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Abstract. A regular spectral triple is proposed for a two-dimensional κ-deformation. It is based
on the naturally associated affine group G, a smooth subalgebra of C∗(G), and an operator D
defined by two derivations on this subalgebra. While D has metric dimension two, the spectral
dimension of the triple is one. This bypasses an obstruction described in [35] on existence of
finitely-summable spectral triples for a compactified κ-deformation.

1. Introduction. In 1991, Lukierski, Ruegg, Nowicki and Tolstoi [39, 38] produced a
Hopf algebraic deformation of the universal enveloping algebra of the Poincaré Lie algebra,
which falls into the general scheme of deformations of the Lorentz group studied and
classified in [45, 53]. An interesting feature of this deformation was that the deformation
parameter, called κ, is not dimensionless and in physical models could be related to
a length or energy scale [41]. This Hopf algebra found later a natural interpretation
as a symmetry of noncommutative space, which was interpreted as the κ-deformation of
Minkowski space [42, 54]. This model of a noncommutative space has been used in physics
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for different purposes, see for instance [3, 4, 17, 28, 40]. On the more mathematical side,
the κ-deformed symmetries were used to study bicovariant noncommutative differential
calculi on the κ-Minkowski space [49]. More recently, using some quantization maps the
star product formulation of the κ-Minkowski algebra have been presented [15, 22, 30].

Since the κ-deformed Minkowski space is (as an algebra) an enveloping algebra of
a solvable Lie algebra, there is a natural Lie group G, which appears behind the κ-
Minkowski [1, 2, 15, 22, 35]. We shall recall later the construction of G, which appears
to be the real affine group.

The main question considered here is whether a κ-deformed space is a noncommutative
geometry in the sense of Connes [10, 12]. So far, apart from some early attempts, [16, 30],
this question was investigated in [35] for a compactified version of the κ-deformation,
yielding, through an incursion in number theory and dynamical systems, a kind of no-go
result. The non-existence of finitely summable spectral triples for the compactified version
of the κ-deformation, which was related to the group algebra of the Baumslag-Solitar
groups was, in fact, a consequence of the no-go theorem of Voiculescu. The negative
result was valid, however, only for representations quasi-equivalent to the left regular
representation of the algebra, thus leaving a possibility for other constructions [35].

Although the case of the discrete group (like Baumslag-Solitar group and its group C∗-
algebra) has no direct bearings on the case considered here (C∗-algebra of a Lie group),
we show that for the latter there is a possibility to bypass the potential obstruction
and construct a candidate for a spectral triple with a smooth subalgebra of C∗(G).
The Dirac operator is associated to two derivations obtained from two one-parameter
groups of automorphisms of C∗(G). But, even if the construction looks like those of the
noncommutative torus, there is here a drop of spectral dimension. Such a phenomenon
has been already observed in Moyal harmonic deformations [31].

In the κ-deformation of a n-dimensional space, the space-time coordinates satisfy the
following solvable Lie-algebraic relations:

[x0, xj ] := i
κ x

j , [xj , xk] = 0, j, k = 1, . . . , n− 1. (1.1)

Here we assume κ > 0.
Using the Baker–Campbell–Hausdorff formula, one gets [37, eq. (2.6)]

eicµx
µ

= eic0x
0

eic
′
j x

j

where c′j := κ
c0

(1− e−c0/κ)cj .

Actually, if [A,B] = sB, we have the “braiding identity”

eA eB = e(exp s)B eA. (1.2)

If we want to realize the xµ’s as selfadjoint (not necessarily bounded) operators on some
Hilbert space, the natural way is to pass to the unitaries:

Uω := eiωx
0

and V~k := e−i
∑n−1
j=1 kjx

j

with ω, kj ∈ R, which generate the κ-Minkowski group considered in [1].
If W (~k, ω) := V~k Uω, one gets as in [1, eq. (13)]

W (~k, ω)W (~k′, ω′) = W (e−ω/κ~k′ + ~k, ω + ω′), (1.3)
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which is nothing else but a presentation of a group law, which, for n = 2, describes the
semidirect product of two abelian groups:

Gκ := Rnα R, (1.4)

where α is the following group homomorphism, α : R→ Aut(R):

α(ω)k := e−ω/κk, for any ω, k ∈ R.

Gκ ' R∗+ nR is the affine group on the real line. From now on we shall consider only the
case n = 2 (as all difficulties concentrate around this case) and, moreover, we can take
κ = 1, as one can freely rescale this parameter change after rescaling x0. So we choose
G := G1.

The paper is organized as follows. In section 2 we consider the C∗-algebra C∗(G) of
the affine group G. We describe elements in C∗(G) as functions for various choices of vari-
ables, the original variables of the group G and their Fourier transforms, and we exhibit a
natural trace. In section 3 we choose a dense subalgebra A of C∗(G) which is compatible
with two derivations obtained from one-parameter groups of automorphisms of C∗(G).
Section 4 is devoted to the irreducible representations. In relation to Plancherel formula,
we characterize the represented elements of A which are Hilbert-Schmidt or trace-class
operators on some Hilbert space H ' L2(R), showing also that the two derivations im-
plement the operator of position and momentum of one-dimensional quantum mechanics.
In section 5 we produce explicitly a spectral triple which is regular for a chosen operator
D such that D2 is essentially the Hamiltonian of a one-dimensional harmonic oscillator.

The fact that G is a not a liminal group plays an important role in our construction of
a spectral triple of dimension 1: there are a lot of trace-class elements in the represented
algebra, but there are also many others with non-zero and finite Dixmier traces. Our
main result Theorem 5.4 shows that these values of Dixmier traces are proportional to a
(non-faithful) trace on C∗(G).

2. The C∗-algebra. We consider the crossed product group G = RnR with group law

(a, b) · (a′, b′) := (a+ a′, b+ e−ab′). (2.1)

The unit element is (0, 0) and the inverse is (a, b)−1 = (−a,−eab). The left Haar measure
on G is given by dµ(a, b) := ea dadb, while the right Haar measure is dµR(a, b) := dadb.
This group is not unimodular, and the modular function is ∆(a, b) := ea.

The group G and its group law (2.1) can be defined using different presentations. For
instance, four presentations of this group are given by [2, eqs. (4.5), (4.11), (4.1)] and [14,
Def. 4.1]:

(a, b) · (a′, b′) := (a+ a′, b+ eab′),

(a, b) · (a′, b′) := (a+ a′, e−a
′/2b+ ea/2b′),

(a, b) · (a′, b′) := (a+ a′, φ(a)b+e−aφ(a′)b′

φ(a+a′) ),

(a, b) · (a′, b′) := (a+ a′, e
a′φ(a)b+φ(a′)b′

φ(a+a′) ),
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where φ(a) := ea−1
a . These four presentations are related to (2.1) by the respective

invertible maps (a, b) 7→ (−a, b), (a, b) 7→ (−a, ea/2b), (a, b) 7→ (a, φ(a)b), and finally
(a, b) 7→ (a, e−aφ(a)b). The following analysis does not depend on the exact presentation
of this group.

The group G is the affine ax+ b group. It is connected, simply connected and expo-
nential. Since it is solvable, and thus amenable, one has C∗red(G) = C∗(G).

In the following we will mention this algebra as C∗(G).
Notice that other versions of the affine group ax+ b over the real numbers are studied

in the literature. They can slightly differ from the present one. For instance, the affine
group studied in [25] is not connected, and it contains G as the connected component to
the unit element. The group G or its companions have been widely studied [9, 23, 24, 26,
36, 46, 48, 56, 18, 51] and several uses appeared in physics [15, 22, 30, 34, 44, 43, 55].

By construction, the convolution algebra is defined over the space of L1(G,dµ)-
functions with the following product:

(f̂ ∗̂ ĝ)(a, b) :=

∫
G

dµ(a′, b′) f̂(a′, b′) ĝ
(
(a′, b′)−1 · (a, b)

)
, for any f̂ , ĝ ∈ L1(G,dµ),

which, for the group considered, takes the following explicit expression

(f̂ ∗̂ ĝ)(a, b) =

∫
R2

da′db′ea
′
f̂(a′, b′) ĝ(a− a′, ea

′
(b− b′)) (2.2)

=

∫
R2

da′db′f̂(a− a′, b− e−(a−a′)b′) ĝ(a′, b′).

The involution is defined by f̂∗(a, b) := ∆(a, b)−1f̂((a, b)−1), so

f̂∗(a, b) = e−a f̂(−a,−eab). (2.3)

The completion of the space L1(G,dµ) with respect to the norm obtained from the
left regular representation on L2(G,dµ) gives us the reduced C∗-algebra, which coincides
with the group C∗-algebra C∗(G). The algebra C∗(G) is generated by the dense involutive
subalgebra D(G)∗ ' D(R2)∗ of compactly supported smooth functions on G.

The usual notation D(M) designates the space of compactly supported smooth func-
tions on a smooth manifold M , while the subscript ∗ in D(G)∗ is used to specify the
convolution product on D(G) given in (2.2), in order to distinguish it from the pointwise
product.

Well known results on structure of C∗-algebras of semidirect product groups [52] show
that C∗(G) ' R n C∗(R) where the action of R on C∗(R) is induced by the action of R
on R, together with some correction factor, which appears when the Haar measure on R
(the second one) is not invariant under the action of R (the first one). The construction
of the C∗-algebra of a semidirect product group, as given in [52, Prop. 3.11], gives the
same product as in (2.2), while the involution is

f̂∗(a, b) = ea f̂(−a,−eab),

which is different from (2.3). Of course, both presentations are equivalent, as one can eas-
ily see on the level of compactly supported smooth functions: the C∗-algebra RnC∗(R)
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is generated by the involutive subalgebra D(R,D(R)∗) ' D(R2) of compactly supported
smooth functions in the first variable a ∈ R with values in the space of compactly sup-
ported smooth functions on the second variable b ∈ R, and the map

f̂n(a, b) = eaf̂(a, b),

establishes a natural isomorphism of involutive algebras D(G)∗ 3 f̂ 7→ f̂n ∈ D(R,D(R)∗),
which extends to an isomorphism on the C∗-algebras.

In the following, we will denote by f ∈ C∗(G) an element of this C∗-algebra and we
will use some explicit presentations of f as functions of different pairs of variables. The
first pair of variables is (a, b) ∈ R2 as before, and the corresponding function is denoted
by (a, b) 7→ f̂(a, b). This convention will also be used for subalgebras of C∗(G).

By Fourier transform, the commutative C∗-algebra C∗(R) is isomorphic to the C∗-
algebra C0(R̂) of continuous functions on R̂ ' R (the dual group of R) vanishing at
infinity. The C∗-algebra RnC0(R̂) is generated by functions f̃n ∈ D(R, Eexp(R̂)), where
Eexp(R̂) designates the algebra of functions on R̂ for pointwise multiplication obtained as
the Fourier transform of D(R)∗. We will use the variable β ∈ R̂. The algebra Eexp(R) can
be characterized as follows [50, Thm 7.2.2]:

Proposition 2.1. A function φ is in Eexp(R) if and only if x 7→ φ(x) is an entire
analytic function on R rapidly decreasing at infinity and such that the analytic function
z ∈ C 7→ φ(z) is of exponential type: ∃a > 0, ∃c > 0, such that |φ(z)| ≤ c ea|=(z)|, ∀z ∈ C.

The rapidly decreasing property of φ at infinity corresponds to the smoothness of its
Fourier transform, while the exponential type property corresponds to the compact sup-
port of its Fourier transform. In particular, Eexp(R) ⊂ S(R).

To any f̂n ∈ D(R,D(R)∗) ⊂ R n C∗(R) corresponds f̃ ∈ D(R, Eexp(R̂)) ⊂ R n C0(R̂)

given by

f̃(a, β) :=

∫
R
db f̂n(a, b) eibβ ,

so, for any f̂ ∈ D
(
R,D(R)∗

)
⊂ C∗(G),

f̃(a, β) = ea
∫
R
db f̂(a, b) eibβ (2.4)

with inverse transformation given by

f̂(a, b) = 1
2π e

−a
∫
R̂
dβ f̃(a, β) e−ibβ .

The induced product of f̃ , g̃ ∈ D(R, Eexp(R̂)) is

(f̃ ∗̃ g̃)(a, β) =

∫
R
da′ f̃(a′, β) g̃(a− a′, e−a

′
β), (2.5)

with involution
f̃ ∗(a, β) = f̃(−a, e−aβ). (2.6)

The factor ea in (2.4) is convenient to simplify this last relation.
The couple (a, β) ∈ R × R̂ is the second pair of variables used present an abstract

element f ∈ C∗(G) as a function denoted by (a, β) 7→ f̃(a, β).
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The induced action of R on C0(R̂) defining RnC0(R̂) is given by ρa(φ)(β) = φ(e−aβ)

for any φ ∈ C0(R̂), a ∈ R and β ∈ R̂. Let us introduce two copies Cν0 (R), labeled by
ν ∈ {−,+}, of the algebra of continuous functions on R vanishing at infinity. We denote
by u ∈ R the variable for the functions in Cν0 (R) and, for ν ∈ {−,+}, we associate to a
function kν ∈ Cν0 (R) the following function in C0(R̂) of the variable β:

φ(β) :=

{
kν(u) for β = νe−u,

0 otherwise.

Observe that necessarily φ(0) = 0 for any ν.
For each ν ∈ {−,+}, this map establishes an algebra morphism, so that Cν0 (R) ⊂

C0(R̂) is an sub ∗-algebra, which, moreover, is preserved by the action ρ of R. This action,
expressed in the variable u, takes the explicit form ρa(kν)(u) = kν(u + a), which is the
regular representation of the abelian group R on functions on R. The two crossed product
subalgebras RnregC

ν
0 (R) ⊂ RnC0(R̂) are isomorphic toK(L2(R)), the algebra of compact

operators on L2(R) (see [52] for instance) and we denote them by Kν := Rn Cν0 (R).
The direct sum K− ⊕ K+ is an ideal in R n C0(R̂) of functions in variables a and β

which vanish at β = 0. The quotient of R n C0(R̂) by K− ⊕ K+ could be, on the other
hand, identified with C∗(R) for the variable a ∈ R, and the quotient map is f̃ 7→ f̃|β=0.
This is summarized in the short exact sequence (see for instance [18, 51])

0 // K− ⊕K+
// C∗(G) // C∗(R) // 0 . (2.7)

3. The smooth algebra. Using previous notations, we consider the following dense
∗-subalgebra of C∗(G):

A := D(G)∗,

= D(R,D(R)∗), functions f̂ presented in variables (a, b),

= D(R, Eexp(R̂)), functions f̃ presented in variables (a, β).

An abstract element f ∈ A will be represented as a function f̂ or a function f̃ ,
whenever it is more convenient to use one notation or another, bearing in mind that
the transformation (2.4) allows us to pass easily between both notations. In some com-
putations in section 5.3, we will use the following result, which relies on the definition
A := D(G)∗:

Proposition 3.1 ([20, Théorème 3.1]). Any f ∈ A can be represented as a finite sum of
elements

∑N
i=1 gi ∗ hi for gi, hi ∈ A.

3.1. Relation to the κ-deformed space. In order to relate this algebra A to the
κ-deformation space, we introduce a third pair of variables to present f as a function
(α, β) 7→ f̌(α, β) for (α, β) ∈ R̂2: starting from f̃ ∈ D(R, Eexp(R̂)), one can perform a
Fourier transform along the variable a and define

f̌(α, β) :=

∫
R
da f̃(a, β) eiaα =

∫
R2

dadb eaf̂(a, b) eiaα eibβ . (3.1)
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The inverse relations are given by

f̃(a, β) = 1
2π

∫
R̂
dα f̌(α, β) e−iaα and f̂(a, b) = 1

(2π)2 e
−a
∫
R̂2

dαdβ f̌(α, β) e−iaα e−ibβ .

(3.2)
A straightforward computation shows that the product of f̌ and ǧ is given by

(f̌ ∗̌ ǧ)(α, β) = 1
2π

∫
R×R̂

dωdα′ f̌(α+ α′, β) ǧ(α, e−ωβ) e−iωα
′
, (3.3)

the involution is

f̌∗(α, β) = 1
2π

∫
R×R̂

dωdα′ f̌(α+ α′, e−ωβ) e−iωα
′
.

Using Prop. 2.1, the algebra A is, in this pair of variables, given by

A = Eexp(R̂, Eexp(R̂)).

At β = 0, the product (3.3) is just the pointwise product of functions:

(f̌ ∗̌ ǧ)(α, 0) = f̌(α, 0) ǧ(α, 0). (3.4)

Using these new variables, let us define α and β as the functions α̌(α, β) := α and
β̌(α, β) := β. Although they are not in the the original domain of the product (3.3), one
can see them as elements of the extended algebra [22, Definition 3.1]. Their left and right
multiplication on elements in A, when expressed in the (a, b) variables are:

(α̂ ∗̂ f̂)(a, b) = i(∂af̂)(a, b)− i(∂b bf̂)(a, b), (f̂ ∗̂ α̂)(a, b) = i(∂af̂)(a, b), (3.5)

(β̂ ∗̂ f̂)(a, b) = i(∂bf̂)(a, b), (f̂ ∗̂ β̂)(a, b) = ie−a(∂bf̂)(a, b). (3.6)

This means, that although they are not themselves in A, α and β are elements in the
multiplier algebra M(A) of A. According to (3.6), β is in fact in the multiplier algebra
of Cc(R, Eexp(R̂)) (compactly supported continuous functions of the variable a). The
derivative along the variable a in (3.5) shows that α is only in the multiplier algebra of
D(R, Eexp(R̂)). This explains in turn our choice for the algebra A.

Using (3.2), we can formally write α and β in the variables (a, b) in terms of the Dirac
distribution at 0 and its derivative as

α̂(a, b) = i δ′0(a) δ0(b), β̂(a, b) = i δ0(a) δ′0(b).

These expressions have to be understood as distributions once inserted in the integral
(2.2) which defines the product on A.

A computation in the multiplier algebra M(A) (see [22, Example 3.8]) shows that

[α, β] = iβ

which is the relation defining (1.1) for the κ-deformed space when κ = 1. In other words,
the variables (α, β) can be formally identified with the “variables” (x0, x1) of the κ-
deformation. In these variables, for any f̌ ∈ A, the preceding relation takes the forms:

(α̌ ∗̌ f̌)(α, β) = αf̌(α, β) + i(β∂β f̌)(α, β), (f̌ ∗̌ α̌)(α, β) = α f̌(α, β),

(β̌ ∗̌ f̌)(α, β) = β f̌(α, β), (f̌ ∗̌ β̌)(α, β) = β σ(f̌)(α, β),
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where we define

σ(f̌)(α, β) := 1
2π

∫
R×R̂

dωdα′ f̌(α+ α′, β) e−iωα
′
e−ω, (3.7)

which takes also the forms

σ(f̂)(a, b) = e−af̂(a, b), σ(f̃)(a, β) = e−af̃(a, β).

The operator σ appears as a twist of the algebra A (compare [22, Proposition 4.1]). It
can be extended to the functions α and β, and one gets:

[α̌, f̌ ] = iβ∂β f̌ , β̌ ∗̌ f̌ = σ−1(f̌) ∗̌ β̌ ,
σ(α̌) = α̌+ i , σ(β̌) = β̌ .

While A is not a unital algebra, its multiplier algebra M(A) is, and its unit 1 takes
the following form (as a distribution) in the different pairs of variables:

1̂(a, b) = δ0(a)′, δ0(b), 1̃(a, β) = δ0(a), 1̌(α, β) = 1.

3.2. A trace. The Fourier transform on R induces the natural isomorphism of C∗-
algebras F : C∗(R)

'→ C0(R̂) [52, Prop. 3.1]. As before, we denote by α ∈ R̂ the variable
for functions in C0(R̂). The map τR : C0(R̂)+ → [0,∞], τR(φ) :=

∫
R̂ φ(α)dα is a lower

semicontinuous trace [6, II.6.7.2(v), II.6.8.3(i)]. If ρ : C∗(G) → C∗(R) is the quotient
map in (2.7), we define

τ : C∗(G)+ → [0,∞], τ(f) := 1
2π τR ◦ F ◦ ρ(f). (3.8)

Denote by Mτ the linear span in C∗(G) of {f ∈ C∗(G)+ | τ(f) <∞}.

Lemma 3.2. τ is a lower semicontinuous trace on C∗(G) such that Mτ contains A.
For any f ∈ A, one has

τ(f) =

∫
R
db f̂(0, b) = f̃(0, 0) = 1

2π

∫
R̂
dα f̌(α, 0). (3.9)

In particular,

τ(f∗ ∗ f) =

∫
R
da
∣∣∣f̃(a, 0)

∣∣∣2 = 1
2π

∫
R̂
dα
∣∣f̌(α, 0)

∣∣2 . (3.10)

Proof. τ is lower semicontinuous because τR is a lower semicontinuous trace on C0(R̂)+

and the maps ρ and F are continuous as morphisms of C∗-algebras. The trace property
of τ is inherited from the trace property of τR: for any f ∈ C∗(G),

τ(f∗ ∗ f) = 1
2π τR ◦ F ◦ ρ(f∗ ∗ f) = 1

2π τR

(
(F ◦ ρ)(f)(F ◦ ρ)(f)

)
= 1

2π τR

(
(F ◦ ρ)(f)(F ◦ ρ)(f)

)
= τ(f ∗ f∗).

For any f ∈ A, a computation in the variables (α, β) gives

τ(f∗ ∗ f) = 1
2π

∫
R̂
dα (f̌∗ ∗̌ f̌)(α, 0) <∞.

Thanks to Proposition 3.1 and the polarization relation

4g∗h∗ = (g+h)∗(g+h)∗−(g−h)∗(g−h)∗+i(g+ih)∗(g+ih)∗−i(g−ih)∗(g−ih)∗, (3.11)
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one has A ⊂ Mτ , and τ takes the claimed value of (3.9) in f̌ and using (3.4), one gets
(3.10). The others are easily deduced.

Using representations of G, other traces on subspaces of C∗(G) will be defined in 4.5.

3.3. Derivations. For any f ∈ C∗(G) and t ∈ R, we define σt(f) ∈ C∗(G) by its
expression in variables (a, b):

σt(f̂)(a, b) := ∆it(a, b)f̂(a, b) = eitaf̂(a, b).

Note that the twist σ defined in (3.7) corresponds to σi.

Lemma 3.3. t 7→ σt is a one-parameter group of automorphisms of C∗(G).

σt is the natural modular automorphism of C∗(G) defined by ∆.

Proof. This follows directly from (2.2) and the definition of σt, compare also with the
proof of [22, Proposition 4.1].

As in the case of σ, σt extends to some of the elements in the multiplier:

σt(α̌) = α̌+ t, σt(β̌) = β̌ ,

so that one can interpret this one-parameter group of automorphisms of C∗(G) as the
translation in the time-direction in κ-deformation.

This one-parameter group of automorphisms defines a derivation

δ1(f) := dσt(f)
dt |t=0

(3.12)

on the algebra A, given in all variables by:

δ1(f̂)(a, b) = iaf̂(a, b),

δ1(f̃)(a, β) = iaf̃(a, β),

δ1(f̌)(α, β) = (∂αf̌)(α, β).

We saw that the algebra R n C0(R̂) is defined using the action ρa(φ)(β) = φ(e−aβ)

of a ∈ R on any φ ∈ C0(R̂). It is straightforward to check that the corresponding one-
parameter group of automorphisms R 3 u 7→ ρ−u of the algebra C0(R̂) can be extended
to a one-parameter group of automorphisms of the crossed product C∗(G) ' Rn C0(R̂)

(because R is an abelian group and the action of u ∈ R is the same as the action of a ∈ R
defining the crossed product).

Lemma 3.4. The map u ∈ R 7→ ηu ∈ Aut
(
C∗(G)

)
given explicitly by

ηu(f̃)(a, β) = f̃(a, euβ), ηu(f̂)(a, b) = e−uf̂(a, e−ub),

is a one-parameter group of automorphisms of C∗(G).

Therefore we have a second derivation

δ2(f) := dηu(f)
du |u=0

(3.13)
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on A, which is:

δ2(f̂)(a, b) = −f̂(a, b)− b(∂bf̂)(a, b),

δ2(f̃)(a, β) = β(∂β f̃)(a, β),

δ2(f̌)(α, β) = β(∂β f̌)(α, β).

Observe that δ2(f̃) vanishes at β = 0, so that δ2(f) ∈ K− ⊕K+ for any f ∈ A.

Lemma 3.5. The derivations δ1, δ2 are real, i.e. δk(f∗) = (δkf)∗ for any f ∈ A and
k = 1, 2, and they commute:

[δ1, δ2] = 0.

Moreover,
τ
(
δk(f)

)
= 0 for k = 1, 2.

The proof is by direct computations. While the derivation δ1 is the ordinary derivative
along the variable α, the derivative along β is not. Nevertheless it is a twisted derivation
on A (see also [22, Theorem 4.2]):

∂β(f̃ ∗̃ g̃) = (∂β f̃) ∗̃ g̃ + σ(f̃) ∗̃ (∂β g̃).

4. Representations

4.1. Irreducible representations. The irreducible unitary representations of the
affine group G = R n R are well known [32, 36]. For each ν ∈ {+,−}, one has an
irreducible infinite dimensional unitary representation πν of G on Hν := L2(R, ds) given
by

(π±(a, b)φ)(s) := e±ib e
−s
φ(s+ a).

These two representations naturally induce representations of C∗(G), defined for any
f ∈ L1(G,dµ) by

(π±(f)φ)(s) :=

∫
G

dadb eaf̂(a, b)
(
π±(a, b)φ

)
(s).

Thus

(πν(f)φ)(s) =



∫
R2

dudb eu−sf̂(u− s, b) eνibe
−s
φ(u) in variables (a, b), (4.1)∫

R
du f̃(u− s, νe−s)φ(u) in variables (a, β), (4.2)

1
2π

∫
R×R̂

dudv f̌(v, νe−s) e−iv(u−s) φ(u) in variables (α, β). (4.3)

As we will see in a while, these expressions make sense also for ν = 0, however, the
corresponding representation is reducible.

The representation π± can be extended to α and β as elements of the multiplier
algebra, and they are represented as unbounded operators

(π±(α)φ)(s) = −i(∂sφ)(s), (π±(β)φ)(s) = ±e−sφ(s).
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The Schwartz kernel of π±(f) is
Kπ±(f)(s, u) =

∫
R db eu−s f̂(u− s, b) e±ibe−s in variables (a, b),

f̃(u− s,±e−s) in variables (a, β),
1

2π

∫
R̂ dv f̌(v,±e−s) e−iv(u−s) in variables (α, β).

(4.4)

Apart from the infinite-dimensional representations, there exists also a family {πp0}p∈R
of one-dimensional irreducible unitary representations of G, defined by

πp0(a, b) := eiap.

This induces the family of one-dimensional representations of C∗(G) given in variables
(α, β):

πp0(f) = f̌(p, 0).

Using the direct integral of the one-dimensional Hilbert spaces for the standard
Lebesgue measure on R, which could be identified with L2(R, dp), and the direct integral
of the representation,

π0 :=

∫ ⊕
R

dp πp0 , (4.5)

we obtain a representation of G and C∗(G) on L2(R, dp):

(π0(a, b)φ̂)(p) = eiap φ̂(p), (π0(f)φ̂)(p) = f̌(p, 0)φ̂(p),

for any φ̂ ∈ L2(R, dp).
This representation can also be described on the Hilbert space H0 := L2(R, ds),

which we take as the image of L2(R,dp) under the standard Fourier transform defined
on L1(R, dp) ∩ L2(R, dp) by: φ(s) := 1

2π

∫
R dp φ̂(p)eips. On L2(R, ds) we have(

π0(a, b)φ
)
(s) = φ(s+ a)

and for any f ∈ L1(G,dµ),(
π0(f)φ

)
(s) =

∫
R2

dudb eu−sf̂(u− s, b)φ(u).

This relation is exactly (4.1) for ν = 0, so that, from now on, π0 will be considered as an
element of the family of representations {πν}ν∈{−,0,+}.

It is easy to see that the image of C∗(G) by π0 is abelian, which is also a consequence
of (3.4) combined with (4.3) for ν = 0.

It is known that the space {π−, π+} is dense in Ĝ for the Fell topology of Ĝ, while
{πp0 | p ∈ I} is closed in Ĝ ([27], [36]) if and only if I is closed in R. As we will see later,
these two irreducible representations are sufficient to give all non-trivial contributions to
the computations of spectral dimension for our proposed spectral triple.

The representation π−⊕π+ is faithful. This can be shown directly using the expression
of the representation in the variables (a, β). This is also a consequence of the decompo-
sition of the left regular representation presented in the next subsection along copies of
this representation π− ⊕ π+, see 4.3.

It is well known that G is not liminal [36] and in fact:
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Theorem 4.1. The real affine group G is postliminal and C∗(G) is of type I.

Proof. Since any irreducible representation of C∗(G) contains the compact operators ([36,
p. 164] for π±, obvious for the π

p
0 ’s), C

∗(G) is GCR. By [6, Theorem IV.1.5.7, IV.1.5.8],
this is equivalent to C∗(G) being of type I and postliminal.

4.2. Derivations and representations. For ν ∈ {−, 0,+}, define on Hν := L2(R, ds)
the following unbounded hermitean operators:

(∂1φ)(s) := s φ(s), (∂2φ)(s) := −i(∂sφ)(s), (4.6)

which implement on Hν the action of derivations (3.12) and (3.13):

Lemma 4.2. For any f ∈ A and ν ∈ {−, 0,+}, one has

[∂k, πν(f)] = πν(iδkf).

Proof. In variables (a, β), one has for k = 1 and φ in the domain of ∂1:(
∂1πν(f)φ

)
(s) =

∫
R
du s f̃(u− s, νe−s)φ(u),(

πν(f)∂1φ)(s) =

∫
R
duu f̃(u− s, νe−s)φ(u),

so that (
[∂1, πν(f)]φ

)
(s) =

∫
R
du (s− u) f̃(u− s, νe−s)φ(u) =

(
πν(iδ1f)φ

)
(s).

For k = 2 and φ in the domain of ∂2:(
∂2πν(f)φ

)
(s) = −i

∫
R
du
[
−(∂af̃)(u− s, νe−s)− νe−s (∂β f̃)(u− s, νe−s)

]
φ(u),(

πν(f)∂2φ
)
(s) = −i

∫
R
du f̃(u− s, νe−s) (∂uφ)(u) = i

∫
R
du (∂af̃)(u− s, νe−s)φ(u)

which leads to(
[∂2, πν(f)]φ

)
(s) = i

∫
R
du (β∂β f̃)(u− s, νe−s)φ(u) =

(
πν(iδ2f)φ

)
(s)

and finishes the proof.

Therefore the derivations δ1, δ2 of A can be represented as commutators on each of
the three representations π−, π+, and π0. Having in mind, for example, the construction
of spectral triples for the noncommutative torus, we shall make this a starting point for
a search of Dirac operator.

To end this section, let us observe that although the derivations δ1, δ2 commute on
A, the operators implementing them do not, as on L2(R, ds) one get [∂1, ∂2] = −i.
Furthermore, one can directly check that

π0(δ2f) = 0 for any f ∈ A.

4.3. The left regular representation. The algebra C∗(G) is completely determined
by the left regular representation of G on L2(G,dµ). For f ∈ L1(G,dµ), this representa-
tion is given on ψ̂ ∈ L2(G, ea dadb) by

(πreg(f)ψ̂)(a, b) =

∫
R2

da′db′ea
′
f̂(a′, b′) ψ̂(a− a′, ea

′
(b− b′)).
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Choosing the variables (a, β) on G, this could be rewritten as

(πreg(f)ψ̃)(a, β) =

∫
R
da′ f̃(a′, β) ψ̃(a− a′, e−a

′
β)

for any f̃ ∈ D(R, Eexp(R̂)) and ψ̃ ∈ L2(G, 1
2π e
−a dadβ), where ψ̃ is defined from ψ̂ as in

(2.4).
It is known (see for instance [36]) that the left-regular representation decomposes into

irreducible representations involving only π+ and π−. The explicit decomposition is done
as follows.

First, this representation decomposes into two pieces. Take β ∈ R̂ and introduce a
pair (ν, s) with ν ∈ {−,+} and s ∈ R such that β = νe−s. Let us define two Hilbert
spaces

H± = L2(R2, e−(a+s)dads),

and two maps
ζ± : ψ̃ ∈ L2(G, 1

2π e
−a dadβ) 7→ ψ̃± ∈ Hν ,

by the simple change of variables

ψ̃±(a, s) := ψ̃(a,±e−s).

Lemma 4.3. The operator ζ := ζ− ⊕ ζ+ : L2(G, 1
2π e
−a dadβ)→ H− ⊕H+ is unitary.

Proof. The surjectivity of ζ is straightforward and the fact that the map preserves the
inner product follows directly from

〈ψ̃1, ψ̃2〉 = 1
2π

∑
ν=±

∫
R2

dads e−(a+s) ψ̃ν1 (a, s) ψ̃ν2 (a, s)

which gives the result.

Therefore, instead of considering πreg, we study the representation πζreg := ζ πreg ζ
∗

on H− ⊕H+ which actually restricts to H− and H+, and(
πζreg(f) ψ̃±

)
(a, s) =

∫
R
da′f̃(a′, νe−s) ψ̃±(a− a′, s+ a′). (4.7)

Lemma 4.4. For ϕ ∈ L∞(R, dx), define ϕ̃(a, s) := ϕ(a+s). Then, for any ψ̃ ∈ H+⊕H−
and f̃ ∈ D(R, Eexp(R̂)),

πζreg(f) (ϕ̃ ψ̃±) = ϕ̃ πζreg(f) ψ̃±. (4.8)

Proof. This follows directly from (4.7).

This results means that the (commutative) algebra of functions ϕ ∈ L∞(R, dx) is
contained in the commutant of the representation πζreg. Thus, πζreg can be decomposed as
a direct Hilbert integral along R. Introducing a further change of variables

φ̃±(v, s) := e−v/2 ψ̃±(v − s, s),

we see that φ̃ν ∈ L2(R2, dvds), and the representation mapped to that Hilbert space
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becomes

(πζreg(f) φ̃±)(v, s) := e−v/2(πreg(f) ψ̃±)(v − s, s)

= e−v/2
∫
R
da′f̃(a′,±e−s) ψ̃±(v − (s+ a′), s+ a′)

= e−v/2
∫
R
da′f̃(a′,±e−s) ev/2φ̃±(v, s+ a′)

=

∫
R
du f̃(u− s,±e−s) φ̃±(v, u).

Comparing this last expression with (4.2), we get the direct Hilbert integral decomposition
of πζreg along v ∈ R:

πζreg '
∫ ⊕
R

dv (π+ ⊕ π−) = π+
reg ⊕ π−reg , (4.9)

where we define

π±reg :=

∫ ⊕
R

dv π± . (4.10)

In this decomposition of the left regular representation into irreducible representations,
the one-dimensional representations, πp0 , do not appear, so only the set {π−, π+} is the
principal series of G.

4.4. The representation associated to τ . We associate to τ a representation which
generalizes the GNS construction [6, II.6.7.3]:

Proposition 4.5. The representation πτ associated to the trace τ defined by (3.8) is
unitarily equivalent to π0.

Proof. As in [6, II.6.7.3], let us define

Nτ := {f ∈ C∗(G) | τ(f∗ ∗ f) <∞} and Nτ := {f ∈ C∗(G) | τ(f∗ ∗ f) = 0}.

One has

f ∈ Nτ if and only if 1
2π τR

(
(F ◦ ρ)(f)(F ◦ ρ)(f)

)
= 1

2π

∫
R̂
dα |(F ◦ ρ)(f)|2 (α) = 0,

which is equivalent to (F ◦ρ)(f) = 0, so F being an isomorphism, Nτ = ker ρ = K−⊕K+

by (2.7). In the same way, f ∈ Nτ if and only if 1
2π

∫
R̂ dα |(F ◦ ρ)(f)|2 (α) <∞, which is

equivalent to the fact that (F ◦ ρ)(f) ∈ L2(R̂, 1
2πdα) ∩C0(R̂), so that, because Nτ is the

kernel of (2.7), the quotient Nτ/Nτ can be identified with the subspace of C0(R̂) ' C∗(R)

of square integrable functions: Nτ/Nτ ' L2(R̂, 1
2πdα) ∩ C0(R̂). Since (3.10) shows that

the scalar product induced by τ on Nτ/Nτ is the scalar product on L2(R̂, 1
2πdα), the

representation space of πτ is Hτ := L2(R̂, 1
2πdα).

Performing a Fourier transform L2(R̂, 1
2πdα)→ L2(R, da) (which is the inverse Fourier

transform defining F : C∗(R) → C0(R̂)), we now characterize πτ on Hτ : in the variable
a ∈ R, the representation takes the explicit form(

πτ (f)ψ
)
(a) =

∫
R
da′ f̃(a− a′, 0)ψ(a′) (4.11)
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for any ψ ∈ L2(R, da). It is shown in section 4.1 that π0 defined in (4.5) can be presented
as a representation on H0 := L2(R, ds) by a Fourier transform φ(s) := 1

2π

∫
R dp φ̂(p) eips.

With the Fourier transform ψ(a) := 1
2π

∫
R dp φ̂(p) e−ipa, a direct computation gives

(4.11).

4.5. Traces from representations. The representations π± are traceable (in the sense
of [19, 17.1.6]) and the respective traces tr±(f), called also normalized characters of
C∗(G), are

tr±(f) := Tr(π±(f)), f ∈ C∗(G)+. (4.12)

If they are finite, they are computed in the variables (a, β) by the integrals

tr−(f) =

∫ 0

−∞
dβ 1

β f̃(0, β), tr+(f) =

∫ +∞

0

dβ 1
β f̃(0, β), (4.13)

or, in the variable u, β = ±e−u, by

tr±(f) =

∫
R
du f̃(0,±e−u). (4.14)

These traces are finite when π±(f) is trace-class (see Proposition 4.11) and computable
also using the formula tr±(f) =

∫
R du Kπ±(f)(u, u).

For ν = 0, we define tr0(f) := Tr(π0(f)) when π0(f) is trace-class. When f ∈ A, the
Schwartz kernel of π0(f) is Kπν(f)(s, u) = f̃(u − s, 0), so is continuous on the diagonal.
Using [7, Corollary 3.2], its trace should be Tr(π0(f)) =

∫
duKπν(f)(u, u) =

∫
du f̃(0, 0).

But it is finite only for f ∈ A such that f̃(0, 0) = τ(f) = 0.
Neither of the above traces trν , for ν ∈ {−, 0,+}, is related to the trace τ on C∗(G)

defined in 3.2. However, τ is related to the individual traces of the family of the one-
dimensional representations πp0 of G: if

trp0(f) := Tr(πp0(f)) =

∫
R2

dadbea f̂(a, b) eiap,

we get

τ(f) =

∫
R
dp trp0(f).

In other words, the trace τ on the algebra is the integration along R of the field of traces
p 7→ trp0 defined by the one-dimensional irreducible representations πp0 .

4.6. Hilbert-Schmidt and trace-class operators. A complete characterization of
the Hilbert-Schmidt and trace-class operators on the representation spaces H± of π±, is
given in [36]. Here we expose the main results in our notations.

We denote by L1(H±) (resp. L2(H±)) the space of trace-class operators (resp. Hilbert-
Schmidt operators) on H± and by L1(±) (resp. L2(±)) the space of couples S = (S−, S+)

of operators S± ∈ L1(H±) (resp. S± ∈ L2(H±)), which are Banach spaces for the norms

‖S‖pp := ‖S−‖pp + ‖S+‖pp , p = 1, 2.

Let us define the unbounded Duflo-Moore operator θ on H± [21] by

(θ φ)(s) := e−s/2φ(s). (4.15)

This operator θ is related to the one-parameter group of automorphisms σt (Lemma 3.3):
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Lemma 4.6. When φ is in the domain of θ, then π±(f)φ is also in the domain of θ for
f ∈ A and

θ π±(f) = π±(σ−i/2(f)) θ.

Recall that σt(f̃)(a, β) = eitaf̃(a, β), so that θ is a realization of the modular factor
∆1/2 on the representation spaces H±. By iteration, one gets π±(f) θ2 = θ2 π±(σ(f)).

Proof. For any φ in the domain of θ, one has in variables (a, β),(
π±(σ−i/2(f)) θ φ

)
(s) =

∫
R
du e(u−s)/2f̃(u− s,±e−s) e−u/2 φ(u)

= e−s/2
∫
R
du f̃(u− s,±e−s)φ(u) =

(
θ π±(f)φ

)
(s).

In particular π±(f)φ is in the domain of θ.

Let f ∈ A. Since ∆−1/2f ∈ A, define the operators P±(f) := θ π±(∆−1/2f) on H±
and the Plancherel transformation P

f 7→ P(f) := (P−(f),P+(f))

mapping f to a pair of operators on H− ⊕H+.

Proposition 4.7 ([36]). For any f ∈ A, one has P(f) ∈ L2(±) and

‖f‖L2(G,dµ) = ‖P(f)‖2 . (4.16)

The application f 7→ P(f) extends to an isometric isomorphism from L2(G,dµ) onto
L2(±).

The relation (4.16) is the Plancherel formula for the group G. This relation does not
use the representations πp0 , because, as mentioned before, the πp0 ’s are weakly contained
in the πν ’s. At first glance, the operators π±(f) are expected to be the operators used on
the right hand side of the Plancherel formula. But the non-unimodularity of G implies
that these operators must be replaced by their “twisted” versions P±(f).

Corollary 4.8. The operator P± : L2(G,dµ)→ L2(H±) is surjective.

This corollary tells us that we know all Hilbert-Schmidt operators on Hν . They are of
the form Pν(f) for some f ∈ L2(G,dµ):

Proposition 4.9. Let f ∈ A. Then, π±(f) is a Hilbert-Schmidt operator if and only if
there exists g ∈ A such that

f̃(a, β) =
√
|β| e−a/2 g̃(a, β) for any (a, β) ∈ R× R̂.

Proof. Both sides of the relations are inA, and a computation shows that π±(f) = P±(g).
Notice that the factor e−a/2 is unnecessary to characterize functions f ∈ A such that
π±(f) is Hilbert-Schmidt since g̃ is compactly supported in the variable a. It is only used
to relate π±(f) to P±(g).

If f ∈ A is such that π±(f) is Hilbert-Schmidt, then f̃(a, 0) = 0, so that f ∈ K−⊕K+

(and then of course π±(f) is compact).
Several extensions of the above results can be made for p 6= 1, 2 via the Hausdorff-

Young theorem [25, 47].
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Let B(G) be the algebra of linear combinations of continuous functions of positive type
onG [24]. It is generated by the functions of the form (a, b) 7→ F±(a, b) := 〈π±(a, b)ξ, η〉H±
for any ξ, η ∈ H±. This commutative algebra is a Banach algebra for the norm

‖F‖ := sup
f∈L1(G,dµ)
‖f‖≤1

∫
G

dµ(a, b)f̂(a, b)F (a, b)

where ‖f‖ is the C∗-norm on C∗(G). Consider the Fourier algebra A(G) ⊂ B(G) of G
generated by the linear combinations of continuous compactly supported functions of
positive type on G, equipped with the same norm. For the affine group, this algebra is
given by A(G) = B(G) ∩ C0(G), where C0(G) is the algebra of continuous functions on
G vanishing at infinity [36].

The following theorem describe the elements in A(G) and gives a complete description
of trace-class operators on H− ⊕H+:

Theorem 4.10 ([36]). Any element F ∈ A(G) can be written as F = f ∗ (∆g∗) where
f, g ∈ L2(G,dµ), and moreover, ‖F‖ = ‖f‖2 ‖g‖2. Let S = (S−, S+) ∈ L1(±). Then the
function

F (a, b) := Tr
(
π−(a, b)S−

)
+ Tr

(
π+(a, b)S+

)
belongs to A(G) and satisfies ‖F‖ = ‖S‖1. The association S 7→ F is an isometric
isomorphism from L1(±) onto A(G).

More results in [36] show that the restriction S± 7→ Tr
(
π±(a, b)S±

)
, for S± ∈ L1(H±),

characterizes the trace-class operators on H± as functions in a subalgebra A±(G) ⊂ A(G)

for which A(G) = A−(G) ⊕ A+(G); in particular any S± ∈ L1(H±) can be written as
S± = P±(f)P±(g) for f, g ∈ L2(G,dµ).

Proposition 4.11. For f ∈ A, (π− ⊕ π+)(f) ∈ L1(H) if and only if there exist two
functions h1, h2 ∈ L2(G,dµ) such that

f̃(a, β) = |β|
2π

∫
R3

da′dbdb′ ea
′
h1(a′, b′)h2(a+ a′, e−ab′ − b) e−ibβ .

So that if (π− ⊕ π+)(f) ∈ L1(H), then τ(f) = 0. For ν = 0 and f ∈ A, π0(f∗ ∗ f) is
trace-class if and only if τ(f∗ ∗ f) = 0 and then tr0(f∗ ∗ f) = 0.

Proof. If (π− ⊕ π+)(f) is trace-class for f ∈ A, then it defines F ∈ A(G) by

F (a, b) :=
∑
ν

Tr(πν(a, b)πν(f)) =
∑
ν

∫
R
du f̃(−a, νe−(u+a)) eiνbe

−u
, (4.17)

and the trace is then given by F (0, 0) =
∑
ν

∫
R du f̃(0, νe−u), which is (4.14). The relation

(4.17) can be inverted as

f̃(a, β) = |β|
2π

∫
R
db F (−a,−eab) eibβ . (4.18)

Since we can write F ∈ A(G) as F = h1 ∗ (∆h∗2), for h1, h2 ∈ L2(G,dµ), substituting
it into (4.18) gives the most general expression for f ∈ A in terms of h1 and h2. This
expression implies τ(f) = f̃(0, 0) = 0 directly.
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For ν = 0, we saw in section 4.5 that is π0(g) is trace-class then τ(g) = 0. For f ∈ A,
tr0(f∗ ∗ f) =

∫
R du (f̃∗ ∗̃ f̃)(0, 0) =

∫
R du τ(f∗ ∗ f) = 0 if τ(f∗ ∗ f) = 0.

Notice that (π− ⊕ π+)(f) ∈ L1(H) for f ∈ A implies that f ∈ K− ⊕K+ (which is of
course a stronger result than (π− ⊕ π+)(f) compact).

Proposition 4.12. For any f ∈ A, π±(f) θ2, θ π±(f) θ, and θ2 π±(f) are trace-class
operators and

Tr
(
πν(f) θ2

)
= Tr

(
θ πν(f) θ

)
= Tr

(
θ2 πν(f)

)
=


∫ ∞

0

dβ f̃(0, β) for ν = +,∫ 0

−∞
dβ f̃(0, β) for ν = −.

Proof. Thanks to Proposition 3.1, we can replace f by g ∗ h, for g, h ∈ A. We consider
only the case of π±(f) θ2. Using Lemma 4.6, one has

π±(g ∗ h) θ2 = π±(g)π±(h) θ2 = π±(g) θ2 π±(∆−1h)

= θ π±(∆−1/2g) θ π±
(
∆−1/2(∆−1/2h)

)
= P±(g)P±(∆−1/2h)

which is trace-class because A ⊂ L2(G,dµ) and ∆−1/2A ⊂ L2(G,dµ).
The trace is computed using the kernel K(s, u) = f̃(u− s, νe−s)e−u of πν(f) θ2:

Tr
(
πν(f) θ2

)
=

∫
R
du f̃(0, νe−u) e−u = −ν

∫ 0

ν×∞
dβ f̃(0, β)

which gives the result.

Corollary 4.13. When f ∈ A, π±(δ2f) is trace-class and

τ(f) = tr−(δ2f) = − tr+(δ2f).

For ν = 0, we have seen that π0(δ2f) = 0 for any f ∈ A, but τ(f) = f̃(0, 0) can be
nonzero, so that there is no relation between these two quantities.

Proof. A direct computation in the variables (a, β) shows that(
π±(δ2f

)
φ)(s) =

∫
R
du (±)e−s (∂β f̃)(u− s, νe−s)φ(u) = ±θ2

(
π±(∂β f̃)φ

)
(s).

By Proposition 4.12, the operator θ2 π±(∂β f̃) is trace-class because ∂β f̃ ∈ A. The traces
are computed using (4.13).

5. The spectral triple

5.1. About the choices. The choice of a spectral triple (A,H,D) is by definition a
choice of a geometry. In the beginning we had just the Lie-algebra type commutation
relations (1.1) of the κ-deformation space to which we naturally associated the affine
group G. From a noncommutative point of view, a natural algebra to represent this
“noncommutative space” is the group C∗-algebra C∗(G). Thus it is natural to take the
spectral triple algebra A as a dense subalgebra of C∗(G). Of course this choice should be
compatible with the domain of the privileged operator D and this in turn needs a choice
of H which actually means a choice of a faithful representation π of A on H. However,
still the crucial choice is that of an operator D.
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There might be various hints as to which ingredients could be used. For instance,
consider the two generators T and X of the Lie algebra g ' R2 of G given by T := (1, 0)

and X := (0, 1), with respective flows ϕt,T (a, b) = (a+ t, b) and ϕt,X(a, b) = (a, e−at+ b),
from which we deduce the Lie bracket

[T,X] = −X.

Notice that x0 = −iT and x1 = −iX satisfy the relation (1.1) for n = 2 and κ = 1.
Denoting the induced representation of the Lie algebra by dπν we have:

(dπν(T )φ)(s) = (∂sφ)(s) and (dπν(X)φ)(s) = νie−sφ(s),

so that
dπν(T ) = iπν(α) = i∂2 and dπν(X) = iπν(β) = 2πiνθ2.

where ∂2 is defined in (4.6). Therefore, for any f ∈ A, [dπν(T ), πν(f)] = −πν(δ2f) is a
bounded operator, and, moreover, using Lemma 4.6, one has

[dπν(X), πν(f)] = 2πiν[θ2, πν(f)] = 2πiν θ2
(
πν(f)− πν(σ(f))

)
,

which, by Proposition 4.12, is even trace-class for ν ∈ {−,+}. The last commutator is
closely related to the twisted commutator, which vanishes for every f ∈ A:

dπν(X)πν(f)− πν
(
σ−1(f)

)
dπν(X) = 0.

The above unbounded operators, which have bounded commutators with the algebra,
are interesting candidates for a geometry of the κ-deformed space. We mention them,
however, just to indicate that there are many possibilities and that the choices are not
obvious. Even if the latter approach deserves further study, we will privilege in the follow-
ing the derivation-based “noncommutative geometry” of C∗(G). In particular, this means
that we will use the two natural derivations δ1, δ2 defined in section 3.3 on the algebra
A = D(G)∗, in order to construct a Dirac-like operator D, similarly as for the noncom-
mutative two-torus. Of course, the following spectral triple is of non-compact type, as
the Moyal plane is the non-compact version of the noncommutative torus [29].

Definition 5.1. The algebra, its representation on the Hilbert space and the operator
D are

A := D(G)∗,

H :=
⊕

ν=+,0,−
(L2(R, ds)⊗ C2),

π :=
⊕

ν=+,0,−
Diag(πν , πν),

D := γk ∂k ⊗ 13 ,

χ := −iγ1γ2 ⊗ 13 ,

where γ1 = ( 0 1
1 0 ) and γ2 =

(
0 −i
i 0

)
are the Pauli matrices.

Since the unbounded operators ∂k defined in (4.6) are hermitean, the operator D has a
selfadjoint extension. The representation is chosen not only to include the two irreducible
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representations in the principal series, π±, but also to include the other irreducible rep-
resentations contained in π0. Actually, many of the computations performed below will
split into the three cases ν ∈ {−, 0,+}, and the main results (Theorem 5.5 for instance)
will be valid even if π0 were not included in our representation or if on the contrary π±
are excluded.

Proposition 5.2. (A,H,D) is an even (with grading χ) regular spectral triple.

Proof. The operator D is an unbounded selfadjoint operator on H with the domain being
the Schwartz space S(R) such that

D2 =

(
H + 1 0

0 H − 1

)
⊗ 13 where H := − d

ds

2
+ s2. (5.1)

Thus the operator H is the Hamiltonian of quantum harmonic oscillator and its spectrum
is σ(H) = {2n+ 1 | n ∈ N}, so σ(D2) = {d2

n := 2n | n ∈ N} with multiplicity mn of dn
equal to 1 if n = 0 and 2 otherwise.

Since the resolvent of D is compact, it is sufficient to show that for any f ∈ A,
[D, π(f)] is a bounded operator on H. By direct computation,

[D, π(f)] =
⊕

ν=+,0,−
Aν , Aν := γkπν(iδkf) (5.2)

because [∂k, πν(f)] = πν(iδkf) for k ∈ {1, 2}, ν ∈ {−,+, 0} and π0(δ2f) = 0. Since πν(g)

is bounded for any g ∈ A, the claim is proved.
Regularity of the triple means that A and [D, π(A)] are in ∩∞n=0 dom δn with the

definition δ := ad(|D|). Let L(T ) := 〈D〉−1[D2, T ] and R(T ) := [D2, T ]〈D〉−1, where
〈D〉 := (1 + D)1/2. Then, applying [13, p. 238], [33, Lemma 10.2.3] and [8], we have to
show that for any T ∈ π(A)∪ [D, π(A)], Rm(T )◦Ln(T ) = 〈D〉−n

(
ad(D2)

)n+m
(T ) 〈D〉−m

is a bounded operator.
Since π is diagonal, we may by restriction assume that π = πν 12 for some ν = −, 0,+,

and D = γk∂k, so (5.2) says that the case T ∈ [D,A] reduces to the case T ∈ A since the
γ-matrices are bounded. Thus we assume T = π(f) and we have to show that

〈γk∂k〉−n
(
ad((γk∂k)2)

)n+m
(πν(f)12) 〈γk∂k〉−m

is bounded. First, observe that

ad(D2)π(f) = [(γk∂k)2, π(f)] = [∂2
1 + ∂2

2 , πν(f)]12

=
(
− πν

(
(δ2

1 + δ2
2)f̃
)

+ 2πν(δkf)∂k
)
12.

By iterative application of this formula, taking into account nontrivial commutations
between ∂k, we obtain an expression, which is a polynomial of degree at most m + n in
the operators ∂k with coefficients from πν(A). So, to end the proof it is sufficient to show
that for any a ∈ A, any n,m, n1, n2 ≥ 0 such that n+m = n1 + n2 the operator

〈γk∂k〉−m πn(a)∂n1
1 ∂n2

2 〈γk∂k〉−n,

is bounded, which can be done similarly as in [31, Corollary 5].
One checks that the triple is even since χ = χ∗, [χ, π(f)] = 0 for any f ∈ A and

Dχ = −χD.
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5.2. Metric dimension. The zeta-function of D is defined by

ζD(s) := Tr
(
(1 +D2)−s/2

)
for s ∈ C with <(s) large enough.

Lemma 5.3. If ζ is the standard Riemann zeta-function, then

ζD(s) = (2− 21−s/2) ζ( s2 )− 1

has a unique pole at s = 2. Thus the metric dimension of the triple (A,H,D), defined as
the infimum of all s ∈ R∗ such that Tr

(
(1 +D)−s/2)

)
<∞, is 2.

Proof.

ζD(2s) =

∞∑
n=0

mn
(d2n+1)s = 1 + 2

∞∑
n=1

1
(2n+1)s

= 1 + 21−s
∞∑
n=1

1
(n+1/2)s = 1 + 21−s(ζ1/2(s)− 2s

)
where the Hurwitz zeta-function ζ1/2(s) :=

∑∞
n=0

1
(n+1/2)s satisfies ζ1/2(s) = (2s−1)ζ(s).

Thus ζD(2s) = (2−21−s)ζ(s)−1, the unique pole of ζD is at s = 2 and this pole is simple.

5.3. Spectral dimension and Dixmier trace. If we want to find the spectral dimen-
sion d ∈ R+ of (A,H,D), which is a nonunital spectral triple, we should rather use the
following definition [8, Definition 6.1]

d := inf{d′ > 0 | Tr
(
π(f) (1 +D2)−d

′/2
)
<∞ for any f ∈ A+}. (5.3)

Actually, we shall prove something stronger: (A,H,D) is Z1-summable (see [8, Definition
6.2]), namely

lim sup
s ↓ 1

∣∣∣(s− 1) Tr
(
π(f) (1 +D2)−s/2

)∣∣∣ <∞ for all f ∈ A.

This means that π(f) (1 + D2)−d/2 ∈ L1,∞(H) or that its m-th singular value behaves
like O(m−1).

Theorem 5.4. The spectral triple (A,H,D) is Z1-summable (thus its spectral dimension
is d = 1). Moreover, for any f ∈ A, the operators π(f) (1 +D2)−1/2 are measurable and
for any Dixmier trace Trω, we have

Trω
[
π(f) (1 +D2)−1/2

]
=

∑
ν∈{−,0,+}

Trω
[
πν(f) (1 +D2)−1/2

]
= 8 τ(f). (5.4)

In particular, Trω
[
π(f ∗ f∗) (1 +D2)−d/2

]
= 8

∫
R da |f̃(a, 0)|2.

Notice that if π(f) is trace-class, then by Proposition 4.11 all terms of (5.4) vanish.

Theorem 5.5. The dimension spectrum (see [31]) of (A,H,D) is {1− N}.

To get these results, and in particular the measurability which is the independence
of the result on the choice of a Dixmier trace Trω, we need to know the behavior around
t = 0 of Tr

(
π(f) e−tD

2)
and we will follow closely [31] which also uses a harmonic-like

operator D.



282 B. IOCHUM ET AL.

The operator e−tD
2

is trace-class and

Tr(e−tD
2

) = 6 Tr(e−tH) cosh t = 3 coth t. (5.5)

The heat trace associated to D is, using (5.1),

Tr(π(f) e−tD
2

) = 2 cosh(t)
∑
ν

Tr
(
πν(f) e−tH

)
, t ∈ R+. (5.6)

Lemma 5.6. Let f ∈ A and ν ∈ {−, 0,+}. Then

Tr
(
πν(f) e−tH

)
= 1

2π
√

cosh 2t

∫
R̂×R

dv dx f̌(v, νe−x) e
− 1

2 (tanh 2t)(x2+v2)− i 2 sinh2 t
cosh2 t+sinh2 t

xv
.

(5.7)

In particular, when ν = 0, Tr
(
π0(f) e−tH

)
= 1√

2π sinh 2t

∫
R̂ dv f̌(v, 0) e−(tanh t) v2 .

Proof. It is known that the kernel of the heat operator e−tH is given by Mehler’s for-
mula [5]

Ke−tH (x, y) = 1√
2π sinh(2t)

e−
1
4 [coth(t) (x−y)2+tanh(t) (x+y)2].

In the variables (α, β), (4.4) gives Kπν(f)(x, y) = 1
2π

∫
R dv f̌(v, νe−x) e−iv(y−x), so that

Kπν(f) e−tH (x, y) =

1
2π

∫
R×R̂

dudvf̌(v, νe−x) e−iv(u−x) 1√
2π sinh 2t

e−
1
4 [(coth t) (u−y)2+(tanh t) (u+y)2].

The integration along u in this expression can be performed, and one has:∫
R
du e−iv(u−x) e−

1
4 [coth(t) (u−y)2+tanh(t) (u+y)2] =

√
2π tanh 2t e

− 1
2 (tanh 2t)(x2+y2)− i 2 sinh2 t

cosh2 t+sinh2 t
xv
.

Since e−tH is trace-class by (5.5), so is πν(f)e−tH , thus

Tr
(
πν(f) e−tH

)
=

∫
R
dxKπν(f) e−tH (x, x)

= 1
2π
√

cosh 2t

∫
R̂×R

dv dx f̌(v, νe−x) e
− 1

2 (tanh 2t)(x2+v2)− i 2 sinh2 t
cosh2 t+sinh2 t

xv
.

Moreover∫
R
dx e−

1
2 (tanh 2t)(x2+y2)− i 2 sinh2 t

cosh2 t+sinh2 t
xv

=
√
π
√

coth t+ tanh t e−(tanh t) v2

so the result for Tr
(
π0(f) e−tH

)
follows directly after performing integration in x.

In the following computations, we use the two functions defined on t > 0:

T (t) := 1
2 tanh 2t, S(t) := 2 sinh2 t

cosh2 t+sinh2 t

sometimes also denoted by T and S in computations.

Lemma 5.7. For any f ∈ A, let

Iν(t) :=
√
π√
T (t)

∫
R2

dxdy f̃(y, νe−x) e−T (t)x2

e
− 1

4T (t) (S(t)x−y)2

. (5.8)
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Then

lim
t→0+

√
t Iν(t) =


π

3
2 f̃(0, 0) = π

3
2 τ(f) for ν ∈ {−,+},

2π
3
2 f̃(0, 0) = 2π

3
2 τ(f) for ν = 0.

Proof. In the integral (5.8), we make the change of variables x′ =
√
Tx and y′ = y−Sx√

T
,

so that

Iν(t) =
√
π√
T

∫
R2

dx′dy′ f̃(
√
Ty′ + S√

T
x′, νe−x

′/
√
T ) e−x

′2
e−

1
4y
′2
.

One has

lim
t→0+

f̃(
√
Ty′ + S√

T
x′, νe−x

′/
√
T ) =

{
f̃(0, 0) if x′ > 0,

limβ→ν×∞ f̃(0, β) = 0 if x′ < 0.

The function |f̃ | is bounded, so that the modulus of the integrand is dominated by a
constant times the two Gaussian functions, which is integrable, so that we can apply the
dominated convergence theorem. For ν = 0, we get

lim
t→0+

√
t Iν(t) =

√
πf̃(0, 0)

∫ ∞
−∞

dx′ e−x
′2
∫ ∞
−∞

dy′ e−y
′2/4 = 2π

√
πf̃(0, 0).

For ν ∈ {−,+}, we split the integral along x′ into x′ > 0 and x′ < 0, so

lim
t→0+

√
t Iν(t) =

√
πf̃(0, 0)

∫ ∞
0

dx′ e−x
′2
∫ ∞
−∞

dy′ e−y
′2/4 = π

√
πf̃(0, 0)

ends the proof.

Lemma 5.8. For any f ∈ A, there exists a constant c(f) such that

Tr
(
π(f∗) e−tD

2

π(f)
)
≤ c(f) max(1, 1√

t
) . (5.9)

Proof. Since the function in (5.9) is continuous in t > 0, and has a limit when multiplied
by
√
t at t = 0, the result could be deduced from continuity. However, since we shall

conjecture that similar result appears in a more general situation, we prefer to give a
computable proof.

The equation (5.7) entails

Tr
(
π(f∗) e−tD

2

π(f)
)

= Tr
(
π(f ∗ f∗) e−tD

2)
= 2 cosh t

2π
√

cosh 2t

∑
ν

∫
R2

dvdx (f̌ ∗̌ f̌∗)(x, νe−x) e−T (x2+y2)−iSxv (5.10)

= cosh t
π
√

cosh 2t

∑
ν

√
π√
T

∫
R2

dxdy (f̃ ∗̃ f̃∗)(y, νe−x) e−T x
2− 1

4T (Sx−y)2 (5.11)

≤
√
t√
t

[
cosh t

π
√

cosh 2t

∑
ν

√
π
T (t)

∫
R2

dxdy
∣∣∣f̃ ∗̃ f̃∗∣∣∣ (y, νe−x) e

−T (t) x2− 1
4T (t) (S(t)x−y)2

]
.

(5.12)



284 B. IOCHUM ET AL.

To prove (5.11), notice that, with g := f ∗ f∗, the integral in v in (5.10) is equal to∫
R̂
dv ǧ(v, νe−x) e−Tv

2

e− iS xv =
√
πS√
T

∫
R
dy g̃(Sy, ν e−x) e−

S2

4T (x−y)2 (5.13)

=
√
π√
T

∫
R
dy′ g̃(y′, νe−x) e−

1
4T (Sx−y′)2 . (5.14)

Actually the right hand side of (5.13) is equal to
√
πS√
T

1
2π

∫
R×R̂

dy dv ǧ(v, ν e−x) e−iSyv e−
S2

4T (x−y)2 ,

and the integration in y gives
∫
R dy e−iSyv e−

S2

4T (x−y)2 = 2
√
πT
S e−Tv

2

e−iSxv which proves
(5.13) and (5.14) after a change of variable.

Denote by A(t) the expression in the bracket of (5.12). When t → 0, Lemma 5.7
implies that

√
t A(t) goes to a constant which depends on f̃(0, 0). Choosing a constant

c1(f) sufficiently large, there exist 0 < t0 < 1 such that for all t ∈ (0, t0),
√
t A(t) ≤ c1(f).

The function (x, y) 7→
∣∣∣f̃ ∗̃ f̃∗∣∣∣ (y, νe−x) is compactly supported in y, with support

included in [−m,m], and bounded in x and y, so that there is a constant c2(f) (which
also depends on t0) such that, for all t ≥ t0,

A(t) ≤ cosh t
π
√

cosh 2t

6m
√
π√

T (t)
‖f̃‖∞

∫
R
dx e−T (t) x2

≤ c2(f).

With c(f) = max
(
c1(f)√
t0
, c2(f)

)
, one gets (5.9).

Lemma 5.9. There exists a constant C such that for any f ∈ A,∥∥∥[π(f), e−tD
2
]∥∥∥

1
≤ C
√
t
∑
k

∥∥∥π (δk(f)) e−
t
4 D

2
∥∥∥

1
. (5.15)

Proof. Since [eA, B] =
∫ 1

0
ds esA [A,B] e(1−s)A, one has

[π(f), e−tD
2

] = −t
∫ 1

0

ds e−tsD
2

[D2, π(f)] e−t(1−s)D
2

.

Moreover, e−tD
2

is trace-class, so writing [D2, π(f)] = D[D, π(f)] + [D, π(f)]D, we get∥∥∥[π(f), e−tD
2

]
∥∥∥

1
≤

t

∫ 1

0

ds
∥∥∥e−ts/2D2

D
∥∥∥ ∥∥∥e−ts/2D2

[D, π(f)] e−t(1−s)/2D
2
∥∥∥

1

∥∥∥e−t(1−s)/2D2
∥∥∥

+
∥∥∥e−ts/2D2

∥∥∥ ∥∥∥e−ts/2D2

[D, π(f)] e−t(1−s)/2D
2
∥∥∥

1

∥∥∥De−t(1−s)/2D2
∥∥∥ .

Since
∥∥∥D e−tD2

∥∥∥ = sup
x∈R

∣∣∣xe−tx2
∣∣∣ = 1√

2et
=: c 1√

t
, we have

∥∥∥[π(f), e−tD
2

]
∥∥∥

1
≤ c t

∫ 1

0

ds
∥∥∥e−ts/2D2

[D, π(f)] e−t(1−s)/2D
2
∥∥∥

1
( 1√

ts
+ 1√

t(1−s)
)

= c
√
t

∫ 1

0

ds ( 1√
s

+ 1√
1−s )

∥∥∥e−ts/2D2

[D, π(f)] e−t(1−s)/2D
2
∥∥∥

1
.
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We claim that

∥∥∥e−ts/2D2

[D, π(f)] e−t(1−s)/2D
2
∥∥∥

1
≤


∑
k

∥∥∥π(δk(f)) e−t/4D
2
∥∥∥

1
if s ∈ [0, 1

2 ],∑
k

∥∥∥e−t/4D2

π(δk(f))
∥∥∥

1
if s ∈ [ 1

2 , 1].

This yields the result with C := 3c
∫ 1

0
ds ( 1√

s
+ 1√

1−s ) = 12√
2e
.

Proof of the claim: for ν ∈ {−, 0,+}, let

Bν := e−ts/2 (γk∂k)2 γpπν(δp(f)) e−t(1−s)/2 (γk∂k)2 .

Then

‖Diag(B−, B+, B0)‖1 =
∑
ν

‖Bν‖1

≤
∑
ν

∑
p

‖γp‖
∥∥∥e−ts/2(γk∂k)2 πν

(
δp(f)

)
e−t(1−s)/2(γk∂k)2

∥∥∥
1

=
∑
ν

∑
p

∥∥∥e−ts/2D2

πν
(
δk(f)

)
e−t(1−s)/2D

2
∥∥∥

1

≤
∑
p

∥∥∥e−ts/2D2
∥∥∥ ∥∥∥π(δp(f)

)
e−t/4D

2
∥∥∥

1
for s ∈ [0,

1

2
]

since ‖XY ‖1 ≤ ‖XZ‖1 for 0 ≤ Y ≤ Z. The case s ∈ [ 1
2 , 1] is similar.

Lemma 5.10. For any f ∈ A, there exists a constant C(f) such that∥∥∥π(f) e−tD
2
∥∥∥

1
≤ C(f) max

(
1√
t
,
√
t
)
.

Proof. By Proposition 3.1, we may assume that f = g ∗h. Since π(f) e−tD
2

= π(g) e−tD
2

π(h) + π(g)[π(h), e−tD
2

], we get by (5.9), (5.15) and (5.5),∥∥∥π(f) e−tD
2
∥∥∥

1
≤
∥∥∥π(g) e−t/2D

2
∥∥∥

2

∥∥∥e−t/2D2

π(h)
∥∥∥

2
+
∥∥∥π(g) [π(h), e−tD

2

]
∥∥∥

1

≤
√
c(g) c(h) max(1, 1√

t
) + ‖π(g)‖ C

∑
k

‖δk(h)‖
√
t coth t/4 . (5.16)

When t → 0, one has
√
t coth t/4 ∼ 4√

t
, and when t → ∞, one has

√
t coth t/4 ∼

√
t.

Collecting all these asymptotic behaviors, one gets the result.

Lemma 5.11. For any f ∈ A,

[(1 +D2)−1/2, π(f)] ∈ L1(H). (5.17)

Proof. Assume again that f = g ∗ h. Since

[(1 +D2)−1/2, π(f)] = π(g) [(1 +D2)−1/2, π(h)]−
(
π(h∗) [(1 +D2)−1/2, π(g∗)]

)∗
,

it is sufficient to prove π(g) [(1 + D2)−1/2, π(h)] ∈ L1(H) for any g, h ∈ A. Thus using
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Lemma 5.9 and then Lemma 5.10:∥∥∥π(g) [(1 +D2)−1/2, π(h)]
∥∥∥

1
≤ 1

Γ(1/2)

∫ ∞
0

dt t1/2−1 ‖π(g)‖
∥∥∥[e−t(1+D2), π(h)]

∥∥∥
1

≤ C ‖π(g)‖
Γ(1/2)

∫ ∞
0

dt t−1/2 e−t
√
t
∑
k

∥∥∥π(δk(h) e−t/4D
2
∥∥∥

1

≤ C ‖π(g)‖
∑
k C(δk(h))

Γ(1/2)

∫ ∞
0

dt e−t max
(

1√
t
,
√
t
)

and the last integral is finite.

Proposition 5.12. π(f) (1 +D2)−1/2 ∈ L1,∞(H) for any f ∈ A.

Proof. First assume that

sup
1≤s≤2

(s− 1) Tr
(
π(f∗) (1 +D2)−s/2 π(f)

)
<∞, for any f ∈ A. (5.18)

This shows that π(f) is in the ∗-algebra Bζ
(
(1 + D2)−1/2

)
of [8, Definition 1]. Thus

by [8, Proposition 3.8], π(f∗) (1 + D2)−s/2 π(f) ∈ L1,∞(H) and by polarization we get
π(f) (1 +D2)−s/2 π(g) ∈ L1,∞(H) for any f, g ∈ A.

If f = g ∗ h, the relation

π(f) (1 +D2)−1/2 = π(g) (1 +D2)−1/2 π(h)− π(g) [(1 +D2)−1/2, π(h)]

yields the result because by (5.17), the last commutator is in L1,∞(H).
Let us now prove (5.18) using (5.9). We get for 1 ≤ s ≤ 2,

Tr
(
π(f∗) (1 +D2)−s/2 π(f)

)
= 1

Γ(s/2)

∫ ∞
0

dt ts/2−1 e−t Tr
(
π(f∗) e−tD

2

π(f)
)

≤ c(f)
Γ(s/2)

∫ ∞
0

dt ts/2−1 e−t max(1, 1√
t
) (5.19)

≤ c(f) Γ((s−1)/2)
Γ(s/2)

since for any s ≥ 1,
∫∞

0
dt ts/2−1 e−t = Γ( s2 ) and

∫∞
0

dt ts/2−1 e−t 1√
t

= Γ( s−1
2 ). Thus the

left hand side of (5.18) is bounded by Γ( 1
2 ) c(f).

Proof of Theorem 5.4. Thanks to Proposition 5.12, we first claim that the computation
of the Dixmier trace of π(f)(1 +D2)−d/2 can be obtained by

Trω
[
π(f) (1 +D2)−1/2

]
= lim

s↓1
(s− 1) Tr

[
π(f)(1 +D2)−s/2

]
. (5.20)

We shall prove it for f = g ∗ g∗. This condition is not a restriction since any f ∈ A is
a finite sum of elements g ∗ h∗ with g, h ∈ A thanks to Proposition 3.1 and (3.11).

For any g ∈ A, a = π(g ∗ g∗) ≥ 0 is such that a1−1/2 = |π(g∗)| ∈ Bζ
(
(1 + D2)−1/2),

as seen in the proof of Proposition 5.12 since a ∈ Bζ yields |a∗| ∈ Bζ by [8, Lemma 3.7,
iii)]. Moreover, [a1/2,

(
(1 +D2)−1/2)] ∈ L1(H) ⊂ Z0

1 , by Lemma 5.11. We can now apply
[8, Proposition 4.12] to prove (5.20).
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Using (5.7), (5.8) and (5.14),

Tr
[
π(f)(1 +D2)−s/2

]
= 1

Γ(s/2)

∫ ∞
0

dt t
s
2−1

∑
ν

2 cosh(t) Tr
(
πν(f) e−tH

)
= 1

Γ(s/2)

∫ ∞
0

dt t
s
2−1 t−1/2 e−t F (t)

where

F (t) :=
∑
ν

cosh(t) t1/2 et

π
√

cosh 2t
Iν(t).

The main interest in this formula comes from Lemma 5.13, so we want to know the
behavior of F (t) when t→ 0:

F (t) ∼
t↓0

1
π

∑
ν

lim
t↓0

t
1
2 Iν(t). (5.21)

Lemma 5.7 shows that around t = 0, Iν(t) behaves like 1√
t
, so gathering (5.20) and

Lemmas 5.13, 5.7, we obtain that Trω
[
π(f) (1 + D2)

s
2

]
is non-zero for s = 1 and takes

the claimed value. The last equality of the theorem is (3.10).

Lemma 5.13. If F is an analytic function in t,

lim
s↓1

s−1
Γ(ds/2)

∫ ∞
0

dt t
ds
2 −1 t−d/2 e−t F (t) = 2

dΓ(d/2) F (0).

Proof. This equality comes from

lim
s↓1

s−1
Γ(ds/2)

∫ ∞
0

dt t
ds
2 −1 t−d/2 e−t tn = 2

dΓ(d/2) δn,0 , for n ∈ N,

and this follows from Γ(z) =
∫∞

0
dt tz−1 e−t and lim

s↓1
(s− 1) Γ(d(s−1)+2n

2 ) = 2
d δn,0.

Proof of Theorem 5.5. Since all behaviors in t obtained in Lemmas 5.7–5.10 are the same
as in [31], it is sufficient to follow the arguments of [31, Theorem 17].

Remark 5.14. The computation of the spectral dimension in Theorem 5.4 relies on the
behavior at t → 0 of Iν(t) in (5.8), which is Iν(t) ∼

t↓0
C√
t
. This behavior is used to

prove inequality (5.9), then the right hand side of this inequality is used in the first
term of (5.16), which proves Lemma 5.10, and it is used also in (5.19), which proves
Proposition 5.12, where the minimum value d′ = 1 for which the integral converges at
t→ 0 is implicitly used.

The behavior Iν(t) ∼
t↓0

C√
t
depends explicitly on the presence of f̃ ∈ A in (5.8).

Indeed, inserting in (5.8) instead an element from the multiplier algebra, like, for in-
stance, f̃(a, β) = 1̃(a, β) = δ0(a) /∈ A, yields Iν(t) =

√
π√
T

∫
dx e−Ux

2 ∼
t↓0

C′

t . Using this

asymptotic behavior in (5.9) and (5.16) would force the minimum value d′ = 2 for the
convergence of (5.19).

What happens is that for the integration around t ∼ 0 in (5.19), the behavior of Iν(t)

is much better with f̃ ∈ A than with the identity operator or an element of the multiplier
algebra. A function f̃ ∈ A is rapidly decreasing at infinity for the variable β = νe−x, and
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this behavior at x → −∞ is revealed, through the factor e−Tx
2

in the integrand, as a
better behavior at t→ 0 of the integral.

In [31], the same argument can be used to explain the fact that the spectral dimension
is half the metric dimension: see Lemmas 7, 10, 12 and Corollary 13 in [31].

6. Conclusions. In a compactified version of G, it has been proved in [35, Theorem 5.2]
that there are no finitely-summable spectral triples when the representation π is quasi-
equivalent to the left regular one, while here, Theorem 5.4 breaks this no-go result. An
essential difference is that the compactified version of G considered in [35] is an antiliminal
group (its C∗-algebra is NGCR) while here the group G is postliminal (Theorem 4.1).
Note also that while π+ ⊕ π− is quasi-equivalent to the left regular representation, π0 is
not. Actually, each of three representations πν give rise to a spectral triple of dimension 1
since Trω[πν(f)(1 +D2)−1/2] is proportional to τ(f) for each ν ∈ {−, 0,+}. Thus, even if
π0 does not appear for instance in Plancherel’s formula because {π−, π+} is dense in Ĝ,
this representation π0 =

∫ ⊕
R dp πp0 plays the same role as the non-trivial representations

π− or π+ in the sense that, alone, π0 produces a spectral dimension one.
The natural spectral triple on a 2-dimensional noncommutative torus Aθ is composed

of ([11], [33, Section 12.3]): the algebra constructed using the space S(Z2) of sequences of
rapid decay, the Hilbert space Hτ := `2(Z2) ' L2(T2) obtained in the GNS construction
for the canonical trace τ on the algebra, and the Dirac operator constructed using the
two derivations δ1, δ2 naturally defined on the two unitary generators of the algebra.
Using a similar technique as the one used in 4.3, the GNS representation decomposes
as πGNS =

∫ ⊕
S1 dv πv along irreducible unitarily nonequivalent representations πv on the

same Hilbert space L2(S1, du). In this decomposition, δ1 (resp. δ2) is represented as a
commutator with the derivation along the variable u of the Hilbert space (resp. along the
summation variable v ∈ S1).

A similar decomposition can be done for the representation of the noncommutative
torus on L2(R) [10, Section III.3], and it gives similar results: the representation decom-
poses along irreducible unitarily nonequivalent representations on L2(S1, du), and the first
order differential operators ∇1,∇2 acting on S(R) ⊂ L2(R) are mapped to two covariant
derivatives, one along the direction of L2(S1, du), and the other along the summation
direction v.

In both cases, the derivations δ1, δ2 are represented as commutators with differential
operators which act as derivatives in the two directions u and v.

The regular representation decomposition given in section 4.3 is quite different to the
decompositions obtained for the noncommutative torus, because it takes place along the
same representation π− ⊕ π+. As a consequence, any derivative along the composition
parameter commutes with the algebra. This explains that the two derivations δ1, δ2 that
we consider can only be represented as commutators with operators along H− ⊕H+, as
shown in section 4.2. The use of the full left regular representation to construct a spectral
triple would be useless. In contrast to the noncommutative torus, as far as the action of
the Dirac operator on the algebra is concerned, no information can be encoded into the
summation parameter.
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We can conclude from Remark 5.14 that the drop in spectral dimension compared to
metric dimension is due to the combination of two facts concerning the spectral triple:

1) A non-compact noncommutative geometry, which requires to insert π(a) in the com-
putations of traces used to evaluate the spectral dimension, with a ∈ A such that
its kernel has some properties similar to the ones used in the proof of Lemma 5.7.

2) A harmonic-like Dirac operator D (isospectral with the Hamiltonian of a harmonic
oscillator): although we have a non-compact noncommutative space, this operator
has discrete spectrum and the heat operator is trace-class.

We conjecture that such a drop in spectral dimension can occur in other noncommutative
geometries (A,H,D) which share these features, as for instance in [31].

There are numerous questions one can ask about the properties of the constructed
spectral triple. First of all, it is interesting to ask whether it defines a nontrivial K-
homology class and in which cyclic cohomology class appears the associated cyclic cocycle
(if nontrivial). Finally, one may ask whether further conditions for spectral triples (like
Hochschild cycle condition) might be satisfied.
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