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1. Introdu
tion. The aim of the arti
le is to present su�
ient 
onditions for an uppersemi
ontinuous multivalued ex
ess demand, guaranteeing the existen
e of some globallystable pri
e me
hanism. We 
onsider two di�erent pri
e me
hanisms: sign-
ompatibleand angle-
ompatible with the ex
ess demand. Our 
onditions depend on ve
tors fromthe ex
ess demand sets and 
orresponding pri
e systems, with respe
t to the equilibriumpri
e system. We show that there exist adequate pri
e me
hanisms in S
arf's example(when the ex
ess demand is single-valued) and in examples with upper semi
ontinuousmultivalued ex
ess demand.2. Model. Consider a model of pure ex
hange with a multivalued ex
ess demand E :

R
n
+  R

n (where R+ = (0,+∞)) satisfying the following natural hypothesis:(a0) E has nonempty, 
losed and 
onvex values;(a1) E is upper semi
ontinuous;(a2) E satis�es Walras' Law: 〈

u, p〉 = 0 for all u ∈ E(p) (where 〈

·, ·〉 denotes the innerprodu
t);(a3) E is positive homogeneous of degree zero, i.e. E(tp) = E(p) for t > 0;(a4) E satis�es boundary 
ondition: if pk k→∞
−→ p, where p is su
h that pi = 0 for some

i = 1, . . . , n, then d(E(pk),0)
k→∞
−→ ∞, where d(A,0) = sup{|a| : a ∈ A}.The ex
ess demand sets 
onsist of di�eren
es between the total demand and the totalsupply of 
ommodities, whi
h are ex
hanged on the market. We assume that this mapdepends only on 
ommodity bundle's pri
e ve
tor. The hypotheses (a0)�(a4) guarantee2000 Mathemati
s Subje
t Classi�
ation: Primary 91B50.The paper is in �nal form and no version of it will be published elsewhere.
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16 A. ARKITthe existen
e of at least one Walrasian equilibrium, i.e. a point p∗, su
h that 0 ∈ E(p∗)(
ompare [De℄). Following Samuelson ([Sa℄), we assume that the path of pri
es, whi
hstarts at �xed p0, is a solution of the di�erential equation
dp

dt
= g(p), p(0) = p0.(1)The 
ontinuous fun
tion g : R

n
+ → R

n on the right hand side of Eq. (1) is 
alled a pri
eme
hanism if it satis�es (when substituted for E) (a2)�(a4) and the 
ondition: g(p∗) = 0if and only if p∗ ∈ PE = {p ∈ R
n
+ : 0 ∈ E(p)}. We say that a pri
e me
hanism is globallyasymptoti
ally stable if any pri
e traje
tory p(t), whi
h is a solution of Eq. (1) for anyinitial point p0, 
onverges to some p∗ ∈ PE , when t tends to in�nity and for any ε > 0there exist t0 ≥ 0 and δ > 0 su
h that for every solution p(t) of Eq. (1) if |p(t0)− p∗| < δthen |p(t) − p∗| < ε for all t > t0.Let us re
all that every pri
e traje
tory for the pri
e me
hanism g is lo
ated on thenonnegative part of the sphere S+(|p0|) = {p ∈ R

n
+ : |p| = |p0|} (be
ause of (a2) and(a4)). Sin
e g satis�es (a3) we 
an regard su
h pri
e adjustment pro
ess as a 
ontinuoustangent ve
tor �eld on S+ = {p ∈ R

n
+ : |p| = 1}. This is the reason why we 
an restri
ta domain of pri
e me
hanisms to S+.3. Problem. One 
an 
onsider di�erent kinds of pri
e me
hanisms. Let F be a givenmultivalued map from S+ into 2R

n

\ {∅}. We say that a pri
e me
hanism g is spe
i�edby F if g(p) ∈ F (p) for all p ∈ S+. Sin
e g has to have zeros at equilibrium points p∗we impose on F the following 
ondition: F (p∗) = {0} if and only if 0 ∈ E(p∗). We aregoing to give su�
ient 
onditions for the ex
ess demand, guaranteeing the existen
e ofsome globally asymptoti
ally stable pri
e me
hanism g spe
i�ed by F , whi
h in turn isderived from E by sign- or angle-
ompatibility rule.4. Stability. First, we ask when there exists the 
ontinuous sele
tion g of the multi-valued map F , su
h that any traje
tory of an autonomous equation x′(t) = g(x(t)),
x(0) = x0 ∈ Q, is 
onvergent to some equilibrium point x∗ ∈ Q.Let

TQ(x) =
⋂

ε>0

⋂

η>0

⋃

0<h<η

(

1

h
(Q− x) + εB(0, 1)

)

denote the 
ontingent 
one to Q at x.Theorem 1 (Nagumo). Let Q denote a 
ompa
t subset of R
n. Let g : Q → R

n be the
ontinuous fun
tion su
h that
g(x) ∈ TQ(x), for all x ∈ Q.(2)Then for any x0 ∈ Q there exists a solution x : [0,∞) → R

n of the equation x′(t) = g(x(t))with the initial 
ondition x(0) = x0 su
h that x(t) ∈ Q for all t ≥ 0.Let H−
0 (y) = {u ∈ R

n : 〈u, y〉 < 0} and H+
0 (y) = {u ∈ R

n : 〈u, y〉 > 0} for
y ∈ R

n \ {0}.



GLOBALLY STABLE PRICE MECHANISMS 17Theorem 2. Let Q denote an open subset of R
n. Let g : Q→ R

n be a fun
tion with x∗ ∈

Q being the only point su
h that g(x∗) = 0. If there exists a 
ontinuously di�erentiablefun
tion V : Q→ [0,∞) su
h that V (x) = 0 if and only if x = x∗ and
g(x) ∈ H−

0 (∇V (x)) for all x ∈ Q \ {x∗}(3)then for any ε > 0 there exist t0 ≥ 0 and δ > 0 su
h that for every solution x(t) ofthe equation x′(t) = g(x(t)) if |x(t0) − x∗| < δ then |x(t) − x∗| < ε for all t > t0 and
lim

t→∞
x(t) = x∗.Proof. A

ording to Lyapunov Theorem (see for instan
e [Ha, Theorem 8.2℄) we have toshow that 〈g(x),∇V (x)〉 < 0 for all x ∈ Q\{x∗}. Indeed, by de�nition of H−

0 (y) we have
〈g(x),∇V (x)〉 < 0 if and only if g(x) ∈ H−

0 (∇V (x)).Remark 1. If the fun
tion g satis�es 
ondition (3) for all x 6= x∗ then g(x) ∈ TLV (x)(x)for all x 6= x∗, where LV (x) = {y : V (y) ≤ V (x)}.Let B = {u ∈ R
n : |u| < 1}.Theorem 3. Let Q denote a 
ompa
t subset of R

n. Let F : Q → R
n be the lower semi-
ontinuous map with only one point x∗ ∈ Q su
h that F (x∗) = {0} and let F (x) be a
losed, 
onvex 
one for every x ∈ Q. If there exists a 
ontinuously di�erentiable fun
tion

V : R
n → [0,∞) su
h that V (x) = 0 if and only if x = x∗ and

F (x) ∩H−
0 (∇V (x)) 6= ∅ for all x ∈ Q \ {x∗}(4)then the multivalued map

x 7→

{

F (x) ∩H−
0 (∇V (x)), if x ∈ Q \ {x∗},

{0}, if x = x∗
(5)has a 
ontinuous and bounded in Q sele
tion.Proof. Sin
e all assumptions of Corollary [1.11.1, AuCe℄ are satis�ed (indeed x 7→ F (x)is lower semi
ontinuous with 
losed, 
onvex values and x 7→ H−

0 (∇V (x)) has open graph)then there exists a 
ontinuous sele
tion f of the multivalued map x 7→ F (x)∩H−
0 (∇V (x))de�ned on Q \ {x∗} with values in R

n \ {0}. Let δ(x) = |x−x∗|
1+|x−x∗| . Sin
e the sets F (x)and H−

0 (∇V (x)) are 
ones and δ(x) ∈ (0, 1) then δ(x)f(x) ∈ F (x) ∩H−
0 (∇V (x)) for all

x ∈ Q \ {x∗}. Then the fun
tion
x 7→

{

δ(x) f(x)
|f(x)| , if x ∈ Q \ {x∗},

0, if x = x∗is a 
ontinuous sele
tion of (5), bounded in Q.Theorem 2 
on
erns dynami
 systems in R
n. Sin
e we are going to use it in analysisof dynami
 systems on the non
onvex set S+ we proje
t 
onformally traje
tories of pri
edynami
s 
hara
terized by some pri
e me
hanism g on a hyperplane orthogonal to theve
tor p∗ ∈ S+: H0(p

∗) = {u ∈ R
n : 〈u, p∗〉 = 0}. Let us re
all the de�nition of 
onformal(stereographi
) proje
tion.



18 A. ARKITDefinition 1. A one-to-one smooth mapping ω of S \ {−p∗} onto H0(p
∗) de�ned by

ω(p) = ϕ(p)(p+ p∗) − 2p∗, where ϕ(p) =
2

1 + 〈p∗, p〉
, p ∈ S \ {−p∗}(6)we 
all the 
onformal proje
tion.The matrix of derivatives of the 
onformal proje
tion is given by:

Dp(ω(p)) = −
1

2
ϕ(p)2(p∗)T(p+ p∗) + ϕ(p)1,where pT denotes the transpose of the ve
tor p, and 1 denotes the identity matrix.The inverse map to ω, i.e. the fun
tion ω−1 : H0(p

∗) → S \ {−p∗} is de�ned by
ω−1(x) = ψ(x)(x+ 2p∗) − p∗, where ψ(x) =

4

4 + |x|2
, x ∈ H0(p

∗).It is easy to 
he
k that ψ(ω(p)) · ϕ(p) = 1. The matrix of derivatives of the inverse mapto the 
onformal proje
tion is given by:
Dx(ω−1(x)) = −

1

2
ψ(x)2(x)T(x+ 2p∗) + ψ(x)1.For all p ∈ S+ let

Φp(u) = u ·Dp(ω(p)) =

[

−
1

2
ϕ(p)2〈p∗, u〉

]

(p+ p∗) + ϕ(p)u.The map Φp is a linear operator de�ned on R
n for all p ∈ S+. Let us observe that

ker Φp = {λ(p+ p∗) : λ ∈ R}. Thus Φp is a one-to-one linear operator in R
n \ (Rn

+ ∪R
n
−),for all p ∈ S+.For all x ∈ ω(S+) let

Ψx(û) = û ·Dx(ω−1(x)) =

[

−
1

2
ψ(x)2〈x, û〉

]

(x+ 2p∗) + ψ(x)û.The map Ψx is a linear operator de�ned on R
n for all x ∈ ω(S+).Easy 
omputations show that the maps Φp i Ψx have the following properties.Lemma 4. Let u ∈ H0(p) and û ∈ H0(p

∗) for p ∈ S+.(i) Φp(u) ∈ H0(p
∗).(ii) 〈ω(p),Φp(u)〉 = −ϕ(p)2〈p∗, u〉.(iii) Ψω(p)(Φp(u)) = u.(iv) 〈Ψω(p)(û),Φp(u)〉 = 〈û, u〉.The linear operator Ψω(p) is inverse to the linear operator Φp restri
ted to H0(p), forall p ∈ S+, sin
e H0(p) ⊂ (Rn \ (Rn

+ ∪ R
n
−)) and by property (iii) of Lemma 4.It is 
lear that for any 
ontinuously di�erentiable on [0,∞) traje
tory p(t) ∈ S+ thereexists the only traje
tory x(t) = ω(p(t)) in ω(S+) (for t ≥ 0). It is easy to 
he
k that

dx(t)

dt
=
dω(p(t))

dt
=
dp(t)

dt
·Dp(ω(p(t))) = Φp(t)

(

dp(t)

dt

)

.In parti
ular, if p(t) is a solution of the di�erential equation ṗ = e(p), then x(t) is asolution of the di�erential equation ẋ = ê(x), where ê(x) = Φω−1(x)(e(ω
−1(x))).



GLOBALLY STABLE PRICE MECHANISMS 19Similarly, for every 
ontinuously di�erentiable on [0,∞) traje
tory x(t) ∈ ω(S+) thereexists a traje
tory p(t) in S+, given by: p(t) = ω−1(x(t)) (for all t ≥ 0). We have then
dp(t)

dt
=
dω−1(x(t))

dt
=
dx(t)

dt
·Dx(ω−1(x(t))) = Ψx(t)

(

dx(t)

dt

)

.Now we 
an formulate our main result.Theorem 5. Let F : S+ → R
n be a lower semi
ontinuous multifun
tion with nonempty,
losed and 
onvex values. Let F (p) be a 
one for all p ∈ S+ and F (p∗) = {0} at only onepoint p∗ ∈ S+. Moreover, let F (p) ⊂ H0(p) for all p ∈ S+. If for all p ∈ S+ \ {p∗}

F (p) ∩H+
0 (ξ(p)) 6= ∅, where ξ(p) =

(

(p∗1)
2

p1
,
(p∗2)

2

p2
, . . . ,

(p∗n)2

pn

)

,then there exists a 
ontinuous sele
tion g of the map F su
h that for any p0 ∈ S+ thereexists a solution p : [0,∞) → S+ of the equation p′(t) = g(p(t)) with the initial 
ondition
p(0) = p0 su
h that limt→∞ p(t) = p∗.Moreover, for any ε > 0 there exist t0 ≥ 0 and δ > 0 su
h that all solutions of theequation p′(t) = g(p(t)) satisfy the 
ondition: if |p(t0) − p∗| < δ then |p(t) − p∗| < ε forall t > t0.Proof. Let V : R

n
+ → R be de�ned by:

V (p) = v −
n

∏

i=1

p
(p∗

i
)2

i , where v =

n
∏

i=1

(p∗i )
(p∗

i
)2 .

Sin
e the fun
tion p 7→
∏n

i=1 p
(p∗

i
)2

i (for p∗i < 1) is in
reasing and 
on
ave on R
n
+,the fun
tion V is de
reasing and 
onvex. Thus the following system of equations is ane
essary and su�
ient 
ondition for the minimum of the fun
tion V in S+:

∇ (V (p) + λ(1 − |p|)) = 0, 1 − |p| = 0, λ ∈ R.We have
∇V (p) = −

( n
∏

i=1

p
(p∗

i
)2

i

(p∗j )
2

pj

)

j=1...n

= −
n

∏

i=1

p
(p∗

i
)2

i ξ(p) = (V (p) − v)ξ(p).Hen
e, we obtain
{

(V (p) − v)
(p∗

i
)2

pi
− λpi = 0, for i = 1, . . . , n,

∑n
i=1 p

2
i = 1.For all i = 1, . . . , n and λ 6= 0 we have p2

i =
(V (p)−v)(p∗

i
)2

λ
. Substituting this into the lastequation we obtain

n
∑

i=1

(V (p) − v)(p∗i )
2

λ
= 1.Hen
e λ = V (p)−v. Then p = p∗ is a solution and the minimum of the fun
tion V equals

0. Moreover, V (p) > 0 for all p ∈ S+ \ {p∗}.It is not di�
ult to 
he
k that V (S+) = [0, v). Let ε ∈ (0, 1√
n
) be su
h that p∗ ∈ Sε

+ =

{p ∈ S+ : pi > ε for all i = 1, . . . , n} and let Σ = LV S(ε) = {p ∈ S+ : V (p) ≤ v − ε}. It



20 A. ARKITis easy to verify that Σ is a 
ompa
t set. Let us observe that for all p ∈ Sε
+ = {p ∈ S+ :

pi ≥ ε for all i = 1, . . . , n} we have
V (p) = v −

n
∏

i=1

p
(p∗

i
)2

i ≤ v −
n

∏

i=1

ε(p
∗

i
)2 = v − ε

∑

n

i=1
(p∗

i
)2 = v − ε.Thus we 
on
lude that Sε

+ ⊂ Σ ⊂ S+.Let us observe that the 
ondition F (p) ∩H−
0 (∇V (p)) 6= ∅ for all p ∈ Σ \ {p∗} holdssin
e F (p) ∩H+

0 (ξ(p)) 6= ∅ implies that there exists u ∈ F (p) su
h that
〈u,∇V (p)〉 = 〈u, (V (p) − v)ξ(p)〉 = (V (p) − v)〈u, ξ(p)〉 < 0.Hen
e, all assumptions of the Theorem 3 are satis�ed. Thus the multivalued map

p 7→

{

F (p) ∩H−
0 (∇V (p)), if p ∈ Σ \ {p∗},

{0}, if p = p∗de�ned on Σ, has a 
ontinuous and bounded sele
tion g. The proof will be 
ompletedby showing that di�eomorphi
 image ĝ(·) of the sele
tion g, whi
h is de�ned by ĝ(x) =

Φω−1(x)(g(ω
−1(x))), ful�lls the assumptions of Theorems 2 and 1. Let Q = ω(Σ). We willshow that the fun
tion V̂ (x) = V (ω−1(x)) satis�es the assumptions of Theorem 2. Weknow that V (Σ) ⊂ [0, v). For all x ∈ Q we have ω−1(x) ∈ Σ. Thus V̂ (x) = V (ω−1(x)) ∈

[0, v). Moreover V̂ (0) = V (ω−1(0)) = V (p∗) = 0. We also have
∇V̂ (x) = ∇V (ω−1(x)) ·Dx(ω−1(x)) = Ψx(∇V (ω−1(x))).Using (iv) of Lemma 4 (with p = ω−1(x)) we have
〈∇V̂ (x), ĝ(x)〉 = 〈Ψx(∇V (ω−1(x))),Φω−1(x)(g(ω

−1(x)))〉 =

= 〈∇V (ω−1(x)), g(ω−1(x))〉 = 〈∇V (p), g(p)〉 < 0.Hen
e, ĝ(x) ∈ H−
0 (∇V̂ (x)) for all x ∈ Q \ {0}. By Remark 1, ĝ(x) ∈ TL

V̂
(x)(x) for all

x ∈ Q \ {0}. Therefore we have ĝ(x) ∈ TQ(x) for all x ∈ Q \ {0}. Thus, by Theorem 1,for any x0 ∈ Q there exists a solution x : [0,∞) → R
n−1 of the equation x′(t) = ĝ(x(t))with the initial 
ondition x(0) = x0 su
h that x(t) ∈ Q for all t ≥ 0. Moreover, byTheorem 2, we 
on
lude that x(t) is 
onvergent to 0. Then there exists a solution p(t) =

ω−1(x(t)) ∈ Σ of the equation p′(t) = g(p(t)) with the initial 
ondition p(0) = ω−1(x0),where g(p) = Ψω(p)(ĝ(ω(p))), and this p(t) is 
onvergent to p∗.Moreover, by Theorem 2, we know that for any ε > 0 there exist t0 ≥ 0 and δ > 0 su
hthat all solutions of the equation x′(t) = ĝ(x(t)) satisfy a 
ondition: if |x(t0)| < δ then
|x(t)| < ε for all t > t0. It is easy to 
he
k that |p(t0)−p∗| < |x(t0)| and |p(t)−p∗| < |x(t)|and this 
ompletes the proof.5. The sign-
ompatibility 
ondition. A pri
e me
hanism g des
ribes a 
lassi
al pri
eadjustment pro
ess if it is 
ompatible with the ex
ess demand in the following sense. Ifat some pri
e system p the i-th 
oordinates of all u ∈ E(p) are positive then gi(p) ≥ 0. Ifthe i-th 
oordinates of all u ∈ E(p) are negative then gi(p) ≤ 0. If there exists u ∈ E(p)su
h that its i-th 
oordinate is zero then gi(p) = 0. Thus, g is spe
i�ed by F de�ned by

F (p) = C↑[E(p)] =
⋂

v∈E(p)

{u ∈ R
n : if vi 6= 0 thenuivi ≥ 0, if vi = 0 thenui = 0}.



GLOBALLY STABLE PRICE MECHANISMS 21We 
all su
h a pri
e me
hanism g sign-
ompatible with the ex
ess demand. Observe thatfor any nonempty 
onvex set A the set C↑[A] is nonempty, 
losed and 
onvex 
one.Theorem 6. Let E be an ex
ess demand multifun
tion of some pure ex
hange e
onomy,ful�lling (a0)�(a3), with only one equilibrium point p∗ ∈ S+. Let
C↑[E(p)] ∩H0(p) = {0} if and only if 0 ∈ E(p).(7)If for all p ∈ S+ \ {p∗} we have

C↑[E(p)] ∩H0(p) ∩H
+
0 (ξ(p)) 6= ∅,(8)where ξ(p) = (

(p∗

1)2

p1
,

(p∗

2)2

p2
, . . . ,

(p∗

n
)2

pn

), then there exists a globally asymptoti
ally stablepri
e me
hanism whi
h is sign-
ompatible with the ex
ess demand E.Proof. A

ording to Theorem 5, it is su�
ient to show that the multivalued map p 7→

C↑[E(p)]∩H0(p) is lower semi
ontinuous on S+, with nonempty, 
losed and 
onvex values.The set C↑[E(p)] ∩H0(p) is a 
losed, 
onvex 
one for all p ∈ S+ (as an interse
tionof two 
losed, 
onvex 
ones in R
n). This set is nonempty sin
e 0 ∈ C↑[E(p)] ∩H0(p) forall p ∈ S+. Fix p0 ∈ S+.Let y0 ∈ C↑[E(p0)]∩H0(p

0). Take any sequen
e (pk)∞k=1 ⊂ S+ whi
h is 
onvergent to
p0 and a sequen
e (yk)∞k=1 su
h that yk = (

p0
1

pk

1

y0
1 ,

p0
2

pk

2

y0
2 , . . . ,

p0
n

pk
n

y0
n). It is easy to 
he
k that

yk ∈ H0(p
k). Moreover, yk ∈ C↑[E(p0)] sin
e sign (

p0
i

pk

i

y0
i ) = sign y0

i for all i = 1, . . . , n.We will show now that for every p0 ∈ R
n there exists a neighbourhood V su
h that forall p ∈ V we have C↑[E(p0)] ⊆ C↑[E(p)]. If 0 ∈ E(p0) then C↑[E(p0)] = {0} ⊂ C↑[E(p)].Assume that 0 /∈ E(p0). An easy veri�
ation shows that for any nonempty, 
onvex sets

A, B we have(a) A ⊆ B ⇒ C↑[B] ⊆ C↑[A],(b) there exists an open and 
onvex set U su
h that A ⊂ U and C↑[A] = C↑[U ].Let U denote the open and 
onvex set su
h that E(p0) ⊂ U and C↑[E(p0)] = C↑[U ].Sin
e E is upper semi
ontinuous, there exists a neighbourhood V of p0 su
h that for all
p ∈ V we have E(p) ⊂ U . Applying (a) we have C↑[U ] ⊆ C↑[E(p)] and we 
an 
on
ludethat C↑[E(p0)] ⊆ C↑[E(p)].Then there exists K > 0 su
h that for all k > K we have C↑[E(p0)] ⊆ C↑[E(pk)].Hen
e yk ∈ C↑[E(pk)] for all k > K. Let us 
he
k that the sequen
e (yk)∞k=1 is 
onvergentto y0. Indeed,

|yk − y0| =

√

√

√

√

n
∑

i=1

(

p0
i

pk
i

− 1

)2

(y0
i )2 =

√

√

√

√

n
∑

i=1

(p0
i − pk

i )2
(

y0
i

pk
i

)2

≤

√

√

√

√

n
∑

i=1

(p0
i − pk

i )2
(

maxi y0
i

mini pk
i

)2

≤ |pk − p0|
|y0|

mini pk
i

k→∞
−→ 0.Hen
e we 
on
lude that the map p 7→ C↑[E(p)] ∩H0(p) is lower semi
ontinuous.Remark 2. The 
ondition (7) is a ne
essary 
ondition of the existen
e of globally asymp-toti
ally stable pri
e me
hanism whi
h is sign-
ompatible with the ex
ess demand.



22 A. ARKIT6. The angle-
ompatibility 
ondition. When the pri
e me
hanism is sign-
ompat-ible with the ex
ess demand, we know that a pri
e 
hange ve
tor and all ex
ess demandve
tors from E(p) have to be in the same orthant of R
n. In spe
ial 
ases, it permits thesituation when these dire
tions are relatively divergent (the angle between these ve
tors
ould be nearly π

2 ). This motivates 
onsidering a pri
e me
hanism g where g(p) formswith all ex
ess demand ve
tors from E(p) an a
ute angle and not ne
essarily g(p) has tohave the same signs as all ex
ess demands from E(p) (see [Ar℄). Let α ∈ [0, π
2 ]. We saythat a pri
e me
hanism g is α-
ompatible with the ex
ess demand E if g(p) forms withall ve
tors u ∈ E(p) an angle less than or equal to α. Thus, g is spe
i�ed by F de�ned by

F (p) = Cα[E(p)] with Cα[A] =
⋂

y∈A

Cα(y),where Cα(y) = {u ∈ R
n : 〈u, y〉 ≥ |u||y| cosα} for y ∈ R

n \ {0} and Cα(0) = {0}.Below are some properties of Cα[A] whi
h are presented without proof.Lemma 7. Let α, β ∈ [0, π
2 ] and A,B be nonempty, 
losed and 
onvex sets. Then(i) if u ∈ Cα(y) and v ∈ Cβ(y) and α+ β < π

2 then u ∈ Cα+β(v);(ii) Cα[A] is nonempty, 
losed and 
onvex 
one;(iii) if α < β then Cα[A] ⊂ Cβ[A];(iv) if A ⊂ B then Cα[B] ⊂ Cα[A];(v) v ∈ Cα[A] if and only if A ⊂ Cα(v);(vi) let A be 
ompa
t and β(A) = inf{β ∈ [0, π
2 ] : Cβ [A] 6= {0}}, if 0 /∈ A then

Cβ(A)[A] = {λz : λ ≥ 0} for some z ∈ A.Theorem 8. Let E be an ex
ess demand multifun
tion of some pure ex
hange e
onomy,ful�lling (a0)�(a3), with only one equilibrium point p∗ ∈ S+. Let
ᾱ = sup

p∈S+\{p∗}
inf{β ≥ 0 : Cβ[E(p)] 6= {0}} <

π

2
.(9)If for α ∈

(

ᾱ, π
2

] and for all p ∈ S+ \ {p∗} we have
Cα[E(p)] ∩H0(p) ∩H

+
0 (ξ(p)) 6= ∅,(10)where ξ(p) = (

(p∗

1)2

p1
,

(p∗

2)2

p2
, . . . ,

(p∗

n
)2

pn
), then there exists a globally asymptoti
ally stablepri
e me
hanism whi
h is α-
ompatible with the ex
ess demand E.Proof. A

ording to Theorem 5, it is su�
ient to show that the multivalued map p 7→

Cα[E(p)]∩H0(p) is lower semi
ontinuous on S+, with nonempty, 
losed and 
onvex values.The set Cα[E(p)] ∩ H0(p) is a 
losed, 
onvex 
one for all p ∈ S+ (as an interse
tion oftwo 
losed, 
onvex 
ones in R
n). This set is nonempty sin
e 0 ∈ Cα[E(p)]∩H0(p) for all

p ∈ S+.Fix p0 ∈ S+ \ {p∗} and v0 ∈ Cα[E(p0)]. Hen
e, by (v) of Lemma 7, E(p0) ⊂ Cα(v0).Let β(E(p0)) = inf{β ≥ 0 : Cβ[E(p0)] 6= {0}}. Let z denote the nonzero ve
tor from
E(p0) su
h that {λz : λ ≥ 0} = Cβ(E(p0))[E(p0)]. Then E(p0) ⊂ Cβ(E(p0))(z). Letus take any sequen
e (pk)∞k=1 ⊂ S+ \ {p∗} whi
h is 
onvergent to p0. Sin
e E is uppersemi
ontinuous then there existsK1 > 0 su
h that for all k > K1 we have E(pk) ⊂ E(p0)+

rkB(0, 1) = Fk, where rk ց 0 for k → ∞. Sin
e 0 /∈ E(p0), for any θ ∈ (0, α− β(E(p0)))



GLOBALLY STABLE PRICE MECHANISMS 23there exists K2 > 0 su
h that for all k > K2 we have Fk ⊂ Cβ(E(p0))+θ(z) and hen
e
z ∈ Cβ(E(p0))+θ[Fk] ⊂ Cα[Fk] ⊂ Cα[E(p0)].(11)Let K = max{K1,K2}. Observe that the segment [v0, z] has a nonempty interse
tionwith Cα[Fk] for all k > K. Let
tk = sup{t ∈ [0, 1] : tv0 + (1 − t)z ∈ Cα[Fk]}.Let vk = tkv

0 + (1 − tk)z ∈ Cα[Fk] ⊂ Cα[E(p0)]. The sequen
e (tk)∞k=1 is bounded andin
reasing. Assume that limk→∞ tk = t′ < 1. Let t′′ ∈ (t′, 1) and v′′ = t′′v0 + (1 − t′′)z.Then v′′ /∈ Cα[Fk] for all k > K. This means that for all k > K there exists yk ∈ Fksu
h that yk /∈ Cα(v′′). The subsequen
e (ykm)∞m=1 is 
onvergent to some y ∈ E(p0)(sin
e the map E has 
ompa
t values). Hen
e, 〈ykm , v′′〉 < |ykm ||v′′| cosα, and then
〈y, v′′〉 ≤ |y||v′′| cosα. On the other hand v′′ ∈ Cα[E(p0)], so for all y ∈ E(p0) we have
y ∈ Cα(v′′). Hen
e, 〈y, v′′〉 ≥ |y||v′′| cosα. Then we 
on
lude that the angle between theve
tors y and v′′ is α. But this 
ontradi
ts the fa
t that the segment [v0, z] ⊂ Cα(y),be
ause z belongs to the interior of Cα(y) and v0 ∈ Cα(y). Thus the sequen
e (vk)∞k=1
onverges to v. Hen
e, the map p 7→ Cα[E(p)] is lower semi
ontinuous. Moreover, the map
p 7→ H0(p) is 
ontinuous in Wijsman topology on S+ and it has nonempty, 
losed, 
onvexvalues. We will verify that H0(p) ∩ intCα[E(p)] 6= ∅. A

ording to (vi) of Lemma 7, forevery p ∈ S+ there exists a nonzero ve
tor z ∈ Cᾱ[E(p)] whi
h belongs to E(p). Hen
e
E(p) ⊂ Cᾱ(z). For θ ∈ (0, α−ᾱ) let us take any u ∈ Cθ(z). Then for all y ∈ E(p) we have
u ∈ Cᾱ+θ(y) (by (i) of Lemma 7). Hen
e Cθ(z) ⊂ Cᾱ+θ(y) ⊂ Cα(y) for all y ∈ E(p).Moreover, sin
e θ > 0, there exists γ > 0 su
h that z + γB(0, 1) ⊂ Cθ(z) ⊂ Cα[E(p)].Thus z ∈ E(p)∩ intCα[E(p)]. By Walras' Law E(p) ⊂ H0(p) for all p ∈ S+ therefore wehave H0(p) ∩ intCα[E(p)] 6= ∅. By Proposition [2.54, HuPa℄ we 
on
lude that the map
p 7→ Cα[E(p)] ∩H0(p) is lower semi
ontinuous.Remark 3. The 
ondition (9) is a ne
essary 
ondition of the existen
e of globally asymp-toti
ally stable pri
e me
hanism whi
h is angle-
ompatible with the ex
ess demand. ᾱis the minimal angle su
h that the sets Cα[E(p)] 
ontain nonzero ve
tors at all pri
esystems di�erent from equilibrium point.Remark 4. Theorem 8 is true for α ≥ ᾱ∗ = β(E(p∗)) if we have β(E(p)) < ᾱ∗ for all
p ∈ S+ \ {p∗}.7. Examples7.1. S
arf's example. This example 
on
erns the pure ex
hange model with the single-valued ex
ess demand, i.e. E(p) = {e(p)} (for details see [S
℄).If we take the pri
e me
hanism g = e, the pri
e traje
tories are 
losed 
urves on thepositive part of the unit sphere S+. The sets C↑[e(p)] are presented in the plane H0(p

∗)in the following way (Fig. 1): if some 
oordinate of all ve
tors from 
onsidered set isnonnegative then we have plus. If some 
oordinate of all ve
tors from the 
onsideredset is nonpositive then we have minus. On the lines AC', B'C, BA' one 
oordinate ofall ve
tors from the 
orresponding set is zero. The equilibrium point p∗ = 1√
3
(1, 1, 1) isdenoted by O.
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B’Fig. 1. S
arf's example: pri
e traje
tories and the sets C↑[e(p)]

The boundary 
ondition does not hold (see Fig. 1). In the set ABO (along the 
urveAB) the third 
oordinate should be positive. In the set ACO (along the 
urve AC) these
ond 
oordinate should be positive. In the set BCO (along the 
urve BC) the �rst
oordinate should be positive.We 
annot use Theorem 6 sin
e the 
ondition (8) does not hold. At p ∈ BA' ∪ AC'
∪ CB' we have C↑[e(p)] = {λe(p) : λ ≥ 0} and e(p) ∈ H0(ξ(p)).Let sk(p) be the metri
 proje
tion of the ex
ess demand ve
tor e(p) on the interse
tionof the k-th wall of the 
one C↑[e(p)] and the set H0(p):

sk(p) = Π(e(p);C↑[e(p)] ∩H0(p) ∩ {u ∈ R
n : uk = 0}) ∈ C↑[e(p)] ∩H0(p).It is easy to show that s1(p) ∈ H+

0 (ξ(p)) at p ∈ AA'O ∪ BC'O, s2(p) ∈ H+
0 (ξ(p)) at p ∈BB'O ∪ A'CO, s3(p) ∈ H+

0 (ξ(p)) at p ∈ AB'O ∪ CC'O. The map g : S+ → R
n de�nedby

g(p) =

{

δ(p)s(p) + (1 − δ(p))e(p), if p ∈ S+ \ (BA′ ∪ AC′ ∪ CB′),
e(p), if p ∈ BA′ ∪ AC′ ∪ CB′,where

s(p) =







s1(p), if p ∈ AA′O ∪ BC′O,
s2(p), if p ∈ BB′O ∪ A′CO,

s3(p), if p ∈ AB′O ∪ CC′O,and
δ(p) =







6
√

2(p2−p1)
2[(p2−p1)

2−(2p3−p2−p1)
2]2

(3+
√

3(p1+p2+p3))[(p2−p1)2+
1
3
(2p3−p2−p1)2]

5
2

, if p ∈ S+ \ {p∗},

0, if p = p∗is a 
ontinuously di�erentiable sele
tion of C↑[e(p)] ∩ H0(p) and g(p) ∈ H+
0 (ξ(p)) for

p 6= p∗.Moreover, the fun
tion V , de�ned in the proof of Theorem 5, is a stri
tly de
reasingfun
tion along any solution of the di�erential equation p′(t) = g(p(t)). Analysis similar



GLOBALLY STABLE PRICE MECHANISMS 25to that in the proof of Theorem 5 shows that V̂ is a global Lyapunov fun
tion for thedi�erential equation x′(t) = ĝ(x(t)). Thus, by Barbashin�Krasovski Theorem ([Kr℄, [Gl℄),we 
on
lude that there exists a globally asymptoti
ally stable pri
e me
hanism in S
arf'sexample whi
h is sign-
ompatible with the ex
ess demand.In the 
ase of angle-
ompatibility rule we 
an obtain the existen
e of globally asymp-toti
ally stable pri
e me
hanism whi
h is α-
ompatible with the ex
ess demand for all
α > 0 by Theorem 8 using only arguments of geometri
 nature. It is su�
ient to noti
ethat e(p) ∈ H0(ξ(p)) for all p ∈ S+.7.2. Example with multivalued ex
ess demand (1). The se
ond example 
on
erns thepure ex
hange model with a multivalued ex
ess demand whi
h is 
onstru
ted from thefollowing utility fun
tions and initial resour
es: u1(x1, x2, x3) = min{x1 + x2, x1 + x3},
w1 = (1, 1, 1), u2(x1, x2, x3) = x

1
2

1 x
1
2

3 , w2 = (1, 2, 1), u3(x1, x2, x3) = x
1
2

1 x
1
2

2 , w3 = (1, 1, 2).The ex
ess demand is de�ned by E(p) = {e(p, t) : t ∈ [0, 1]} where� for p ∈ I = {p ∈ S+ : p2

p1
+ p3

p1
> 1} we have

e(p, t) =

(

5

2

p2

p1
+

5

2

p3

p1
− 1,

1

2

p1

p2
+
p3

p2
−

7

2
,
1

2

p1

p3
+
p2

p3
−

7

2

)

,� for p ∈ II = {p ∈ S+ : p2

p1
+ p3

p1
= 1} we have

e(p, t) =

(

3

2
− 2t,

3

2

p3

p2
+ 2t− 3,

3

2

p2

p3
+ 2t− 3

)

,� for p ∈ III = {p ∈ S+ : p2

p1
+ p3

p1
< 1} we have e(p, t) =

(

3

2

p2

p1
+

3

2

p3

p1
− 2,

1

2

p1

p2
+

p1

p2 + p3
+
p3

p2
−

5

2
,
1

2

p1

p3
+

p1

p2 + p3
+
p2

p3
−

5

2

)

.This ex
ess demand is single-valued at su
h pri
e systems whi
h belong to I or III. Thesesets are presented in the �rst diagram (Fig. 2). The ex
ess demand is multivalued at su
hpri
e systems whi
h belong to II. This set is denoted by the line DI.In the next diagram (Fig. 2) there are presented the sets C↑[E(p)] at pri
e systemsfrom the sets I and III. It is not di�
ult to observe that the boundary 
ondition issatis�ed. Along the 
urve AB the third 
oordinate is positive. Along the 
urve AC these
ond 
oordinate is positive. Along the 
urve BC the �rst 
oordinate is positive. The
ompetitive equilibrium p∗ = 1√
6
(2, 1, 1) (for p3

p2
= 1, p1

p3
= 2, t = 3

4 ) is denoted by O.The sets C↑[E(p)], when the ex
ess demand is multivalued, are presented in the table.
p3

p2
(0, 1

2 ) [ 12 ,
2
3 ) [ 23 ,

3
2 ] ( 3

2 , 2] (2,∞)

u1, (u ∈ C↑[E(p)]) 0 0 0 0 0
u2, (u ∈ C↑[E(p)]) - - 0 0 +
u3, (u ∈ C↑[E(p)]) + 0 0 - -II HI GH FG EF DELet us observe that C↑[E(p)] = {0} at p ∈ FG. It means that the ex
ess demandfor all goods is both negative and positive at given pri
e system from the line FG. At



26 A. ARKITevery pri
e system from the segments EF and GH the interse
tion of C↑[E(p)] and H0(p)
onsists of only zero as well. In this 
ase the ex
ess demand (from C↑[E(p)]) is negativefor one good. Thus we 
on
lude that 
ondition (7) is not satis�ed and there does notexist a globally asymptoti
ally stable pri
e me
hanism whi
h is sign-
ompatible with theex
ess demand. The ne
essary 
ondition (7) is satis�ed if at all pri
e systems, di�erentfrom 
ompetitive equilibrium, the ex
ess demand (from C↑[E(p)]) for at least one goodis positive and for at least one good is negative.
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Fig. 2. The sets I, II, III and C↑[E(p)]In the 
ase of angle-
ompatibility rule ᾱ∗ is equal to π
2 and the 
ondition (10) issatis�ed by the ex
ess demand ve
tors in I ∪ III and by the ve
tor e(p, 0) + e(p, 1) ∈

C
π

2 [E(p)] in II. Thus, by Theorem 8, there exists a globally asymptoti
ally stable pri
eme
hanism whi
h is π
2 -
ompatible with the multivalued ex
ess demand E.7.3. Example with multivaled ex
ess demand (2). The third example 
on
erns the pureex
hange model with a multivalued ex
ess demand whi
h is 
onstru
ted from the fol-lowing utility fun
tions and initial resour
es: u1(x1, x2, x3) = x2 + x3, w1 = (2, 0, 0),

u2(x1, x2, x3) = x
1
2

1 x
1
2

3 , w2 = (2, 2, 0), u3(x1, x2, x3) = x
1
2

1 x
1
2

2 , w3 = (0, 2, 2). The ex
essdemand is de�ned by E(p) = {e(p, t) : t ∈ [0, 2p1

p2
]} where� for p ∈ I = {p ∈ S+ : p3

p2
< 1} we have

e(p, t) =

(

2
p2

p1
+
p3

p1
− 3,

p3

p2
− 3, 3

p1

p3
+
p2

p3
− 2

)

,� for p ∈ II = {p ∈ S+ : p3

p2
= 1} we have

e(p, t) =

(

3
p2

p1
− 3, t− 2, 3

p1

p2
− t− 1

)

,
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p2
> 1} we have

e(p, t) =

(

2
p2

p1
+
p3

p1
− 3, 2

p1

p2
+
p3

p2
− 3,

p1

p3
+
p2

p3
− 2

)

.

-0.75 -0.25 0.25 0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.75 -0.25 0.25 0.75

A B

C

0

I
II

II

III

E

-0.75 -0.25 0.25 0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.75 -0.25 0.25 0.75

A B

C

0

D

E

-,-,+

+,-,-

+,-,+

+,-,-

-,+,+

+,+,-

-,+,-

Fig. 3. The sets I, II, III and C↑[E(p)]This ex
ess demand is single-valued at su
h pri
e systems whi
h belong to I or III.These sets are presented in the �rst diagram (Fig. 3). The ex
ess demand is multivaluedat su
h pri
e systems whi
h belong to II. This set is denoted by the line AE.In the next diagram (Fig. 3) there are presented the sets C↑[E(p)] at pri
e systemsfrom the sets I and III. It is not di�
ult to observe that the boundary 
ondition issatis�ed. The 
ompetitive equilibrium p∗ = 1√
3
(1, 1, 1) (for p3

p2
= 1, p2

p1
= 1, t = 2) isdenoted by O. The sets C↑[E(p)], when the ex
ess demand is multivalued, are presentedin the table.

p1

p2
(0, 1

3 )
[

1
3 , 1

)

1 (1,∞)

u1, (u ∈ C↑[E(p)]) + + 0 -
u2, (u ∈ C↑[E(p)]) - - 0 0
u3, (u ∈ C↑[E(p)]) - 0 0 +II DE OD O AO

The ne
essary 
ondition (7) is satis�ed. C↑[E(p)] = {0} only at 
ompetitive equilib-rium. The interse
tion of C↑[E(p)] and H0(p) 
onsists of nonzero ve
tors at all p di�erentfrom p∗. The 
ondition (8) is satis�ed by the ex
ess demand ve
tors in I ∪ III ∪ DEand by any ve
tor from the set C↑[E(p)] in AO ∪ OD. Thus, by Theorem 6, there ex-ists a globally asymptoti
ally stable pri
e me
hanism whi
h is sign-
ompatible with themultivalued ex
ess demand E.



28 A. ARKITIn the 
ase of angle-
ompatibility rule ᾱ is equal to 0.285π and the 
ondition (10) issatis�ed by the ex
ess demand ve
tors in I ∪ III and by the ve
tor e(p, 0) + e(p, 2p1

p2
) ∈

Cα[E(p)] for p ∈ II. Thus, by Theorem 8, there exists a globally asymptoti
ally stablepri
e me
hanism whi
h is α-
ompatible with the multivalued ex
ess demand E for α >
0.285π.A
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