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Abstract. We review the notion of simple compact quantum groups and examples, and discuss
the problem of construction and classification of simple compact quantum groups.

1. Introduction. There are two main areas in the operator algebraic approach to quan-
tum groups: compact quantum groups and locally compact quantum groups. The former
has a satisfactory axiomatic theory due to Woronowicz [83, 85]. While the latter has
witnessed great progress due to concerted efforts of several generations of mathemati-
cians (cf. an incomplete list including [47, 48, 41, 42, 1, 50, 54]), it still does not have
an axiomatic framework that contains the non-compact Drinfeld-Jimbo quantum groups
[40] as examples except for special cases such as SLq(2,C) (cf. e.g. [55]), nor has the
existence of Haar weight been established in general. This is in stark contrast with the
fact that compact real forms of the Drinfeld-Jimbo quantum groups are special examples
in the theory of compact quantum groups (see [59, 60, 62, 61, 51]), and Haar measure,
Peter-Weyl theorem and Tannaka-Krein duality can be established from a very simple
set of axioms [83, 84, 85]. Within this well established framework of compact quantum
groups, recent work on compact quantum groups has been primarily on the construction,
classification, structure and other (operator) algebraic properties of specific classes of
compact quantum groups.

The modern impetus in the theory of quantum groups came as a result of the dis-
covery of new examples of Hopf algebras by Drinfeld-Jimbo on the algebraic side [40]
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and Woronowicz on the analytic side [82]. These are deformation quantizations of the
classical Lie algebras and Lie groups, and much of the literature on quantum groups had
been devoted to this approach to quantum groups.

Starting in his thesis [70], the author took a different direction than the traditional
deformation quantization method by viewing quantum groups as intrinsic objects and
found in a series of papers (including [69] in collaboration with Van Daele) several classes
of universal compact quantum groups that cannot be obtained as deformations of Lie
groups or Lie algebras, the most important of these are the universal compact quantum
groups of Kac type Au(n) and their orthogonal counterpart Ao(n) [71], the more general
universal compact quantum groups Au(Q) and their self-conjugate counterpart Bu(Q)

[69, 74], where Q ∈ GL(n,C), and the quantum automorphism groups Aaut(B, tr) [75]
of finite dimensional C∗-algebras B endowed with a tracial functional tr, including the
quantum permutation groups Aaut(Xn) on the space Xn of n points. These objects have
been an international focus of study in the subject of compact quantum groups and
interest in them continues unabated (cf. [2]-[35], [44], [49], [63]-[68]).

The quantum groups Au(Q) have the remarkable universal property that can be
used to give following alternative and concrete definition of compact matrix quantum
groups that was originally defined by Woronowicz [83] more abstractly: a compact matrix
quantum group is a quotient Au(Q)/I, where I is a Woronowicz C∗-ideal in Au(Q).
This means in geometric language that every compact matrix quantum group (including
compact Lie group) is a quantum subgroup of Au(Q) for an appropriate choice of Q.
In contrast, Drinfeld-Jimbo quantum groups and other deformations of Lie groups do
not enjoy this property, but are quantum subgroups of Au(Q). Similarly, the quantum
groups Bu(Q) have the universal property that every compact matrix quantum group
with self-conjugate fundamental representation is of the form Bu(Q)/I, where I is a
Woronowicz C∗-ideal in Bu(Q).

Without universal compact quantum groups, the Drinfeld-Jimbo quantum groups and
other quantum groups obtained by deformation would be the end of the story. However,
the outpouring of papers on the universal quantum groups in the last few years (e.g. [2]-
[35], [44], [49], [63]-[68]) demonstrates depth of the subject: despite much work achieved
so far, we have only seen the tip of the iceberg and the story is far from the end.

Although compact quantum groups have a satisfactory axiomatic framework and
Drinfeld-Jimbo quantum groups are their special examples, after the discovery of these
new classes of universal compact quantum groups, it is a natural program to classify
simple compact quantum groups. This program was initiated in [79], where it was shown
that all compact quantum groups mentioned above are simple in generic cases.

The main goals of the program on simple compact quantum groups are: (1) construct
and classify simple compact quantum groups and their irreducible representations, (2)
understand the structure of simple compact quantum groups and structure of compact
quantum groups in terms of the simple ones, and (3) develop new applications of simple
compact quantum groups in other areas of mathematics and physics, such as quantum
symmetries in noncommutative geometry and algebraic quantum field theory. For goal
(1), one would like to develop a theory of simple compact quantum groups that parallels



CLASSIFYING SIMPLE QUANTUM GROUPS 435

the Killing-Cartan theory and the Cartan-Weyl theory for simple compact Lie groups.
For this purpose, one must first construct all simple compact quantum groups. Though
the work so far provides several infinite classes of examples of these, it should be pointed
out that the construction of simple compact quantum groups is only at the beginning
stage for this task at the moment, as all the simple compact quantum groups known
so far are almost classical in the sense that their representation rings are isomorphic to
those of ordinary compact groups and in particular are commutative. The first exam-
ples of simple compact quantum groups that are not almost classical should be directly
related to the universal quantum groups Au(Q) (see the footnote after Problem 4.1),
where Q ∈ GL(n,C) are positive, n ≥ 2, though these quantum groups are not simple
themselves. The representation ring of Au(Q) is highly noncommutative, being roughly
the free product of two copies of the ring of integers, according to Banica [3]. To con-
struct other simple compact quantum groups, the most natural idea is to study quantum
automorphism groups of appropriate quantum spaces, such as those in the author’s pa-
pers [75, 76], the papers of Banica, Bichon, Goswami and their collaborators [5]-[11],
[32, 33], [44], [24]-[31]. In retrospect, both simple Lie groups and finite simple groups are
automorphism groups. This suggests viability of this approach to the program. Natural
mathematical and physical structures that have compact quantum automorphic group
symmetries are compact commutative and noncommutative Riemannian manifolds in the
sense of Connes [36, 38]. Such symmetries should be investigated first.

The following heuristic may indicate the depth of the problem on classification prob-
lem of simple compact quantum groups. The finite dimensional factors are classified by
the discrete set of natural numbers while the classification of infinite dimensional von
Neumann factors involves continuous parameters. Similarly, simple compact Lie groups
are classified by a discrete set of Cartan matrices, but the classification of simple compact
quantum groups involves continuous parameters. However, since the algebraic structures
of compact quantum groups are richer and more rigid than those of von Neumann al-
gebras, the classification of simple compact quantum groups might be more accessible
than the classification of infinite dimensional factors. Even if a classification of simple
compact quantum groups up to isomorphism is unattainable, just as von Neumann fac-
tors are far from being classified up to isomorphism, experience has demonstrated that
the study of universal quantum groups and quantum automorphism groups is fruitful
(cf. [71, 69, 74, 76, 78, 79], [2]-[35], [44], [49], [63]-[68] and references therein), and other
types of classification theories may also be considered, such as the classification of easy
quantum groups [21, 18, 19, 81] and the classification of restricted classes of quantum
automorphism groups [8]-[12] by Banica et al.

An outline of the paper is as follows. In §2, we review the notion of compact quantum
groups and simple compact quantum groups. In §3, we review examples of simple compact
quantum groups constructed so far in [79]. In §4, we discuss problem of the fine structure
of Au(Q) and simple quantum quotient groups from Au(Q), as well as quantum subgroups
from free products of compact quantum groups. In §5, we give a list of problems related to
almost classical compact quantum groups and compact quantum groups with property F .
In §6 and §7, we discuss the problem of constructing simple compact quantum groups from



436 S. Z. WANG

quantum automorphisms of finite graphs and other quantum subgroups of the quantum
permutation groups, easy quantum groups and quantum isometry groups. In §6, several
new quantum groups constructed by Banica, Curran and Speicher [17] since [79] are
shown to be simple using results in Raum [56] and Weber [81] along with results in [79].

2. Compact quantum groups and simple compact quantum groups. We first
recall the definition of compact (matrix) quantum groups and then the notion of simple
compact quantum groups.

There are several equivalent definitions of compact (matrix) quantum groups, each
has its own advantages over the others. We briefly describe below another equivalent
definition, which has the advantage of letting the reader “visualize” all compact quantum
groups more concretely. This equivalent definition is essentially in the literature, but not
in the explicit form we describe below.

Notation: For elements uij (i, j = 1, . . . , n) of a C∗-algebra A, we define the following
elements in the n × n matrix algebra Mn(A) over A: u := (uij)

n
i,j=1, ū := (u∗ij)

n
i,j=1,

ut := (uji)
n
i,j=1 and u∗ := ūt, i.e. u∗ = (u∗ji)

n
i,j=1.

Definition 2.1 (cf. [70, 71, 69, 74, 78]). The universal compact matrix quantum groups
are defined to be the family of pairs (Au(Q),∆u), where Q ∈ GL(n,C), Q > 0, and
uij (i, j = 1, . . . , n) are generators of the universal C∗-algebra Au(Q) that satisfies the
following sets of relations:

u∗u = In = uu∗, utQūQ−1 = In = QūQ−1ut,

and ∆u : Au(Q)→ Au(Q)⊗Au(Q) is the uniquely defined morphism such that

∆u(uij) =

n∑
k=1

uik ⊗ ukj .

Note that instead of restricting Q to positive matrices, one can still define (Au(Q),∆u)

for any invertible Q. For such Q, one has the following free product decomposition [78],

Au(Q) ∼= Au(P1) ∗Au(P2) ∗ · · · ∗Au(Pk)

for appropriate positive matrices P1, P2, . . . , Pk with compatible coproducts as in [71].

Definition 2.2 (cf. [83]). A compact matrix quantum group is a triple (A,∆, π), where
π : Au(Q)→ A and ∆ : A→ A⊗A are C∗-morphisms such that

(1) π is surjective, and
(2) ∆π = (π ⊗ π)∆u.

Note that using [71], conditions (1) and (2) above are equivalent to (1) plus the
following condition:

(2)′ ∆u(ker(π)) ⊂ ker(π ⊗ π).

Hence a compact matrix quantum group can be defined even more simply as a pair
(A, π) satisfying (1) and (2)′.
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The C∗-algebra A in the definition of a compact matrix quantum group (A,∆, π) is
called a finitely generated Woronowicz C∗-algebra. The morphism ∆ is called the coproduct
of A.

It can be shown that there is a Hopf ∗-algebra structure (Au(Q),∆, ε, S) on the dense
∗-subalgebra Au(Q) of Au(Q) such that

S(uij) = u∗ji, ε(uij) = δij , i, j = 1, 2, · · ·n.

This ∗-Hopf algebra structure induces Hopf ∗-algebra structure on the dense ∗-subalgebra
A of A in the above definition of compact matrix quantum group, and on the dense
∗-subalgebra A of A in the definition of the compact quantum group below.

As in 2.3 of [71], one can define morphisms between compact matrix quantum groups
as opposite of morphisms of finitely generated Woronowicz C∗-algebras. Under these
morphisms, compact matrix quantum groups form a category, though this category is
not closed under inverse limits, which leads to the following notion of compact quantum
groups using 3.1 of [71]:

Definition 2.3 (cf. [1, 85]). A compact quantum group (A,∆) is an inverse limit of
compact matrix quantum groups (Aλ,∆λ, πλλ′).

We will see in the next few paragraphs that the above notion of compact quantum
groups is equivalent to the elegant and abstract one in [85].

As an inductive limit (instead of inverse limit) of finitely generated Woronowicz C∗-
algebras Aλ, the C∗-algebra A in the definition above is called a Woronowicz C∗-algebra.
Kernels of morphisms between Woronowicz C∗-algebras are called Woronowicz C∗-ideals,
which can also be intrinsically defined as in 2.3 of [71].

Remark. Intuitively, we think of A = C(G), where G is a compact quantum group,
even there might be no points in “G” other than the identity. We also use the notations
AG = C(G) and C(GA) = A. As in the literature, by abuse of terminology, A is also
called a compact (matrix) quantum group besides being called a (finitely generated)
Woronowicz C∗-algebra.

As usual, one defines the Haar state/measure. One then establishes the existence and
uniqueness of the Haar state/measure on any compact matrix quantum group just as in
[83]. Using this and 3.3 of [71], one establishes the existence and uniqueness of the Haar
state/measure on any compact quantum group G. In the following, the Haar state on
A = C(G) is denoted by hG or simply h if no confusion arises.

Using the Haar state/measure h, the Peter-Weyl theory for all compact quantum
groups can be developed as in [85] or [53]. As a result, we see that the above definition
of compact quantum groups is equivalent to the one in [85].

We use AG to denote the dense ∗-subalgebra of AG consisting of coefficients of finite
dimensional representations of G. As a consequence of the Peter-Weyl theory for compact
quantum groups, AG is a Hopf ∗-algebra.

We need to recall the notion of normal quantum subgroups [71, 80] to define simple
compact quantum groups.
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Let (N, π) be a quantum subgroup of a compact quantum group G, which, as defined
in [70, 71], means that π : C(G) −→ C(N) is a surjection of C∗-algebras such that
(π ⊗ π)∆G = ∆Nπ, where ∆G,∆N are coproducts of C(G) and C(N), respectively.

Define
C(G/N) := {a ∈ C(G)|(id⊗ π)∆(a) = a⊗ 1N},

C(N\G) := {a ∈ C(G)|(π ⊗ id)∆(a) = 1N ⊗ a},

∆ being coproduct on C(G), 1N the unit of C(N).

Definition 2.4 (cf. [71, 79]). We say N is normal in G if it satisfies one of the equivalent
conditions in the proposition below.

Proposition 2.5 (cf. [79]). Let N be a quantum subgroup of a compact quantum group G.
The following conditions are equivalent:

(1) C(N\G) is a Woronowicz C∗-subalgebra of C(G).
(2) C(G/N) is a Woronowicz C∗-subalgebra of C(G).
(3) C(G/N) = C(N\G).
(4) For every irreducible representation uλ of G, either hNπ(uλ) = Idλ or hNπ(uλ) =

0, where hN is the Haar measure on N , dλ = dim(uλ) and Idλ the dλ×dλ identity matrix.

Among the above four equivalent formulations of the notion of normal quantum sub-
groups, condition (4) is the most convenient for our purposes. If G is a compact group,
then the above definition coincides with the usual notion of closed normal subgroups.

To avoid complications with classification of finite quantum groups, we want to restrict
the notion of simple quantum groups to quantum groups that are connected.

Definition 2.6 (cf. [79]). A compact quantum group G is called connected if for each
non-trivial irreducible representation uα ∈ Ĝ, the C∗-algebra C∗(uαij) generated by the
coefficients of uα is of infinite dimension.

A compact matrix quantum group G is called simple (resp. absolutely simple) if it is
connected and has no non-trivial connected normal quantum subgroups (resp. non-trivial
normal quantum subgroups) and no non-trivial representations of dimension one.

Note that compact Lie groups are (commutative) examples of compact quantum
groups. It is easy to show that a compact Lie group is simple (resp. connected) in the
usual sense if and only if it is simple (resp. connected) in the sense above.

Problem 2.7. In the definition of simple compact quantum groups, if one replaces the
condition “it has no non-trivial representations of dimension one” with the apparently less
stringent condition “C(G) 6= C∗(Γ) where Γ is a discrete group”, do we get an equivalent
definition?

Note according to [82], the condition C(G) 6= C∗(Γ) above means that G is a non-
abelian compact quantum group. For a compact Lie group G, this condition simply means
G is a nonabelian Lie group, and the answer to the above question is affirmative by Weyl’s
dimension formula.

Just as the notion of simple compact Lie groups excludes the torus groups, the def-
inition of simple quantum groups above (including the alternative one formulated in
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Problem 2.7) excludes the compact quantum groups coming from group C∗-algebras
C∗(Γ) of discrete groups Γ (i.e., abelian quantum groups). This is important because the
classification of discrete groups is out of reach.

3. Examples of simple compact quantum groups that are almost classical and
have property F . The simple compact quantum groups that have been constructed
so far share many properties common to compact Lie groups. We recall two of these
properties [79].

Just as for compact groups, the representation ring (also called the fusion ring) R(G)

of a compact quantum group G is a partially ordered algebra over the integers Z generated
by the irreducible characters of G. The set of characters of G is a semi-ring that defines
the order of R(G).

Definition 3.1 (cf. [79]). A compact quantum group G is said to have property F if each
Woronowicz C∗-subalgebra of C(G) is of the form C(G/N) for some normal quantum
subgroup N of G.

A compact quantum group is called almost classical if its representation ring R(G) is
order isomorphic to the representation ring of a compact group.

In plain language, a compact quantum G is said to have property F if its quantum
function algebra C(G) behaves exactly as the function algebras of compact groups with
respect to normal subgroups. Note that compact quantum groups C∗(Γ) for the dual Γ

of a discrete group Γ do not have this property unless the discrete group Γ is abelian, in
which case the group C∗-algebra C∗(Γ) is a genuine function algebra over the Pontryagin
dual Γ̂ of the discrete abelian group Γ.

The notion dual to property F is given by following definition, which captures the
property that compact quantum group C∗(Γ) has with respect to normal quantum sub-
groups:

Definition 3.2 (cf. [79]). A compact quantum G is said to have property FD if each of
quantum subgroup of G is normal.

Proofs of assertions in [79] concerning properties F and FD, along with other related
properties of compact quantum groups, can be found in [80].

Quantum groups Bu(Q) (cf. [70, 71, 69, 74, 78]). Keeping the notation for definition
of Au(Q) in §2. Let Q ∈ GL(n,C) be such that QQ̄ = ±In, n ≥ 2. Bu(Q) is defined
to be the universal C∗-algebra with generators uij (i, j = 1, 2, · · · , n) that satisfy that
following sets of relations:

u∗u = In = uu∗, utQuQ−1 = In = QuQ−1ut.

It can be shown that there is a well-defined morphism

∆ : Bu(Q)→ Bu(Q)⊗Bu(Q)

such that

∆(uij) =

n∑
k=1

uik ⊗ ukj .
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and that (Bu(Q),∆) is a compact matrix quantum group. The quantum groups Bu(Q)

have the universal property that every compact matrix quantum group with self-conjugate
fundamental representation is of the form Bu(Q)/I, where I is a Woronowicz C∗-ideal in
Bu(Q).

Note: Bu(Q) is also denoted by Ao(Q∗) by Banica et al.
When Q = In, Bu(Q) is just Ao(n), the universal orthogonal quantum group of Kac

type introduced in 4.5 of [71]. Banica et al. also invented the notation O+(n) to signify
Ao(n) = C(O+(n)).

In addition, when Q =

[
0 −In
In 0

]
, Bu(Q) is a quantum symplectic group. This is

one of the reasons that we use the notation Bu(Q) instead of Ao(Q), as the latter only
captures the special case Q = In. Following the notation O+(n) of Banica et al., we denote
the above universal symplectic quantum group by Sp+(n). The quantum symplectic group
has also appeared in recent work of Bhowmick, D’Andrea, Das and Da̧browski on quantum
gauge symmetries (see [26]).

For any invertible Q ∈ GL(n,C) that does not satisfy QQ̄ = ±In, Bu(Q) can be
defined by the same relations as above, but

Bu(Q) ∼= Au(P1) ∗Au(P2) ∗ · · · ∗Au(Pk)∗
∗Bu(Q1) ∗Bu(Q2) ∗ · · · ∗Bu(Ql).

for certain Pi > 0 and Qj such that QjQ̄j ’s are scalars (cf. [78]).
We note that both Au(Q) and Bu(Q) can be alternatively described as quantum

automorphism groups of appropriate spaces (cf. [76, 26]).

Quantum automorphism groups Aaut(B, τ) (cf. [75]). Let B be a finite dimen-
sional C∗-algebra and φ a functional on B. In general the quantum automorphism group
Aaut(B,φ) that preserves the system (B,φ) exists, which is the universal object in the
category of compact quantum groups acting on the system (B,φ). However, as shown
in Banica [4], only when φ is the canonical trace τ does the quantum group Aaut(B, τ)

have a representation theory that is relatively easy to describe, where the trace τ on B
is called canonical if it coincides with the restriction to B of the unique tracial state on
the algebra L(B) of operators with B acting by the GNS representation associated with
the trace τ . If one identifies B with

⊕m
k=1Mnk(C), then

τ
( m∑
k=1

bk

)
=

m∑
k=1

n2k
n
Tr(bk),

where bk ∈ Mnk , n is the dimension of B, and Tr is ordinary trace on Mnk , i.e. Tr(bk)

is the sum of the diagonal entries of the matrix bk.
In either case, explicit description of Aaut(B,φ) or Aaut(B, τ) in terms of genera-

tors and relation is complicated for a general finite dimensional C∗-algebra B. However,
when B = C(Xn) is the commutative C∗-algebra of functions on the space where Xn

is the space of n points, the quantum permutation group Aaut(Xn) := Aaut(C(Xn)) has
a surprisingly simple description in terms of generators and relations: The C∗-algebra
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Aaut(Xn) is generated by self-adjoint projections aij such that each row and column of
the matrix (aij)

n
i,j=1 adds up to 1, i.e.,

a2ij = aij = a∗ij , i, j = 1, · · · , n,
n∑
j=1

aij = 1, i = 1, · · · , n,

n∑
i=1

aij = 1, j = 1, · · · , n.

Banica et al. invented the very convenient geometric notation S+
n so that Aaut(Xn) =

C(S+
n ). In [34], Bichon generalizes the quantum permutation groups to purely algebraic

context and establishes the universal property of the quantum permutation groups in
complete generality.

Theorem 3.3 (cf. 4.1 and 4.7 in [79]). (a) For Q ∈ GL(n,C) such that QQ̄ = ±In and
n ≥ 2, Bu(Q) is an almost classical simple compact quantum group with property F .

(b) Let B be a finite dimensional C∗-algebra endowed with its canonical trace τ and
dim(B) ≥ 4. Then the quantum group Aaut(B, τ) is an almost classical absolutely simple
compact quantum groups with property F .

As special cases of Bu(Q) and Aaut(B, τ), we have

Corollary 3.4. (a) The universal orthogonal quantum groups O+(n) (for n ≥ 2) and
the universal symplectic quantum groups Sp+(n) (for n ≥ 1) are simple.

(b) The quantum permutation groups S+
n are simple for n ≥ 4.

The main ideas used in the proof of Theorem 3.3 include

(1) Banica’s fundamental work of on the structure of fusion rings of these quantum
groups (cf. Théorème 1 and Theorem 4.1 in [2, 4] respectively);

(2) Correspondence between Hopf ∗-ideals and Woronowicz C∗-ideals (cf. 4.2-4.3 in
[79]);

(3) Reconstruction of a normal quantum group from the identity in the quotient
quantum group (cf. 4.4 in [79]).

In addition to the fusion rings of compact quantum groups such as those considered in
[2, 4], the matters in (2) and (3) above are of interest in their own right and worth further
investigation. The correspondence between Hopf ∗-ideals and Woronowicz C∗-ideals and
related matters in (2) relate algebraic and analytical aspects of compact quantum groups.
In purely Hopf algebras context, reconstruction of a normal quantum group from the
quotient quantum group in (3) has been an issue since 1970’s and is related to several
other important and old open questions [80].

Quantum groups Kq, Ku
q and KJ (cf. [62, 61, 52, 58, 73] and [59, 60]). A unified

study of the compact quantum groups Kq, Ku
q is due to Soibelman & Vaksman, Leven-

dorskii [62, 61, 52]. The ∗-Hopf algebras AKq are algebras of “representative functions”
of Drinfeld-Jimbo quantum groups Uq(g) and define in a sense their “compact real form”.
The quantum group Kq is a deformation of the Poisson Lie group K(1, 0) (cf. [52]). The
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∗-Hopf algebras AKu
q
are twisting of the ∗-Hopf algebras AKq by an element u ∈ ∧2hR.

The quantum group Ku
q is a deformation of the Poisson Lie group K(1, u) (cf. [52]). As

shown in [73], Ku
q is an example of Rieffel’s deformation from action of finite dimensional

vector space as conjectured by Rieffel (cf. [57, 58] for the background).
Rieffel’s quantum group deformation KJ [58] depends on J = S ⊕ (−S), where S is

a skew symmetric operator on the Lie algebra (viewed as Rn) of a torus subgroup of the
compact Lie group K. For appropriate choice of S, KJ is a deformation of Poisson Lie
group K(0, u) [52, 58]. An action of Rd := Rn × Rn on A = C(K) can be constructed
and Rieffel’s theory of deformation for action of Rd [57] can be applied to obtain AJ [58],
also denoted C(KJ).

A precise description of Kq, Ku
q and KJ would require more space than appropriate in

this paper. For our purposes, these quantum groups can be roughly described as follows:

(1) The associated dense Hopf ∗-algebras AKq , AKu
q
and AKJ are the same vector

space as the un-deformed/un-twisted onesAK ,AKq andAK respectively, but the algebras
AKq , AKu

q
and AKJ have deformed products;

(2) The Hopf ∗-algebras AKq , AKu
q

and AKJ have the same coproduct as the un-
deformed/un-twisted ones AK , AKq and AK respectively;

(3) Representation theories of the deformed/twisted quantum groups Kq, Ku
q and KJ

are the same as the un-deformed/un-twisted ones K, Kq and K respectively.

Theorem 3.5 (cf. (5.1, 5.4 and 5.6 in [79])). If K is a simple compact Lie group, then
Kq, Ku

q , KJ are almost classical simple compact quantum groups with property F .

The main ideas used in the proof of Theorem 3.5 include

(1) Representation theory of these quantum groups;
(2) Correspondence between Hopf ∗-ideals and Woronowicz C∗-ideals, as in the proof

of Theorem 3.3;
(3) Reconstruction of a normal quantum group from the identity in the quotient

quantum group, as in the proof of Theorem 3.3;
(4) The normal subgroups of the undeformed Lie group remain to be normal subgroups

of the deformed quantum groups and explicit identification of normal quantum subgroups
of the deformed quantum groups.

Other deformations of compact Lie groups, though constructed not as systematic as
the ones considered by Drinfeld-Jimbo, Soibelman et al. and Rieffel, are scattered in the
literature. We believe the general ideas used in the proof of Theorem 3.5 can also be
applied to such deformations.

4. Quotient quantum groups from Au(Q) and free products. In [78], the quantum
groups Au(Q) are classified up to isomorphism for positive matrices Q > 0 and the
quantum groups Bu(Q) are classified up to isomorphism for matrices Q with QQ̄ = ±In.
It is shown that the corresponding Au(Q) (resp. Bu(Q)) is not a free product, or a tensor
product, or a crossed product. However, for general non-singular matrices Q, we have
the decomposition theorem expressing Au(Q) and Bu(Q) in terms of free product of the
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forgoing quantum groups (cf. Theorem 3.1 and 3.3 in [78]). In the light of these results,
the following problem seems to be fundamental:

Problem 4.1. Study further the fine structure of Au(Q) for positive matrices Q ∈
GL(n,C) and n ≥ 2; Determine their simple quotient quantum groups.

A solution of this problem will also provide the first examples1 of simple compact
quantum groups that are not almost classical (see §3). Note that the Au(Q)’s have the 1

dimensional diagonal torus T as their (connected) normal quantum subgroup, as observed
by Bichon (private communication, cf. 4.5 in [79]), so they are not simple. However,
they are very close to being simple. For example, they have no non-trivial irreducible
representations of dimension one [3, 78].

It is worth noting that in Problem 4.1, simple quotient quantum groups of Au(Q)

should be easier to determine than simple quantum subgroups of Au(Q), since the latter
is tantamount to finding all simple quantum groups due to the universal property of
Au(Q), which include all simple compact quantum groups in [79] as reviewed in §3,
simple compact Lie groups, as well as all the other unknown simple compact quantum
groups.

By investigating the fine structure of concrete quantum groups such as Au(Q), one
can expect to gain insights into the structure of general compact quantum groups and
simple quantum groups. Sections 6 and 7 below contain more directions of research on
this approach to quantum groups.

Suitable modifications of the method for the proofs of the main results in section 4
of the paper [79] should yield a solution to Problem 4.1. The extra work needed for this
problem that does not appear in [79] is that there are more Woronowicz subalgebras
in Au(Q) to consider than therein. Some preliminary computations of these subalgebras
give optimism to a positive solution of the problem. One of the main ingredients in this
calculation is Banica’s fundamental result on fusion rules of the irreducible representations
of the quantum group Au(Q) [3].

The general Au(Q) (resp. Bu(Q)) for arbitrary Q ∈ GL(n,C) is not simple if C∗(Z)

appears in its free product decompositions as described in [78]. This is because of the
fact that Au(Q′) = C∗(Z) = C(T) (resp. Bu(Q′) = C∗(Z/2Z)) for Q′ ∈ GL(1,C) and
the following result ([80]):

Proposition 4.2. Let G1, G2 be compact quantum groups. Let G = G1∗̂G2 be the free
product compact quantum group [71] underlying AG1

∗AG2
. Let π1 be the natural embed-

1After this paper was accepted for publication, Alexandru Chirvăsitu informed the author that
in the preprint “Free unitary quantum groups are (almost) simple”, he showed that the quantum
group generated by uiju

∗
kl and u∗

kluij is a simple compact quantum group with noncommutative
representation ring and without property F , where uij are the generators of Au(Q) with Q > 0.
In the same preprint, he also showed that the quotient quantum group of Au(Q) by its central
subgroup T in the proof of 4.5 in [79] has no normal quantum subgroups but is not finitely
generated, and all normal subgroups are subgroups of T, giving a complete classification of
simple quotient groups of Au(Q). See also footnote before Problem 5.4 below.
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ding of G1 into G defined by the surjection

π1 : AG1 ∗AG2 → AG1 , π1 = id1 ∗ ε2.

If G1 has at least one irreducible representation of dimension greater than one, then
(G1, π1) is not a normal quantum subgroup of G1∗̂G2. Otherwise, (G1, π1) is normal in
G1∗̂G2.

The hat in the symbol ∗̂ above signifies the “Fourier transform” of the free product ∗
reminiscent of the classical case in which Gk = Γ̂k, where Γk are discrete abelian groups.

Note that a compact Lie group being simple means roughly that it is not a direct
product of proper connected subgroups. A similar result also holds for quantum groups:
If GA is a simple compact quantum group, then AG is not a tensor product (i.e. G is not
a direct product of its non-trivial quantum subgroups) [72, 80].

However, the proposition above says that the evident quantum subgroups (G1, π1)

and (G1, π2) of G1∗̂G2 are not normal in G1∗̂G2 when G1 and G2 have no non-trivial
representations of dimension one. Along with other results of the author, this may suggest
that the following problem on the structure of simple quantum groups has a positive
solution.

Problem 4.3. Let G1 and G2 be simple compact quantum groups. Is G1∗̂G2 also simple?

The results in the author’s paper [71] should be useful for a solution of this problem.
In particular, Theorem 1.1 there should play a role, as it did in [2, 3, 33, 78]. Note
that the formula for the Haar measure on G1∗̂G2 and the classification its irreducible
representations are given in explicit formulas in Theorem 1.1 in [71]. According to the
postulates in the definition of a normal quantum subgroup (Definition 2.4), these are
important ingredients in determining whether G1∗̂G2 has normal quantum subgroups.
The results and methods of the paper [79] (especially section 4 therein) should also be
useful for this problem.

A positive solution to Problem 4.3 would have the following implication: G1∗̂G2 would
be a simple compact quantum group when both G1 and G2 are merely simple compact
Lie groups.

The following easier variation of Problem 4.3 is also of interest and is related to the
problem of determining whether several families of easy quantum groups are simple (cf.
§6 below).

Problem 4.4. Let G1 be a simple compact quantum group and G2 a finite quantum
group. Is G1∗̂G2 also simple?

Note that in view of the problems in §6 below, it would be interesting to solve Prob-
lem 4.5 for G2 a finite group. Also related problems can be formulated for Bichon’s free
wreath product of compact quantum groups [33] (cf. §6 below):

Problem 4.5. Let G1 be a simple compact quantum group and G2 a finite quantum
group. Is G1∗̂G2 also simple?

5. Problems related to almost classical compact quantum groups and prop-
erty F . As reviewed in §3, the simple compact quantum groups known so far are almost
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classical and have property F . Such quantum groups seem to be most accessible at the
moment. The following problem evidently is less difficult than the general problem of
classifying simple compact quantum groups and should be attempted first:

Problem 5.1. Classify simple compact quantum groups that are almost classical and
have property F .

The following closely related problems should be considered also:

Problem 5.2. (a) Classify almost classical simple compact quantum groups.
(b) Classify simple compact quantum groups with property F .

Problem 5.3. Does simple compact quantum groups with property FD exist? If so, con-
struct and classify them.

In Problem 5.1 and Problem 5.2, it would be interesting enough to restrict considera-
tion to almost classical simple compact quantum groups that have the same representation
rings as simple compact Lie groups.

In another direction, for the apparently more difficult problem of classifying simple
compact quantum groups that are not almost classical or without property F , we do not
have a single example of them. Therefore the following is a basic problem2:

Problem 5.4. (a) Construct an example of simple compact quantum group that is not
almost classical.

(b) Construct an example of simple compact quantum group that does not have prop-
erty F .

A more concrete problem than Problem 5.4 is the following

Problem 5.5. Construct simple compact quantum groups with noncommutative repre-
sentation ring.

For the problems in this section, results on general structure of compact quantum
groups such as those in the previous sections should also be useful. In this direction, we
have the following result (cf. [80]).

Theorem 5.6. Let G be a compact quantum group with property F . Then its quantum
subgroups and quotient groups G/N by normal quantum subgroups N also have prop-
erty F .

It would be of interest to develop other general results on the structure of compact
quantum groups.

6. Quantum automorphism groups of finite graphs and easy quantum groups.
How and where do we find quantum groups satisfying the properties in the problems
in §5 above? The most natural approach, in our opinion, is by considering quantum
automorphism groups of appropriate commutative and noncommutative spaces and their
quantum subgroups. Much of the recent work on compact quantum groups falls into

2Alexandru Chirvăsitu informed the author that he has since solved Problem 5.4 and Prob-
lem 5.5—see footnote after Problem 4.1.
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this category. We would like to mention three classes of these quantum groups: quantum
automorphism groups of finite graphs and other quantum subgroups of the quantum
permutation groups, easy quantum groups and quantum isometry groups. The last of
these three is discussed in the next section. We briefly look at the first two in this section.

In part to understand quantum subgroups of the quantum permutation groups [75],
Bichon [32] constructed the quantum automorphism groups of finite graphs, which are
quantum subgroups of the former preserving the edges of the graphs. To further the un-
derstanding of this new class of quantum groups, Bichon [33] also defined free wreath
product of compact quantum groups using the quantum permutation groups and proved
the beautiful formula stating that the free wreath product of the quantum automorphism
group of a graph by the quantum permutation group Aaut(Xn) is the quantum automor-
phism group of n disjoint copies of the graph. Banica also independently studied quantum
subgroups of the quantum permutation groups [5, 6]. These works lead to a great deal
of further studies of quantum automorphism of finite graphs and quantum subgroups of
the quantum permutation groups, cf. [5]-[12] and references therein.

It is instructive to see an immediate application of the quantum automorphism groups
of finite graphs to related problems in the last section. Clearly, a quantum quotient group
G/N of an almost classical quantum group G is also almost classical. However a crucial
observation is that a quantum subgroup of an almost classical quantum group needs
not be almost classical. For example, the quantum permutation groups Aaut(Xn) are
almost classical (cf. [4, 75, 79] and §3), but according to of Bichon [33], their quantum
subgroups A2(Z/mZ), as the quantum automorphism groups of certain graphs, are not
almost classical if m ≥ 3 (see Corollary 2.7 and the paragraph following Corollary 4.3
of [33]). Though the quantum groups A2(Z/mZ) are not simple (see proposition 2.6
of [33]), and noting that the quantum automorphism group of the trivial graph (i.e.
the quantum permutation group) is simple, it is natural to expect that it is possible
to obtain simple compact quantum groups that are not almost classical by considering
quantum automorphism groups of other appropriate finite graphs, including other free
wreath products, thus solving Problem 5.4. Note that since the free wreath is constructed
from the free product, such problems are related to see Problem 4.1 and the discussions
following it.

In another important and related new direction that has origins in works on free
wreath product and quantum subgroups of the quantum permutation group discussed
above, Banica and Speicher [21] initiated the study of easy quantum groups and found
several interesting families of new compact quantum groups. A compact matrix quantum
group G with fundamental representation u is called easy if

(1) G lies between Sn and O+(n) (cf. §3 on Bu(Q) with Q = In); and
(2) For any k, l ≥ 0, Hom(u⊗k, u⊗l) is linearly generated by operators Tp canonically

associated with partitions p of k + l.

See [21] or [17] or [81] for a description of Tp.
In addition to the six families of free easy quantum groups (also called orthogonal

quantum groups) in [21, 17], Weber also found another new family B′n
+ of free easy

quantum groups in [81], where we follow his different notation from [21]. In [56], Raum



CLASSIFYING SIMPLE QUANTUM GROUPS 447

computed the fusion rings of several easy quantum groups in [21] using free products. In
works of tour de force, Banica and Vergnioux computed the fusion rings of the quantum
reflection group Hs

n in [22] and the half-librated orthogonal quantum group O∗(n) in [23].
It would be interesting to see if any of these quantum groups provide solutions to some of
the problems in this section. As the fusion rings of Hs

n and O∗(n) are non-commutative,
the following problems seem to be most appealing:

Problem 6.1. (a) Is the quantum reflection group Hs
n simple?

(b) Is the half-librated orthogonal quantum group O∗(n) simple?

A positive answer to either (a) or (b) would provide the first simple compact quantum
group that is not almost classical and has noncommutative representation ring.

In the light of Theorem 4.1 in Raum [56] and 3.1 and 3.2 in Weber [81] whose notation
we follow, the relevant quantum groups considered in that theorem are either not simple
or rely on solution of problems in §4. For instance, using their results above along with
our Theorem 3.3, we see that

(1) B+
n is simple for n ≥ 3;

(2) B′n
+ (n ≥ 3) and S′n

+ (n ≥ 4) are simple modulo two components (i.e. discon-
nected);

(3) B#+
n is not simple because of Proposition 4.2, but it seems not far from being

simple (a concept to be made precise) because of 4.1.(3) in [56] and 3.2.(a) in [81].

It is not clear if the quantum groups H+
n , H∗n, H

(s)
n and H [s]

n are simple. Note that as
a free wreath product, the quantum group H+

n is related to the general Problem 4.5.

7. Quantum isometry groups of commutative and noncommutative Rieman-
nian spaces. After Banica’s initial investigation of quantum isometry groups of finite
spaces [5, 6], a recent conceptual breakthrough in compact quantum groups is Debashish
Goswami’s [44] theory of quantum isometry groups of spectral triples à la Connes [36],
where the universal quantum groups Au(Q) plays an essential rôle in the proof of exis-
tence. Using this notion he computed with Bhowmick [27, 24] several examples of quantum
isometry groups and found that they are either isomorphic to classical isometry groups
or are among the examples studied earlier by Rieffel and the author [58, 73]. Using the
same circle of ideas they subsequently developed [28] an improved notion of quantum
isometry group without relying on existence of a good Laplacian as required in [44].

The quantum isometry groups computed so far are either classical groups, or known
quantum groups, or combinations of both based on free product or tensor product. Be-
cause of this, Goswami made earlier a rigidity conjecture to the effect that connected
spaces do not admit non-trivial quantum symmetries. On the other hand, Huichi Huang
[46] has shown that connected non-smooth metric spaces admit faithful action even by
quantum permutation groups, disproving this earlier conjecture. Most striking of all is
that Goswami, along with his collaborators, have recently shown in a series of papers
[45, 39] a modified rigidity result stating that a connected and oriented Riemannian
manifold does not have quantum symmetries other than the classical ones.
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As a fundamental new concept, one would naturally wonder if fundamentally new
compact quantum groups can be constructed using quantum isometry groups. In the
light of results of Huang and Goswami et al. above, one should look at quantum isometry
groups of non-smooth metric spaces or disconnected Riemannian manifolds that are non-
classical (i.e. not compact groups). It would be interesting to find if any such quantum
groups are simple:

Problem 7.1. Construct examples of simple quantum isometry groups of non-smooth
metric spaces or disconnected Riemannian manifolds.

It is conceivable that quantum isometry groups of disconnected Riemannian manifolds
will be related to quantum subgroups of the quantum permutation group as considered in
§6, since quantum permutation group can permute the connected components in quantum
manner just as it does on the finite space.

Another direction of research in the theory of quantum isometry group is the following.
In the newly developed notion of quantum isometry group in [28], the quantum groups
in the categories Q′R and Q′ that are used to define the quantum isometry group there
does not carry a C∗-algebraic action on the spectral triple, and as a result, the universal
object (i.e, the quantum isometry group) does not carry a C∗-algebraic action in general.
See [30] for an example of this situation. (We refer the reader to the above cited papers
for detailed description of Q′R and Q′ due to space limitation.)

To address this problem, we believe the categories Q′R and Q′ are too large, and
propose the following alternative for the notion of quantum isometry groups that will
always carry C∗-algebraic action.

First, by a compact quantum transformation group (A,α, u) of a compact type spectral
triple (B,H, D) we mean a compact quantum transformation group (cf. [75]) (A,α) of B
that satisfies

(QT1) There is a unitary representation u ∈ L(H⊗AG) of GA on H such that (ρ, u)

is α-covariant: (ρ⊗ 1)α(b) = u(ρ(b)⊗ 1)u∗, b ∈ B;

(QT2) D is an intertwiner of u with itself: (D ⊗ 1)u = u(D ⊗ 1).

A morphism from another quantum transformation group (Ã, α̃, ũ) to (A,α, u) is
defined to be a morphism π from (Ã, α̃) to (A,α) (cf. [75]) that satisfies ũ = (idH ⊗ π)u.

The above defines category C of compact quantum transformation groups of (B,H, D)

with objects {(A,α, u)} and morphisms {π}. Similar to [75], the quantum isometry group
of (B,H, D) is defined to be a universal object of category C if it exists.

As in [75], universal object does not always exist in C in general. Therefore, as in [75]
and [28], consider measured spectral triple (B,H, D, φ) with a (usually positive) functional
φ on B and consider the category Cφ of compact quantum transformation groups that
satisfies (QT1)-(QT2) and

(QT3) (φ⊗ id)(α(b)) = φ(b)1A for b ∈ B

The quantum isometry group of (B,H, D, φ) is defined to be the universal object of
category Cφ if it exists. The following can be proved and justifies in part the above notion
of quantum isometry group.
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Proposition 7.2. (1) Let (B,H, D) be the spectral triple associated with a compact Rie-
mannian manifoldM . Then the universal object in the category of compact transformation
groups of (B,H, D) in the sense above is the isometry group of M .

(2) For an arbitrary spectral triple (B,H, D), the universal object in the category of
compact transformation groups of (B,H, D) in the sense above is the compact group of
isometries of (B,H, D) in the sense of Connes (see p6200 of [37]).

Since composition of two continuous maps is continuous, the quantum isometry group
defined above is evidently contained in the quantum isometry groups defined by Goswami
[44] and Bhowmick and Goswami [28]. Because of this, and using ideas in [75] and [28],
the following seems to be quite plausible:

Problem 7.3. For a measured spectral triple (B,H, D, φ), show that universal object
exists in the category Cφ.

Many other problems naturally arise:

(i) Calculate the quantum isometry groups in the sense above for the classical spaces
such as the flat spheres, tori, and other Riemannian spaces;

(ii) Calculate the quantum isometry groups in the sense above for the noncommutative
tori;

(iii) Study the properties of quantum isometry groups in general and apply them to
study other properties of noncommutative spaces;

(iv) Construct simple compact quantum groups through the study of quantum isom-
etry groups.

As in the definitions of quantum isometry groups by Goswami and Bhowmick, and
because a quantum isometry group in our sense is contained in theirs, examples of simple
quantum isometry groups in our sense might need to be constructed out of non-smooth
metric spaces or disconnected Riemannian manifolds, as in Problem 7.1.
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