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Abstract. We review the formulation and proof of the Baum-Connes conjecture for the dual

of the quantum group SUq(2) of Woronowicz. As an illustration of this result we determine the

K-groups of quantum automorphism groups of simple matrix algebras.

1. Introduction. The Baum-Connes conjecture [2], [3] is a far reaching conjecture about

the operator K-theory of locally compact groups. It has connections to representation

theory and harmonic analysis as well as to index theory and topology. Since its original

formulation by Baum and Connes about thirty years ago, the conjecture has been stud-

ied from various points of view and has had important impact on the development of

noncommutative geometry [7].

The aim of the conjecture is to understand the relation between two K-groups, one of

them being of topological nature, while the other one involves analysis. More precisely, let

G be a second countable locally compact group and let A be a separable G-C∗-algebra.

The Baum-Connes conjecture with coefficients in A asserts that the assembly map

µA : Ktop
∗ (G;A)→ K∗(Gnr A),

is an isomorphism. Here Ktop
∗ (G;A) is the topological K-theory of G with coefficients

in A, and K∗(GnrA) denotes the K-theory of the reduced crossed product GnrA, which

by definition is the analytical K-group. The conjecture is known to hold for large classes

of groups, let us mention in particular the deep work of Higson-Kasparov [10] on groups

with the Haagerup property, and of Lafforgue [16] on hyperbolic groups, respectively.

Since the left hand side of the assembly map is accessible to computations this provides a
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conceptual approach to determine the K-groups for a large variety of group C∗-algebras

and crossed products.

It is natural to ask what happens if the group G in the conjecture is replaced by a

locally compact quantum group [15]. Although this question does not have direct con-

nections to classical problems in topology or geometry, it is interesting from the point

of view of operator K-theory. Indeed, quantum groups and their crossed products give

rise to a large class of C∗-algebras, and K-theory computations in this context are typi-

cally difficult. Since many considerations for groups generalize to the setting of quantum

groups, one may hope that methods from the Baum-Connes conjecture extend to this

broader context.

In this note we shall review some steps taken in this direction during the last years.

We focus in particular on the case of the quantum group SUq(2) of Woronowicz [30], one

of the most prominent examples in the theory of quantum groups. The Baum-Connes

problem in this setting is rather a question about the dual discrete quantum group,

and we shall describe the proof of the Baum-Connes conjecture for the dual of SUq(2)

given in [27]. In addition we shall explain basic facts concerning braided tensor prod-

ucts. The material covered here is mostly taken from [21], [27]. We have added vari-

ous comments, and expanded some aspects that have been treated only briefly in these

papers.

Let us point out that already the correct definition of an assembly map for quan-

tum groups presents a nontrivial problem. The definition of the left hand side of the

Baum-Connes conjecture for groups given in [3] involves the universal space for proper

actions, a concept which does not translate to the quantum setting in an obvious way. An

important insight due to Meyer and Nest [18] is that a solution to this problem should be

based on a categorical approach to proper actions. In fact, it turns out that the setup of

Meyer and Nest is well-suited to study the Baum-Connes problem for the dual of SUq(2).

Most importantly, one obtains explicit K-theory computations as a consequence. We il-

lustrate this in the case of quantum automorphism groups of full matrix algebras in the

sense of Wang [29].

In fact, what makes the strong Baum-Connes property for the dual of SUq(2) particu-

larly useful is that it passes to arbitrary free orthogonal quantum groups [28] by monoidal

equivalences [5]. The strategy of transporting structural results under monoidal equiva-

lences has been successfully applied in other contexts as well, see [24], [9] and the recent

paper [4].

Let us indicate how this note is organized. In section 2 we give a short introduction

to the categorical approach of Meyer and Nest by describing the Baum-Connes conjec-

ture for the group Z. In section 3 we discuss braided tensor products and their relation

to the Drinfeld double. In particular, we shall explain the connection with the corre-

sponding purely algebraic constructions for Hopf algebras. In section 4 we review briefly

the definition of SUq(2) and the standard Podleś sphere SUq(2)/T . Moreover we discuss

the crucial ingredient in the proof of the strong Baum-Connes property for the dual of

SUq(2), which amounts to a result on the equivariant KK-theory of the Podleś sphere.

Based on this we explain in section 5 how to prove the Baum-Connes property for the
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dual of SUq(2). Finally, as indicated above, we discuss how to compute the K-groups of

quantum automorphism groups of simple matrix algebras.

Throughout we shall use the notation adopted in [21] and [27].

2. The Baum-Connes conjecture for Z. In this section we give a brief introduction

to the Baum-Connes conjecture by discussing the case of the group Z along the lines of

the general theory developed by Meyer and Nest. This illustrates several features that

show up in the Baum-Connes problem for the dual of SUq(2) as well. In fact, the latter

quantum group can be viewed as being freely generated by a single generator, in a similar

way as Z is the free group on one generator. Moreover the strong Baum-Connes property

for Z is actually used in the proof of the corresponding result for the dual of SUq(2)

described below. Throughout we will work in the framework of equivariant KK-theory.

For background information we refer the reader to [6].

Let us begin with some general facts and notation. If G is a second countable lo-

cally compact group we denote by KKG the category defined as follows. The objects of

KKG are all separable G-C∗-algebras, that is, all separable C∗-algebras equipped with

a strongly continuous action of G by ∗-automorphisms. The morphism set between two

objects A and B is the equivariant Kasparov group KKG(A,B), and composition of

morphisms is given by Kasparov product.

Given a closed subgroup H ⊂ G there are two important functors relating KKG

and KKH . Firstly, we have the restriction functor resGH : KKG → KKH which is ob-

tained by restricting the group action in the obvious way. Secondly, we have the induction

functor indGH : KKH → KKG, which on the level of objects associates to anH-C∗-algebra

B the induced G-C∗-algebra

indGH(B) = {f ∈ Cb(G,B)|f(xs) = s−1 · f(x) for all x ∈ G, s ∈ H
and xH 7→ ||f(xH)|| ∈ C0(G/H)}.

The relations between these functors for various subgroups play a central role in the

categorical approach to the Baum-Connes conjecture [18]. More specifically, one considers

the following full subcategories of KKG,

CCG = {A ∈ KKG| resGH(A) = 0 ∈ KKH for all compact subgroups H ⊂ G},

CIG = {A ∈ KKG|A ∼= indGH(B) for some compact subgroup H ⊂ G and B ∈ KKH},

and refers to their objects as compactly contractible and compactly induced G-C∗-

algebras, respectively.

The starting point of the work of Meyer and Nest is the fact that KKG is a triangu-

lated category in a natural way. We shall not go into details here, basically, the triangu-

lated structure consists of exact triangles which encode exact sequences, and a translation

functor which associates to a G-C∗-algebra A its suspension ΣA = C0(R)⊗A. The local-

ising subcategory 〈CIG〉 of KKG generated by CIG plays a particularly important role.

Roughly speaking, this is the full subcategory consisting of all objects that can be built

from CIG by taking exact triangles, suspensions and countable direct sums. Meyer and

Nest show that the categories CCG and 〈CIG〉 form a complementary pair [18]. This is
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closely related to the existence of Dirac morphisms and the definition of the Baum-Connes

assembly map.

Let us explain these constructions concretely in the special case of the group Z. Clearly,

the only compact subgroup of Z is the trivial group, and accordingly the category CIZ
consists of all Z-C∗-algebras of the form C0(Z)⊗B where B is any separable C∗-algebra.

Here B is viewed as a trivial Z-C∗-algebra and Z acts on the first tensor factor C0(Z) by

translation.

The Dirac element for Z is obtained from the Dirac operator on the real line, thus

explaining the terminology used in the general setup. More precisely, the Dirac operator

on R is the self-adjoint unbounded operator acting in L2(R) by standard differentiation

on smooth functions with compact support. This operator defines an odd equivariant

K-homology class for C0(R) equipped with the translation action of Z. Using suspension

we may write this class as an element D ∈ KKZ(P,C) where P = ΣC0(R).

The fact that the space R shows up at this point is not a coincidence, in fact R = EZ
is the universal proper Z-space featuring in the usual definition of the Baum-Connes

assembly map [3]. The space EZ is related to P by Poincaré duality [12], and we may

view the Dirac element D as a replacement of the canonical map EZ→ ? to the one-point

space.

Now let A be a separable Z-C∗-algebra and let DA ∈ KKZ(P⊗A,A) be the morphism

obtained by taking the exterior product of D with the identity on A. In the framework

of Meyer and Nest, the assembly map for Z with coefficients in A is the homomorphism

µA : K∗(Z n (P ⊗A))→ K∗(Z nA)

induced by DA after taking crossed products. Note that we do not have to distinguish

between full and reduced crossed products here since the group Z is amenable.

The Baum-Connes conjecture for Z with coefficients in A asserts that µA is an iso-

morphism. In fact, the following strong Baum-Connes property holds in this case.

Theorem 2.1. Let A be a separable Z-C∗-algebra. Then DA ∈ KKZ(P ⊗ A,A) is in-

vertible.

The proof of theorem 2.1 is a basic instance of the Dirac-dual Dirac method of Kas-

parov [12]. There exists a dual Dirac element η ∈ KKZ(C,P), and the main step of the

argument consists in showing that η is the inverse of D in the category KKZ. This can

be viewed as an equivariant version of Bott periodicity, proving the claim for A = C. The

general case follows by taking exterior tensor products with the algebra A.

An equivalent, more categorical way to formulate theorem 2.1 is to say that the

localising category 〈CIZ〉 is equal to KKZ. Making this explicit leads to the Pimsner-

Voiculescu exact sequence for the K-theory of crossed products by Z. More precisely, for

every A ∈ KKZ we have an extension

0 // ΣC0(Z)⊗A // C0(R)⊗A // C0(Z)⊗A // 0

of Z-algebras induced from the inclusion Z ⊂ R, here Σ denotes suspension as above.

Taking crossed products with Z and applying K-theory yields a six-term exact sequence
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of K-groups. By Takesaki-Takai duality and stability we obtain

K∗(Z n (C0(Z)⊗A)) ∼= K∗(K(l2(Z))⊗A) ∼= K∗(A).

Using theorem 2.1 we may identify K∗(Zn (C0(R)⊗A)) with K∗+1(ZnA). This yields

the Pimsner-Voiculescu exact sequence

K0(A)
id−α∗ //

OO
K0(A) // K0(Z nA)

��
K1(Z nA) oo K1(A) oo

id−α∗
K1(A)

where α ∈ Aut(A) is the automorphism implementing the action of Z on A.

In categorical language, the existence of the above extension of Z-C∗-algebras shows

that every A ∈ KKZ has a projective resolution of length 1. Using the strong Baum-

Connes property of Z one obtains an exact triangle of the form

C0(Z)⊗A // C0(Z)⊗A // A // ΣC0(Z)⊗A

for every A ∈ KKZ.

The basic argument leading to the Pimsner-Voiculescu sequence works in much greater

generality [20]. One of the main results in [26] is an analogue of the Pimsner-Voiculescu

sequence for free quantum groups, obtained from the strong Baum-Connes property for

these quantum groups in the same way as above.

3. Braided tensor products and the Drinfeld double. Before we focus on the

case of SUq(2) below, let us discuss a specific feature of coactions of quantum groups

which does not show up classically. This is related to a generalisation of tensor products

naturally appearing in connection with the Baum-Connes conjecture. For the technical

details we refer to [21].

In order to explain this, let us review the proof of the Baum-Connes conjecture for

the group Z outlined in section 2. Essentially, the argument consists of two steps in this

case. The first, and crucial part of the proof of theorem 2.1 is to show that the Dirac

element D ∈ KKZ(P,C) is invertible. In the second part of the proof one takes exterior

products to extend this to arbitrary coefficient algebras.

If we want to follow a similar strategy for a quantum group G, the second, rather

formal step of the argument turns out to be problematic. In fact, there is no natural

tensor product operation on the category of G-C∗-algebras in general. To circumvent

this one is naturally lead to study braided tensor products and actions of the Drinfeld

double of G. In the sequel we shall explain these constructions and indicate the link with

well-known results in the algebraic setting of Hopf algebras.

Indeed, the basic problem with tensor products of coactions is purely algebraic, and

it can be most efficiently explained using the language of monoidal categories. Let C be a

monoidal category, which for simplicity we assume to be strict. By definition, an algebra

in C is an object A ∈ C together with a morphism µA : A⊗A→ A such that the diagram
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A⊗A⊗A
id⊗µA //

µA⊗id

��

A⊗A

µA

��
A⊗A

µA // A

is commutative. This definition amounts of course to an algebra without unit, but the

existence of units does not affect our discussion. Assume now that A and B are algebras

in C. We may form the tensor product A ⊗ B as an object of C, but in contrast to the

situation for, say the category of vector spaces over a field, this object will typically not

be an algebra in C in a natural way. What is needed is a prescription how to exchange

the order of tensor products.

The situation changes if the monoidal category C is braided. If we assume that C is

braided and γBA : B ⊗A→ A⊗B denotes the braiding, a natural multiplication µA⊗B
for A⊗B is defined as the composition

A⊗B ⊗A⊗B
id⊗γBA⊗id// A⊗A⊗B ⊗B

µA⊗µB// A⊗B.
For instance, this yields the usual tensor product algebra structure if C is the category of

G-modules for a discrete group G with the braiding given by the flip map.

However, the monoidal categories we have to work with are usually far from being

braided, even with the notion of braiding interpreted in a loose sense. It is therefore

important that the above construction of a tensor product algebra still works if one of

the objects is an algebra in the Drinfeld center Z(C) of the category C.
The Drinfeld center of a monoidal category C is a braided monoidal category whose

objects are objects of C together with a specified way of permuting them with arbitrary

objects of C in tensor products, see [11], [13]. In the case that C is the category of modules

over a Hopf algebra H, the Drinfeld center of C is the category of H-Yetter-Drinfeld

modules. If in addition H is finite dimensional, the latter is equivalent to the category of

modules over the Drinfeld double of H.

We are interested in a situation where, loosely speaking, the Hopf algebraH is replaced

by a locally compact quantum group. In this generality the above picture has to be

adapted appropriately, but it should be no surprise that this leads to Yetter-Drinfeld

structures and the Drinfeld double in the operator algebraic framework.

To explain the analogy with the algebraic theory let us recall some definitions. If H is

a Hopf algebra we use the Sweedler notation ∆(x) = x(1) ⊗ x(2) for the comultiplication.

Moreover we write S and ε for the antipode and counit of H, respectively. For the sake

of definiteness we shall work over the complex numbers.

Definition 3.1. Let H be a Hopf algebra. An H-Yetter-Drinfeld module is a vector

space M which is both a left H-module via H ⊗M → M,f ⊗ m 7→ f · m and a left

H-comodule via M → H ⊗M,m 7→ m(−1) ⊗m(0) such that

(f ·m)(−1) ⊗ (f ·m)(0) = f(1)m(−1)S(f(3))⊗ f(2) ·m(0)

for all f ∈ H and m ∈M .

If H is a finite dimensional Hopf algebra we write H∗ for the dual Hopf algebra.

Moreover we let Ĥ = (H∗)cop be the Hopf algebra obtained by considering H∗ with the
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opposite coproduct. We shall write ∆̂, ε̂ and Ŝ for the coproduct, counit and antipode of

Ĥ, respectively. Let e1, . . . , en be a basis of H with dual basis e1, . . . , en of H∗ = Ĥ and

consider the element

w =

n∑
j=1

ej ⊗ ej ∈ H ⊗ Ĥ.

The following properties of w can be verified by direct calculation.

Lemma 3.2. The element w is a bicharacter of H ⊗ Ĥ, that is, w is invertible and the

formulas
(ε⊗ id)(w) = 1, (id⊗ε̂)(w) = 1

as well as
(∆⊗ id)(w) = w13w23, (id⊗∆̂)(w) = w13w12

hold.

Here we have used the leg numbering notation. The definition of a Yetter-Drinfeld

module can now be rephrased as follows.

Lemma 3.3. Let H be a finite dimensional Hopf algebra. Then an H-Yetter-Drinfeld

module is the same thing as a vector space M which is both a left H-comodule via α :

M → H ⊗M and a left Ĥ-comodule via λ : M → Ĥ ⊗M such that the diagram

M
λ //

α

��

Ĥ ⊗M id⊗α // Ĥ ⊗H ⊗M

σ⊗id
��

H ⊗M id⊗λ // H ⊗ Ĥ ⊗M
ad(w)⊗id// H ⊗ Ĥ ⊗M

is commutative.

The correspondence is given by identifying the coaction λ : M → Ĥ ⊗M with a left

H-module structure on M by duality.

Definition 3.4. Let H be a finite dimensional Hopf algebra. The Drinfeld codouble of

H is
D(H) = H ⊗ Ĥ

with the tensor product algebra structure, the comultiplication

∆D(f ⊗ x) = (id⊗σ ⊗ id)(id⊗ad(w)⊗ id)(∆⊗ ∆̂)(f ⊗ x),

the counit

εD(f ⊗ x) = ε(f)ε̂(x)

and the antipode

SD = (S ⊗ Ŝ)ad(w),

where ad(w) denotes conjugation by w and σ is the flip map.

Using lemma 3.2 it is straightforward to check that D(H) is a Hopf algebra such

that the canonical projection maps π : D(H) → H,π(f ⊗ x) = f ε̂(x) and π̂ : D(H) →
Ĥ, π̂(f ⊗ x) = ε(f)x are Hopf algebra homomorphisms. The dual Hopf algebra of the

Drinfeld codouble is the Drinfeld double of H, in the algebraic context the double is

usually studied from this dual point of view.
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The following basic result explains the connection between Yetter-Drinfeld modules

and comodules over the Drinfeld double, see for instance [14].

Proposition 3.5. Let H be a finite dimensional Hopf algebra. Then there is a bijective

correspondence between H-Yetter-Drinfeld modules and left D(H)-comodules.

The correspondence is given as follows. If λ : M → D(H) ⊗M is a D(H)-comodule

structure, then the Hopf algebra homomorphisms π and π̂ defined above induce coactions

M → H ⊗M and M → Ĥ ⊗M . These coactions satisfy the compatibility relation in

lemma 3.3.

From proposition 3.5 it follows in particular that the category of H-Yetter-Drinfeld

modules over a finite dimensional Hopf algebra H is a monoidal category in a natural

way. Note that an algebra in this category can be defined as an algebra A which is both

an H-comodule algebra and a Ĥ-comodule algebra such that the compatibility condition

in lemma 3.3 holds for M = A.

Let us now go back to C∗-algebras. If G is a locally compact quantum group we write

W ∈ M(Cr
0(G) ⊗ C∗

r (G)) for the fundamental multiplicative unitary [15]. This unitary

replaces the element w considered in the algebraic setting above.

The analogue of definition 3.1 for actions on C∗-algebras reads as follows.

Definition 3.6. Let G be a locally compact quantum group and let S = Cr
0(G) and

Ŝ = C∗
r (G) be the associated reduced Hopf-C∗-algebras. A G-Yetter-Drinfeld C∗-algebra

is a C∗-algebra A equipped with continuous coactions α of S and λ of Ŝ such that the

diagram
A

λ //

α

��

M(Ŝ ⊗A)
id⊗α // M(Ŝ ⊗ S ⊗A)

σ⊗id

��
M(S ⊗A)

id⊗λ // M(S ⊗ Ŝ ⊗A)
ad(W )⊗id// M(S ⊗ Ŝ ⊗A)

is commutative.

We may define Yetter-Drinfeld actions on Hilbert spaces or Hilbert modules in a

similar way, thus obtaining an even closer analogy to the algebraic constructions above.

If G is a locally compact quantum group, then the Drinfeld double D(G) of G is given

by Cr
0(D(G)) = Cr

0(G)⊗ C∗
r (G) with the comultiplication

∆D(G) = (id⊗σ ⊗ id)(id⊗ad(W )⊗ id)(∆⊗ ∆̂)

where ad(W ) denotes the adjoint action of W and σ is the flip map. Comparing this with

the algebraic setting one should keep in mind that in the conventions of Kustermans and

Vaes the comultiplication of C∗
r (G) is already flipped by default.

We have the following analogue of proposition 3.5, see [21].

Proposition 3.7. Let G be a locally compact quantum group and let D(G) be its Drinfeld

double. Then a G-Yetter-Drinfeld C∗-algebra is the same thing as a D(G)-C∗-algebra.

We shall now define the braided tensor product of a G-Yetter-Drinfeld C∗-algebra

A with a G-C∗-algebra B. For this construction it is in fact not necessary to write

down the braiding of the Drinfeld double. Let H = L2(G) be the GNS-space of the left

Haar weight of G, so that Cr
0(G) and C∗

r (G) are naturally C∗-subalgebras of L(H). If
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β : B → M(Cr
0(G)⊗ B) implements the action of G then B acts on the Hilbert module

H⊗B by β. Similarly, if λ : A→M(C∗
r (G)⊗A) is the coaction of C∗

r (G) on A then A acts

on H⊗A by λ. From this we obtain two ∗-homomorphisms ιA = λ12 : A→ L(H⊗A⊗B)

and ιB = β13 : B → L(H⊗A⊗B).

Definition 3.8. Let G be a locally compact quantum group, let A be a G-Yetter-

Drinfeld-C∗-algebra and B a G-C∗-algebra. With the notation as above, the braided

tensor product A�G B is the C∗-subalgebra of L(H⊗A⊗B) generated by all elements

ιA(a)ιB(b) for a ∈ A and b ∈ B.

It turns out that the braided tensor product A �G B is in fact equal to the closed

linear span [ιA(A)ιB(B)]. In particular, we have natural nondegenerate ∗-homomorphisms

ιA : A→M(A�B) and ιB : B →M(A�B).

The braided tensor product shares the basic properties that hold in the algebraic

setting. For instance, A � B is a G-C∗-algebra in a canonical way such that the ∗-
homomorphisms ιA and ιB are G-equivariant. If B is a D(G)-C∗-algebra then A�B is a

D(G)-C∗-algebra such that ιA and ιB are D(G)-equivariant.

Observe that the braided tensor product defined above generalizes the minimal tensor

product of C∗-algebras. We may refer to it as the minimal braided tensor product.

4. The quantum group SUq(2) and the Podleś sphere. In this section we discuss

some results related to SUq(2) and the standard Podleś sphere that constitute the core

of the proof of the Baum-Connes conjecture. For simplicity we shall restrict to the case

q ∈ (0, 1] in the sequel, although the main arguments work with minor modifications for

negative deformation parameters as well. For background material on quantum groups

we refer to [13], [14].

Let us first recall the definition of SUq(2), see [30].

Definition 4.1. The C∗-algebra C(SUq(2)) is the universal C∗-algebra generated by

elements α and γ satisfying the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1.

The comultiplication ∆ : C(SUq(2))→ C(SUq(2))⊗ C(SUq(2)) is defined by

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

The relations in definition 4.1 are equivalent to saying that the fundamental matrix

u =

(
α −qγ∗
γ α∗

)
is unitary.

We write C[SUq(2)] for the Hopf-∗-algebra of polynomial functions on SUq(2). By

definition, this is the dense ∗-subalgebra of C(SUq(2)) generated by α and γ. We use

Sweedler notation ∆(x) = x(1) ⊗ x(2) for the comultiplication, and write ε and S for the

counit and the antipode of C[SUq(2)], respectively.

The Hilbert space L2(SUq(2)) is the completion of C(SUq(2)) with respect to the

inner product

〈x, y〉 = φ(x∗y)
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induced by the Haar state φ. It is a SUq(2)-Hilbert space with the left regular represen-

tation. We may choose an orthonormal basis of L2(SUq(2)) according to the decomposi-

tion into isotypical components. Explicitly, we have basis vectors e
(l)
i,j where l ∈ 1

2N and

−l ≤ i, j ≤ l run over integral or half-integral values, respectively.

The classical torus T = S1 is a closed quantum subgroup of SUq(2) determined by

the ∗-homomorphism π : C[SUq(2)]→ C[T ] = C[z, z−1] given in matrix notation by

π

(
α −qγ∗
γ α∗

)
=

(
z 0

0 z−1

)
.

By definition, the standard Podleś sphere SUq(2)/T is the corresponding homogeneous

space [22]. The algebra of polynomial functions on SUq(2)/T is given by

C[SUq(2)/T ] = {x ∈ C[SUq(2)]|(id⊗π)∆(x) = x⊗ 1},

and the C∗-algebra C(SUq(2)/T ) is the closure of C[SUq(2)/T ] inside C(SUq(2)).

More generally, for k ∈ Z we define

Γ(Ek) = {x ∈ C[SUq(2)]|(id⊗π)∆(x) = x⊗ zk} ⊂ C[SUq(2)]

and let C(Ek) and L2(Ek) be the closures of Γ(Ek) in C(SUq(2)) and L2(SUq(2)), re-

spectively. Note that we have Γ(E0) = C[SUq(2)/T ] by construction. The space Γ(Ek)

is a C[SUq(2)/T ]-bimodule in a natural way for all k ∈ Z. Using Hopf-Galois theory it

can be shown that Γ(Ek) is finitely generated and projective both as a left and right

C[SUq(2)/T ]-module, compare [23]. The space C(Ek) is naturally a SUq(2)-equivariant

Hilbert C(SUq(2)/T )-module, and L2(Ek) is naturally a SUq(2)-Hilbert space. These

structures are induced from C(SUq(2)) and L2(SUq(2)), respectively.

The above spaces admit canonical actions of the Drinfeld double D(SUq(2)) of SUq(2).

We refer to section 3 for the definition of the Drinfeld double and the description of its ac-

tions. The C∗-algebra C(SUq(2)/T ) is a D(SUq(2))-C∗-algebra with the action of SUq(2)

by translations and the coaction λ : C(SUq(2)/T ) → M(C∗(SUq(2)) ⊗ C(SUq(2)/T ))

given by

λ(g) = Ŵ ∗(1⊗ g)Ŵ .

Here Ŵ = ΣW ∗Σ where W ∈ M(C(SUq(2)) ⊗ C∗(SUq(2))) is the fundamental multi-

plicative unitary and Σ is the flip map. The coaction λ is determined on the algebraic

level by the adjoint action

h · g = h(1)gS(h(2))

of C[SUq(2)] on C[SUq(2)/T ]. The same construction turns the spaces C(Ek) for k ∈ Z
into D(SUq(2))-equivariant Hilbert C(SUq(2)/T )-modules for every k ∈ Z. In the case of

the Hilbert spaces L2(Ek) we have to twist the above formula to take into account the

fact that the Haar state φ is not a trace in general, see [27].

Our aim is to describe the Podleś sphere as an element in the equivariant KK-category

KKD(SUq(2)). It is well-known that the C∗-algebra C(SUq(2)/T ) of the Podleś sphere

is isomorphic to K+ for q 6= 1, the algebra K of compact operators on a separable

Hilbert space with a unit adjoined. Using this fact it is easy to show that C(SUq(2)/T ) is

isomorphic to C⊕ C in the category KK. However, the most obvious such isomorphism

does not respect the D(SUq(2))-actions, in fact not even the canonical SUq(2)-actions on
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both sides. In order to obtain the desired statement on the level of KKD(SUq(2)) we need

more refined arguments.

More precisely, we have to work with the equivariant Fredholm module corresponding

to the Dirac operator on the standard Podleś sphere, compare [8], [21]. The underlying

graded SUq(2)-Hilbert space is

H = L2(E1)⊕ L2(E−1)

as defined above. The representation µ of C(SUq(2)/T ) is given by left multiplication.

We obtain a G-equivariant self-adjoint unitary operator F on H by

F =

(
0 1

1 0

)
by identifying the basis vectors e

(l)
i,1/2 and e

(l)
i,−1/2 in even and odd degrees. Note moreover

that the Drinfeld double D(SUq(2)) acts on C(SUq(2)/T ) and H in the way explained

above.

Proposition 4.2. The triple D = (H, µ, F ) is a D(SUq(2))-equivariant Fredholm module

defining an element [D] in KKD(SUq(2))(C(SUq(2)/T ),C).

We have already mentioned that C(Ek) for k ∈ Z is a D(SUq(2))-equivariant Hilbert

C(SUq(2)/T )-module in a natural way. Left multiplication yields a D(SUq(2))-equivariant

∗-homomorphism ψ : C(SUq(2)/T ) → K(C(Ek)), and it is straightforward to check that

(C(Ek), ψ, 0) defines a class [[Ek]] inKKD(SUq(2))(C(SUq(2)/T ), C(SUq(2)/T )). Moreover,

for the Kasparov product of these elements the relation

[[Em]]⊗C(SUq(2)/T ) [[En]] = [[Em+n]]

holds for all m,n ∈ Z.

Let us now define classes [Dk] ∈ KKD(SUq(2))(C(SUq(2)/T ),C) corresponding to

twisted Dirac operators on SUq(2)/T . More precisely, we consider the Kasparov product

[Dk] = [[Ek]]⊗C(SUq(2)/T ) [D]

where [D] ∈ KKD(SUq(2))(C(SUq(2)/T ),C) is the element from proposition 4.2. Remark

that [D0] = [D] since [[E0]] = 1.

The unit homomorphism u : C→ C(SUq(2)/T ) given by u(1) = 1 induces a class [u]

in KKD(SUq(2))(C, C(SUq(2)/T )). We define [Ek] in KKD(SUq(2))(C, C(SUq(2)/T )) to be

the Kasparov product

[Ek] = [u]⊗C(SUq(2)/T ) [[Ek]].

Let αq ∈ KKD(SUq(2))(C(SUq(2)/T ),C⊕C) and βq ∈ KKD(SUq(2))(C⊕C, C(SUq(2)/T ))

be given by

αq = [D0]⊕ [D−1], βq = (−[E1])⊕ [E0],

respectively.

Theorem 4.3. Let q ∈ (0, 1]. The standard Podleś sphere C(SUq(2)/T ) is isomorphic to

C⊕ C in KKD(SUq(2)).
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Proof. We claim that βq and αq define inverse isomorphisms. The crucial part of the

argument is the relation

βq ◦ αq = id

in KKD(SUq(2))(C ⊕ C,C ⊕ C). In order to prove it we have to compute the Kasparov

products [E0] ◦ [D] and [E±1] ◦ [D].

The class [E0] ◦ [D] is obtained from the D(SUq(2))-equivariant Fredholm module D

by forgetting the left action of C(SUq(2)/T ). The operator F intertwines the represen-

tations of C(SUq(2)) on L2(E1) and L2(E−1) induced from the D(SUq(2))-Hilbert space

structure. It follows that the resulting D(SUq(2))-equivariant Kasparov C-C-module is

degenerate, and hence [E0] ◦ [D] = 0 in KKD(SUq(2))(C,C).

It remains to calculate [E±1] ◦ [D]. Using SUq(2)-equivariance it is straightforward

to show that [E−1] ◦ [D] = 1 in KKSUq(2)(C ⊕ C,C ⊕ C). The entire difficulty lies in

constructing a D(SUq(2))-equivariant homotopy to obtain the same relation on the level

of KKD(SUq(2)). This can be done using explicit estimates involving Clebsch-Gordan

coefficients. For the details we refer to [27].

It would be nice to find a proof of theorem 4.3 taking care of the action of the

Drinfeld double in a more conceptual way, perhaps from a categorical point of view. Such

an alternative proof might shed some light on the analogous problem in higher rank.

Note that for q = 1 the main difficulties in the proof of theorem 4.3 disappear since

the discrete part of the Drinfeld double acts trivially in this case. This is the reason why

the Baum-Connes property for the dual of the classical group SU(2) is easier to establish

than for its q-deformations.

5. The Baum-Connes conjecture for SUq(2). In this section we discuss the proof

of the Baum-Connes conjecture for the dual of the quantum group SUq(2). The details

of the argument can be found in [27], and as in the previous section we shall restrict

ourselves to the case q ∈ (0, 1] for this. In the last part we explain how to compute the

K-groups of quantum automorphism groups of simple matrix algebras.

As discussed in section 2, the formulation of the Baum-Connes conjecture in the

approach of Meyer and Nest is based on the study of the categories of compactly con-

tractible and compactly induced algebras, respectively. This becomes particularly simple

when there are no nontrivial compact subgroups. For a discrete group G this means of

course that G is torsion-free.

It turns out that the dual of SUq(2) is torsion-free in a suitable sense [17], [27], so

that we are in a situation which is analogous to the case of the group Z explained in

section 2. Instead of working with the dual of SUq(2) it is most convenient to use Baaj-

Skandalis duality to transport the Baum-Connes problem to the compact side. More

precisely, let us write G = SUq(2) and, by slight abuse of notation, let us denote by

Ĝ the discrete quantum group determined by C∗(SUq(2))cop = C0(Ĝ). Note that this

amounts to switching the comultiplication in the conventions of Kustermans and Vaes.

This modification is convenient for Baaj-Skandalis duality, and it should not lead to

confusion.
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The restriction functor from Ĝ to the trivial quantum subgroup corresponds to the

crossed product functor KKG → KK which maps A to G n A on the level of objects.

Similarly, the induction functor from the trivial group to Ĝ identifies with the functor

τ : KK → KKG which maps a C∗-algebra A to τ(A), the G-C∗-algebra obtained by

considering the trivial action of G on A. We have the following full subcategories of KKG,

CG = {A ∈ KKG|GnA = 0 ∈ KK},
TG = {τ(A)|A ∈ KK},

these categories correspond precisely to the compactly contractible and the compactly

induced Ĝ-C∗-algebras, respectively. These categories form a complementary pair of lo-

calising subcategories [17], and one can study the assembly map and the Baum-Connes

problem for Ĝ as for the group Z in section 2.

Theorem 5.1. The discrete quantum group dual to G = SUq(2) satisfies the strong

Baum-Connes conjecture, that is, we have 〈TG〉 = KKG.

Proof. Let A be a G-C∗-algebra. Theorem 4.3 implies that A is a retract of C(G/T )�GA
inKKG, and according to the compatibility of induction with braided tensor products [21]

we have a G-equivariant isomorphism

C(G/T ) �G A = indGT (C) �G A ∼= indGT resGT (A).

As discussed in section 2, the group T̂ = Z satisfies the strong Baum-Connes conjecture.

That is, we have

KKZ = 〈CIZ〉

where CIZ is the full subcategory in KKZ of compactly induced Z-C∗-algebras. Equiva-

lently, we have

KKT = 〈TT 〉

where TT ⊂ KKT is the full subcategory of trivial T -C∗-algebras. In particular we obtain

resGT (A) ∈ 〈TT 〉 ⊂ KKT .

Due to theorem 4.3 we know that

indGT (B) = C(G/T )⊗B ∼= (C⊕ C)⊗B

is contained in 〈TG〉 inside KKG for any trivial T -C∗-algebra B. Since the induction

functor indGT : KKT → KKG is triangulated it therefore maps 〈TT 〉 to 〈TG〉. This yields

indGT resGT (A) ∈ 〈TG〉

in KKG. Combining the above considerations shows A ∈ 〈TG〉, and we conclude KKG

= 〈TG〉 as desired.

We remark that the case q = 1 of the previous theorem is a special case of the results

in [19].

As already mentioned above, theorem 5.1 can be applied to compute the K-theory of

free orthogonal quantum groups [27]. If G is a free orthogonal quantum group, then the

main tool for this computation is an exact triangle in KKG of the form

C0(G) // C0(G) // C // ΣC0(G)
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which is analogous to the extension for the source of the Dirac morphism for Z discussed

in section 2.

In the remaining part of this section we shall briefly discuss a further consequence of

theorem 5.1 which is not stated in [27]. Let us consider the quantum automorphism group

of Mn(C) defined by Wang [29]. By definition, this quantum group is given by the uni-

versal C∗-algebra Aaut(Mn(C)) generated by elements uklij for 1 ≤ i, j, k, l ≤ n such that
n∑
p=1

ukpij u
pl
rs = δjru

kl
is ,

n∑
p=1

usrlpu
ji
pk = δjru

si
lk

and

(uklij )
∗ = ulkji ,

n∑
p=1

uppkl = δkl,

n∑
p=1

uklpp = δkl

for all 1 ≤ i, j, k, l, r, s ≤ n. These relations are equivalent to saying that Aaut(Mn(C))

defines a quantum group such that the formula

λ(eij) =

n∑
k,l=1

uklij ⊗ ekl

determines a coaction λ : Mn(C) → Aaut(Mn(C)) ⊗Mn(C) which is trace preserving in

the sense that (id⊗τ)λ(x) = τ(x)1 for all x ∈ Mn(C). Here eij for 1 ≤ i, j ≤ n are the

matrix units in Mn(C) and τ : Mn(C)→ C is the standard trace.

Following the conventions in [27] we writeAaut(Mn(C)) =C∗
f (FAut(Mn(C))) and view

this C∗-algebra as the full group C∗-algebra of a discrete quantum group FAut(Mn(C))

in the sequel.

Theorem 5.2. Let n > 2. The discrete quantum group H = FAut(Mn(C)) is K-

amenable and its K-theory is given by

K0(C∗
f (H)) = Z⊕ Zn, K1(C∗

f (H)) = Z,

where Zn denotes the cyclic group of order n.

Proof. Let us abbreviateH = FAut(Mn(C)) and writeG = FO(n) for the free orthogonal

quantum group of Wang [28], see [27]. As mentioned in the introduction, the strong

Baum-Connes property for the dual of SUq(2) implies that G satisfies the strong Baum-

Connes property as well. Moreover, a result of Banica [1] shows that H can be identified

with the quantum subgroup of G generated by the coefficients of the tensor square of

the fundamental corepresentation of G in the same way as C(SO(3)) is obtained from

C(SU(2)).

We may therefore restrict the resolution of C in KKG constructed in [27] to obtain a

resolution of C in KKH . More precisely, we obtain an exact triangle of the form

resGH(C0(G)) // resGH(C0(G)) // C // Σ resGH(C0(G))

in KKH . Recall that the set Irr(G) of equivalence classes of irreducible unitary corepre-

sentations of G identifies with 1
2N0 and that Irr(H) ⊂ Irr(G) corresponds to the irreducible

corepresentations with integral label. Then

resGH(C0(G)) = C0(H)⊕ Cω0 (H)
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in KKH where Cω0 (H) ⊂ C0(G) corresponds to the corepresentations of G with label in
1
2 +N0 ⊂ 1

2N0. It is easy to check that the crossed products H nC0(H) and H nCω0 (H)

are isomorphic to the algebra of compact operators in both cases. This holds for both full

and reduced crossed products.

From these facts it follows that H is K-amenable, compare [25], [27]. Moreover we

obtain an exact sequence

Z2 //
OO

∂

K0(C∗
f (H)) // 0

��
Z2 oo K1(C∗

f (H)) oo 0

in which the boundary map can be identified with

∂ =

(
n −n
−n n

)
∈M2(Z).

The latter formula is easily verified by inspecting the definition of the resolution consid-

ered in [27]. We conclude K1(C∗
f (H)) ∼= ker(∂) ∼= Z and K0(C∗

f (H)) ∼= coker(∂) ∼= Z⊕Zn
as claimed.

Let us remark that the dual of the quantum group FO(n) appearing in the proof of

theorem 5.2 is monoidally equivalent to SUq(2) for a certain negative value of q. In our

discussion above we have restricted attention to q ∈ (0, 1] for convenience, but the results

in [27] include the case of these negative parameters as well.
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