to Ne, and we have
N
Aal(wee vra id)a(z)] = (Wa,, @).¢ *1d)(G)C
(i) For anya’ € A, Y € M, we have
a(a)G =G(d @, 1), (1,®,Y)G =G(ma(1pR4Y):2,1).
As N N
(v) The projection GG* commutes with A x4 &, and for any X € A x4 &, we have
ma(X) 5@y 1n,, = G*XG.
Aa
(vi) For any t € R, we have AZ]G =GAY,.
(vii) For all t € R, we have
G(AY, 0 &) = ((6A5) " 0y AY,)C.
o ve
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Proof. As
[(@e.er va id)a(@)] [(wee, va id)ala)] < (we pxa id)alz™2)

we get that
P([(wees o id)a(@)] [(We e, v%a id)a(z)]) < Ol(we o id)a(e )] = we o To(a"x)
and we get that [(we e, b*a id)a(z)] belongs to Ng; defining G by the formula given in (i),
we obtain, for z, 2/, in ‘)JYKTO NNy,, ¢, ¢ in D(Hy, ), v°), that
(G(Ay, (2) s OIG(Ay, (2) s ¢))

0

is equal to

> (Asf(wee, vea id)a(@)][Ae[(w e, v id)a(z")]) = (Ta(z"2)C|C")

i
or, to (Ay, (z) s@p ¢|Ay, (z') s®, ¢") which implies that this formula defines an isometry
o o
which can be extended by continuity to Hy, ,®, Hy, and does not depend upon the
o

choice of the basis, which is the first result of (i). If n is a unitary in N, (a(n)e;)icr is
another orthogonal (b, v°)-basis of Hy,, and the independence of G from the basis gives
the second and the third formula of (i); let us remark that, for all n € N, b(n) belongs
to A and therefore commutes with s, and that it commutes with A%, and therefore to r;
moreover, as a(b(n)) =1 b(]%a B(n), we easily get the first formula linking G with b(n). If

we suppose now that n is analytic with respect to v, we obtain
G(1 SS%T b(n))(Am () 83?7’ ()= Z €i bQa A‘I’[(wb(n)é»ei b;kva id)a(z)]
= Z €i b®a Ao [(we e, b?va id)a(x)a(azi/z(”))]
= Z €; pQPq J@O&(TL*)J@A@[((JJQQ b;a id)a(x)]
= (14®a B(n))G(Ay, (@) s@r ()
N o
which, by continuity, finishes the proof of (i). We then obtain
(1 ¥Sa Joedp)G(Ay, () i(?’“ )= € 1®a JoeJohe((we.e, e a(z))
0 i v
= Zei QR (WC,GI b;’;a Zd)a(l‘)J.@A@(@)
= a(2)(¢ @ Joha(e))
which is (ii). We then get
(w<7</ b*Na Zd)a(.T)J@Aq)(e) = J@GJ@(id * wAdq (@@/)(G)C

from which we deduce (iii).
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On the other hand, using again (ii), we get
(150 JoeJs)a(a)G(Ay, (z) sBr ¢) =a(a’)(1 b@a Joea)G(Ay, (2) sBr ¢)

= a(a')a(z)(Cs@a JsAo(e))

= a(a'z)(Cv®a JsAa(e))

= (1 pRa J<I>6J<I>)G(A¢1 (a’x) 5@ C)
N o

= (]— pQa J<I>6J'J>)G(a/ s®p 1)(A¢’1 (:E) sQr C)
N As o

from which we get, by continuity:
(1p®a J¢eJ¢)a(a')(G) = (1p®a J@GJ@)G(a' @ 1)
N N Aa

and making e go weakly to 1, we get the first result of (iv).
Let ¢ € D(oH,v), n € D(Hg,v°) N D(67/2), such that §~/2n belongs to D(,H,v);
using (iii), we get that

(i *id)[(J 6%a SHW=(J p%a N(@ny, @).¢ *id)(G)C

is equal to
(wne #id)[(J p®a )W (J p@a J)|Ao[(we ¢ b*a id)a(z)]
N N N
which, using ([E5], 4.3), is equal to
A@[(Zd B*a w571/2n’£)r((w€7</ b¥*a zd)a(x))} = A@[(WQC/ b¥q zd)a((zd B*a w571/2n’£)a($)]
N N N N
which, using (iii) again, and ([E5], 8.4), is equal to
ya(@).¢' * 1) (G)C = (Wiidnwn ) (Vi) Ay, (2).¢ * 1d)(G)C

w )
( Ay, [(1d/3;aw571/2"7§

from which we get, by continuity:

(wn,g * Zd)[(J B%a J)W*(J 5%@ J)](w/\wl (x),¢" * Zd)(G) = (W(id*wn,g)(Vw)Awl (y),C" * Zd)(G)

which, by continuity and density, remains true for any n € D(Hg, v°).
Using we get, by continuity and density:

(150 (wy¢ * id)[(J 58a JYW(J #9a NG
= G(ma(1p®a (wne * id)[(J BQa j)W*(jﬁ’@& D)) 5@, 1).
N N N Aa

Using now [2.2] we get that the weak closure of the linear span of all operators of the form
(wn.e *1d)[(J pRa J)W*(J g®4 J)], for all £ € D(oH,v), n € D(Hg,v°), is equal to the
N N

von Neumann algebra M ; therefore, we get, for all Y € M ' that
(1R Y)G =G (m4(1 484 Y) s®; 1)
N N A

which finishes the proof of (iv).
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From (iv), we get that
(1R Y)GG" = G(mq(1p®4 Y) s®, 1)G*
N N Aa

and that the projection GG* commutes with 1 ,®,, M ; using same arguments, we get
N

that GG* commutes with a(A), and therefore it commutes with A x4 &. So, we get that

the map which sends Z € A x4 & on G*ZG is a x-homomorphism, which is equal to

ma(Z) for any Z = 1,8, Y, with Y € M’; using [3.6] we get that the same property holds
N

if Z = a(a’); therefore, it is true for any Z € A x4 &, which is (v).
Let us remark that, because 17 is d-invariant (3.2]), we have ([E6], 3.2(ii)):

it it —it
A:lh =AYy, b(}%a (0Az)™"
where this relative tensor product of operators means that it is possible to define a

bounded operator with natural values on elementary tensors. With the same definition
of relative tensors of operators, we have (2.6) Alf, = AY (®, Alf . Using these remaks,
Aa

we get, using (iii), for any x in My, NNy, and ¢, ¢’ in D((Hy, s, v°), that
(Wi, ()¢ * id) (AL GALT)C = (5%)—”(%;?% (o). a50 ¢ * id)(G)A ¢
= (5g) " Aa((wasrasiie e id)alo} ().
As 9 is 0-invariant, we have ([E5], 88(iii)), for all t € R and z € A:
a(o}" (z)) = (o} pa 70 ol )a(z)
and therefore we have, using (iii):
(Wi, (@), * i) (A GALNC = (005) " Ap (o) ol [(we.e va id)a(x)])
which, using using ([E5], 3.8(vii) and (vi)) is equal to
(085) AT 2P A (070 [(we.cr v id)a(@)])
= (6AG) N2 PINY25 J5 6" T Ao [ (we ¢ v¥a id)a()])
which, using ([E5], 3.10 (vii)) and again (iii), is equal to
Ao [(we ¢ pra id)a(z)]) = (wWa,, (2),¢ *id)(G)¢
which gives (vi). As (vii) has been proved as well, this finishes the proof. m

3.9. Theorem. Let (b,a) an integrable action of & on a von Neumann algebra A, 7,
the Galois homomorphism associated by [3-6 from the crossed product A x4 & onto the
von Neumann algebra s(A®)" obtained by the basic construction made from the inclusion
A% C A; let Yo be a normal semi-finite faithful weight on A%, and 1 = g o Ty; let us
define the representation a of N on Hy, by, forn € N:

a(n) = Jy, b(n*)Jy, .

Let us write r for the injection of A into A, and s for the antirepresentation of A%
on Hy, given, for a € A%, by s(a) = Jy,r(a*)Jy,, and let G be the isometry from
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Hy, s®, Hy, into Hy, y®4 H constructed in ' let 19 be the weight 11 o Ty where Ty is
) v

the operator-valued weight from s(A®) onto A obtained by the basic construction @
Then:

(i) For any & € D(oH,v), n € D(Hg,v°) such that (wey * id)(W?) belongs to Ng..,
and for any z in My, , we have

G (A, (2) 1B Age[(wen + id) (W) = Ay, [Ta((1 180 (wep *id) (W?))al2)].

(i1) For any X € N5, ma(X) belongs to Ny,, and
G, (X) = Ay, (ma (X))
(iit) G*J 5, = Jy,G*.

(iv) The projection GG* is equal to the support p of mq; let us consider my as an
isomorphism between (A x4 ®), and s(A®)'; then, this isomorphism sends the weight 11,

to ’(/)2.
Proof. Let z, y be in the Tomita algebra Ty, 1,; we get that the scalar product

(G*(Ay, (2) @0 Ag.[(weg *id)[(J a®5 JYW (S a@p J)]])[Ay, (2) s@r Ay, (1))
N No Ne o

is equal to

(Mg, (2) 100 Agel(wey % id)[(J a5 W (T 0a@s HG(Ay, (@) 57 Ay, (1))
N Neo Ne o

or, to
(Agel(weq * id)[(J a®z JYW (T ”‘f,% D@y, @4y, =) * i) (G) Ay, (1))
Neo °

which, using iii), is equal to
(Age[(we.p xid)[(J afi@ IYW (J aﬁ%ﬂ j)]“A‘I’((WAwl ()Au, (2) b0 id)a(z)).
If, moreover, 7 belongs to D(6-1/2), we get, using that it is equal to
(El(Way, @).Ay, () b;“va id)a(z)6~"/?n)

and if moreover §—1/2

71 belongs to D(,H,v), this is equal to

(A ()[(id pxa w-172q ) a(@) Ay, (y) = 1 (y" (id pra we 5-1/29)a(27)2)

= 1 ((id b we 5-1/2p)a(z") 204 (y"))

= (2, (@ (5D (i 2, )a0)

which, using [2.4] and the standard implementation associated to the weight 11, thanks
to[3.2] is equal to

(28, (023 (")) (i % .6 (Vg ) Ay, (2))
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and, by continuity, we get that the equality

3 IW 0@ DDir (@) 12 A (1)
o Ne Yo

(G* (A, (2) b®a Age[(we,n *id)[(J o
N N
= (20, (03 (")) |(id * wp ) (Vi, ) Ays, (2))
= ((id * we,n) (V)2 Ay, (023 (y7) Ay, (2))
remains true for the initial hypothesis on & and 7. Therefore, we get, using [3.6] that this
scalar product is equal to

(mal(L 60 [(wey *id)[(J a®5 HW (T a®p ]a(2)]Ay, (02 (7)) Ay, (2))
N Neo No

which, using is equal to

Ay (Tal(16@0a [(wey * 1d)[(J a®p )W (S a®p J)]]a(2)])[Ay, (2) s@r Ay, (y))
N No Ne o

which, by continuity and density, gives (i). By density, we get, using that, for any
z € Ny, and a € Ng. NN}, we have

G, (1680 a)af2)) = G7 (A, (2) 18 Age(a) = Ay, (Ta[(11@a a)a(2)]).
The linear set generated by elements of the form (1 ,®q a)a(z), with a € Ng. N Ny
N

and z € Ny, , is a core for A; ([EB], 10.8(ii)). So, if X € N , there exists elements
a; € Ng. NNy and z; € My, such that the finite sums ), (1 ,®q a;)a(z;) are weakly
N
converging to X, and >, A [(15®q a;)a(z;)] is converging to A (X). But then, on one
N
hand, 74 (3", (1s®aqai)a(z;)) is converging to mq(X), and on the other hand, the finite sums
N

2 Ay (mal(1 0@ ag)alzi)]) = 325 G7(Ay;, [(1 6@ as)a(zi)] are converging. So, applying
the closed graph theorem to the closed map Ay,, we get (ii). If now X € N N m’&;l, we
get that mq(X) belongs to 9y, NNy, , and that G*S; A (X) = Sy, G*A 5 (X). So, we
have G*S; C Sy,G*; using now vii)7 we get (iii).

Using (iii), we get that J5, GG™J ;5 = GG™; as, in V), we have obtained that GG*
belongs to (A x4 &), we get that GG* € Z(A x4 ®). Using then v) again, we see
that, for any X € A x4 &, we have XGG* = Gmy(X)G*, and therefore that 74(X) = 0 if

and only if XGG* = 0, from which we get that GG* is equal to the support of 7 . Using
then (ii), we finish the proof. m

3.10. Lemma. With the hypothesis and notations of we get, for any m € M':
14®, ma(16@a m) = G*Vy, [1 .25 JR(m*)J]V}, G.
Ae N N

Proof. Using [-9(iii), B-8(iv) and we get
Gl 4@, Ta(1 @0 m)] = G[1 4@y Jy, Ta(1 5@a RE(M*)) Iy, ]
Aa N As N

= Gy, [ma(16®a B (M) s©p 1] Jy,
N N

= J 5, Glra(1 @0 R(m*)) @y 1)y,
N N
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= JQﬁl [1 b%a Rc(m*)]G‘]’sz = Jq/;l [1 b%a ]A%C(m*)]JM;IG
= Vo[ JRE(m) 1V,
ND
from which, G being an isometry, we get the result. m

3.11. Definitions. Let (b,a) be an integrable action of a measured quantum groupoid
® on a von Neumann algebra A, A x, & be the crossed product, 7, be the Galois homo-
morphism from A x4, & onto the algebra s(A®)’ obtained by the standard construction
made from the inclusion A* C A , and G be the isometry constructed in then,
using iv), we get that the following properties are equivalent:

(i) mq is an isomorphism between A x4 & and s(A%)’;

(ii) the isometry G is a unitary;

(iii) the inclusion A® ,®4 1y C a(A4) C A X, & is standard, and the operator-valued
N

weight T3 is obtained from T, by this standard construction.

In that situation, following [DCI1], we shall say that (b, a) is a Galois action of &, and
that the A* — N°-bimodule A will be called a Galois bimodule for &, and the unitary
G = 0,G from Hy, s®, Hy, onto H ,®y Hy, will be called its Galois unitary. Then, it

Yo ve

is clear that the representation p of M' on Hy, , defined in is faithful.

Moreover, a normal semi-finite faithful weight g on A% will be called a-relatively
invariant, if there exists a normal semi-finite faithful weight ¢ on A, invariant by a,
and having the density property, such that the two automorphism groups ¢® and o¥*
on A commute (where ¥ = g o Ty). In that situation, we shall say that the 5-uple
(A,b,a,¢,10) is a Galois system for &. Then, thanks to [V1], we know that there exists
a positive operator 04 affiliated to A, and a positive operator A4 affiliated to Z(A) such
that )

(Do : D), = Ny /°6%
We shall call §4 the modulus of the action (b,a), and A the scaling operator of the
action.

Starting from a left action (a,b), we get the notion of left Galois system and that
(A, a,b,¢,10) is left Galois if and only if (A°,a°, (onb)?, ¢°,¢§) is Galois, and (A,b,a,
¢,10) is Galois if and only if (A°,b°, 0n5a°, ¢°,1]) is left-Galois.

3.12. Examples. (i) Let (b, a) be any action of & on a von Neumann algebra A; then
Qi there exists an action (1,®4 @&, @) of &¢ on the crossed product A x4 &. This action
N
is integrable ([E5], 9.8); we have (A x4 ) = a(A) ([E5], 11.5), and as the inclusion
a(A) C Axy® C ApxoL(H) is depth 2 ([E5], 13.8), we obtain by ([E5], 13.9) that the dual
N
action (1,®4 &, a) is a Galois action of QA§C, with a(4) C AXq® and 1,Q,&(N) C Axy &
N N
as Galois bimodule.

(ii) In particular ([E5], 9.5) we get that (3,T") is a Galois action of &, with a(N) C M
and B(N) C M as Galois bimodule. Moreover, we get that (M, 3,T,® o R,v) is a Galois
system for &. Then, we can easily check that MT = a(NN), that the operator-valued
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weight TT is equal to the left-invariant weight 77, and therefore that ¥, = ®, a = &,
r=q, §= B, Vg, = cWo, mr = id, and G=W.

(iii) If (b, a) is an integrable outer action of & on A, then, (b, a) is Galois: let G be the
isometry constructed in as, by definition ([E7]), we have Ax,BNa(A) = 11,%&&(N),

we get, by that there exists a projection p € Z(N) such that GG* = 1 ,®, &(p) is
N
the support of 74; using [3.8] we get that p = 1, which gives the injectivity of m,.

3.13. Lemma. (i) Let (b,a) be a Galois action of the measured quantum groupoid &
on the von Neumann algebra A; let ¢ = g o Ty, Vi, the standard implementation of a
associated to , and G the Galois unitary of the Galois system. Then

é(fwg (J¢1 Sfﬁr le) = JVV¢IJVo(j a]\%b le)é.

(ii) Let W be the pseudo-multiplicative unitary of &, W° be the pseudo-multiplicative
unitary of &°, W be the pseudo-multiplicative unitary of &. We have

Woye(J j@a J) =W (J a2 J)W.
N N°

Proof. Using [3.9(iii) and we have
O-Véo-’l/)S(JlZJl 8%‘7' ']’l/Jl) = GJ¢2 = JiﬁlG =V, (le b%(x j)G = Vy, 000 (j a]\(]gib ']'1111)6

from which we get (i). Using|3.12[(ii), we obtain (ii). m

4. From Galois actions to (Galois systems and back. In this chapter, we suppose
that we have a Galois action (b, a) of a measured quantum groupoid & on a von Neumann
algebra A, and a normal semi-finite faithful weight 1y on A%, such that the subspace
D((Hy, )p,v°) N D(Hy, , 1) is dense in Hy,, where 1)1 = 1 o Tq. We then prove that
right leg of the Galois unitary introduced in[3.1]generates A and that this unitary satisfies
a pentagonal relation . This allows us to prove, in some particular cases
that there exists then a normal semi-finite faithful weight ¢ on A such that (A, b, a, ¢, 1)
is a Galois system for &. Conversely, if there exists a Galois system (A, b, a, ¢, 1) for &,
then the weight 1)y satisfies this density property .

4.1. Definition. Let (b,a) be a Galois action of the quantum groupoid & on a von
Neumann algebra A; let 1)y a normal semi-finite faithful weight on A%; let us write ¢, =
g o Ty, r for the injection of A% into A. We shall say that the weight 1y has the Galois
density property if the subspace D((Hy, ), v°) N D(Hy, ,10) is dense in Hy, .

4.2. Theorem. Let (b,a) be a Galois action of the measured quantum groupoid & on a
von Neumann algebra A; let 1o a normal semi-finite faithful weight on A%, having the
Galois density property, in the sense of' let G be the Galois unitary of (b,a), from
Hy, Sfr Hy, onto H ®y Hy,, as defined in|5.11. We have:

0 ve

(1) For any ¢ € D((Hy,)»,v°) N D(+Hy,,%0), ¢ in D((Hy,)s,v°), n € H, x in
My, NNr,, we have

(G(Ay, (2) o®r Ol a®s ¢') = (Aa[(we,e v*a id)a()]n)

0
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and therefore
(id * we,) (G)Av, (2) = Ao [(we.cr o id)a()].

(i1) For any x € My, NNy, y € No NNy, £ € D(,H,v), we have

(WA, (@) oy Jue * 1d)(G) = (id ba W1 Ag (y),e) ().
(iii) For any © € My, NI, y, z in Ne NNy, we have

1 P1
(Way, (), 7o Aa (y72) * WD) (G)" = (WA, (@%) 70 e (zy) * 1) (G)-
(i) The two unitaries (1 4@, G)(G (@, 1) and
Ne Ae
(W o®p 1)0>2 (G ,@4 1)(1 4@y 0,0)(1 s@1 G)
Ne o, N Aa Aa
from Hy, @, Hy, s®, Hy, to H ,®g H ®y Hy,, are equal.
Yo Yo vo ve

Proof. Using|3.8(iii) and the definition of G, we get (i) by a direct calculation. Using (i),
we then get

(WA, (@) oy Jue * 1) (G)CIC) = (G(Ay, (x) 9®T OlJay* Jo& o®b ¢’)
= (Ap(we,¢r b]*V ld) ()| Joy" Ja&)

= oy Jehe(we e vroid)a@))c)

= ((wer vxa id)alz )J<1>A<1>( )I€)

((ldb* Wiy A (y),€)a(@)CIC)

from which we get (ii). Using (ii), we get

x)*

x")

= (U.)Awl (I*),J@A@(z*’y) * Zd)(é)

(@A, (@), J0 Aoy =) * id)(G)" = (id e W A (). JwAw (2)) 8
(

- (Zd b;’i]oc wJ@A@(Z),J@A@(y))a

from which we get (iii).
Let v € D(Hg,v°), w € D(oH,v) N D(Hg,v°), ¢ € D((Hy,)p,v°) N D(Hy,,0),
x € Ny, NNy, ; we have, using (i) and ([E5], 3.10 (i)):

(i % w,00) (W) i we.¢0) (G) A (2) = (0 % wo,0) (W) Aal(w,cr v id)a(a)

= No[(wo,w p*a id)I[(we ¢ b*a id)a(x)]]
N N

= Ao[(we,cr b¥a Wo,w g*a 1d)(a pkq id)a(x)]
N N N

= Aa[((wWow ok wier) o svaja(2)]

Using (iv), we get that, for all y € A:
(wvﬂﬂ %\;kob WC,C’) o CNG)( ) (é(y s®r )G (U a(go)b C)lw a(gib C/)
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Let (e;)ier be an orthogonal (r,1)-basis for Hy,; there exists (v;);er and (w;);er in Hy,,
such that

a®b< sz s®'r €i, é a®b< sz 5®7‘ €i-

Using the intertwining properties given in 1), we get, for all n € N:

Z Ib(r)vs]|* = || Z b(n)v; o eill* = [|(b(n) sSr DG (v @y olly
= [|G*(B(n)v By Ol = 118(n)v oDy ¢l®

and therefore as ¢ is in D((Hy, ), v°) and v is in D(Hg,v°), we get that each v; is in
D((Hy, )b, v°), and the same result holds for the w;s.
On the other hand, for any z € A%, we get

S Il = 1Yo @ eil?
= 1(2) o2y DO (v a2 O
= 16" (W ae ()OI = a0 ()¢

and therefore as v is in D(oH,v) and ¢ is in D(,Hy,, %), we get that each v; is in

D(THzlu ) ’L/)O)
So, we get that there exists v; in D((Hy, )b, v°)ND( Hy, , %0), and w; in D((Hy, ), v°),
such that, for all y € A, we have

(wo,w 0¥ we.er) osnaly) = Y (yvilw;)
%

and therefore (wy . (f\;kob We,er) OSNA = Wy, w, - S0, We get
(5 60000) ()i 06, ) (@) () = Al o2 06 0 Swa)a(e)]
= ZA¢ W, i b*a id)a(z)]
—Zz*wvlwl G)Ay, (x)

and therefore for all n € H, we have
(1 % ) (W) (i % o ¢ ) (G Ags, () 1) = Z((i % W, ) (G) Ay, (2)])

E A% ®7' Ui)ln @b wi)
o ve
which is equal to

Z((é s;‘gir 1)(Aw1( ) s®r (% s%r el)|7’ a®b w; s®r ez)
0 o

= ((é s@p 1)(1 5@y G*)(Awl () s@r (v a®p O)|(1 oa®p é*)(n a®,@ W oXp C/))
Ad Aa Yo Vo Neo o

vo

i
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On the other hand, we get that

(i 5 w00 ) (W) (id 5w, ) (G Ay, (@) |m) = ((id * we, ) (G)Ay, (@)[(i wﬁv)(W)*n)
= (G(Ay, (2) s®r O * wow) (W)™ a®s ¢')

is, using again i), equal to
(O’a’B(G p®a 1)(1 sOr Uu")[Albl (.73) sQr (U @b C)H(/W* a®p 1)(77 a®3 W o®p CI)
’ N A Yo ve Ne Vo ve

where 02’3/3 is the flip from (H az\%b Hy,) Q%Q H onto (H B%a H) a]\%b Hy,, exchanging

)

the second and the third leg, and a with B m

From which we get that
(1 a®p G)(G s@r 1)(1 5@y é*)([Aw1 (7) s@r (v a®p C)]\n a®3 W o p CI)
No Aa Aa o vo o o
is equal to
(W a®b 1)02,%(@ p®a 1)(1 @y UV”)[Awl (7) s®r (v a®sp C)]In a®/3 W o®p CI)
No B N Aa Yo vo o vo

and therefore that
(W o®b 1)02’%(6 3P0 1)(1 5@y 00) (1 4@, G) = (1 4@ G)(G 4@, 1).
No @, N As Ae No Ana

4.3. Corollary. Let (b,a) be a Galois action of the measured quantum groupoid & on
a von Neumann algebra A; let 1y a normal semi-finite faithful weight on A%, having the
Galois density property defined in [[1]; let us write 11 = g o Ty, and let us write r for
the injection of A® in A, and s for the antirepresentation s(z) = Jy,r(x*)Jy, of A* on
Hy,; let G be the Galois unitary of (b, a), from Hy, S®,. Hy, onto Ha®b Hy,, as defined

in . Then, the linear space generated by the elements of the form (w¢ ¢ *id)(G ) for
all ¢ in D((Hy,)s,¥§), and ' € D(oH,v) is weakly dense in A.

Proof. Let us first look at the product of two elements of that form. Let (3 € D((Hy, )s, ¥§)
and ¢ € D(oH,v); let &, n be in Hy,. Then

(we.¢ *id)(G)(wey ¢p * id)(G)Eln)
([02%(G 4®a D(L @1 0,0 (1 @ ¢ s & cls®r£)\(<’g®a ¢1) «®p 1)
PN A v g

which, using [£.2{iv), is equal to

(1625 G)G 5@, 1)(C5®7 1 5@ OIW 0@ D¢ 580 1) @5 7))-
Ne As o o (A%)e v »g

Let (e;)ier be an orthogonal (v, v)-basis. As in ([E3], 3.4), we can prove that there exist
(Ci)ier € D((Hy,)s,¥§) and (])ier € D(oH,v) such that

C ®r Cl Zez a®b glv W 3®a Cl Zez a®6 sz
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and therefore we get that
(we.cr * id) (G) (we, ¢ *id)(G)Elm) =Y (we, ¢ * id)(G)E|m)

K3

which proves that the product (w¢ ¢ *id)(G)(we, ¢; *id)(G) is the weak limit of the finite

sums (we, ¢/ * id)(G). So, by continuity, we get that the weak closure of the linear space

generated by the elements of the form (w¢ ¢ * id)(G), for all ¢ in D((Hy,)s,¥§), and
¢’ € D(4H,v) is an algebra.

Using ii), we get, on one hand, that all the operators of the form (we, ¢ * id)(G)
(with (o € D((Hy,)s,¥§)) belong to A, and on the other hand, that the closure of the
linear set generated by these operators is the closure of the set of all operators (id b;kva

wer ¢r)a(z), for all (', (" in D(oH,v), and = € A, and is therefore invariant by taking
the adjoint, and that it contains all operators b(< ¢”,(" >p0) = (id pxq wer cr)a(l).
N

Therefore, it is a sub-von Neumann algebra B of A which contains b(N). If now X € B,
we get that X ,®, 1 belongs to a(A) Nb(N) y®a 1 = a(A) N L(Hy, ) p*a a(N), which is
N N N

equal to the commutant (a(A) U1y, »®q a(N)')". Thanks to ([E5], 11.5(ii)), we have
N
(a(4) UL, 10 a(N))" = Ayt L(H)

and therefore we get that (a(A) U1y, »®a a(N)) = A" @, 1. So, any X € B’ belongs
N N
to A’, and we finally get that B = A, which finishes the proof. =

4.4. Proposition. With the assumptions of [{.3 let us write
K = G*(Jp6" Jp o @3 1)G.
NO

Let Ty be the canonical operator-valued weight from s(A%)" onto A obtained by the basic
construction from Ty, and 1o = 11 o Ts. Then:

(i) The one-parameter group of unitaries K on Hy, SSE)T Hy, belongs to A’ S:r A.

S a

(ii) There exists a one-parameter group of automorphisms p: of s(A*)" such that, for

all y € s(A%), we have
Klt(y sQr ]-)Kiit = pt(y) sQr 1
Ae Ae

with p(x) =z, for all x € A.

(iii) For any y € s(A%)'", we have 19 0 pi(y) = 2(b(q)~ty), where q belongs to Z(N)
and is such that the scaling operator of & is A = a(q) = B(q), and b(q) € Z(A), and

Ta(pe(y)) = b(a) ™" T2(y)- ,
(iv) Let us identify Hy, and Hy, @, Hy, ; then K® is the standard implemen-
%o

tation of pt, and therefore
KAy, (X) = Ay (0(9)2pe(X)
for any X € Ny,, and
UwS(le sj%r th)Kit(le (71’4(%)590 le)%o =K"
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(v) It is possible to define a one-parameter group of unitaries K% 1 g @4 6% on
AQ

v
Hy, «@r Hy, 1@ H, with natural values on elementary tensors; moreover, we have
Po v

(id g%, a)(K™) = K" | g @4 6.
Aa AQ

(vi) For any st in R, we have (A} s;X)T Af;l)(K”)(A ft s®r Ay ) K.
0

Proof. By a straightforward application of iv), we get that K% belongs to £(Hy,) s*
Aa
A; moreover, using [3.§|v), we get, for any X € A x, &, that
K (ma(X) s@, VK~ = K"G*XGK ™"

Aa

and therefore if X = a(z), with € A, we have, using [3.8|(iv):
Kz @, DK™ = G*(1 @4 Jo6" Jp)a(z)(1 @4 Jod " J3)G = G*a(z)G =z (@, 1
As N N As

from which we finish the proof of (i).

Using ([EB], 3.11(ii)), we get that, for any a € M, that 6"ad~* = 7_,0®9%(a), and
doR

applying this result to (’3, we get that §°bd~" = 7_,0®9E(b), for any b in J\/4\; moreover,
using now ([E5], 3.10(iv)), we get that
Jp0 JpbJpd " Jp = 7,02 (b)
and that, for any c in J\/Z'7 J30% JpcJpd " Jp belongs to J\/Z’, and more precisely, that
Jpd JpcJpd "t Jp = 72,02 (c)
from which we infer that the one-parameter group of unitaries 1 b%a Jo6% Jp implements

a one-parameter group of automorphisms of A x4, &; which gives (ii), thanks to (iv).
Then, using ([E5], 13.4, and 3.8(vii) applied to &°), we get that, for any z € M, and
c € Ng., we get that

’Lfﬁ:[(l R J@(Sith>)Cl($*)(1 b®a C*C)Cl(l‘)(l »Qa J@(s_itJ@) =
N N
1Ay, (2) 1@a Ag 5 (7,07 ()% = | Ay, () b®a Age(AT20)|?
= 1 [a(z*)(1 b Aere)a(z)]
from which we get, using again ([E5], 13.4), that
rl(11@0 28" Ja) X (1400 Jod ™" Ja)] = (148 A~)X)

for any X € zmg .
As A = a(q) = B(q) is affiliated to Z(M) ([E5], 3.8(vi)), we get that 1,®, A = a(b(q)),
N

and that b(q) is affiliated to Z(A). Using now we get the result.
Using now ([E5], 3.10(vii) and again 13.4), we get that (1,®, J3d Jg) is the standard
N

implementation of Ad((1 b%a Jq>(5ith>)‘A>4aQ5 on Hy, y®q H (which is identified with Hu;l
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by ([E5], 13.4). Therefore, using again we get that K% is the standard implementation
of pt; thanks to (iii), we finish the proof of (iv).

Similarly, using again ([E5], 3.8 (i) and (v)), we get a(n)dé® = §a(y0¥(n)); as v is
invariant under ~; ([E5], 3.8 (v)), there exists a one-parameter group of unitaries A% on
H,, such that, for alln € M, we gave A, (1;0¥ (n)) = h*A,(n), and h¥*mh~=" = ~,0¥ (m),
for all m € N; therefore, if 7 is in D(,H,v), it is straightforward to get that §%n belongs
also to D(,H,v); more precisely, we have then:

R¥¥(8"n) Ay (n) = a(n)d''n = 6" a(yof (n))n = 6" R (n)h" A, (n)
from which we infer that R*"(§'n) = §**R*¥(n)h", and if n, n’ belong to D(,H,v),

we get that < 6''n,d"n’ >9 = y_0¥ (< n,n" >2,,). From which we get, for all £, & in
Hy, s®; Hy,, using (ii), that
%o

(Kltg 151;8;7-b®a 6””7‘[(”5/ lsﬁrb®a 6“77/) = ((1 SS%T b(’y,tait(< m, 77/ >g,u)))Kit£|€l)

= (K18, b(< ) 6, TS

= (£ 1.8 b®a nl¢’ 1.8,6%0 n')

v v

from which we get the first result of (v).
Using now [3.8(iv) and (iv), we get that (id 4, sya)(K®) is equal to
Aa

(W o 1)02;(6 3P0 1)(1 5@y 00)]" (1 a®b G) (Jo0" Jo 0a®@p 1 s@r 1)(1 a®p G)* ...
Ne &, N Ae N N Ae N

(W @ 1)0%3 (G 4@a 1)(1 5@ 00)
No B N Ao

and is therefore equal to

[02%(C 4®a 1)(1 @, 0o ) [ (W* (Jp6™ Jp a®p D)W o@p 1) ...
’ N Ae No No

[02733(@ 3®a 1)(1 4@, 0,0)].
o N Ae
Using ([E5], successively 3.10 (vii), 3.11 (iii), 3.6 and 3.8 (vi)) we get
W*(Jp6" Jp a®s D)W = 0,0 W (1 504 Jo6 Jo)W* o0
Ne N

=00 (J p®a Jo)W* (1 pR0 6" YW (J 0@ Jo)owe
v N o

v

=00 (J p®a Ja)T(0")(J 0®5 Jo)oue

v

=000 (J p®a Ja)(6" 5@a 8")(J 0a®j Jo)oue

v

= J@(Sitlp /@@a jé”j = J<1>(5ith> B®O‘ 5t
N N

from which we get the second result of (v).



140 M. ENOCK

Using (iv) and ([E5], 3.11(ii)), we get that (Al f? ALK (A, 3}9 ALY s
equal to
(Al ©r DG (Jed™ Jp @y 1GAL ®r AL
=G*((605) " Jp6" Jo(605)" o DG = G*(Jp0" Jp o G
which is (vi). m

4.5. Theorem. Let’s suppose again the assumptions of@ and@' let K% be the one-
parameter group of unitaries on Hy, @, Hy, defined in ﬁ let us suppose that there
o

exists a positive non-singular operator 6 o affiliated to A such that we have, for allt € R:
K = Jy, 6%y, % 4.
Then:
(i) It is possible to define a one-parameter group of unitaries 8% y®4 0" on Hy, y®@q H,
with natural values on elementary tensors; moreover, Y Y
a(6%) = 0% @4 0.
v

(ii) For all s, t in R, we have o¥1(8%) = b(q)**t5%.

(iii) There exists a normal semi-finite faithful weight ¢ on A such that (A,b,a, $, 1)
is a Galois system. Moreover, the modulus of this Galois action is the operator §4, and
the scaling operator is equal to b(q), where ¢ € Z(N) is such that a(q) = B(q) = A, the
scaling operator of &.

Proof. Using V)7 we easily get (i). Using now [E5], 8.8(iii), we get that a(a¥1(54)%) =
a¥1(54)" 4@ 6%, and therefore that o¥1(54)"*5," belongs to r(A®).

So, there exists knr(A®) such that o¥1(6%) = k*st§i = §if kst

Let us write k = [, Adey, and let us put f, = ff}n dey; then using ([EF], 2.2.2), we

get that, for any x € 9y, NNy, zf, k%2 is bounded and belongs to N7, NNy, , and
with same arguments, we get that z f,k~*/ 252” belongs also to 91pq NNy, . We then get
that

Ty 8% T Az, (@ fn) = A, (2 k™26
and therefore with the notations of [1.4{(ii):
pe(Ar, (@ fo)Ar, (2 f2)") = A, (2 fuk ™26 3" ) Ar, (2 fuk =25 ,)"
from which we get that
Tape(Ar, (xfu) A7, (2 fn)") = xfuk ™" 2"
and, on the other hand, using iii), we have, using the fact that b(q) is affiliated to
Z(A):
Tape(Ar, (xfr)Ar, (2 fn)*) = b(q)_txfn]:* = $fnb(Q)_tx*

from which we easily deduce that k = b(q), which finishes the proof of (ii).
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Using [V1], we get that there is a normal semi-finite faithful weight ¢ on A, such
that (D¢ : Dyn )y = b(q)”2/25f§, and that the modular groups ¢ and o%* commute. If
x € Ny is such that x(ﬁ‘/ % is bounded, then this last operator belongs to 91y, and we
can identify Ay(z) with Ay, (:175114/2) and Jy with b(q)"/*Jy,; we shall denote, for n € N,
a(n) = leb(n*)le = J¢b(n*)J¢

For x € My and n € D(,H,v) N D(Hg,v°) N D(6/2), such that §~1/2n belongs to
D(oH,v), we have, using these remarks, and the fact that 1, is d-invariant, (iii):

106(@) a@s nll* = 1A, (26%) a3
= (U1t w5172, (@0 2" 20{?)]
= (W1 wta w5172, [04 180 8Y/)a(a"2) (0% 100 61/%)
= (6 4% wy)la(a")

which remains true for any n € D(,H,v) N D(Hpg,v°), and gives then, using ([E6], 7.6)
that the weight ¢ is invariant under a, which finishes the proof. m

4.6. Corollary. Let (b,a) be a Galois action of the measured quantum groupoid & on a
von Neumann algebra A; let 1y be a normal semi-finite faithful weight on A%, having the
Galois density property defined in[_1]; let p; be the one-parameter group of automorphisms
of s(A*) defined in . Let us suppose that this one-parameter group is inner. Then:

(i) there exists a non-singular positive operator 64 affiliated to AN r(A*) such that
K™ = Jy, 64Ty, &, 04.
Aa

(ii) There exists a normal semi-finite faithful weight ¢ on A such that (A,b,a,d, 1)
is a Galois system.

Proof. As pi(x) =z for allz € A, we get that there exists a positive non-singular operator
04 affiliated to ANr(A®%) such that, for all z € s(A%)’, we have

pe(@) = Sy, 0% T, Ty, 05" Ty,
and then, using [£.4(iv), we have (i). Result (ii) is then a direct corollary of [£.5[iii). m

4.7. Corollary. Let (b,a) be a Galois action of the measured quantum groupoid & on
a von Neumann algebra A; let us suppose that the invariant subalgebra A% is a finite
sum of factors (in particular, if A® is finite dimensional); let 1y be a normal semi-finite
faithful weight on A%, having the Galois density property defined in[[.1}; then, there exists
a normal semi-finte faithful weight ¢ on A such that (A, b, a,¢,10) is a Galois system.

Proof. The center Z(s(A%)’) is equal to s(Z(A®)); if A® = @, F; (with a finite set I), we
get that Z(A%) = @&;¢;C, and that any automorphism of Z(s(A%)") gives a permutation
in the set I; therefore, the restriction of the one-parameter group p; defined in to
this center gives a continuous function p from R to the set &(I) (with the pointwise
topology); as p~1(id) is open, closed, non-empty, we get that p; acts identically on the
center Z(s(A®)); therefore, p, is inner, by ([StZ], 8.11), and we get the result by [4.6] m
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4.8. Theorem. Let (b,a) be a Galois action of the measured quantum groupoid & on a
von Neumann algebra A; let 1y be a normal semi-finite faithful weight on A®, having the
Galois density property defined in ' let G be the Galois unitary of (b,a), as defined in
' let 1 = g o Ty, and 1/;1 its dual weight on the crossed product A x4 &. Then:

(i) For all s, t in R, we have
P (1 s JET) = 1 y80 JE° T,
N N
(i) There exists a one-parameter group of unitaries Py = Al mq((1 b%a Jo—it])

on Hy, , which defines a one-parameter group 2 of automorphism of A defined, for all
X € A, by TA(X) = PLAP™. For any x € A%, we have 7{*(x) = o (z), and for all
n € N, we have 7*(b(n)) = b(o¥ (n)).

(iii) For all t € R, we have

(7 (X)) = (0" bt 0 )a(X) = (7 vra T)a(X),
a0} (X)) = (1" v o a(X).

(iv) We have, for any positive X € A:
Y107 (X) = ¢ (b(q) ' X)

where q is the positive non-singular operator affiliated to N such that the scaling operator
A of & satisfies X = a(q) = B(q) ([EF], 3.8(vi)).

(v) For any X € My,, we have P{Ay, (X) = b(q)/?Ay, (/A(X)). So, Pi is the
standard implementation of T/, and Jy, P = PitJy, .

(vi) There exists a one-parameter group of unitaries Py @, Pi on Hy, @, Hy, , with

As Yo

natural values on elementary tensors, and a one-parameter group of unitaries P @y, P}
NL)

on H ®y Hy, , with natural values on elementary tensors, and we have, for all t € R:
o

G(Pi @, Pit) = (P .4 P1)G.
A Neo

Proof. We know ([E6], 3.2) that A:E =AY 1®a (5A§t); from which, using ([E5], 3.11
1 N
(ii), (vii) and (iv)) we get that
oV (1,00 J6J) = (A" @, (BAZ)(14®4 J6*T) (AL @4 (5AR))
N N N N
=1,®@a (084)"(J6" ) (6As) "
N
=1,® AR(JST)AGY
N
10 P (5 )5 T Pt
N

= 14@a PUIS )P = 1480 JH(67)T = 1y@0 S5
N N N
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which gives (i). From (i), and B.9iv) and we get that
02 (10 (1 4@ J6J)) = (144 J67J)
N N
from which we get
A, (ralLs0 JPDAG = ma(1 510 J5)
which gives the commutation of the two one-parameter groups of unitaries AfZl and
Ta(1p®a J&isJ ), and the existence of the one-parameter group of unitaries P.
N

We easily get that a[(1 @4 Jo~#J)a(X)(1,®4 J61.J)] is equal to
N N
(1p®q Jo—itJ a®p jgfitj)(a(X)d(@gl)(l b Qa JotJ a®p jgltj)
N No N No
= [(1p®a JS™T)a(X)(1 4@a J6T)] a®p 1
N N No
from which we get, using ([E5], 10.12), that (1,®4 J6~%.J)a(X)(1,®4 J6t.J) belongs to
N N

a(A), and therefore, that mq(1 @4 J6~*J) X 7a(15@4 J8J) belongs to A, from which it
N N

is straightforward to get that PiX PX“ belongs to A, and gives the existence of 74.
We have

a(r(z)) = alma(1 = J6 )l (x)ma (1 = J6" )
= (1®a JOTHI)(07°(2) 500 1)(1 R4 JOT) = 07°(2) @0 1 = a(o}°(z))
N N N N
from which we get that 77 (z) = o°(
We have, for all n € N:

a(r(b(n))) = afma(1 ¥Za J6~* 1) (b(n))ma(1 ¥Ca J& )]

= a[ma(1 5@ JO )5 0P (b(n)0h 7 (1 R0 J6T)]
N N
= a[ma(1 5@ JOTT)5 (0" (1)) 070 (1 4@0 J6T)]
N N
= (1 vOa jg_itj)((szit v®a 5_“)(1 (Lzope ﬁ((ait(n)))(éﬁ v®a (Sit)(l v&a jS”j)
N N N N N
=1, JO IS B((0”,(n)))5 J5 T
N
=1,®q JO TP (B((0¥,(n)))) 60T
N
= 14@q JO I B(1e(n)) S5 T
N

and therefore we get

a(ri* (b(n))) = 120 Jo " aly(n)6"] = 1480 Jo3 o} (a((n))]

= 1,84 Ja(o] ()] = 1,84 B(o} (n)) = a(b(o} (n)))
N N

which finishes the proof of (ii).
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As, using ([E5], 3.10(vi)), we get that Jé~J is equal to P*A;%, and therefore
implements 7;0%,, we get, using ([E5], 8.8), that

a(r (X)) = (07" pra 025 )a(X).
N
Using ([E5], 3.8 (i) and (ii)), we get that T o 0% = (6®9% %, 7)T, from which we infer
N
(@ p¥a id)a(r{ () = (id o T)a(r{ (X))
N N
= (id p*q 1")(021’1 p¥a 022 a(X)
N N
= (0?1 b 0008 pxg 1) (id pro T)a(X)
N N N
= (00" pra 02T pxy 1) (a pra id)a(X)
N N N
= (a p*q id) (77 pro 7)a(X)
N N
from which we get that a(7/(X)) = (7 pxa 7¢)a(X).
N
Finally, we have
a(ol (X)) = (15®4 JO* D)a(rA(X))(1 p@0a JO7T)
N N
= (id pro T_102) (T2 pra T)a(X) = (772 pxa o2 )a(X)
N N N

which finishes the proof of (iii).
We have, for any positive X € A:

Ta(r (X)) = (id pra ®)a(r (X))
= (id pro ®) (77" v¥a T)a(X) = 7 (id o © 0 7)a(X).
N N N
As o7 (V) = ®(A\'Y) for any positive Y € M ([EF], 3.8 (vii)), we get that it is equal

to 7/ [Ta(b(q) "t X)], and using (ii), to o, °[Ty(b(q) "t X)]; from which we get (iv).
If ¢ is in D(,Hy,,%0), we have, using (3.8(i) and (iv)), and then (iii):

G(ma(1 @0 JO~"T) Ay, (X) s@r Q) = (15®0 JOT) Y~ €i 480 Ao ((we e, v*a id)a(X))
N Yo N - N N

K2

= Z € pQa PitA;itAq>((wC7€i b¥a zd)a(X))
P N N
= Z € pQa )\_t/zAcp [Tto—?t(wC7ei b*a zd)a(X)]
i N N
= Z €; bQq A@((”C,ei b¥a id)a(TtAO—?lX))
P N N
= (1584 A7) G(Ay, (170 24(X)) 51 €)
N

o
from which we get that

ma(1o@a SO~ ) Ay, (X) = bla) ™2 Ay, (703 (X))
N

which gives (v).
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Thanks to (ii), one can easily get that if ¢ belongs to D(,Hy,,%0), so does, for all
t € R, Pi{¢, and that R™%o(Pi() = Pt R0 (C)A;;t. Using then (v), we obtain easily the
existence of the first one-parameter group of unitaries. Using again (ii), we get that, if ¢’
belongs to D((Hy, )s,v°), so does Pi¢’, and that R**"(Pi¢’) = PLRY (¢")A; ™, from
which one gets the existence of the second one-parameter group of unitaries. Moreover,
using successively (v), [£.2(i), (iii), [E6], 3.8(vii) and (vi), and again [1.2i), we get, for all
QS D(T’H¢1 s o) N D((th)bv v°), ¢ € D((H¢1)b’ V), x € Nz, NNy,
(id * Wpite, pite! (G)PXAM () = (id * ngtg,P;tcf(é)b(Q)t/zAwl (TtA(x))
— A@((wPuC)PuC, b*a id)a(b(q)t/QTf(x))

— Aol Pt v id)a(z)
= P"Ag(we e procid)a(z)) = P (id * we,) (G)Ay, (2)
from which we get the formula we were looking for, and which finishes the proof. m

4.9. Theorem. Let (b,a) be a Galois action of the measured quantum groupoid & on
a von Neumann algebra A; let 1y be a normal semi-finite fazthful weight on A%, having
the Galois density property defined m., let 1 = g o Ty, and G be its Galois unitary.
Let us suppose that there exist two strongly commuting positive non-singular operators 6 4
and A4, affiliated to A, such that the normal semi-finite faithful weight ¢ on A defined
242 .

by (D¢ : Dipy )y = )\Z /25f§ (by [V1l], 5.1) is invariant under a. Then:

(i) There exists a one-parameter group of unitaries 52 Qa0 0 on Hy, y®q H, having

N v
natural values on elementary tensors, such that, for all t € R:
a(6%) = 0% @4 0™.
N
(ii) There exists a one-parameter group of unitaries Jy, 64 Jy, @, 0% on Hy, s@, Hy, ,
Ac o

having natural values on elementary tensors, such that, for all t € R:

Ty, 0% Ty, sr 6% = K = G*(JotT o 1G.

(ii) We have A4 = b(q), where q is the positive non-singular operator affiliated to
Z(N), such that A = a(q) = B(q) (JEJ], 3.8(vi)); the operator A4 is affiliated to Z(A),
and (A,b,a,¢,10) is a Galois system for &.

(iv) We have T1(6%) = 6%

Proof. By definition, (D¢ : D) = )\Z /26 v, and therefore, u()\fm)a(éf}) = (D¢ :
D1)y); where ¢ (resp. ¢;) is the weight on A b;kv L(H) given by the bidual weight on

the bicrossed product (which is isomorphic to A yx, L(H)) ([E5], 11.6). As the weight ¢
N

is invariant with respect to a, the Weight ¢ is equal to another weight ¢ ([E6], 7.7(x)),
which is defined by the formula A1/2 ®a _1/2 ([EG], 4.4). On the other hand,

d¢o =

using ([E5], 13.7), and ([E6], 3.2), we get that g:ﬁ% = Azlb/lg b®a (6A5)71/2.
N
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Finally, we get
a(\y *)a(s%) = (A% 5 680 AFIDS” : DY) ia (AL 1@0 (005)")
= (D¢ : D)1 p®a 6 = L7251 @, 61t
N N

from which we get (i), and that A4 is affiliated to A®.
It is straightforward to get that there exists on Hy, ®, Hy, a one-parameter group
%o

of unitaries Jy, 6%Jy, s®, 6%, having natural values on elementary tensors; using [3.8(1i),
Aa

we get, for any x € My, NNy, , ¢ € D((Hy, )p,v°) and (e;);cr an orthogonal (b, v°)-basis
of lei

Gy 85 Tun 581 64 (s (@) 481 €) = Gl (004705) 181 850)
0 0
=D AW ta id)a(edy 05" an e
which, using (i) and the fact that A4 is affiliated to A%, is equal to
Z Ag((w s b;a id)a(m)é’“) a®p € =
Z J(SitJ)\mAqu((w/\—t/zC . b¥a &(T)) a®p €; =
. A N vo
(JEEIN? L@y )G (Ay, (2) 4@y A372C) =
Ne Yo
(6" T 0@, DG (a1 18 X2y, () s@0 A3"*0)
Ne N o
from which we get that (Jy, 6% Jy, s@, 6%)(Ay, () 5@, C) is equal to
As o
G (T6T a8y 1)G(ma(1 680 X2 Ay, (@) 5@ 24 70).
N o

So, the map @ which sends Ay, () ®TC on 7ra(1b®a M2 Ay, () s ®7~ )\At/ ¢ is bounded; as

it is clearly positive, by the unicity of polar decomposmon we get (11) and the fact that
@ = 1; from which one gets that A4 is affiliated to Z(A?), and that /\A = ma(1p®a A2,
N

and therefore that
X408 1= a]%) = 14@a X2 = 1080 B(¢7?) = a(b(e"?))
from which we get that A4 = b(g). Then, we get, for all z € A:
a(AEzA ") = (1 ¥®a Aa(x)(1 VLo A7) = a(z)

because A is affiliated to Z(M); so we get that A4 is affiliated to Z(A), and by [V1] 5.2
that the modular groups of 0® and %! commute; which, thanks to gives (iii).



MORITA EQUIVALENCE OF MEASURED QUANTUM GROUPOIDS 147

We have
(6% = ma(1 @0 JO D)oV (05 Ta(1 v@0 JO )
N N
ro(1 @0 SIS (1 0SB
N N
and therefore using [4.9] (i) and (iii):
a(7(6%)) = (13@a JOTHI)(1 @0 A5 (6% 14 %) (1 4@q JO )
N N N N
_ (5? » P )\i‘gtTtU?t(éis) — (5? b P )\ist/\—ist(sis _ 6349 »Pa 6i8 — a(éx)
N N N
from which we get (iv) and finish the proof. m

4.10. Corollary. Let (b,a) be a Galois action of the measured quantum groupoid & on a
von Neumann algebra A; let 1y be a normal semi-finite faithful weight on A®, having the
Galois density property defined in[f1}; let 11 = 190 Ty. Then the following are equivalent:

(i) There exists a positive non-singular operator § 4 affiliated to A such that, for all
t € R, we have K" = Jy, 6% Jy, s%,. 5%t

(i) There exists two strongly commuting positive non-singular operator 04 and \a,
affiliated to A, such that the normal semi-finite faithful weight ¢ on A defined by (D¢ :
D) = )\22/252 (by [V1l], 5.1) is invariant under a.

(iii) There exists a normal semi-finite faithful weight ¢ on A, such that (A,b,a, $, 1)
is a Galois system.

Moreover, §4 is the modulus of the action (b,a), and Aa = b(q), where qnZ(N) is
such that A = a(q) = B(q).

Proof. We have obtained in that (i) implies (iii); in we have obtained that (ii)
implies (i) and (iii); and applying [£.9]to (iii), we obtain (ii). m

4.11. Proposition. Let (A,b,a,¢,10) be a Galois system for the measured quantum
groupoid &; let iy = g o Ty, ¥ be the normal semi-finite faithful weight from A onto
b(N) such that ¢ = v° ob™1 0T, and r the canonical injection of A* into A. Then:

(i) The left ideal My, NN, NNy NNz is dense in A.

(i1) The subspace Agy(My, N Nr, N Ng N Ng) is dense in Hy.

(i1i) The subspace D((Hy, )p,v°) N D(rHy,,%0) is dense in Hy, , i.e. g satisfies the
Galois density property defined in[{.1]

Proof. Using [V1], we know that, if = in A is such that xé}q/ % is bounded and its closure

xéi{Q belongs to My, then z belongs to My, ; we can then (and we shall) identify Ay, ()

with A¢(x(5}4/ 2) and Jy, with )\Z4J¢. In particular, using the selfadjoint elements of A

given by the formula

2n?
T T(1/2)T(1/4)

€n

2_ 2 4 4 . ;
/2 e T TV NY Y dady
R



148 M. ENOCK

which are analytic with respect to ¢® and such that, for any 2 € C, the sequence ¢ (e,,)
is bounded and strongly converges to 1, we get that for any = € g, x(enéil/ 2) belongs
to mwl .

Let ¥ be the normal faithful semi-finite operator-valued weight from A onto b(N)
such that ¢ = v° o b~! o T. Let us suppose that x is positive in the Tomita algebra Ts,5
([E5], 2.2.1) associated to ¢ and T (i.e.  belongs to 9, N N« is analytical with respect
to 0%, and for all z € C, o?(x) belongs to My N M, N Ne NN%. As in ([L], 5,17), let us

define
d [t
Tpq = fp\/;/ e*qt20ff” (z)dt

with f, = flp/p dey, where Ay = fooo tde; and we get that x, , belongs to T <, is analytical
with respect to %1, and that, for all z € C, o¥1(z,,4) belongs to Ty 5. As oo?, = Ado,
we get that, for all z in C, 5if:cp,q6;iz belongs to Ty «; in particular, 521/2331,@51‘/2 belongs
to Ty« and enxp’qaif = (5114/263”)(521/2%1,’,15114/2 belongs to 9y N Nz. We prove this way
that the set Tg’% of elements x in 9P N 915 N MNg N N which are analytic with respect,
both, of ® and o¥*, and such that xé}q/Q is bounded and belongs to 914 N Ng is weakly
dense in A, and its image under A, is a dense subspace of Hy.

Let us take x € Tfy %; using the fact that ¢, is a d-invariant weight with respect to a
([25), we get (where a is the representation of N on Hy, given by a(n) = Jy, b(n*)Jy,)
that

(Ta va id)a(z"z) = Y2B(< Ay, (2), Ay, (2) >0,0)8"°

= 6'2B(< Ty, Ay, (2), Ty Ay, () >p,0) 0%/

= 6128(< N Mg (26 2), N2 T s Mg (26Y?) >4,0)51/2
and therefore if 7 belongs to D(,H,v) N D(51/2), we get that (id p*, wy)a(z*z) belongs
to 93?;0 (and to EDTL by similar arguments). "

Using now the fact that ¢ is invariant with respect to a, we get (where a means here
the representation of N on Hy given by a(n) = Jzb(n*)J,) that

(T b;’;a id)a(z*z) = B(< Ag(2), Ap(2) >a0) = B(< JpAg(2), JpAg(T) >b00)
and we get that (id y*o wy)a(z*z) belongs also to ML N 93135 So, we get that, for any
N

x € Tf%, ¢ € D(oH,v), n € D(oH,v) N D(6/2), the operator (id p*, wy¢)a(z) belongs
’ N

to Ny, NNy, NNz NNy
So, we get that the weak closure of 97, NIy, NNz NNy, contains all elements of the
form (id p*q wyea(x) for any &, n in D(,H,v) and = € A; using now [E5], 11.5(ii), we
N

get (i).
Let us suppose now that ¢ € Hy is orthogonal to Ag(Mr, NNy, NNz NNy). Using
and ([E6], 7.7), we get that

(V5 (Ag(2) a®s 0)IC 6®a £) =0
No N
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for all x € T, n € Do H,v) N D(6Y/2), £ € D(a,v). As Ay(T,)%) is dense in Hy and V)
is a unitary, we get that ¢ ;@4 &) = 0 for all £ € D(,H,v), and therefore, that ¢ = 0;
N
which is (ii).
We know that J¢A¢(‘J‘(¢ N mrz) C D((H¢)b,yo) and that leAdﬂl (mwl N ‘ﬁTu) C
D(,Hy,,%°). As the canonical isomorphism between Hy and H,, exchanges the rep-
resentations of A (and, therefore, of b(IV)), and sends J4 on leAZ4, we get that

leAdJl (del N mTa N m¢ n mz) C D((Hd)l)b? VO) N D(TH¢17¢0)

from which we get (iii). =

5. Through the looking-glass. In this chapter, we use the reflection technic intro-
duced by De Commer in [DCI]; if we start from a Galois action (b, a) of a measured
quantum groupoid & on a von Neumann algebra A, we obtain a co-involutive Hopf bi-
module which has A as basis . If we start from a Galois system (A, b, a, @, o),
we then construct a left-invariant operator-valued weight on this co-involutive Hopf bi-
module, and obtain this way, "through the Galois system”, another measured quantum
groupoid. More precisely, we get in fact two measured quantum groupoids, one with basis
A®, called the reflected measured quantum groupoid of &, through the Galois system,
whose underlying von Neumann algebra acts on Hy, , and another one which will
be a von Neumann algebra acting on Hy, @ H, with the basis A®* @ N, and will be called
the linking measured quantum groupoid, between the preceding two .

5.1. Notations. Let (b, a) be a Galois action of a measured quantum groupoid & on a
von Neumann algebra A; let 19 be a normal semi-finite faithful weight on A® satisfying
the density condition. Let us now consider the von Neumann algebra N = A"® N ,
equipped with a normal faithful semi-finite weight o @ v, its representation a=roa,
and its antirepresentation 3 =s® /3’ on the Hilbert space Hy, ® H. For any m’ € M ,
let us write p(m') = mq(1 b®a m’), and consider the operator w(m') = u(m’) ® m’ on

Hy, ® H; we define this way a normal faithful representation w of M M’ on Hy, @ H, and
a faithful normal antirepresentation w?® of M given, for any m € M by
w®(m) = p(Jm*J) & Jm* J.

We shall denote by Q the commutant @ °(M ) We shall use matrix notation for elements
in Q, or, more generally, in £(Hy, & H). In particular, we shall write

~ (P T
where P = Ta(1l p®a M )’, and T is the following closed linear set of intertwiners:
N
T={X € L(H Hy),Xm=my(1l,®a m)X,¥m € M'}
N

We see that 7(A%) C P and s(A%) C P, and therefore, &(N) C Q and ﬂ( V) € Q.
Let us remark that, for any § € D((Hy, )., ®°), the operator RH® (€) belongs to 7
(which implies that I is not reduced to {0}). Using [3 . we get that, if X € I, we have,
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for any m € M

Ty XJm = Jy, XRE(m*)J = Jy, Ta(1 4@0 RE(m*)XJ = 7a(1 4@ m)Jy, X J
N N

from which we get that Jy, X.J belongs to 1.

In particular, for any n € N, we get that X € T satisfies b(n)X = XB(n), and we can
define 1y ®g X from H ,®g H to H o®y Hy,. Applying this result to Jy, XJ, we get
Ne N N

that
Xa(n) =XJBMn")J = Jyp, b(n")Jyp, X = a(n)X
and we can define X 4®p 1y from H 4®g H to Hy, «®g H, and X g®q 1y from H g®, H
0 Ho, vou H. N o vo N v
Usingythen we get that

V(X 5®a 1) = (X a®p 1g)(c(J @ J)W(J @ J)o),
N N

Vi (X a®p 1a) = (X 3®q 1g)(0(J @ HYW*(J @ J)o).

N N
Let us denote e; = 140 € ]\7, and e; = 1y € ZV; we get that a(e;) = B(el) =Py, € ﬁ7
and that a(es) = B(ez) =Py € Z/\l\, and P = @a(ew M = @a(ez)- We can verify that
s(A%) C P and r(A%) C P.

Let us describe now the fiber product @ E*& @ This von Neumann algebra is defined
N
on the Hilbert space
(Hy, ® H) 5@a (Hy, © H) = (Hy, s©r Hy,)® (H ;04 H)
Po®r © v

where this direct sum decomposition can be seen with the projections

PHy,.0.Hy, = aler) 3®a 1 =130z dler) = aler) 3@a aler),
0 Yo b Yo b Yo Pr

Py ,e.n = a(ez) 3®al=1:®z ales) = a(e2) 3®a alez).
g ho®v ho®v po®v

So, we can also use matrix notations for elements in @ E*a @, or, more generally, in

N
L((Hy, ® H) E®& (Hy, @ H)). In particular, we shall get

pho®v
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where T s*a T is the closed set of intertwiners:
N

T sea T={Y € L(H 30, H,Hy, & Hy,),Y (m1 58 ms2)
N v 0 N

= ((ma) 5@y p(m2))Y, ¥ima, ms € M'}.

5.2. Lemma. Let’s use the notations of. Then we have, for all X € T and m € M
G (1a®s X)W (m 584 1) = [Ta(11@a m] :@, 1)G* (1 a®s X)W,
Ne N N Ae Neo

G (1a®p X)W (1 3@a m) = [1 s@, ma(1 @0 m)]G*(1 a®@p X)W
Neo N Ad N Neo

and therefore é*(l a®gs X)W belongs to fﬁ*a 1. We obtain also that, for any v €
Ne N

D((Hy,)s,¥5) and § € D(Hp,v°), the operator (wy,¢ * id)[G*(1 a}(\%@) X)W] belongs to T.

Proof. Using ([E5], 3.6(ii)) applied to &, and iv), we get the first formula.
Using we get that

1 SSPGT Ta(1 b%a m)|G* =GV, [1 a]?ﬁ jRC(m*)j]VJl

and therefore using [3.10] [5.1] and 2:2:3}

1@, Ta(1p®a m)|G*(1a®s X) = G*Vy, [1 4®5 JRE (") IV} (X 4®4 1)oye
Aa N Neo Ne N
= GV, [1 4@ JRE(m*)J|(X 4®p 1) (cW°0)o
NO NO
= GV, (X a®p 11)[1 4®p JRE(M*)J])(6W°0 )0
Ne Ne
= G ((X $®a 1) (0W°0)*[1 4®5 JRE(M*)J)(cW°0) o
N Ne
=G (1405 X)W (JRY(m*)J 04 1)W°
Ne N
=G (1a®p X)W (1 j00 m)W*
Neo N

from which we get the second formula and finish the proof. =

5.3. Proposition. With the notations of for any X € f, we have
G (1a®s Ju, XI)W = o [(yy s@r T, )G (1a®p X)W (] 500 J)].
No ¢ N©° N

Proof. Using|3.13| (i), we get that (Jy, »®s Jp, )0y, G* (1 o ®p X)/WJVO(J 5®a J) is equal
Aao Neo N

to

G (J 5®a Jyy)0uo Vi 000 (1 0@ X)W oo (J 5004 J)
N Neo N
= G*(J p®a )00 Vi (X 5@0 1)0e W (J 5@ J).
N N N
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Using now we get it is equal to
G*(J 5®aq Jp, )0 (X a®3 1)(O'WOO')O'VOWO'VO(J 5®a J)
N Ne N

which, by [3.13(ii), is equal to G*(1 ,®p J¢1XJ)W. n
NO

5.4. Proposition. (i) With the notations of for any element ({i i) mn @, let

us write R R R .
. ((A X)) /E:(lajgb,él)cv*~ G(liI%’BX)W
Y= m W*(1 0 Y*)G L(m)
Then, we define a mapping FQ from @ into @ E*a @ which is a coproduct. So, (N, @,&
B N
B,F@) is a Hopf bimodule.

(i) Let us write
R A X )= Jp ATy, T, YT
QN\Y* m)) \JX*Jy, JIm*J )’

Then, we define an involutive *-anti-isomorphism R@ of @, which a co-involution for the

coproduct FQ.
(iii) For any A € P, let us write I'5(A) = G*(1 a]\%b A)G, and R(A) = Jy, A* Ty, ;

then (A%, ﬁ, r,5,I's) is a Hopf bimodule, and Rp is a co-involution for I's.

Proof. We have got in that G*(1 4®p X)W belongs to f[;,*a T; so, for any &, 7 in
N N
D(unu‘i)/)a we get that G*(1 4®p 0% (€,7))G commutes with M(Z\/Z’) s®r M(Z\/Z’), and
N As

therefore, belongs to p sk ]3 by continuity and density, this remains true for any A in
Aa

P. So, we have got that F is an injective *-homomorphism from Q into Q <¥5 Q The

N
fact that it is a coassociative coproduct is glven by 4.2} -(1v which gives (i).

We have seen in [5.1| that Jy, Y J belongs to I therefore, for any &, n in D(,Hy, , P ),
we get that Jy, 6% @' (§ n)Jy, belongs to P and by density, that remains true for any
A in P. The fact that we obtain a co-involution is given by H which gives (ii). As

Qa(el we easily get (iii). m

5.5. Proposition. Let (A4,b,a,$,1%0) be a Galois system for &; let 1y = 1pg o Ty, let d4
be the modulus introduced in and P4 be the generator of the one-parameter group
of unitaries introduced in[f.8 Then:

(i) There exists a one-parameter group of unitaries At = Py, 6% Ty, .
(i) We have, for allt € R and m € M':

mo(l 420 o (m)) = Ay a(l ¥Ca m)A#
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and, in particular, for any n € N:
A" b(n) A% = b0 ,(n)).
(i) We have
(Ag a®p ﬁﬁ)é - G(Aitl S?T 32), (Ag a®p let)é - é(ﬁﬁ S?r Pgéﬁ)
N a N a
Proof. Using Vi)7 we get that P};f commutes with Jy,; using v), we get that P};‘t
commutes with §%; so, we get (i).

Let now = € 9y, , and let & be in D(,H,v) and 7 in D(,H,v) N D(§'/2), such that
5127 belongs to D(Hg,v°). We have then, using V), [E5], 8.4(iii), [4.9(1) and (iii), and
again [4.8(v) and [E5], 8.4(iii):

. A—i . —t/2 —1
(id # wy ) (Vip ) AR Ay, () = (id 5w ) (Vs ) A, N3 27 ()05™)

= Awl [('Ld b*Na w51/2n,§)a<)\2t/27'{4 (.’E)(SZ”)]

= AT/)I [)\;‘t/ZTtA (Zd b]";a WP—it(;—it51/2n7p—it£)a($)6zit]

——it .
= AA Awl((ld b;';a WP—it(;—itb‘l/2n7p—it§)a($))

it
=An  (id*wp-itg—ity p-itg)(Vip, ) Ay, ().
Therefore, using [3.2] and [2:2:2] applied to &°, we get that
At ma(1®a (W *id)[(] 50 W (] 5@a J)AY
N N N

is equal to 7, (1,®4 0?0 (we .y #id)[(J @0 J)W*(J @4 J)]) and, by density and continuity,
N N N

we get (ii).
Using and [4.§(iii) and (i), we get, where z is in My, , ¢ in D((Hy, )y, »°) and
(e;)ier is an orthogonal (b, v°)-basis of Hy,:

G(AY, A (2) 080 AR = 3 AalWaye o, vta id)a(0] (2))] 0@y e

. A <)
= Zl: As[(wWRirc e, ba id)(7; b 0} Ja(x)] @y €

= ZAgA@[(MPXBKQP;“ei b;a a(x)] @b €;

Vo
(3

it
= Z Aghol(wy, sitg, ¢ piite, bl a(z)] af?b €i

3

= Z AgAq)[(wC,P;”lelsfwalei b;';a a(z)] al(/XD)b €;
K3

and, using the fact that (P, .J,, 0% Jy, €;)icr is another orthogonal (b, v°)-basis of Hy,,
and that the sum does not depend on the choice of the basis, we get it is equal to
> AR As[(wee, va a@)] a® Py T 04 Ty, e = (A, 5@, ARG (Ay, (x) a®s ()

which gives the first formula of (iii).
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Finally, we have, using similar arguments:

G(AAs®r PYo%)(Ay, () s ¢) = G(P{ Ty, 64 Ty, Ay, (@) & P640)
= GO\LPPEA, (267 & Pisite)
= G(Ay, (7 (x63™)) & Pi{§4Q)
= ZA@[(wpgsj;g,ei pa id)a(r{ (20 ,")] o®p i

= Aa[(wpisice: pa id)(r* Pa m)a(@3")] a®s €;
UO

i

_ —t/2 pit ) ; —it )
= Z )‘A P A@[(WC’PX’LtEi b]’;a zd)a(w)é ] a;%b €;
_ ZPth(bdth@A@[(wc Py ite, b*a Zd) ( )] a(%b €;
= Z P”J¢6”J¢A¢[(wc e; b*a Zd) ( )] a@?b PZ@Z‘

= (A(f, aj\%b A )G(Awl (z) sg)r ¢)
0

which finishes the proof. m
5.6. Proposition. Let (A,b,a,¢,1%) be a Galois system for &; let 1 = g o Ty, and
let A be the operator introduced in . Then:

(i) There exists a normal semi-finite faithful weight ® 5 on P such that % = EA;

(i) There exists a normal faithful semi-finite operator valued weight Tf from P on
r(A%), such that ®p =pgor—' o TF.
Proof. Using [5.5[(ii) and the definition of the spatial derivative ([T], IX.3.11), one gets
(i). Moreover, we then get that, for all t € R and z € A®, we have, using

0, P (1(2)) = P 08 Ty r(2) 0y, 057 Ty, Py™ = Piir(a) Py = r(o}" (x))

which gives (ii). m
5.7. Notations. (A,b,a,,10) be a Galois system for &; let 1)1 = 1pg o Ty, and let Ay
be the operator introduced in [5.5; let ® the normal semi-finite faithful weight on P

introduced in ( ), and let Tf be the normal faithful semi- ﬁmte operator valued weight
from P on r(A“), introduced in 11)7 such that ®5 =¢por—to Tf. R

Let us denote by s the diagonal faithful normal semi-finite weight ® 5 ®® on the von
Neumann algebra introduced in[5.1] Let us first remark that we can also define a diagonal
normal faithful semi-finite operator-valued weight TQ from Q to a(N ) defined, for any

v X) in Q* (which implies that A € P+, m € M*andY = X), by
m

12 (5 ) =Tt e Tim)

and we get that ® 5 ® & = (1o @ v/) ng.

" A
positive element
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It is straightforward to get that (;1* i) in @ belongs to Ny if and only if A

belongs to M, m belongs to Ng, X is such that &)(X*X) < o0, and Y is such that
Dp(YY™) <

Let us consider the polar decomposition X = u|X|; then u belongs to I, and |X]|
belongs to MNg. Writing § = uAgz(|X]), we get that, for all m € Ng, we have

Jd)lﬂ-ﬂ(l b%a m*)lef = ‘]1/)17‘-0(1 b%a m*)Jl/HUAZf(‘Xl)
= uJm* JA5(|X]) = u|X|TAz(m)

which means that £ € D((Hy, )0, ®°) and X = R1*®7(¢).
A
y*
7 in D((H%)Mo,(/lso), such that Y = R#®° (n), and YY™* = 9“0’&)( n); by definition
of the spatial derivative, the fact that ®5(YY™*) < oo implies that n € ‘D(Al/2), and
o p(@“oﬁ)o (n,m)) = ||£}4/ 277\\2; more precisely, there exists an antilinear involutive isome-
try J on Hy, such that jﬁi‘m A /2] and we can write

A R €) ~1/2
Ag . =, =As DED JA O Az(m
%((qu) e P = A @ €@ TR S g 0m)
and we identify this way H(I,@ with He , @ Hy, ® Hy, ® H; for simplification, we shall

. . A0 . 0 0 . .
identify A@Q((O O)) with Ag . (4), A@Q((O m>) with Ag(m). We shall write p}fpl

for the projection on the first subspace Hy, of Hq;.@, and piIi , for the projection on the
1

X
If now we suppose that ( m) belongs to Ny N %, we get that there exists

second subspace Hy, .

Q

If X € I is such that ®(X*X) < oo, let us write AM2(X) = Aq»((o X)) (and,
therefore, AL2(RH® (£)) = ¢ for all £ € D(,H,,,®)).
Y* 0

therefore, if n € D(,(Hy, ), )N D(AUQ) we have A%1(RH & (n)*) = JAl/2
The identification of Hq,é with He , © Hy, ® Hy, ® H leads also to write

If Y € T is such that ®5(YY™*) < oo, let us write A (Y*) = Aq%(( 0 0)), and

Aq>© = Acpﬁ D 8114/2 D 3114/2 &) AEL:.

and Jq>(§ =Jo, @ (j@j) o1 ® J, where T(E@n) =n@E, for any &, n in Hy,.
For any n € N, x € A%, we get that

10,0’ r(x r(z) R
7T<1>© (&(x D n))A<1>Q ( (R#’ﬁ(n)* R m (£)> ) = A‘i’Q ( (a(n)f(?“’)ﬁ(n)* ( C)J{(Rn)m(f)> )

Using we get, for any n € N, analytical with respect to v, that
R (m)a(n) = RO (u(ol,(8(n))n) = R (u(B(0%)5(n))n) = R* (b0 ai5(n))n)
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and therefore that
A (a(m) R (1)) = TR b0} (n"))n
and, using i), we get that
A (a(m) R ()) = To(n") Ay
which, by continuity, remains true for all n € N; from which we obtain

Taq((z @ n)) = 7a, (r(z)) ©r(z) ®a(n) © a(n)

where we define a(n) = Jb(n*).J.
With similar arguments, we obtain

a4 (B(z ©n)) = ma, (s(2)) @ s(z)  b(n) © B(n)
where we define b(n) = Ja(n*)J. Therefore, we get that To,(€1) = PHs, + p}fpl and
7T<1>@(€2) = P?{r}h + DPH.
5.8. Proposition. Let’s use the notations of[5.1] and[5.7 Then:
(i) For any n € D((le)uo,a)o), v e D(oH,v) N D(Hg,v°), £ € D((Hy,)s,¥5), the
element X = (wy ¢ * id)[G*(1 a%g RH-®° (n))W], which belongs to T by is such that
(0 X> belongs to ‘II@@.

0 O

(i) Let (&;)icr be an orthogonal (s,1§)-basis of Hy, ; there exists n; € D((Hy, ) o, 3°)
such that

(Woe, *1d)[G*(1 4@5 R*® ()W) = R ().
N

Moreover,

lva@onll® =" lInll* = 11D & si?r mil%.
ve i i 0

(iii) We have
a®b 77 Z gz s®r M-

(iv) We have
AV2(X) = (woe * id)(GF)n.

Proof. We have
X*X = (woe #id)[G*(1 a®s R*® )W) (woe *id)[G* (1 a® R*"2° (1)) W]
No No

= (@0 gra W[ (La@y R (1) GO, 2, DG (La@s B () V)
N o a N

< IRV OIP (@0 pra id) W (La®s < 0,1 >0 50) W]
N Ne
= Ry gra id)(D(< 01> 0 50))
N
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and therefore using the left-invariance of TZ, then, using [5.7
BXX) < R ©ATL(< 0,1 > 0 50 )0I0)
= IRV (©)Illv a®s Ag (RF*" (n))[|> = IRV (€)|*||v s 1l
Ne °

from which we get that X*X belongs to Eméf, and using we finish the proof of (i).
The same calculation with X; = (w, ¢, * id)[G* (1 »®5 R“O’%O(n))W} shows that
NO

ZX:XZ = (wv B;a ’Ld)l—‘(< n,n >Mo7$0)

and then we get 6(21 XrX;) = |lva®snl?.
N()

Using again we get that there exists 7; € D((le)u"a(f)o) such that X; =
R**>®°(n;); from which we get that

Dol =D IAg (R ma)l® = (X[ X0) = v a@s 1l
which is (ii). Let now m € 9g; we have

(jm*j a]\([gib l)é(gz sﬁr ni) = é(fz s’l(/%r ,U'(jm*j)nz) = é(gz sf})r R#O’qy (m)jA&>(m))
0 0 0

é(gz sQp ijA@(m))
¥

and therefore

(Jm*J o DG (& @ i)

N ; s
=Gy (& & (W, * id)[G(1 45 R™ (1)) W]JAg (m)
i 0 N
= (La®p R** ()W (v 504 JAG(m))
N N

Therefore, taking now (; € D(,H,v) and (3 € D((Hy, )b, v°), we get that

((Jm*J oD )G Z(fi 33)907- 1)1C1 0 @b C2)

= ((1a@s R )W (0 580 TAg(m)IGr o2 2)
N 14

= (R (1) (wo.¢, * id)(W)JAg(m)|¢2)
and, using now ([E5], 3.10(ii) applied to &, and 3.11(iii)), we get it is equal to
(R ()T A (@ac 0 % id)T(m))[Co) = (T (woc,,g0 * id)T(m)* T)n|Co)-
Taking the limit when m goes to 1, we get

GO O mIGr o ) = (B(< T0. TG >5,0)lG2)

= (B(< (1,0 >au)nlC2) = (v ocf?b ¢ a%b ¢2)
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from which we get that G(Zz & s®p m;) = v o®p 1, which is (iii); this can be written
g ve
(wo,e, *id)(G*)n = n; = AV*(X)

which, by linearity and continuity, gives (iv). m

5.9. Proposition. Let us use the notations of and taken € D((Hy, ) o, Cfo)
N D(AUQ) let us define the antirepresentation 5 of A% on Hy, by §(x) = Jr(z*)J, for
all x € A%; let us define the representation @ of N on Hy, by a(n) = Jb(n*)J, for all
n € N; then, for any v € D(Hz,v°) and £ € D((Hy,)s,¥G) N D(;Hy, , o) the element

X = (wye *id)[G*(1 0@ R*¥ () W]
NO

. 0 O
is such that <X* O> belongs to ‘II@@, and we have

A*H(XT) = (we *id)[(J op DGy, v@5 DAL R ().

Aao
0 R () .
Proof. Let us first take n such that A,i,@( 0 0 ) belongs to the Tomita alge-

bra Tg, x in the Tomita algebra Ty, r,, and y, z in Te,r, . Then, Ay, (x) belongs to
D((Hy,)s,¥5), and JA(y*2) belongs to D(oH,v) N D(Hg,v°). Therefore, we can apply
i) to the element

X = (Wrne(y2) 00, @) * d)[G7(1 a8 RIS (1)) W,

Using and ([E5], 3.11 applied to &), we get that of@(<0 0

(8 )é ) with Xt AZtXAAZt USlng Nnow 111)7 we get that

Xe = (aganar a5t @ * DIG (1La@s AR ()A-W)

0 X)) is of the form

and the hypothesis on 7, z, y, z give that the function ¢t — X, extends to an analytic
function; in particular, we get that A2(X) belongs to D(Az/z), and using iv) and

[4.2](iii), we get

N1/2 . *\ FAL 2
AP (X) = AV (X in) = (@ar2 g0, e, AT a0 * (G TAY /
. LN AnE FRL/2
= (a2 082 natme) * DG TR

= (dequq (z),Ae(y*2) * ’Ld)(G>JA1/2
and therefore
AZL(X*) = jﬁz/zz\ﬂ(X) — j(w%/\w1 (@) Aa(yr2) * id)@)fﬁi{zn
= (@, nanatrms) * D s Gy 105 DA (RS (1))
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As Ag (and therefore A1) is closed, we get, for any v € D(Hp,v°) and § € D((Hy,)s, ¥§)
N D(,Hy,, o), that X = (wy e * id)[G*(1 4@ RH®° (n))W} is such that X* belongs to
D(A%1) and that "

A0 = (e id)((T a0 TGy, 105 DA (RS (1)),
Using again thAe closedness of A%!, we get that this result remains true for any 7 such

u’,®° —~
that (8 R 0 (77)> belongs to Mg, N ‘ﬁfb@ (i.e., using if  belongs to D(Azﬂ)). "

5.10. Theorem. The operator-valued weight Tf is left-invariant.

Proof. Let 1 in D((Hy, )p°, <I>O) Ny L2 ); let (v;)ier a (B, v°) orthogonal basis of H, and &
in D((Hy,)s, ¥§) N D(Hy,,%0); let us write

Xi = (wue + )G (1o RIS ()W),
We then get
we(id x @ p)(Tp(0"" %" (n.m))) = B (e * id) [G(1 oy 0" (n,m)) "]
is equal to

Z@ ((we * id)(G(1 a®p B2 ()W (6% (vi, 03) 500 YW (L 0@y R ()" G"]
N N Neo

Wthh can be written, using
Z‘I’ (XiX7) ZHAQ’l( DIP

- Z [@ea. DT o2 DGy 15 DA (R ()

Aao

= Z i 5®a (We.o0 * id)[( aB0 DGy, +@s TAH R ()]
i N

= LT oy DGy, v T(E 05 A (B ()|

= lle-®; A2’1<Rﬂ°§“< DI = (TF 0% (0, m)¢l€)

from which we get that (id = @ﬁ)(Fﬁ(@“o’%o (n,m)) = Tf(@“o’@) (n,m)). As any element in
9)?;(}3 can be approximated from below by finite sums of operators of the form "% (5, ),
we get the result. m

5.11. Theorem. With the notations of [5.1] and [5.7, we have:
(i) (A“,ﬁ,r,s,Flg,Tf,ng o Tf o Rp, o) is a measured quantum groupoid. We shall
denote this measured quantum groupoid by &1(A, b, a, ¢, 1), or simply by &1(a). Follow-

ing [DCT], its dual m will be called the reflected measured quantum groupoid of &
through the Galois system (A,b,a,$, 1), or simply, through a.
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(i) (N, @, &,B,F@,Tf, Rgo Tg o Ry, 10 & v) is a measured quantum groupoid. We
shall denote this measured quantum groupoid by Go(A,b, a,d, o), or simply by Go(a).
Proof. By H(iii)7 we know that (A%, ﬁ, r,5,I's) is a Hopf bimodule, and by that
TLﬁ is left-invariant. Using again (iii)7 we get that Rp on o Rp is right-invariant. The
only result needed is that the modular automorphism groups c®# and o®#°%# commute.
By definition, we have, for all A € P, we have, using |5 ' (PA(A) = ATAAT! =
Py, 6% Ty Ay, 65 “J%PA and, using [5.5{1) and [4.§ .<v and (vi)

0 PP (A) = Rp 00T 0 Rp(A) = Ty, A3 1y, ATy, DG Ty,

= J¢1PA J¢15AZSA5ifJ¢1Pﬁ18J¢1 = Pgis(sziSAéifPA

and, as P Jy,64Jy, commutes with P, 6", we obtain the result, and we finish the

proof of (i).

We have obtained in i), that (NN, @,&,B,F@) is a Hopf bimodule; using [5.10| and
the definition of T} 1) we get that T is left-invariant; using ii), we get that

Ry o TE o Ry is right—invariant The calculation made in (i) proves as well that the
oRg

automorphism groups 0%@ and o%2°%a commute, which finishes the proof. m

5.12. Theorem. Let & a measured quantum groupozd and (A,b,a,$,v%0) a Galois sys-
tem for &; let us denote by (N,Q,a, ,B,FQ,TL ,RQT Rg, %o @ v) the dual measured

quantum groupotid 052( ). This measured quantum groupoid will be called the linking mea-

sured quantum groupoid between & and the reflected measured quantum groupoid &1(a).
We shall consider that the von Neumann algebra Q acts on He , = He , ®Hy, ®Hy, ©H.

Then:
(i) @(er), alea), Bler), 5(62) belong to Z(Q). ~
(ii) We have PHa, = a(er)B(er); p;}il = a(ey)B(e2); pHil = a(ez)B(e1), and pg =

ales)B(e2); all these projections belong to Z(Q).
(iii) We have Qpuy, =P, Q2 =A, Qp1 = JAJ, and Qpy = M. Therefore, we
p Hyy Hy,y
have Q = P& A A°d M.
(i) Ifx € P,ye M, z € A, we have

Lp(@) = TQ(®)aer)aer) swaditen)fler)
N

L) = To(W)a(ea)fies) s0ad(e)iten):
N

0(2) = LQ(2)a(er)f(e) soaditen) Blea)”
N

(v) Let R (resp. Rp, resp. Rg) be the co-inverse of & (resp. of the reflected measured
quantum groupoid, resp. of the linking measured quantum gmupozd) let 7, 77, Tt be
the scaling groups of these measured quantum groupoids, ¢, v{, % be the automorphism
groups on the basis of these measured quantum groupoids, as defined m or [EF]], 3.8(i),
(i) and (v); we have, for any x € P, y € M, z1, z9 in A, n € N, u € A%:

Ro(x®21 @25 ®y) = Rp(z) ® 22 ® 27 ® R(y),
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P oa 050y =1 (2) 0 AiaAL" o (AlnAL") o n(y),
Y (uen) =5 (u) & yi(n).

Proof. As a(ey) = B(e1) ,Nwe get that a(e1) belongs to Z(Q); so a(ez) =1 —a(e1)

belongs also to Z(Q), and as B(e1) = Rg(a(er)) and S(e2) = Ro(ales)), we get (i).

We have seen in that 7o _(a(e1) = PHg , + p;}il (as we shall consider that @
is acting on Hcpé, we shall now skip the representation 7Tq>é). Using now the formula
obtained for J@, we obtain

~ 1,2
aler) = pH(I)(j —|-pr1,

ales) = pry, + P,
Ble1) = pr,_ + 1y
*5 Hyy»

5(62) = p}—}il +pH7
from which we get (ii).

Let W@ be the pseudo-multiplicative unitary associated to Bo(A4, b, a, ®,1y); then, Q
is the weak closure of the linear set generated by all operators of the form (wy, , *id) (Wc*j)’

forallv e D(qu>@,VEB’L/Jo)ﬂD((H@é)é,VEB’(/Jo), and w € D((H(%)B:, v® ). Using now
[£5], 3.10 (ii), we get that, for A in Mg, & € D(,Hy,, '), 7 € D(,Hy,,®) N DAY?)
and m € Mg,

; * A R®
PH. (Wa,w * zd)(WQ)PH%A@@((RH@, (n)* m(f)>)
is, using [5.4(i) and (iii), equal to
A0

pite, Aol TG )= Aoy g, 0 iy T 5(A)

N
= oy wprry 0 * (W3, (4)

from which we get that @p,, = P. The proof for (), is similar.
P

The same way, we get that

4 RM-@’@)))

R () m
is equal, using iv) to (prw Pl g ¥ id)(G*)¢, and therefore, using iv), we get
W Hayy

that A is the the weak closure of the linear set generated by all elements of the form

P2 (i) W2 A, <(

p;}il (W * zd)(Wé)p}{il . For Qpiil , the proof is the same, using H which finishes the
P

proof of (iii).
The restriction of (qu>I5 5®a PHa )Wc*j((pH% 5‘®/§ pH%) to He T;}&q Hg  is equal to
N o 0
W}g that the restriction of (py 5®a pH)Wé(pH 5‘®5 pH) to Ha®3 H is equal to W, and

vo

N Ne



162 M. ENOCK
the restriction of (p}{’il 5(2?@ p;}il )Wé (pu QJS%Z, p}}il) to H “E?b Hy, is equal to G*. Then
N
the result (iv) comes from ([E5], 3.6(ii)) applied to &2(a), &1(a) and &, and M(iv).
For any X € Q, we have Rg(X) = Jo,X"Jo, ([EB], 3.10(v)), and 7(X) =
Ag@XA;g ([E5], 3.10 (vii)). So, the result about Rq (resp. 72) is then given by the
formula about Jq,Q (resp. Aq,) obtained in Let’s look at the automorphism group

2. we have, using p1] and b1
B0 an) =0 (B n) = or  (s(u) & ()
=50+ (u) ® B3 (n)) = B(v (u) ® Fe(n))
from which we get 'yt@(u @ n) =1 () ® 4 (n), and using [EF]3.10 (vii), 72 (u & n) =
W (1) &y (n). =

5.13. Proposition. Let & be a measured quantum groupoid, and (A,b,a,¢,10) be a
Galois system for &; let A C A be a unital inclusion of von Newmann algebras, and ( a)
be an action of & on A; let us suppose that A = A®, and that & aja = a. Then A= A.

Proof. As the restriction of T to A is equal to Ty, we get clearly that a is integrable. Let
now 1o be a normal faithful semi-finite weight on A%, and 91 = g 0 Ty, U1 = by o T;
clearly, we get that theses two weights are normal faithful semi-finite, and that 1y is
equal to the restriction of 1), to A; from which we get that there exists a normal faithful
conditional expectation E from A onto A, such that 1/51 =1 o E, and a projection p in
L(H,,) such that pA; (z) = A (Ex), for any x € N ; moreover, as 1y is d-relatively
invariant and has the density property , we get, using the implementation Vdﬁ of a
recalled in that, for any z € N, { € D(oH,v) and n € D(oH,v) N D(6%/2) such
that 0'/2n belongs to D(Hp,v°), we get

A g [ v wy )8(@)] = (id * ws1/2.6) (Vis, ) A, ()
from which we get that
(id * ws1/2q,) (V5 JPA s, (1) = (id * w51/20,6) (Vis, )y, (B) = Ay, [(id p%a wy ) 8(E2)]
= Ay, [B(id pxa wy.)a(Ex)] = pAy, [(id o wy.¢)a(Ew)]
= p(id * wsi/2, ¢) (V5 )PA;, (%)

from which we get (id * ws1/2,,.¢)(V5, )p = plid * ws1 /2, ¢) (V5 )p. Using now and
we get that p belongs to m5(1 ,®q ]/\/[\’)’. Returning to the same calculation, we then get
N

that

Ay, l(id pa wp,e)a(Ex)] = (id * wsi/2, ) (V5 )PA 5, (7)

= p(id * w51/2777€)(vv,51 )A1/J~1 (3;‘)
= pAy, [(id pta wn ¢)a(z)]

= Ay, [Blid pra wy,)a(a)]
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from which we get that a o E = (F p*4 id)a. Hence, E px, id can be extended to a
N N

faithful conditional expectation from A x5 @ onto A x4 &, and we easily get that, for any
X € Axg 6, m(E pxq id)(X) = pra(X)p; as the action a is Galois by hypothesis, 74 is
N

faithful, and we then get that 73 is also faithful, and therefore that a is also Galois. Let
G be its Galois unitary, as defined in

Moreover, if ¥ is the normal faithful semi-finite operator-valued weight from A onto
b(N) such that ¢ = vob 10T, we get that FoT is a normal faithful semi-finite operator-
valued weight from A onto b(N), which satisfies (FoTp#4id)a = (Ep*qid)aoT = aoEo¥,

N N

which gives that ¢ o E is invariant by a. For all ¢ € R, using the notations of 3.11} we
get that (Dpo E : Din)y = (D : Dipy); = /\22/252, which proves that the modular
automorphism groups of ¢ o E and ¢~1 commute, and therefore we have obtained that
(A, b,a,¢ 0 E 1) is a Galois system for &.

So, using we get that p € ]3, where (A“,ﬁ,r,s,Flg,Tf,Rﬁ on o Rp, ) is the
measured quantum groupoid &1(A,b,a,¢ o E, 1)g); more precisely, using the definition
of p, we get that p € r(A%) Nb(N), and that Jj,pJ 5, = p, which gives (5.4(iii)) that
Rz(p) = p, and therefore that p € s(A%)’; using now the definition of G5 given in
we get that Gz(p S%T p) = (p b(]%a 1)G5, which gives then, using again iii), that

Ls(p) =p SE‘%T p<1 SSE:T p. Applying now the faithful operator valued weight id S:.f TLﬁ
to the positive operator 1 ,®, p — I'5(p), we obtain that I's(p) = 1 ;®, p, and therefore
Ae A«
that p s®, p =1 :®, p, and p = 1; from which we infer the result. m
As p

6. Morita equivalence for measured quantum groupoids. In that chapter, we
begin and by the converse result of starting from a measured quantum
groupoid with a basis of the form N1 @& Ny, we see under which conditions it is a link-
ing measured quantum groupoid between a measured quantum groupoid &; (with basis
N;) and a measured quantum groupoid &5 (with basis N3). This leads to some techni-
cal additional results about the reflected groupoid of a measured quantum groupoid &
through some Galois system and . Then, we can define Morita equivalence of
measured quantum groupoids , prove it is indeed an equivalence relation , and
give a complete link between Morita equivalence and Galois systems . We finish
this chapter by giving some examples of Morita equivalences between locally compact
quantum groups and measured quantum groupoids (6.12).

6.1. Proposition. Let &2 be a measured quantum groupoid with a basis which is a
sum N1 @ Na, we shall denote (N1 ® Noy, M, o, 8, T, T, RT R, vy ® 1), with a co-inverse R;
we shall identify H, g, with H, ® H,,; let us denote by e1 the unit of N1, considered
as a projection in N1 @ Na, and e; =1 — eq. Let us suppose that a(er) belongs to Z(M);
let us denote by «; (resp. B;) the restriction of o (resp. 8) to N; (i =1,2). Let us write
O = (1 Dr)oatoT, and H= He. Let us write M, ; = Mae)pe;)- Let M be the

underlying von Neumann algebra of the dual measured quantum groupoid & 2. Then:
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(i) The projections a(ez), B(e1) and B(ea) belong to Z(M). Moreover, the projection
aler) belongs to Z(M) if and only if a(er)B(e2) = 0.
(i) If n belongs to D(oH,v1 ® va), then a(e;)n belongs to D(o,H,v;) (i =1,2), and

RO () = R aen ) & R (afea))
and for ny, n2 in D(oH,v), <n1,m2 >4, ¢, 5 equal to
< alen)n, alen)nz >3, ., e1t+ < alex)ni, ale)ne >q, ,, e
(i11) The map which sends (for n € D(oH,v1 ® va) and & in H) the vector £ Q4 1

v1@r2
on (B(e1) g, ®a, ale1)n) & (B(e2) g, ®a, a(e2)n) extends to an isometry, which leads to
141 V2

the identification of H g®, H with

v1@v2

(B(e1)H p,®a, afer)H) © (B(e2) H p,a, afe2) H)

and for all (i,7) = 1,2, we have
D(a(ei)B(e;)) = [a(ei)B(er) 61]%%1 a(er)B(e;)] ® [alei)B(ez) ,32]%)042 a(e2)B(e;))]

1 2
and R(Ma(e;)B(e;)) = Ma(e;)B(e;:).
(iv) For (i,j) = 1,2, let us write M; ; = My(e,)p(e;); we can define *-anti-isomor-
phisms R; ; from M, ; onto M;; by writing R; j(Ta(e,)p(e;)) = B(T)a(e;)s(es)- S0, we get
that Mj; is isomorphic to M ;; using (i), we get that Mo # {0} if and only if a(e1)

does not belong to Z(le\g) Moreover, we can define, for all x € M:

1
L5 (@acensle;) = T(@)a(e)ser)s, Ouya(en)Bles)

2
Fi,j (xa(ei)ﬁ(ey‘)) = F(x)a(ei)ﬁ(w)ﬁzfv%z04(62)[3(6_7‘)’
2

which satisfies, for k = 1,2, for any n; € N;, and n; € N;:
Fi](al(nl)) = al(nl) ﬁk%ak 1, Fﬁj(ﬁj(nj)) =1 519]?0% ﬁj(nj)v
ke k

and Ff_’j are normal injective x-homomorphisms from M; ; into M,y g, *a, My, ;. These
N
homomorphisms satisfy:
(Fé,i i *B; Zd)F:,z = (id a; *B; ré,i)r, [

i,

i N;

(Fij Bj *aj zd)Ffj = (Zd Bj *aj I‘j,j)l“ij,
N N

(T} gi¥as )T ; = (id g,%a, Tj TG,

7,79

(T} B, *a, id)I 5 = (id pikon I
and therefore (Ni,Mi,i,ai,/Bi,I‘ai) is a Hopf bimodule, with R;; as a co-inverse, and if
a(ey) does not belong to Z(@), (8j, Ff’j) is an action of (Nj, M; ;, a;j, Bj,Fg)j) on M, ;,
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and (o, Fﬁyj) is a left action of (N;, M, ;, o, B, Fzz) on M, ;. Moreover, these two actions
commute.

Proof. As a(e2) = 1—a(e1), B(e1) = R(a(er)), B(e2) = R(a(ez)), the beginning of (i) is
clear. If a(e1) belongs to Z(®4 2), we have a(e;) = B(e1), and therefore a(er)B(ez) = 0.
Conversely, if a(e;)B(e2) = 0, we have a(e;) < S(e1), and a(er) = a(e1)B(e1). Ap-
plying R, we get B(e1) = a(e1)B(e1), and therefore a(e1) = B(e1), from which we get
that a(e;) belongs to Z(@l 2), which finishes the proof of (i). Result (ii) and (iii) are
straightforward. m

6.2. Proposition. Let’s use the notations of[6.1 Then:

(1) Let us remark that, for any (i,7) = 1,2, we have T(Ma(e;)B(e;)) = a(N;), and
RTR(Moa(e;)B(ej)) = B(N;); this leads to define normal semi-finite faithful operator
valued weights T; ; from M; ; onto a;(N;), and TZ’j = R;;T;;R; ; from M;; onto B;(N;).
Moreover, the left-invariance of T (resp. the right-invariance of RTR) gives then the
following formulae, for any x; ; € M:rj :

(id g, %0, Ty, 0011 (211) = Tia(21,1), (id gy*ay To2)TT o(1,2) = T 2(21,2),

N1 N2
(T7 1 By *ay id))T1 1 (z10) = T4 1 (21,1),  (T1 9 po¥aq id)IT o(w1,2) = T} 5(21,2),
N1 N2
(id gy%ay T22)03 5 (w2,2) = Ton(w22),  (id g, %a, T11)05 1 (w21) = To1(22,1),
2 Ny
(T35 Bo*as id)T3 o (12,2) = Ty o(x22),  (To gy *ay id)D5 (v2,1) = Ty (22,1),
N2 Nl

from which we get that Ty 1 (resp. T7 ;) is left-invariant (resp. right-invariant) with respect
to T}, that Too (resp. Tj,) is left-invariant (resp. right-invariant) with respect to T 5,
and that (if a(e1) does not belong to Z(é-l\g)) both actions T3 5 and T'y | are integrable
and have invariant weights.
(ii) Let us define
b, =14 oozl_loTLl7 ¢172:y10a1_10T1’2,
Uy=vi0f 0T, ¢r2=r20p8;" 0T,
<I>2:V20042_10T272, ¢271:y20a2_10T271,
‘~I/2:V2052’10T2/’27 ®2.1 :Vloﬁl’loTz',l.

The fact that v1 @ vy is relatively invariant leads to the commutation of c®' and o¥*, of
o®2 and o2, of 0¥12 and 0912, and of 0¥ and o%>1.

(iii) B; = (]\Q,Miyl-,()cl-,ﬁi,rZ o Tiiy T vi) (1= 1,2) are two measured quantum
groupoids. Moreover, R; ; is the co-inverse of &;.

() If a(er) € Z(@), then 12 = &1 @ B,; if aler) does not belong to Z(@),
then (M 2, B2, FiQ, $1,2,11) is a Galois system for &, (and &1 is the measured quantum
groupoid reflected from Bq through this Galois system), and (M2,1,,61,F%’1,¢2,1, vy) is a
Galois system for &1 (and & is the measured quantum groupoid reflected from &1 through

this Galois system). Moreover, the left action (a1,T'],) of &1 on M o leads to an
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action (o1,sn,T' o) of &S on MY ,, which, by the identification of My with MY, made
in (m), is equal to (f1,13,)°.

Proof. Results (i), (ii), (iii) are straightforward. If a(ey) € Z(1.5), then My o = My =
{0}, and we get that 615 = &1 ® &, (in the sense of 2.3(v)). Otherwise, we have got in
(i) that (B,,T7 ) is an integrable action of &5 on Mj 2, with an invariant normal faithful

semi-finite weight ¢, o; moreover, the invariant algebra MlF 2’2 is a1 (Ny), and the modular
automorphism group of the lifted weight 11 » commutes with the modular automorphism
group ¢1,2, which gives that v is F%!Q—relatively invariant, in the sense of Therefore,
to get that (M 2, B2, F%,m ¢1,2,1) is a Galois system for &5, we have only to prove that
the Galois homomorphism T2, is faithful, or, equivalently iv)), that the isometry
G constructed in (3.8 from I'} , is surjective. As I'f , is "part of 7 ', we get, using ii)
that ¢G is the restriction and co-restriction of
(a(e1)B(e2) @a alez)Ble2)) W (ale1)Ble2) a®p alez)B(e2))
v ve

which is a unitary. The proof for (8,3 ;) is identical.

6.3. Theorem. Let & be a measured quantum groupoid, (A,b,a, ¢, 1) a Galois system
for &, and &1 be the measured quantum groupoid reflected from & through (A, b, a, ¢, 1);
let’s use the notations of [5.13; then, for z € A, let us write

0(2) = LQ(#)aer)aer) jadten)flea)”
N

Then, b(z) belongs to P g%, A, with 3(x) = Jp r(x)"Ja, for all z € A®, and (r,b) is a
Aa

left action of &1 on A, with A® = b(N); the left action (r,b) commutes with a, and leads
to a Galois system for &;.

Proof. Let us denote by (N,Q,&,B,FQ,TE,RQTERQ,LZJO @ v) the linking measured
quantum groupoid between & and &, as in Then, the result comes from iv). m

6.4. Theorem. Let & be a measured quantum groupoid, (A,b,a, d, o) a Galois system
for &, and &1 be the measured quantum groupoid reflected from & through (A, b, a, ¢, 1),
and By the linking measured groupoid between & and &1; we have, forx € PT,y € MT,
21, 29 in AT

(i) TLQ(x S22 D28 Dy) = (Tp(x) +70Te(21)) ® (TL(y) + a0 b 1%(22)), where T
is the normal semi-finite faithful operator-valued weight from A onto b(N) defined by
p=vob loZ.

(ii) 6 = dp © o4 © (6,1)° @ 4.

(iii) Ap = Aa = 1(bo B7L(N)).
Proof. Applying [6.2(i) to the measured quantum groupoid &,, we see that the map
x TLQ (z) is a left-invariant weight on (P,T'p); moreover, using @I(v)7 we get that, for

all t € R, we have TtQ P = rF and (%Q )jae = 4F; therefore, we can use Lesieur’s theorem
(IL], 5.21), and we get that there exists a non-singular positive operator h affiliated to
Z(A%) such that, for all z € P*, we have Tg(x) = TF (r(h)x). Therefore, we have then
®g(x) = @p(r(h)z); but using now the link between Wé and W found in , we get,
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using [EB], 3.10(v), that, for an operator of the form z = (w * id)(W%), with w € Ig,
(with the notations of [E5], 3.10 (v)), we have ®g(z*x) = ®p(z*z), from which we infer
that h = 1, and TLQ(J:) =TF(z), for all x € P*.

The fact that T (y) = TL(y), for all y € M is proved by similar arguments.

Using now V) and i), we get that T,?(zl) = T4(z1); we have obtained that
@Q(JZ) = ®p(x), @Q(y) = d(y), @Q(Zl) = 1)1(21), and using V), that &g o RQ(JZ) =
Pp o Rp(z), Pg o Ro(y) = ®o R(y), Pq o Ro(22) = ¢1(22).

Let’s look now at the operator Pg which is the canonical implementation of TtQ ;
using the results obtained for ®¢ and for ot l v)), we easily get that (Pg) Ho, = Pp,
(Pg)r, = P, and using v), that (PQ)Hl,z = P4. With same arguments, we get that
()\Q)an = Ap, (A\Q)H, = A and ()‘Q)Hl 2 = )\A But using now [E5], 3.10 (vii), and the

result about Ag obtained i 1n we get that (00)Hs . =6p, (0Q)H, = ¢ and usmg
that (JQ)HT} 2 =04.

So, we gét, for all t € R, using
(D(®q o Rg)ja : D(BQ)a)r = Ny /20t = (Do = Dity ),

from we we infer that ®g o Rg(21) = ¢(21), for all positive z1 in A; so, we have g (25) =
@(22) for all positive 29 in A, from which we finish the proof of (i).
Now we have

) .
(D(®q © Rq)jae : D(®Q)ja0)e = (DD : DY), = [(Aa)" /2[(84)7] "

from which we get (ii). Finally, there is p € Z(N) such that A\ = a(p) = B(p), and

u € Z(A®) such that Ap = r(u) = §(u); on the other hand, there are ¢ € Z(N) and

v € Z(A®%) such that \g = r(v) ® a(q) = §(v) ® B(g). From all our calculations above, we
infer that ¢ = p, v = u, Aa = r(v) and A9y = a(p); from which we get (iii). m

6.5. Definition. For i = 1,2, let &; = (N;, M;, o, Bi, T3, T/, v;) be a measured quantum
groupoid. We shall say that &; is Morita equivalent to s if there exists a von Neumann
algebra A, a Galois action (b,a) of &, on A, a Galois left action (a, b) of &5 on A, such
that

(i) A®* = a(Ns), A® = b(N1), and the actions (b, a) and (a, b) commute;
(ii) the modular automorphism groups of the normal semi-finite faithful weights v4 o
b1l oT, and v5 0 ™t o T, commute.

Then A (or, more precisely, (A, b, a,a, b)) will be called the imprimitivity bi-comodule
for &, and ®,.

6.6. Remark. Then, using we get that the system (A4,b,a,v1 0 b~ L o Ty, 15 0a™ 1)
is Galois for ®; and that the system (A, a,b,v50a™t 0 Ty, vy 0 b~ 1) is left-Galois for &s.
Therefore, we can construct, following the reflected measured quantum groupoid &,
of ®; through the Galois system (A, b, a,v10b 10Ty, v90a™1), and the reflected measured
quantum groupoid &1 of B, through the left-Galois system (A, a, b, vo0a " oT,, v10b71),
and using an action d; of &; on A, and a left action of &, on A; let us first remark
that the basis of B4 is A® = a(N3) and is therefore isomorphic to No which is the basis
of 5. Similarly, the &; and ®; has the same basis.
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As the action a; is Galois, the homomorphism 74, is an isomorphism from the crossed
product A xz &; onto the algebra A, constructed by basic construction made from
the inclusion A% C A; as A% = a(Ny) = A°, we get that A, is equal to the algebra
s(A%)" constructed by basic construction made from the inclusion A* C A, which is
isomorphic, via 7,1, to A x4 &1; therefore, there exists an isomorphism J; from A x4 &,
onto A Xz ®; such that J;0a = a; similarly, there exists an isomorphism Jo from A x &4
onto A xg ®, such that Jo 0b = b; using all these remarks, we easily get that (A, b, &,a, b)
is an imprimitivity bi-comodule between Qil and 62, we can prove also that if A is an
imprimitivity bi-comodule for ®, and &,, it is also an imprimitivity bi-comodule for &,
and 62.

6.7. Theorem. Morita equivalence is indeed an equivalence relation.

Proof. Using the Galois system (M, 3,I',® o R,v) (3.12(ii)), we get the left-Galois sys-
tem (M,q,T',®,v), and that & is Morita equlvalent to 6, with M as imprimitivity
bi-comodule; so, Morita equivalence is indeed reflexive.

If 8, is Morita equivalent to &5, with A as imprimitivity co-bimodule, we get, using
that (b°,0n0a°) and (a°, (onb)°) make &y be Morita equivalent to &1, with A° as
imprimitivity co-bimodule; so, Morita equivalence is indeed symmetric.

Let us suppose now that &1, &4, &3 are three measured quantum groupoids, and that
(A1,b1,01,a1,b1) is an imprimitivity bi-comodule for &; and &4, and (Asg, ba, ag, as, bs)
is an imprimitivity bi-comodule for &5 and &j3. Using we know there exists an
action (b1, d7) of the reﬂected measured quantum groupoid B, of &y through the Galois
system (Ay,a1,b1,v00 a1 0Ty, V10 b* ) such that (A41,b1,d7,a1,b1) is an imprimitivity
bi-comodule between &; and &; similarly, we shall consider (As, by, a2, as, bg) which is
an imprimitivity bi-comodule between &5 and the reflected measured quantum groupoid
@3 of B4 through the left Galois system (A, ag, ba,v5 0 a2_1 0Ty, vy 0 bz_l).

Let A5 = {X € A b2 o Aq; (id b2 oz b1)(X) = (a2 by *a, 1d)(X)}. It is straightforward

Ny

to check that as(N3) b2*a2 1C A; and 1 py%q, b1(N1) C Az, and that:
N2 NZ

(i) (1 py*ay b1, (id py*a, 1)), is an action of ®; on As, we shall denote it by (bs, as)
N N
for simplification.

(i) (a2 py*a, 1, ([;2 by *ay 1d)|4,) is a left action of ®5 on As, we shall denote it by
Na Na
(ag, bs) for simplification.

(iif) We have A3® = a3(N3), and A5* = bz(N;), and the actions az and bz commute.

To prove that we get an imprimitivity system, we shall make a detour.

So, let us consider a Galois system for &5, with &, as reflected measured quantum
groupoid, and another Galois system for &5, with G5 as reflected measured quantum
groupoid. Let us con51der now, as m | the representation L iy of M2 on H; and the rep-
resentation s of M2 on Hj, and the representation w of Mg on H3@® Hy @ Hy given by
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113 Did® pq, and Q = w(]/W\’)’; using again matrix notations for elements in Q, we get that

R M3 Q23 Q13
Q=1Q535 M Qi

Qiz @iz M
where, for instance:

~ —/
Ql,g = {X e L(Hl,Hg),X,ul(m) = ug(m)X,Vm € M2 }

We have clearly @273@1,2 C @173; using again an orthogonal basis as in the proof of
i), we get that the linear set generated by the products in Q2 3Q1,2 is weakly dense
in Q1,3. But, as in 5.2} we can construct a coproduct from @ 2 into Q12 4, % Q1,2 and
Ny
a coproduct from @23 g, *as Q2,3, and, by product, we obtain therefore a coproduct from
N>

@173 into @1,3 4, a1 @1,3, then, as in a coproduct for @ The proof that @ has a
N
structure of measured quantum groupoid is completely similar to[5.8] 5.9 and [5.10} So, as

in[5.12] we can look at the dual measured quantum groupoid, which will be on the basis
N1 ® N2 @ Ns; let us denote by ag and Bg the canonical homomorphism and antihomo-
morphism from N1 & No & N3 into Q; as in we can prove that ag(e;) € Z(Q) and
Bolei) € Z(Q), where, for (i = 1,2,3), e; is the unit of N;, considered as a projection
in Ny @& No & N3. Then, it is easy to get that the reduced algebra on H; & Hs has a
structure of measured quantum groupoid, over the basis N; @ N3. As @173 # {0}, we
can use iv), and we get the existence of a Galois system for (’53, with &; as reflected
measured quantum groupoid, which means that G5 is Morita equivalent to &, (and, by
the reflexivity, that ®, is Morita equivalent to Q5~3); using then arguments analogous to
we get that &; is Morita equivalent to &3, which proves the transitivity. To get
the imprimitivity bi-comodule, we must look at the dual Q = @i j=1@Qi,j, which has a
coproduct I'g, which can be split into maps (FQ)% 2Qi > Qik x Qrj.

We know that Q11 = My, Q22 = Ms, Q33 = Ms, Q21 = A1, Q32 = Az, and
we are looking for Qs1. We know also that (Pg){, =T, (Dg)3, = I'2, (T@)33 = I,
(FQ)%,l = ay, (FQ)%,l = by, (FQ)§,2 = dg, (FQ)g,z = bs.

So, (FQ)?),’1 sends Q3,1 into A x A, and it is easy, with the co-associativity condition
of Tq, to get that (I'g)3, sends Q3 into As, and that (I'g)3,; sends the action (I'g)3,

on id p,*q, d1 and the left action (I'g)3; on by b, *a, id; using then [5.13] we get that As
N2 NZ
is the image of (I'g)3 ;, which allow us to identify Qs with Az, (Tg)3, with az, and

(FQ);1 with bs. By these identifications, we prove that (As,as, bs) is an imprimitivity

bi-comodule between &; and Gs. By similar arguments to we get an imprimitivity
bi-comodule between &1 and &3. =

6.8. Notations. Let &1, &5, &3 be three measured quantum groupoids; let us suppose
that &1 is Morita equivalent to &2, with (A1, a;,b;) (or A; for simplification) as imprim-
itivity bi-comodule and that ®4 is Morita equivalent to &3 with (As, as, bs) (or simply
As) as imprimitivity co-bimodule; we have proved in that &, is Morita equivalent to
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B3, with (As, as, bs) as imprimitivity co-bimodule, with
A3 = {X c Ag by *as Al; (Zd bo *as bl)(X) = (Clg bo*as ’Ld)(X)}
N No N

and az = (id p,*qa, 01)] 45, 03 = (b2 py¥a, 1)]4,-
N N.

We shall wrizte (A3, a3,b3) = (A2,2a2, ba) o (Ay,a1,61), or, simply A3 = Ag 0 Aj; we
can check that this product is associative, and that, if we write M; for the imprimitivity
bi-comodule (M7,T'1,T';) between &; and itself, we easily get that A; o M; = A; and
Mg e} A1 = A1~

6.9. Proposition. Let &, &, &5 be measured quantum groupoids; let us use the nota-
tions of [6-8

(i) Suppose that &1 is Morita equivalent to o with an imprimitivity co-bimodule A.
Then A°o A = M.

(i) Suppose that & is Morita equivalent to & with an imprimitivity co-bimodule A;
then A = M.

(iii) Suppose that &1 is Morita equivalent to Gy with an imprimitivity co-bimodule
Ay, and with another imprimitivity co-bimodule As; then A; = As.

(iv) Suppose that &1 is Morita equivalent to o with an imprimitivity bi-comodule
(A, a,b); then &5 is the reflected measured quantum groupoid of &1 through the Galois
system (A,b,a,v; 0b~ o Ty, 5 0a™ ).

Proof. Let us use the Galois system (A, b,a,v1 0b~! o Ty, 5 0a™ 1), and apply the con-
structions and results of applied to this Galois system; for any y € M7, the operator
I'g (y)&(ez)B(el)B@&&(el)B(EZ) belongs to A° a‘z’;ag A, and more precisely, using the coasso-
N 2

ciativity of the coproduct I'g, we can check it belongs to the subagebra A° o A; we define
this way an injective morphism from M; into A° o A, which sends I'y to the action (and
on the left action) canonically defined on A° o A; therefore, using we get (i).

Let us now use the Galois system (A, b,a,v0b™! o Ty, v 0a™ 1), and apply the con-
structions and results of to this Galois system. Then, for x € A, the operator
FQ(w)d(e2)3(61)3@_}&&(51)3(62) belongs to A° o A, and therefore, using (i), to M; we define

this way an inje(]:\icive morphism from A into M, which sends a to I'; using again we
get (ii).

As Ao Ay is an imprimitivity bi-comodule for a Morita equivalence between &; and

&1, we get, using (ii), that A3 o Ay = My; therefore, we have, using (i):
A1 :MQOAl :AQOAgOAl :AQOMl :AQ
which is (iii).

Let &, be the reflected measured quantum groupoid of &; through the Galois system
(A,b,a,v1 0b 1 0Ty, vy 0 a™1); there exists a left action b of &5 on A, and A = (4, a,b)
is an imprimitivity bi-comodule which makes &; and ®,; therefore, using we get
that A o A° (whose underlying von Neumann algebra is My by (i), and that we shall
denote by P) is an imprimitivity bi-comodule between ®, and G,; we then get, using
again (i), that P°o P = M, and P o P° = M,, which leads, using[5.11} to define injective
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morphisms My — M, and My — M, as parts of the coproduct of the same measured
quantum groupoid. Using then the co-associativity of this coproduct, we get that these
mappings are each other’s inverse, which leads to the isomorphism of My and Ms, which
is (iv). m

6.10. Theorem. Let &; = (N;, M;, o, i, T4, T3, T, v;) (i = 1,2) be two measured quan-
tum groupoids. Then the following are equivalent:

(i) &1 and G2 are Morita equivalent, with a imprimitivity bi-comodule (A, a,b).
(ii) There exists a Galois system (A,b,a,d,1g) for &1, such that o is the reflected
measured groupoid of &1 through this Galois system.
(iii) There exists a measured quantum groupoid
61,2 = (Nl @NQ;M704567F7T’T/7V1 @V2>

o~

such that a(eq) belongs to Z(M), and does not belong to Z(M), where ey is the unit of
Ny, considered as a projection in N1 @ Na, and (B12)a(e,) = 61, (G1,2)a(1—c;) = Ba.

Proof. The result (i) implies (i) by [6.9(iv); the result (ii) implies (i) was obtained in [6.3}
the result (ii) implies (iii) is given by i), and [6.1] gives that (iii) implies (ii). =

6.11. Remark. A morphism between an action (b1, a;) of & on a von Neumann algebra

Ay, and an action (bg,as) on a von Neumann algebra A will be a x-homomorphism A

from A; in Ay such that hoby = be, and (hp, *oid)a; = ag; clearly this leads to a category
N

A(®); it is easy to get that , if &1 and &, are two measured quantum groupoids which
are Morita equivalent, then these categories A(®1) and A(®3) are equivalent too.

6.12. Examples of locally compact quantum groups Morita equivalent to mea-
sured quantum groupoids. Here we are looking to examples of locally compact quan-
tum groups which are Morita equivalent to measured quantum groupoids. I am indebted
to S. Vaes who called my attention to this question. We first give two constructions in
which any locally compact quantum group is Morita equivalent to a measured quantum
groupoid, whose basis is a given factor N . More convincing is K. De Com-
mer’s example (6.12.4] [DC4]): he proves that the compact quantum SU,(2) is Morita
equivalent to some measured quantum groupoid (whose basis is a finite sum of type I
factors).

6.12.1. Ampliation of a locally compact quantum group. If G= (M,T,p, ) is
a locally compact quantum group, and N is a von Neumann algebra, we shall call the
measured quantum groupoid &(N) ® G the ampliation of G by N, where &(N) is the
N-measured quantum groupoid defined in (viii) and the tensor product of measured
quantum groupoids has been defined in ix). Morover, the measured quantum groupoid
(’5/(—J7) ® G is, using also viii) and (ix), another measured quantum groupoid, we shall
call the dual ampliation of & by N.

6.12.2. Theorem. Let G= (M,T, p, ) be a locally compact quantum group, N a factor,
B(N) ® G the ampliation of & by N, as defined in |6.12.1. Then, the locally compact
quantum group G and the measured quantum groupoid &(N)® G are Morita equivalent.
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Proof. Let us consider the von Neumann algebra N ® M; then, (id ® T') is an action of
G on this algebra; we get that the invariant subalgebra is (N @ M)(#®T) = N @ C, and
that the crossed product is N ® £(H,,). Therefore, we get also that this action is Galois,
and that T;ygr = id ® . Let us choose a normal semi-finite faithful trace v on IV; we get
voTier =V ® @.

Taking now on this algebra the restriction of the coproduct of &(N) ® G, we obtain
a left action b of &(N) ® G on N ® M, and we get that Ty = v ® ¢. (Taking for
7 the canonical finite trace on C = Z(N), we get that the operator-valued weight T},
defined in viii) is v). So, we then get that b is ergodic and Galois. Moreover, as the
modular groups of ¢ and 1 commute, we get, by the definition that the locally
compact quantum group G and the measured quantum groupoid (N) ® G are Morita
equivalent, with N ® M as imprimitivity bi-comodule. =

6.12.3. Proposition. Let G = (M, T, p,¢) be a locally compact quantum group, N a
factor, 8(N) @ G the dual ampliation of & by N, as defined in|6.12.1 Then, the locally

compact quantum group G and the measured quantum groupoid &(N) @ G are Morita
equivalent.

Proof. The proof is very similar to[6.12.2] =

6.12.4. Another example. In [DC2], [DC3], Kenny De Commer has studied Morita
equivalences between the compact quantum group SU,(2) and various quantum groups,
and, in [DC4], with a mesurable quantum groupoid. Indeed, he constructs an integrable
Galois action of a SU,(2), which is not ergodic (the subalgebra of invariants is then a
finite sum of type I factors), and therefore, this construction leads to measured quantum
groupoid (whose basis is that finite sum of factors), which is Morita equivalent to the
initial compact quantum group. This construction is a particular case of

7. Application to deformation of a measured quantum groupoid by a 2-cocycle.
In this section, we try to answer the problem of deformation of a measured quantum
groupoid by a 2-cocycle. With this deformed coproduct constructed in [7:2] does this
new Hopf bimodule still has a left-invariant (and a right-invariant) Haar operator-valued
weight, and therefore remains a measured quantum groupoid? Following De Commer’s
strategy, we are able to answer this question positively for any 2-cocycle only in the case
when the basis N is a finite sum of factors (7.7(xii)). In the general case, we can ob-
tain sufficient conditions, which leads to positive answers in particular cases ([7.11
7.12).

7.1. Definition. Let (N, M, «,3,T) be a Hopf bimodule, in the sense a unitary 2
in (M Na(N) gxq (M NB(N)) is called a 2-cocycle for (N, M, «, 3,T) if Q satisfies the
N

following relation:

(1 580 Q)(id gxa T)(Q) = (Q s@a 1)(T gk id)(Q).
N N N N

If G is a measured qroupoid, equipped with a left Haar system and a quasi-invariant
mesure on the set of units, and if 2 is a 2-cocycle for the measured quantum groupoid
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®(9)(2.3(ii)), then Q is just a measurable function from G®) to T, such that, for all
(91,92) and (g2, g3) in G-

(g2, 93)291, 9293) = (g1, 92)2(9192, 93)
Let & = (N,M,«,38,T',T,T',v) be a measured quantum groupoid, and let Q be a 2-
cocycle for &; let us define, for any ¢t € R:

Qi = (1t pxa 1) (),
N

Q= (8" 5@a 6")Q0 ™ 580 §7) = (07702, gra o7 *Fol,)(Q).
N N N
One can easily check that Q; and € are also 2-cocycles for &.

7.2. Proposition. Let (N, M, «,3,T) be a Hopf bimodule, and let Q be a 2-cocycle for
(N, M, «, 8,T); let us write, for all x € M:
Tq(x) = Q' (2)Q".
Then, (N, M,«, 3,Tq) is a Hopf bimodule, that we shall call the deformation of the initial
one by Q.
Proof. We have, thanks to the definition of a 2-cocycle, for any n € N:
To(a(n)) = a(n) s@a 1,  Ta(B(n)) =154 6(n)
N N
which allows us to write

T p¥a id)lo(z) = (To g% id)(Q ()Q2")
= (FQ /3*04 Zd)(Q)(FQ 5*0 Zd)F(l‘)(FQ B*a Zd)(Q)*
N N N

But
(Ca pra id) () = (2 Qa0 (T pra id)(2)(2 sQa 1)*
N N N N
and therefore
(Tq g*a id)Ta(z) = (2 gRa 1)(T gkq id) (Q)(T grq td)T(2) (T g*a 1d)(2)* (2 sRa 1)*
N N N N N N
and, by a similar calculation, we get

(Zd B*a FQ)FQ(J?) = (1 8Ra Q)(ld B*a F)(Q)(’Ld B*a F)F(.L“)(Zd B*a F)(Q)*(l 8Ra Q)*
N N N N N N
which is equal, thanks to the definition of a 2-cocycle, and the coassociativity of I'. m

7.3. Proposition. Let & be a measured quantum groupoid, and €2 be a 2-cocycle for &;
let W be the pseudo-multiplicative unitary associated to &; let us write W = WQ*, which
is a unitary from H g®, H onto H a®p H. Then:

14 o

v

(i) The operator W satisfies

(1a B w)w 5B 1) = (WOL@B l)o—i’%(wﬁ(@a (1 5 ave)(1 5Qa W)
No N No ’ N N N

(with the notations of [2.9).
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(i1) For all &, & in D(Hg,v°), n, ' in D(,H,v), we have

(We o W)W ((id % wnr) (000 W) 0@ W] = w
N(Z

(s, vid) ()1 * F) W)

(Azz/z) The weakly closed linear space generated by the operators of the form (we, *
id)(W), for all € € D(Hg,v°) and n € D(oH,v) is a non-degenerate involutive algebra,
therefore a von Neumann algebra on H, we shall denote AQ

(iv) We have a(N) C Aq, B(N) C Aq, and Aq C B(N), a(N)'.

(v) A unitary v on H belongs to Ag, if and only if v € a(N ) ( ) and

W(1 @0 v) = (1a®; 0)W.
N No
(vi) For any x € M, we have
Po(z) = W*(1a®s 2)W

and the weakly closed linear space generated by the operators of the form (id*we, ¢,)(W),
for ¢1 € D(oH,v) and (3 € D(HB,VO) 18 equal to M.

Proof. We have, using the definition of a 2-cocycle,

(La®@; W)W 500 1) = (140, W)(1a®; Q) (W 420 (@ 50 1)
NO

Neo N Neo
=(1 a®p W)W 5&a 1)(W* 5@q 1)(1 a®p D)W 3®a 1)(Q° p®a 1)
No N N No N N

= (1a®@; W)W 3@a (I gq id)(27) (2" R4 1)
No N N N

= (1 Oé®ﬁ W)(W BRa 1)(id/ﬁ*o¢ F)(Q*)(l B®a Q")
No N N N
which is equal to
(La® W)W 58a 1)(1 380 W)(1 Ra 0,) (27 5@a 1)(1 @0 000 )(1 @0 W)(1 50 27)
No N N N N N N N
and, using the pentagonal equation for W, is equal to
(w a®j Loy, oy (WQ* /3®oc 1)(1 5®a 00 )(1 s®a WQ™)
Ne N N
which is (i).
For ¢, (' in H, we get that
(weer 5o i)V [(id % wnp) (00 W) 05 DIWICIC)
NO
is equal to
(W [(id * ) (000 W) 0@ DIW (€ 500 OIE’ 500 ¢') =
No v 14

(@ i) (W) @5 DIW(E 500 OIW(E 580 () =
No 1% 174
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((W a®3 1)(Uu a®§ 1)(77 a®[§ W(§ BRa C)W a®g W(f/ B®a C/)) =
Neo No o v Vo v

(La®y W)W a®; 1)(00 a®5 1)1 a®s W)(0a® € 586 Olf o8& 58 )
Neo Neo Neo No Ve v vo v

which, using (i), is equal to
<<Wﬁ%a (1 a®a D pBa (1025 Ol a®3 € 5®a (')
= (£ 5@ W' (1023 QW (1 a®3 €) 584 )

Let (f:)icr be an orthogonal (8, v°)-basis of H; there exist §; such that

W a®5 Z.fz B®o¢ i

and, as in ([E3], 3.11), we can prove that >, a(< fi,§ >p.0)d; is equal to (we,, *
id)(W)*¢’, and therefore
(€ 5®a W* (0 a®5 QW (1 a®5 &) 5®a (')

= (€50 W' (1285 Q1D fi 58a 0 520 ()

= (W (a5 01D fi 590 0i 380 ()

ve i

= (W* (0 a®3 O)l(we.y *id) (W) 500 (')

from which we get (ii).
We have

((weun * id) (W) (wer % id)(W)CIC) = (W (€ﬂ®a (W' #id)(W)O)In a®5 ¢')

ve

= (€ p®a (wer oy * id)(W)C[W* (1) a®35 ("))

vo

which is equal to
(1620 0 W) (€ 5®a & 520 QIW (1 a®5 () 5@a 1)
N v v ve v
= (W 36 1)1 580 00eW)(§ 520 & 580 Ol(Ma@j5 (') pRa 1)
N N v v o N

= (Uif;(w 3®a H( ﬁ%a oue)(1 B%a W)(f 5®a € 5®a Q)I(N ®a 1) a®g ¢)
N v v v e
and, using (i), is equal to
(1a®; W)W 580 1)(E 500 & 580 QW (1 520 1) 0@ )
Neo N v v v o

Let now (e;);es be an orthogonal (o, v)-basis. As in ([E3], 3.4), we can prove that there
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exist a family (n;)ier in D(oH,v) such that
W(n s@an) = D ciasm
and a family (§;)icr in D(Hg, v°) such that
W(€s2a€) =3 cia®s&
and we get that
(wep * id) (W) (wgr oy id)(WICICT) = (Y (e i) (W)CIC)

K2

from which we get that (we ,*id) (W)(wsrmf «id)(W) is equal to the weak limit of the finite
sums Yy (we, ; * id) (W). From which we get that the weakly closed linear set generated
by the operators of the form (wg ,, * id) (W) is an algebra Aq.

Let us now use (ii); the weak regularity of the pseudo-multiplicative unitary W
([E5], 3.8) means that a(N)" is the closed linear space generated by the operators
(id * wyy)(ove W), for all n, n' in D(,H,v) ([E3], 4.1); in particular, there exists a
family in the linear space generated by these operators which weakly converges to 1.
Using then (ii), we get that, for any £, ¢ in D(Hg, v°), there exists a family in the linear
Wi, wid) (W) el ¥ id)(W), for all n, i/ in
D(,H,v), which is weakly converging to a(< &, & >g,,0); therefore, we get by density
that «(V) is included in Ag, and therefore that 1 belongs to Ag.

So, there exists a family of operators of the form (with finite sums) > (we, »/ *

space generated by the operators of the form (

id)(W) which is weakly converging to 1. Using now the intertwining properties of W
and the definition of Q, that (wg ., * id)(W)* commutes with B(N), and we get that
RV (X (we, g % 1) (W)*E) = X, (we, oy % id)(W)*RP(¢') is converging to R*(¢);
finally, we get that Aq is the weakly closed linear set generated by all operators of the
type (w(“’s wid) (Wyegr i zd)(W), for all €, &' in D(Hg,v°) and 1, n’ in D(,H,v); using
again (ii) and the weak regularity of W, we get that Agq is closed under the involution,
which finishes the proof of (iii).
For any n € N, we have, using ([E5], 3.2):
((we,n * id)(W)B(n)C1|C2) = (W(§ 5®a B()C1)[Na®j C2)

v

= (W(€ p®a C)IBM" )N 0@ C2)

v

= ((we.B(n*yy * id)(W)C1[C2)

from which we get that (we,, * id)(W)B(n) = (We, B(n=yy * 1d) (W), which gives that B(n)
belongs to Aq.

We have seen that 5(n) commutes with (we , *id)(QW*); using then ([E5], 3.11 (iii)),
we get also that &(n) commutes with (we , * id)(QW™*), which finishes the proof of (iv).

Then, using (iii), the proof of (v) is clear.

It is clear that (id * w<1,<2)(W) belongs to M. Let us denote by Mgq the closed linear
set generated by these operators. Using (i), we get, for ¢ € D(oH,v) and (3 € D(Hp, v°),
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that

(id * weg ¢ ) (W) (id * we, ¢,) (W) = [id * wip (W 40 1)

W (Cla®5gl) W (<2a®gc2)
which belongs to Mg,. By linearity and weak closure, we get that Mg is a left ideal of M.
Moreover, the formula I'g(z) = W*(1 a®j x)W is clear by the definition of I'g 1)

and W. Using that, we get, for any (3, v°)-orthogonal basis (e;);c; of H, and any 7 €
D(,H,v), by taking x = 1:
B(< 0,0 >aw) = (id gra w)Ta(1) =Y (id s wy e, )(W)* (id * wy ) (W)
N i
from which we get that (< n,m >4,) belongs to Mq; by density, we get that 5(N)
belongs to Mg, and therefore that 1 € Mg, which finishes the proof. m

7.4. Theorem. Let & be a measured quantum groupoid, and € be a 2-cocycle for &; let
W be the pseudo-multiplicative unitary associated to &, Agq the von Neumann algebra on
H defined m let us write W = WQ*, and, for any x € Aq, let us write

a(z) = Wz a®py 1)(W)".
NO
Then:

(i) For any £ € D(Hg,v°) and n € D(oH,v) N D(Hg,v°), we have

a(we.py * id)(W)] = (we,y * id x id)[(1 o®5 000 ) (W o®5 Vo3 (W 584 1)].
Ne Ne Ne
(ii) (B, q) is an action of & on Ag.

(iii) This action is integrable and Galois.

Proof. Using ([E5], 5.6), we get that W€ is a corepresentation of ®on o H ;- Therefore,
the formula, for y € &(N)':

a(y) = Wy a®s 1)(W)"

NO
leads to an action (3,a) of QAS a(NY. Using ([E5], 3.12), we get, for any n € N that
a(a(n)) = T(a(n)) = a(n) 3@q 1, and a(5(n)) = T(B(n)) = 1 304 B(n).
N N

For any orthogonal (53, v°)-basis (e;);c; of H, we get

(
a((we,p * id)(W)) = W ((we,y * id)(W) a®5 YW
No

= Z W (we, n ﬁ*a id) (W) (we e, *1d)(Q") a®p W
NO
= ZP (Wei g i) (W) (e, id) () g@a 1]
N
Applying to &, we get that T[(id Wh.e; ) (0W*0)] is equal to

(id o id wn,ei)[ai’%(aw*g 580 1)(1 3@0 040)(1 580 oW *0)]
N ’ N N N
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from which we get that
D(wye, * id)(W*)] = (e, *id gxa id)[(W* 0@ 1)02"1(W* 0®3 1)(1a®;0,)]
N Ne ' N Ne

and, for any orthogonal («,v)-basis (f;);jes of H, it is equal to

D (g, ey #id) (W) 50 1) (wy, g, * id * id)[agi(W* 0®3 1)(1a®;0,)]
j N N No

and therefore a((we ,, * id)(W)) is equal to

D MWy, *id # id)[(1a®; 000 ) (W a®; 1)o55] ..
irj ne ne
o (wey gy x 1d)(W) 5®a 1) (we e, pra id)(E27) 5@ 1]
N N N

which is equal to

> lwy, xid x id)[(1a®s 000) (W a®; D)oo ) (we g, * id) (W) 584 1]
J Ne Ne N
from which we get (i).
For any 41, d in D(HB’ 1°), we get that

. 2,3 *
(wWn.g; * w6, * Zd)[O'ﬁ~7a(W a%é (1 aN 8 ou)]

= (wn)fj * id)[(a(< 61,09 >B,V° g%al)w*]

= (wy,p; *id)(W)a(< 01,02 >4 ,0)

as B(N) C Agq, any unitary u € A, commutes with B(N), and we have
< ’LL(517’U,52 >Bvl/0:< (51,52 >vao

from which we get that (w,, s, *id*id) [UZZi(W*a@)B 1)(1Q®OB 0,)] commutes with Ag ;®a1,
and therefore belongs to Ag gxo £(H), and mojrve precié\ély to Ag g*a M. !
N N
Then, using|7.3| we easily get that a((we¢ *zd)(W)) belongs to Ag z%a M; using again
ﬁ we get a(Aq) C Aq sra M, which gives (ii). "
Using ([E5], 11.2), we livnow that the von Neumann algebra Ag s*a L(H) is isomorphic
to the double crossed product (A x4 QA5) x5 B¢ and that this isomorp];[lism sends the bidual

action to the action a defined, for any X € Aq f*a L(H) by
N
a(X)=(1 4®a W*)(idﬁ*a sn)(a f*a id)(X)(1 4®a W)
N N N N

Let us define J(X) = gN(W*)XgN (W), then J is an isomorphism from Ag g+ £(H) onto
N
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Aq o*p L(H), and the above calculations show that
NO

(3 po id)a(X) = (id gxa ) (a a*p id)(I(X))
N N Ne

from which we get that (id g% n)(a % id) is an integrable and Galois action of ®

N Ne
(idé*agz\;)(aa*gid)
on Ag o%g L(H). As (Aq oxg L(H)) V Ne = A oxp L(H), we easily get that
Ne Ne Ne

T(id,;*acN)(aa*gid) =T, a],:[",[j’ L(H); as T(id *acN)(ua*md) is semi-finite, we get that T, is
N No o

also semi-finite, and a is integrable; moreover, as (Aq o*g L(H)) X (idyxacn) (Ao ksid) & =

Ne N
(Zd B*O‘ §N)[(A Ha 6) a*p L(H)], we get that ﬂ-(idé*aq\/)(aa*gid) = (ﬂ'u a*s Zd)(ld B*a CN)-
N N° N Ne Ne° N
As Tidg*asn)(aa*gid) is injective, we easily get that 7, is injective also, which is (iii). m
N Ne

7.5. Proposition. Let & be a measured quantum groupoid, ) a 2-cocycle for &, let W
be the pseudo-multiplicative unitary associated to &, Aq the von Neumann algebra on H
defined in and (,@, a) the action of ® on Ag defined in ' let us write W = WQ*.
Then, for & € D(Hg,v°) and n € D(oH,v) such that we,, belongs to Iy, in the sense of
([E3], 4.1), which implies ([E3], 4.6) that (we , *id)(W) belongs to Ny, we have:

(1) Let P,, be the element of the positive extension of M’ defined in ([E3], 4.1); then,
RAV° (5)*3)7,]%8’”0 (&) belongs to the positive extension of N, and we have
Tal(wep * id) (W) (wey *id) (W))] = a(RP (€)"P, R (€)).
(i) Af = a(N).
(Z:LZ) Let us write 1 = voa ™' oT,; then v is a normal semi-finite faithful weight on
Aq, d-invariant with respect to a, satisfying the density condition, and we have

V1l(we * ) (W) (wey * id)(W))] = ®(we,q * id) (W) (we.p % id) (W)].
For alln € N and t € R, we have o} (a(n)) = ao?(n)) and ov* (B(n)) = B(y_i(n)).
(iv) There exists a unitary u from H onto Hy, such that
ul g (wep % id) (W) = Ay, (wey * id) (W)
and we have, for alln € N:

u ( ) 7T1l11(
uB(n) = Jy,my, ((n*)
ué(n) = Jy,my, (B(n*)
(v) The normal faithful semi-finite weight voa™' on a( ) = A, satisfies the Galois
density condition defined infor the Galois action (ﬁ, a) of & on Aq.
(vi) The operator (u ;@q 1)W€(u” 4®5 1) is the standard implementation Vy, of the
N Ne
action (B, a) associated to the weight Y on Ag.
(vii) For any x € Aq, we have my, (x) = uzu*.
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(viii) If N is a finite sum of factors, then there exists a normal semi-finite faithful
weight ¢ on Aq such that (Agq, B,a,¢,v) is a Galois system.

Proof. Using the calculations made in with an orthogonal («,v)-basis (f;);es of H,

we get that a((we,, * id)(W))* ((we,, * id)(W))] is equal to

> ((we gy, #id)(W)* 5®q 1) (wy g, * id x id)[ag’i(W* «®;1)(1a®;000)] ...
33" N N Neo

o (wpy o xid % id)([ag’?;(W* a®5 1)(1a®; 000)]") (we. g, * id)(W) 5@a 1)
N Ne N

)

and therefore T[((we,, * id)(W))*((o./g’77 xid)(W))] is equal to

> (e, » id) (W) ...

J»J
- (id gra D)[(wy,s,, *id * id)[agi(W* 0®5 (1 a®5000)] ...
N N Neo

...(wfm*id*id)([ggi(w*a®51)(1a 500"
N Ne

(e g, *id)(W) @0 1).
N

Let 0 be in D(Hj,v°), and let (6;)ier be an orthogonal (B,v°)-basis of H, we get that

(Ws g*a )[(wy,g, *id z‘d)[ggf;(w* a®5 1D)(1a®50,0)] ...
N N Ne
o (wpy g xidx id)([037 (W @5 1)(1a®g 000)])]
N Ne

is equal to
> O(wyg, * ws, 5 * id)[aZ’i(W* a®5 1)(1a®; 040)] ...
i ' N Ne

N (RTSOTR z‘d)([a;’i(W* a®5 (1 a®g 0,0)]%)
’ N Ne

which, using the calculations made in 2.4} is equal to
D Of(wn. g, xid) (W< 65,8 >4 ,0)0(< 6,0 > 5,0) (W, oy * id) (W)]

= ‘i)[(wmfj/ #id)(W)a(< 6,6 >4 0 ) (wy, n * id) (W)].
Therefore, if f; and f;7 are in D(n'(n)), we finally get that it is equal to
(a(< 6,0 >5 ,0)Ag[(wry .+ id)(W))[Ag[(wy,, 5 * id) (W)])
= (a(< 6,0 >5 )" ()" fil7" (n).f5)
= (0 5®a 7' ()" f510 s@a 7' (1)" f7)
=('(n)"f; a®p ol ()" f a®3 6).

v
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Let now 6} € D(Hp,v°) be an orthogonal basis of H; then

< Ta[((we,p * id) (W) * (we, * id) (W)]), w5 >

is equal to

(W (f] a®5 6)IE 5Ba 0)(7' (1) f @5 S|’ (0)* fi0 a®5 61) -
k.5’ ve v ve e
(W€ 50 0| fjr a®5 07)-

As the family (fjo ®3 03 )k, is an orthogonal basis of H,® 3 H, we can use the Plancherel
Ne ve

formula, which gives that

< Tal((wen % id)(W))* (we o * id) (W), w5 >= (W (€ 5@a 0)[W (Pr€ 5Ra 0))

= (¢ B®a (5|(an€ B®a §) = ||7r’(n)*§ B®a 6”2

from which one gets (i).

We have seen in H that a(N) C A; on the other side, if © € fmi, using
one gets that x is the upper limit of an increasing positive sum of elements of the form
(we,p*id) (W))*((wgn*zd)(W)), therefore, Tq(x) is, by (i), the upper limit of an increasing
sequence of elements in «(N), and therefore we get that Ty(z) € a(N); as To(My,) is
dense in Agq, we get (ii). Thanks to (ii), one can define the lifted weight 1, = voa~loTy,
which is §-invariant with respect to a by Moreover, using (i), one gets that

Di[(weq *id)(W))* (we,y * id)(W))] = B[(we.p * id) (W))* (we,p * id) (W))]

which gives the first formula of (iii); the formula o;" (a(n)) = a(o}(n)) is clear by def-
inition of ¢1; as ty is d-invariant, using ([E5], 8,8) and we get that o/*(S(n)) =
J?(ﬁ(n)) B(v—¢(n)), which finishes the proof of (iii).

Using (iii), we get the existence of an isometry w from H into H,, such that

ul g (wey * id) (W) = Ay, ((we.p * id)(W)).

Let us write P for the projection on Imu; using (7.3}, we get that 7y, (Aq)P = Pmy, (Aq)P,
and therefore that P € my, (Ag)" = Jy, Ty, (An)Jy, . Using Kaplansky’s theorem, one can
find a family w, in Iy, such that ||(w, * id)(W)|| < 1 and Jy, 7y, [(wy, * zd)(W)]le
weakly converging to 1 — P; then, we get

T [(We.y * 1) (W)] Ty A, [(wnn 5 id) (W] = T, gy [(w * i) (W)] T, Ay, [(we o * i) (W)]

is converging to 0, because Jy, Ty, [(w, * zcl)(N)]Jl/,1 is weakly converging to 1 — P; using
now the weak density of the linear combinations of elements of the form 7y, [(we ,*id) (W )]
in 7y, (Aq), we get that Ay, [(wy, *id)(W )] is converging to 0; from which one gets that
1 (Jy, (1 — P)Jy,) = 0 and that P = 1, which proves that v is a unitary.
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Moreover, we have

ua(n)Ag ((wey * id)(W)) = ulg[(we,y * id)((1a® g a(n)) W)
Neo

= ul g [(we,, * id) (W (a(n) 5%a 1))]

= ul 3 (Wa(yen * id)(W)) = Ay, (Wa(nye,y * id) (W)
= Al *id)(W(a(n) 50 1))

= Ay, [(weuy * id) (1 a®j a(n))W))]
N

= 1y, (a(n)) Ay, (we.y * id)(W)).

Let us suppose now that n € N is analytic with respect to v and let’s use (ii). Then:

uB()Ag (e * id)(W)) = ubg [(we.q x id)(1a®5 B(n))W)]
No

= ulg[(we .y *id) ((a(0)5(n)) a® 5 )W)
NO
= ul g [(We,a(0_; ja(ne))n * id)(W)]
= Ay [(@e a(o s ja(ny)n * id) (W)
ul g [(we.n * id)((a(0Y)5(n)) a®5 HIW)]
No

= ulg[(we.n *id)((1 a® 5 B(n))W)]
No

= Ty, (B(n))uA@((wg,n *id)(W))

and
uf(n)Ag ((we,n *id)(W)) = ulga(n®)JgAg ((we,n * id)(W))
= ul\ g [(we,y * id)(W)(1 5% a(o_ia(n))]
= ul g [(we,n * id) (W) (B(n) /3®a 1]
= ulg[wame,y * id)(W)]

= Ay, [Wa(nye.n * id)(W))]
= Ay, [(wey * id) (W)(B(n) B®a D]

:Awl[(%n*id)(W)(lﬁ%a a(o_i2(n))]

=y, a(n*) Ty, Ay, (we, * id) (W)
= Ty, () Ty, ub g (we  * id) (W)).
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If now we suppose that n is analytic with respect to v, and use again (ii), we shall get
ud(n)Ag (we,p * id) (W) = udg B(n*)JyAg ((we . * id)(W))
= ulg[(we n * id)(W)(1 58a B(vis2(n))]

= ul g [(we,n * id)((B(7i/2(n) a®5 HW))]

= ul g [(Wa(yis2(n))=e.n * id) (W ))]

= A, [(Wai/20m)- . * id) (W))]

= Ay, [(we,n * ZOl)((ﬁ(%/z(n) «®; D)W))]
N

= Anl(we * id) (W)L 520 Bia(n)]

= Ty, B(07) Ty Ay, [(we o i) (W)
= Sy, B(n*) Jy, ulbg ((we  * id)(W))
which, by continuity, finishes the proof of (iv).
The weight v o a~! satisfies the density condition if the subspace
D((H"bl)ﬂu)lOB’ VO) N D(mloanl ) V)
is dense in Hy, . Using now (iv), we get that this subspace is the image by u of D(H g, v°)N
D(,H,v) which is dense in Hg by ([E4], 2.3), from which we get (v), using (iv) again.
In ([E5], 8.2), one gets that W° = W€ is the standard implementation of the action
(8,T) of & on M, associated to the d-invariant weight ®. So, W€ is the standard im-
plementation of the action (8,T') on M, associated to the d-invariant weight ®. Which
means that, for any orthogonal (o, v)-basis of H, any ¢ in D(oH,v) N D(6'/?) such that
472 belongs to D(Hg,v°), any x in Ng, we have
We(Ag(x) a®p 81/2C) = Z Ag(id B:[a we,e ) T(2)] 3Pa €i

and therefore in particular:
We(Ag(wen * id) (W) a®5 81/2()
= ZA [(id g*a WC e ) ((we,p *id)(W))] B®°‘ e

= ZA$ (we . * id wCyei)[(l a®gp 0ve)(W a®5 1)‘76 a(W 5®a 1)] 5®a €.
- Neo No v

Using now (iv), we then get that (u 3®a 1)W(Ag(we,y * id)(W)) a®5 61/2¢) is equal to

N ve
ZA% (We o * id * we e,)[(1 a;?[; oo ) (W aﬁ% Doy (W ﬁioa 1)] 50 €

which, thanks to i), is equal to
D A [(id gra we e )a((we.q xid)(W)) 504 €
i N

v
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and therefore we have, where we denote by V;, the standard implementation of (B, a)
associated to the weight )1:

(5@ DW(u* a®; 1)(Ay, (we.n * id) (W) a®5 8'/2¢)
N No Vo

= > Apllid gxa wee)a((we,y * id)(W)) ;@4 e
7 N v

= Vi (Mg, (we  # id) (W) 4@ 5 87C)

from which we get (vi), by density.
Let &' € D(Hp,v°), ' € D(oH,v), we get, with an orthogonal (8, v°)-basis (e;)icr of
H, that (wer % id)(W)Ag[(we,y * id)(W)] is equal to

D (Wery ¥ id)(W)(wer e, p¥a id) (")’ (n)"¢

i

72 We, * 1d) (W) ()" (wer e, g id)(927)€
= Z(wei,n' *1d)(W)AG (Wwg . geaid)(@)en * 1d) (W)

- Z Agl(@ein * id)(W)(w(wg/,eiﬁ*aid)(ﬂ*)ﬁm + 1d) (W)].
N

Let now (f;)jes be an orthogonal («,v)-basis of H; we know that there exist & ;, n; in
H such that

W(el 5®a ((“)E’ €; B* Zd Zf] a®5 52]7

5®a ij a®5 T

and then we get that
(wer oy * i) (W) Ag[(we.py * id) (W) = > Ag(we, , , * id)(W)]

0,J

which implies that
ij a®p Z&,j = WZ(ei B®a (Wer e, g*a 1d)(E27)E)
j ve i v N
=W (¢ 5®a€)

and finally

(Wer o # id) (W) Ag [(we g # id)(W)] = Y~ Ag(we o, + id) (W)

J

where W(f’ BQEQ & =21 a®p ¢i. But, using again the calculation already made in

Vo
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[7-3](iii), we get that
w(wer yr # id) (W) A g [(we.y % id) (W) = Z Ay, [(wer o, +id) (W)

= Ay, [(wery *id) (W) (we g % id)(W)]
= Ty (Wer i * 1) (W) Ay, [(we,n % id) (W)]
= Ty, (wer o xid) (W) ul g [(we p * id) (W)

from which, by density, we get (vii).
Moreover, (viii) is a direct application of |4.7| to (ii), which finishes the proof. m

7.6. Theorem. Let & be a measured quantum groupoid, Q) a 2-cocycle for &; let W be
the pseudo-multiplicative unitary associated to Q5 Agq the von Neumann algebra on H
defined in and (B, a) the Galozs action of & on Aq defined in whose invariant
subalgebra A& is equal to o (u)) let us write W = WQ*; moreover, the weight
voa~t on a(N) has the Galozs denszty property defined mu by -(m). Let us write
Y1 =voa toT,. Letu be the unitary from H onto Hy, introduced in (w)

The canonical representation r of A& on Hy, is the restriction of my, to a(N); using
(iv), we get that the canonical antirepresentation s of a(N) (identified to N for sim-
plification) on Hy, is s(n) = uf(n)u* (n € N); for simplification again, we shall write o
for my, oo and B for my, o . Then the Galois unitary G is a unitary from Hy, 5®a Hy,
onto H «®5 Hy, . Then

vo

(1a®;u")G(ug@q u) = W.
Neo N

Proof. Let £ € D(oH,v), n € D(Hp,v°); let € D(Hg,v°) and 1 € D(oH,v) such
that we, belongs to g (in_the sense of [E3], 4.1), which implies that (we , * id)(W)
belongs to Mg, and using iii), that (wgs  * id)(W) belongs to My, . We have then,

using [7.5{iv), and [2]i):
(id * we 0 Ty, ) (Gl g [(wer gy * id)(W)] = (id 5 we © 5, ) (G Ay, [(wer :id)(W)}
= Agl(wen gra id)a((wer n * id)(W))].
N

Using now i)7 we get that (wey g*a id)a((we id)(W)) is equal to
N

(wer g * wey * id)[(1 a®j ove)(W a®5 ) (W g®a 1]
ND

Let now (&;);er be an orthogonal («, v)-basis of H; we get then that this last expression
is equal to ), (wer % We e, * we,  * id) (W1 4W1 397 5), where we use the leg numbering
notation, for simplification. But we get then that it is equal to

. 2,3
Z(w(idﬁ*a%,si)(ﬂ*)ﬁ’,n/ * we, p * id)[(1 a®g ay0)(W a®g 1)05 (W 3%a 1]
i N Neo Neo Neo

which is >, (we;n g*a id)f((.d(idﬁ*awgygi)(Q*)&l,n/ x id)(W)). For any ¢ € I, the operator
N N

(Wein g*a id)f‘(w(idﬁ*awgygi)(Q*)glml *1d) (W) belongs to Ng, and, by [E3], 3.10 (ii) applied
N N
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to QAi, then, [E3], 4.6 and 4.1, we get that
Ag[(we, 5:;1 id)f(w(idﬁ;awg,fi)(Q*)gl,nf * id)(W)]
= (e * ) (W)(id o we,e,) (2 )Ag (wery * i) (W)

= (id * we, n) (W) (id #*a we e, ) () Ag (wer . * id) (W)

whose sum is weakly converging to (id * we ,,)(W)Ag[(wer  * id)(W)]. As the map Ag is
closed, we get that

A(f)[(w&,7 f*a id)a((wer m * zd)(W))] = (id * wg,n)(W)Ag)(wgmf xid) (W)
N
from which we deduce that

(id * we y 0 Ty, ) (G) = (id % we ) (W)
which gives the result, thanks to viii). m

7.7. Corollaries. Let & be a measured quantum groupoid, ) a 2-cocycle for &; let W
be the pseudo-multiplicative unitary associated to B, Aq the von Neumann algebra on H
defined in and (B, a) the Galozs action of & on AQ defined in whose invariant
subalgebra Ay, is equal to o (zz)) let us write W = WQ*; moreover, the weight
voa~t on a(N) has the Galozs denszty property defined mm by -(m). Let us write
Y1 =voa~toT,. Let u be the unitary from H onto Hy, introduced in (m)

The canonical representation r of Al on Hy, is the restriction of my, to a(N); us-
ing [7.5|(iv), we get that the canonical antirepresentation s of a(N) (identified to N for
simplification) on Hy, is s(n) = uf(n)u* (n € N); let p; be the one-parameter group of
automorphisms of s(N)' and K its standard zmplementatzon defined mm 4l for simpli-
fication again, we shall write o for my, o o and ,B for my, © ,B Then:

(i) For any x € Aq, we have

a(z) = O'VOWUVO(I «®3 l‘)Ul,W*U,,.
N

(i1) For anyy € M', we have m4(1 3®q y) = uyu’.
N
(i11) For all t € R, we have
Kt = (1 @0 w)QUTST 5@0 6V (1" R4 u*).
N N N
(iv) For allt € R, we have Py, = Alf uJo" Ju*.
(v) We have, for allt € R:

W(u*PfZQu 5®a uPy u*) = (P" a®p uP¥ u W
N Ne
(vi) For any & € D(Hg,v°) and n € D(oH,v), we have

TtAﬂ[(w&n *id)(W)] = (Wu*P};{ng,P*“n *id)(W) = (WU*A@fIU&Ag“n *id)(W).
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(vii) For any © € My, N Ny, s v, 2 in Ng NNy, we have

(wu*/\wl (@) JAg (s°2) * id)(W)* = (wu*/\wl (), JAg(z7y) * id)(W).

(viti) For any (1, G2 in D(oH,v) N D(Hg,1°), § € D(A%Z), nE D(Ag/z), we have

((id % we, ¢,) (Wueln) = ((id *we, ¢ ) (W) TAZ *nlu” Ty, A 7€),
(iz) The operator AgQ(id * wc27¢1)(W)u*A;11/2u is bounded, and we have

(id x we, &) (W) = JAL (id 5 we, ¢, ) (W Ay un* Ty, .

—1/2

(z) For any £ € D(Hg,v°) N @(uAll/fu*), andn € D(,H,v)N ZD(A$ ), we have

(Wean * i) (W)™ = (W, 1, AV/2u jazt/2, * ) (W).
(zi) For allt € R, we have

W(u*Afﬁlu B%Q u*AfZlu) = [(6A5)" a®p u*AZlu}W.
NO

(zit) For allt € R, we have
szl [(w&n * Zd)(W)] = (wu*AZfl ug,(§A5)"tn * Zd)(W)

(ziii) If N is a finite sum of factors, there exists a normal semi-finite faithful operator
weight Tq from M to a(N), (resp. TY from M to S(N)) such that

Gg = (]\/'7 M7Ol,ﬂ,FQ,TQ7T§/27 y)
is a measured quantum groupoid.

Proof. Result (i) is just the application of [7.6] to iv).
Let us apply v) to the action (B, a) of ® on Ag. We get that

ma(1 3®a Y) s®a 1= G’*(y a®p l)é
N N No

= (1 p®0 VW (y a®; VW (0" 50 1) = uyu” (@4 1
N Neo N N

from which we get (ii).

Applying now [7.6] to and successively [E5], 3.11(iii) and [E5], 3.8 (vi) applied to
®, one gets

K = G*(J5"J 05 1)G = (u $a WQW*(J6 T 4®

YW (0 @0 u)
Neo N

g1
No

which is equal to

(R0 )T o®5 W (] a®5 J)(J0"T a@51) ... (J 500 JYW*(J p@a J)Q* (u* 504 u*)
N Ne Neo Neo N N N
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and to
(U 580 WS a5 WG 500 YW (J 500 ) (0" 580 u°)
N No N N N
= (U 50 QT a®5 J) (6" a®5 0")(J @0 J)Q (U p®0q u”)
N Neo Ne N N
= (U g w)QUTIT 3Dy 6)Q* (U* R u*)
N N N

which is (iii).

Applying (ii) to[4.8(ii), one gets (iv). Applying again (i) to|4.8(vi), one gets (v). Then,
the first equality of (vi) is a direct corollary of (v), and the second equality is a corollary
of (iv) and [E6], 3.10(vii). Result (vii) is a direct corollary of [£.2{iii) applied to Then
(ix) is an easy corollary from (viii), and (x) from (ix). Result (xi) is given by [3.8]vii) and
([E6], 3.11(ii)), applied to[7.6] and (xii) is a direct corollary of (xi).

If N is a finite sum of factors, we can apply (iv)7 and therefore we obtain, by
a measured quantum groupoid &;(a), whose underlying Hopf bimodule has been defined
in iii). Using now (ii), we get that the von Neumann algebra is (up to u) equal to
M:; using ii), we get that the basis is (up to «) equal to N, and, by iv), that the
imbedding of N into M are o and f3. Using now [7.6] we get that the coproduct is T'g, as
defined in which finishes the proof. m

7.8. Proposition. Let & be a measured quantum groupoid, ) a 2-cocycle for &; let
W be the pseudo-multiplicative unitary assoczated to &, Aq the von Neumann algebra
on H defined in and (B, ) the action of & on Aq defined in whose invariant
subalgebra A, is equal to o (zz)) let us write W = WQ*; moreover, the weight
voa~l on a(N) has the Galozs denszty property defined mm by -(v) Let us write
Y1 =voa ' oT,. Letu be the unitary from H onto Hy, introduced in (iv), and let
us write, for all t € R:
vl = u*A” uAIit.

For allt € R, let us consider the 2-cocycle 0 introduced m. the algebra Aq, associated,
the action (57 at) 0f05 on Aq,, whose invariant is also equal to a(N). Let us denote ¢,
the weight voa ™t oT,,, and u; the canonical unitary from H to Hy, ,, which, by (mz)
applied to Qy, implements my, ,. Let us write Vf[\/'; = WQf. Then:

(i) v$¥ is a unitary in MNa(N)'NB(N)'; moreover, the mapping t — vi* is a T-cocycle.
(ii) We have

W(v? B%a U?) =(1 a®3 U?)Wh F(U?)Qt* = Q*@tﬂ B%a U?)
N

(iii) The map J; = x + vi¥x(v?)* is an isomorphism from Aq, to Aq, and we have,

for all € € D(Hg,v°) and n € D(H,v):
Ty [(we y * id) (W)] = (wype,, * id)(W).

(iv) We have 11 0 Iy = 11 4; then uv?uf is the standard implementation of J;.
(v) We have v = 7(v}).
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(vi) If, for allt € R, we have Q@ = Q, then there exists a positive non-singular operator
ko affiliated to M, such that (ko) = ko and v$’ = ki.

Proof. By definition of 1, we get that, for all t € R and n € N, we have o, (a(n)) =
a(a¥(n)) = o (a(n)); therefore, we get that vi’ € a(N)'.
We have, using first [E5], 3.10 (iv) and 3.8(i), then [7.5(vii), [E5], 3.8(ii) and 3.10(vii):
u*AZluﬁ(n)u* - Ty = u*A ujoz(n*)ju*A;ftu
= u*Awluu* Jyp, uXoa(n*) Xou* leuu*A;ftu
= u*leuu*Afjla(n*)u*A;ftuu*leu = XaJa(o? (n*))JJ X
= XaB(o} (n)X§ = B(oy} (n)) = 7(B(n)) = AFB(n) AT
from which we get that v} € B(N)'.
Using [7.5]vi), and [E5], 8.8(ii), we get that
We(u Al uo®5 0P = (WAL u ;06 0~ PTH)WE
Ne N

and, as we have also, applying [E5], 8.8(ii) to the weight d:
WC(A‘% O¢®B S—itp—it) — (Ag a®B S—itP—it)Wc

Ne Ne
we get that

We(f a®51) = (vf @5 1)WE

No Ne
from which one gets that v{* belongs to M, using [E5], 3.10(ii), applied to &e.
We have, for s, t in R:

v, = w APTTIUAZ T — u AL uASTARUATL AZTAZE = off 7 (vf)

which finishes the proof of (i).
Using now iii) and [E5], 3.10(vii), we get that u*P¥_u = v§*P"; therefore, [7.7 .(1V
can be written
W (! 580 o) (P! 580 P1) = (P a5 v Y)W
NO
or, using [E5], 3.8(vii):
W7 580 17") = (La®5 07)W (11 pra 7)(27)
N Ne N

from which we get the first formula of (ii). The second formula of (ii) is just a straight-
forward corollary of the first formula. We then get that

(@ogre,n * i) (W) = 07 (we i) (W) (o)
from which we get (iii). Using now the definitions of a and a;, we get that (J; f*a id)a; =

N
Clet, at—T Ojt andwlt—zplojt
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If we suppose now that we , belongs to Iy, we get
Ay (efwe % id)(W)]) = Aoy [(@ose % i) (W)] = ulg (@,e, % i) (W)
= ur’ ()" v*¢ = ot (1)*€ = woi Ag[(we y * id)(W)]
= uvuj Ay, [(we.n * id) (W)
which finishes the proof of (iv).
Using (iv), we get uvilu Ajil . = AL wviuf, from which we infer

Q Q Q, x —1is u* is —1s Q Q Q Q Q
v Ut = vy U :1181 S A = ZS ZAS A” Afﬁ = vy Ts(vy") = vgyy = vy (V)

from which we get (v).
Using (v), we get that, if Q = €, v is invariant under 7, and is a one-parameter
group of unitaries, which finishes the proof. m

7.9. Theorem. Let® be a measured quantum groupoid, £ a 2-cocycle for &; let W be the
pseudo-multiplicative unitary associated to &, Aq the von Neumann algebra on H defined
in and (B, a) the action of & on Agq defined in whose invariant subalgebra Ag, is
equal to a(N) (zz)), let us write W = WQ* ; moreover, the weight voa™" on a(N) has
the Galois density property defined in by (m) Let us write ¢y = voa™toT,. Letu
be the unitary from H onto Hy, introduced in (m) Then the following are equivalent:

(i) There exists a normal semi-finite faithful weight ¢ on Aq such that (Agq, B,a,0, v)
is a Galois system.
(ii) There exists a one-parameter group of unitaries 6% on H, such that it is possible
to define a one-parameter group of unitaries uJy, u*dEudy, u* @4 08, with natural values
N

on elementary tensors, and such that

UT g u SR UT 1 5 R0 08 = QIS 524 57O
N N

(iii) There exists a T7_,0®F-cocycle t v us® in M N B(N)', such that

D(u') = Q* (uy’ 8%a DG A p¥a id)(€?)

and us} is linked with the T4-cocycle vt introduced m by the formula, for all s, t in R:
up oo 2P () = vt (up?).

In that situation, u*dqu is the modulus of the action (B,a), and we have 6% = u§ Qgit
Moreover, there exists then a normal semi-finite faithful operator weight Tq from M to
a(N) (resp. T{, from M to B(N)) such that

®q = (N,M,q,B,Tq,Ta,Th,v)
is a measured quantum groupoid.

Moreover, if N is a finite sum of factors, then any 2-cocycle satisfies these equivalent
conditions.

Proof. The equivalence between (i) and (ii) is just an application of |4.10, thanks to
iii). We then get that u*dqu is the modulus of the action (5,a) of & on Ag, and
using vii)7 we get that dq is affiliated to Agq, and that there exists a one-parameter
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group of unitaries 5 B®O‘ §'* such that, for all t € R, we have a(0§) = 0g 53®a 0. Let us

N
write uf? = (5”(5 it Usmg 1v , we get that u; € 8(IN)'; moreover, usingm and [E5],
3.12(v) and 3.8(vi), apphed to Q5 we get that We(us a®z (W) = us? 5®a 1, which
Ne N
gives that uf? belongs to M, thanks to [E5], 3.10(ii) applied to &°. As, for any x € M,
and t € R, we have, using [E5], 3.11(ii), 0%z6~" = 7_,022F (), we get that ¢ > uf’ is

indeed a T,Sa‘bOR—cocycle.
Using now i), we get that 6% a®5 04 = W (58 5%01 1)W*. And therefore
NO

La®guf = (0" 0@5 08) (07" 0@ 07) = W08 3@ DW (07" 42507
Neo Neo No N Neo
= W (88 s@a DOW* (67" @5 07) = W (0} 5@ 1RO s@a )W
N No N N

= WU 3®0 1) (71028 gx, id)(QW*
N N

and therefore

D(ui’) = W (La®p u )W = Q* (4! 580 1)(7-10 277 gxq id)(2)
Neo N N

which gives the first formula of (iii).
Moreover, using iii), we get that o) (64) = \'t5%. Using and [Ef], 3.8(vi)
applied to &, we have

o (6) = v APuRE AT (02) = o7, (u)o? (57 (08"
= o0 (W)X () = Nt ()6 (0

from which we get u$6% = v27,(u?)6% (v2)*, which gives the the second formula of (iii).

Conversely, if we have (iii), we can define a one-parameter group of unitaries §& by
writing 6% = u$?0". Now, from the first formula of (iii), taking the same calculation
upside down, we get that 0% a®p 68 = W (68 3@, 1)W*, which gives, by iii)a that dq

Neo N
is affiliated to Ag; so we have obtained that a(0g) = 0§ 3®a 0™.
N
From the second formula of (iii), using again the same calculation upside down, we

get that o' (6%) = A¥'6&, which proves that ) is affiliated to Ag; by the definition of
dq, we see that the operators 6o and A strongly commute. Therefore, by [V1], 5.1, there
exists a normal semi-finite faithful weight ¢ on Agq such that (D¢ : D), = )\“2/2(585.

Using now ﬂ(iv) and [E5], 8.1, we get, for all € 91, such that x5$/2 is bounded (its
closure, denoted x§1/2 belongs then to 91,,, and we identify Ag(z) with Ay, (:c(%m)), for
all p in D(Hy,v°) N D(d, 1/2) such that (551/217 belongs to D(,H,v):

1Ap(x) a®p 02 = 1Ay, (2652) 2@ nl]> = <w1 e Wyi/2, ) (268 26/
Ne Neo

= (§ j¥a wy)a(a"z)
N
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which, by continuity, remains true for alln € D(,H,v)ND(H 5 v°) and all x € 9, which
proves that ¢ is invariant by a. But now, we are in the situation of which gives that
A is affiliated to the center of Ag; we then have (i). m

7.10. Corollaries. Let & be a measured quantum groupoid, ) a 2-cocycle for &; let W
be the pseudo-multiplicative unitary associated to &. Then the following are equivalent:

(i) Q2 satisfies the equivalent conditions of-
(i1) For allt € R, Q (resp. Q) satisfies the equivalent conditions of[7.9
(iii) There ist € R such that Q (resp. Q) satisfies the equivalent conditions of-

Proof. We can easily check that we can write 7,(u$?) = u*, and §*ufd—is = ut , then
[7-9 gives the result. m

7.11. Theorem. Let & be a measured quantum groupoid, and Q0 a 2-cocycle for &; let
us suppose that, for any t € R, we have (1,02, g*q To2°T)(Q) = Q. Then, the cocycle
N

Q satisfies the equivalent conditions of [7.9. In particular, there exists a normal semi-
finite faithful operator weight Tq from M to a(N) (resp. T from M to B(N)) such that
6o =(N,M,«a,B,Tq,Ta, T, v ) is a measured quantum groupoid. Moreover, we get, for
all t € R, that T_;0 238 (v$Y) = 0§ and (7,023 5*a id)(Q) = Q.

Proof. Using [7.7(iii), we get that
Q(j(gltj 8Qa 5”)9* = jéltj 8Ra yit
N N

from which, using vii)7 we get that 6% belongs to Ag, and by v), that a(%) =
ot 3% 5. Using now [E5] 8.8(iii), one gets that, for any s, t in R, we have
N

a(o.;h (811&)) _ O';pl (Szt) B®0¢ 5it

from which one gets that o¥1 (6)6~# belongs to A% = a(N) by
More precisely, if n € N, we get that

0P ()5 a(n) = 0¥ (F)a(o 7 ()6~ = o (Ba(otyu(n)))6~"
= o (oo, (n)F)3 = a(m)at ()i
and therefore we get that o1 (§)6~% belongs to a(Z(N)).
But, on the other hand, using[7.8] we get that
szl (Sit)g—zt — ’U ol (yt)( ) (5 it _ Q)\zstazt( ) 6—11& A5ty Qyt( )*3—1’15
from which, using [E5], 8.11 (ii), we get

O.;Zh (8#)8—# — )\iSt’U?T,tO'q);R(’U?)

and, for all s, t in R, 7_;0®9%(v$})(v$})* belongs to a(Z(N)). Therefore, there exists a
one-parameter group of unitaries ¢t — p® in Z(N) such that 7_;0 2% (v$}) = a(ui)vsy
and therefore o1 (8') = Nista(ug ™)6™. So, there exists a positive non-singular operator
p affiliated to Z(N) such that o¥1 (§%) = Nista(p= ") and 7,02°B(0v?) = a(uit)vs.

But now, as, for all u € R, we have 7,02°F (a(u'!)) = a(v,(u*?)), we get that v, (u) = u,
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and therefore that 6 and Aa(u) strongly commute. Therefore, by [V1], 5.1, there exists a
normal semi-finite faithful weight ¢ on Aq such that (D¢ : Dy ), = (Aa(p)) /25,
Using now [7.5{(iv) and [E5], 8.1, as in that ¢ is invariant by a. But now, we are
in the situation of which gives that u = 1, and proves that we are in the situation
of with, moreover, uf! = 1; we then infer from that 7_,020(v?) = v,(Q),
(710228 5% id)(Q) = Q. u
N

7.12. Theorem. Let & be a measured quantum groupoid, and 2 a 2-cocycle for &; let
us suppose that, for any t € R, we have (1_1023f gx, id)(2) = Q. Then, the cocycle

N
satisfies the equivalent conditions of [7.9. In particular, there exists a normal semi-finite
faithful operator weight Tq from M to a(N) (resp. T from M to B(N)) such that

69 - (N7M7a7ﬁaFQaT97T§IZaV)
is a measured quantum groupoid. Moreover, we get, for all t € R, that 7_;0®F(v$?) = 0§
and (1:0%, pxo TioPOR)(Q) = Q.
N

Proof. The proof is similar to m

8. Examples, at last. In this last chapter, we construct a general situation in which
the deformations of a measured quantum groupoid by some 2-cocycles are still measured
quantum groupoids.

8.1. Measured quantum groupoids associated to a matched pair of groupoids.
In [Val6] was decribed a procedure for constructing measured quantum groupoids:

Let G be a locally compact groupoid, with G as set of units, and r : § — G(© (resp.
s:G§— 9(0)) as range (resp. source) mapping, equipped with a Haar system (A"),cg
and a quasi-invariant measure v on §(9. Let us write u = fg(g) A dv(u).

Let G1, G2 two closed subgroupoids of G, (with 71 = r|g,, etc.) equipped with their
Haar systems (A}),cg©; (A5)ueg-

Then (G1, G2) is called a matched pair of groupoids if:

(i) G1 NGy = GO,
(ii) The set G192 = {9192,91 € G1,92 € 93(91)} is p-conegligible in G.
(iif) There exists a measure v on §(°) with is quasi-invariant for the three Haar systems.

Then, Vallin has constructed an action (sz,a) of &(G1) on L°(Ga, u2), and put a
measured quantum groupoid structure on the crossed product.

Let &(G1,52) = (L=(S,v), L>(G2, p2) ¥a &(S1),m, s, T, Ty, Tr,v) be this mea-
sured quantum groupoid.

Moreover, there exists a right action (71, a) of &(93) on L*°(Gy, 1), which leads to a
measured quantum groupoid structure on L>=(G1, u1) X &(G2), we shall write &(G2, G1);

—

we have 6(G2,51) = 6(91, G2)

This measured quantum groupoid &(G;, G2) has some properties:

(i) The scaling operator A is equal to 1.
(ii) For any f € L>(Ga, u2), a(f) is invariant under o ([Val6], 4.3.5).
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(iif) For any f € L>(Ga, ua), we have R(a(f)) = a(f), where R is the co-inverse of
®(91,52), and f(g2) = f(g5 "), for any go € Go. Therefore, using (i), we get that a(f) is
also invariant under o°%.

(iv) Using ([Val6], 4.1.1) and ([E5], 3.8(ii)), one can easily check that, for all ¢ € R,
and f € L*(Ga, 12), we have 7z(a(f)) = a(f). Namely we have, using (ii):

(@ sk, @), (f) =T(a(f)) =T (o} (a(f))) = (1 sm of )T (a(f))

L= (5(0),v) L2 (§),v)
= (Tt O  sy¥*py 0-;1) © a)rgz (f) = (Tt Oa  sy¥ry a)ng(f)
Loo(G0) 1) Loo(G(0) 1)
from which we get the result. We refer to [Valf] for all details.

8.2. Theorem. Let (91,92) be the measured quantum groupoid constructed from a
matched pair (G1,G2) of groupoids. Let us use all notations of. Let Q be a 2-cocycle
for 8(S2), as defined in[7.d Then:
(i) (a  sy%p,  @)(Q) is a 2-cocycle for B(G1,G2), we shall write Q4 for simplification.
L>(5) )
(i) There exists a left-invariant operator-valued weight Tq, and a right-invariant
operator-valued weight T¢, ~ such that

&(S1,592)0. = (L=(G9,v), L(Sa, p2) q ®(S1),m,s,Tq,,Ta,,Tg,, V)
is a measured quantum groupoid.

Proof. Using [Val6], 4.1.1, one gets (i). As, for all t € R, 7;0%,0a = @, and r,0°Foa = a,
we get that this cocycle ), satisfies the conditions of or So, we get (ii). m

8.3. Matched pair of groups acting on a space. As a particular case of[B.I] we can
study, following ([Val6], 5.1) the case where G is a locally compact group acting (on the
right) on a locally compact space X, and G, G2 a matched pair of closed subgroups of
G, in the sense of [BSV]. Then, we can define almost everywhere Borel functions p§ from
G to G and p§ from G to Ga, such that

9=p7(9)r5 (9).

Following [VV], we can construct an action a; of Gy on L*°(G2), and put on the crossed
product L (G3) X4, G1 a structure of a locally compact quantum group we shall denote
by G(G1, Gs2); let us denote by T the coproduct of this locally compact quantum group.

Let us denote now by G (resp. 91, resp. G2) the locally compact groupoid given by the
action of G (resp. G1, resp. G2) on X. Then, it is easy to get that G and G are two closed
subgroupoids of G, which are a matched pair of groupoids as defined in So, there is an
action a of the measured quantum groupoid &(G;) on L*°(G3), and a measured quantum
groupoid structure (91, 92) on the crossed product L>*(92) x4 &(G1). The action a
can be identified with an action a of G; on L (X x G3) ([Val6], 5.1.2) and the crossed
product L>(G2) X4 6(G1) can be identified with the crossed product L= (X x G2) x5 G1,
which will be considered as bounded operators on L*(X x G x G) ([Val6], 5.1.1).

We can identify L?(X x Gg) 5,®,, L=(X x G1) with L*(X x G2) ® L*(G;) ([Val6],
Lee(X)
5.1.1); using these identifications, are given in ([Val@], 5.1.2) the formulae of the coproduct
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I" we can put on this crossed product. For any f € L®(X xGs), h € L*°(X), k € L*(G,),
we have

L(a()(x,9,9") = (207 (9). 05 (9)p§ ('),

I'(1 5,®r, p(h@k)) = M(h)(1@I(1® p1(k))),
Leo(X)
where M (h) is the function M (h)(z,g,9") = h(z.gp5 (¢')).

Let’s see now how this coproduct can be deformed by a 2-cocycle Qs for &(G2) to a
new coproduct I'q,. For simplification, we shall restrict to a 2-cocycle €y for G, which
can be easily considered as a 2-cocycle for &(9z). Using then [VV], we can put on the
crossed product L (G3) X4, G1 another structure of locally compact quantum group we
shall denote by G(G1,G2)q,, with a deformed coproduct we shall denote T'q,.

By construction, we have

Lo, (a(f))(x,9,9") = T(a(f))(2,9.9") = f(.pT (9), 05 (9)5 (4))
and
La,(15,@p, p(h@k)) = M(h)(1@To,(1® pi(k)))
Le=(X)

8.4. Looking back to Kac-Paljutkin’s examples. Following ([VV], 5.1.1), let’s look
at the particular case of where G5 is a normal subgroup of G; then (G; acts on
G5 by (inner in G) automorphisms, the action of G on G is trivial, the map p§ is a
homomorphism and G is the semi-direct product Go x GG1. Then we know that the old
Kac-Paljutkin’s examples can be obtained as locally compact quantum groups of the form

(;(C;l,C;Q)QQ.

(i) Taking G1 = Z/2Z acting on Gy = (Z/27)? by permutations, the cocycle Q has
been computed in ([BS], 8.26.1), in order to get that G(G1,G2)q, is then the dimension
8 example constructed in [KPI]. Taking now an action of the semi-direct product G =
G2 x G1 on a locally compact space X, we obtain, by applied to this particular case,
a measured quantum groupoid given by dimension 8 Kac-Paljutkin’s example and a right
action of (Z/27)? x Z/2Z on a space X.

(ii) Taking G; = R acting on G2 = R? by ay4(z) = exp(gK)(z) (z € R?, K is a
real 2 x 2 matrix). Then the cocycle has been computed in ([VV], 8.26.2) and leads to
the infinite dimensional Kac-Paljutkin’s example ([KP2]). So, starting from this example,
and some right action of the Heisenberg group H3(R) = R? x, R on X, we get, by
another example of a measured quantum groupoid.
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