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1. Introduction. The aim of the article is to present sufficient conditions for an upper
semicontinuous multivalued excess demand, guaranteeing the existence of some globally
stable price mechanism. We consider two different price mechanisms: sign-compatible
and angle-compatible with the excess demand. Our conditions depend on vectors from
the excess demand sets and corresponding price systems, with respect to the equilibrium
price system. We show that there exist adequate price mechanisms in Scarf’s example
(when the excess demand is single-valued) and in examples with upper semicontinuous
multivalued excess demand.

2. Model. Consider a model of pure exchange with a multivalued excess demand F :
R’} ~» R™ (where R} = (0,400)) satisfying the following natural hypothesis:

(a0) E has nonempty, closed and convex values;

(al) E is upper semicontinuous;

(a2) E satisfies Walras” Law: (u,p) = 0 for all u € E(p) (where (-,-) denotes the inner
product);

(a3) E is positive homogeneous of degree zero, i.e. E(tp) = E(p) for t > 0;

(a4) E satisfies boundary condition: if p* oo p, where p is such that p; = 0 for some
k—o0

i=1,...,n, then d(E(p*),0) —= oo, where d(A,0) = sup{|a| : a € A}.

The excess demand sets consist of differences between the total demand and the total
supply of commodities, which are exchanged on the market. We assume that this map
depends only on commodity bundle’s price vector. The hypotheses (a0)—(a4) guarantee
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16 A. ARKIT

the existence of at least one Walrasian equilibrium, i.e. a point p*, such that 0 € E(p*)
(compare [De]). Following Samuelson ([Sa]), we assume that the path of prices, which
starts at fixed pY, is a solution of the differential equation

1) Dy, p0) ="

The continuous function g : R} — R™ on the right hand side of Eq. (1) is called a price
mechanism if it satisfies (when substituted for E) (a2)—(a4) and the condition: g(p*) = 0
if and only if p* € Pp = {p € R} : 0 € E(p)}. We say that a price mechanism is globally
asymptotically stable if any price trajectory p(t), which is a solution of Eq. (1) for any
initial point p°, converges to some p* € Pg, when ¢ tends to infinity and for any £ > 0
there exist tg > 0 and ¢ > 0 such that for every solution p(t) of Eq. (1) if [p(to) —p*| < 0
then |p(t) — p*| < € for all ¢ > ¢,.

Let us recall that every price trajectory for the price mechanism g is located on the
nonnegative part of the sphere S, (|p°|) = {p € R%} : [p| = [p°|} (because of (a2) and
(ad)). Since g satisfies (a3) we can regard such price adjustment process as a continuous
tangent vector field on S; = {p € R%} : |p| = 1}. This is the reason why we can restrict
a domain of price mechanisms to S.

3. Problem. One can consider different kinds of price mechanisms. Let F' be a given
multivalued map from S into oR" \ {0}. We say that a price mechanism g is specified
by F if g(p) € F(p) for all p € S;. Since g has to have zeros at equilibrium points p*
we impose on F the following condition: F(p*) = {0} if and only if 0 € E(p*). We are
going to give sufficient conditions for the excess demand, guaranteeing the existence of
some globally asymptotically stable price mechanism g specified by F, which in turn is
derived from E by sign- or angle-compatibility rule.

4. Stability. First, we ask when there exists the continuous selection g of the multi-
valued map F', such that any trajectory of an autonomous equation z'(t) = g(z(¢)),
2(0) = 2° € Q, is convergent to some equilibrium point 2* € Q.

Let
To@ = U (%(Qz)JraB(O,l))

e>0n>00<h<n
denote the contingent cone to @) at z.

THEOREM 1 (Nagumo). Let @ denote a compact subset of R™. Let g : Q — R™ be the
continuous function such that

(2) g(x) € To(x), for all z € Q.

Then for any 2° € Q there exists a solution x : [0,00) — R™ of the equation 2’ (t) = g(x(t))
with the initial condition x(0) = x° such that x(t) € Q for all t > 0.

Let Hy (y) = {u € R™ : (u,y) < 0} and H{ (y) = {u € R™ : (u,y) > 0} for
y € R™\ {0}.
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THEOREM 2. Let () denote an open subset of R". Let g : Q — R™ be a function with x* €

Q being the only point such that g(x*) = 0. If there exists a continuously differentiable
function V : Q — [0,00) such that V() = 0 if and only if x = 2* and

(3) g(x) € Hy (VV(x)) for all x € Q\ {z*}
then for any € > 0 there exist ty > 0 and § > 0 such that for every solution z(t) of

the equation z'(t) = g(x(t)) if |x(to) — *| < & then |z(t) — z*| < e for all t > ty and
tlim x(t) = z*.
—00

Proof. According to Lyapunov Theorem (see for instance [Ha, Theorem 8.2]) we have to
show that (g(z), VV(z)) < 0 for all z € Q\ {z*}. Indeed, by definition of Hj (y) we have
(9(z),VV(z)) < 0 if and only if g(z) € Hy (VV(x)). m

REMARK 1. If the function g satisfies condition (3) for all 2 # x* then g(x) € Ty, () ()
for all x # a*, where Ly (z) ={y: V(y) <V (z)}.
Let B={uecR": |u] <1}.

THEOREM 3. Let () denote a compact subset of R™. Let F': Q — R™ be the lower semi-
continuous map with only one point z* € Q such that F(z*) = {0} and let F(x) be a
closed, convex cone for every x € Q. If there exists a continuously differentiable function

V:R™ — [0,00) such that V(z) =0 if and only if v = z* and

(4) F(z)NHy (VV(x)) #0 for all x € Q\ {z"}
then the multivalued map

F(z) N Hy (VV(2)),if € Q\{z"},
®) %’{{0}, 0 if 3 =a"

has a continuous and bounded in Q selection.

Proof. Since all assumptions of Corollary [1.11.1, AuCe| are satisfied (indeed z — F(z)
is lower semicontinuous with closed, convex values and =z — H, (VV(z)) has open graph)
then there exists a continuous selection f of the multivalued map z — F(z)NHy (VV (x))
defined on @ \ {z*} with values in R™ \ {0}. Let §(z) = % Since the sets F'(x)
and Hy (VV(x)) are cones and 6(z) € (0,1) then §(z)f(x) € F(z) N Hy (VV(x)) for all
x € Q\ {«*}. Then the function

e {6<x>§§;§,ifxecz\{x*},

0, if o =a*
is a continuous selection of (5), bounded in Q.

Theorem 2 concerns dynamic systems in R™. Since we are going to use it in analysis
of dynamic systems on the nonconvex set S} we project conformally trajectories of price
dynamics characterized by some price mechanism g on a hyperplane orthogonal to the
vector p* € S1: Ho(p*) = {u € R™: (u,p*) = 0}. Let us recall the definition of conformal
(stereographic) projection.
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DEFINITION 1. A one-to-one smooth mapping w of S\ {—p*} onto Hy(p*) defined by

(6) w(p) = ¢(p)(p+p*) — 2p*, where p(p) = , pES\{-p"}

2
L+ (p*,p)
we call the conformal projection.

The matrix of derivatives of the conformal projection is given by:
1 * *
Dy(w(p)) = =52@)* (") (p+ 1) + ¢(p)1,
where pT denotes the transpose of the vector p, and 1 denotes the identity matrix.
The inverse map to w, i.e. the function w=! : Hy(p*) — S\ {—p*} is defined by

w ' (z) = ¢(x)(z +2p*) —p*, where ¥(z) x € Ho(p").

_ 4

s A [
It is easy to check that ¥(w(p)) - ¢(p) = 1. The matrix of derivatives of the inverse map
to the conformal projection is given by:

Dy (w7 (@) = — (@) (@) (@ + 2°) + Y@L

For all p € Sy let

By(u) = u- Dy(w(p)) = [

The map @, is a linear operator defined on R™ for all p € S;. Let us observe that
ker ®, = {\(p+p*) : A € R}. Thus @, is a one-to-one linear operator in R™ \ (R} UR™ ),
for all p e S,.

For all € w(S) let

—%sﬁ(p)2<p*7 w] (p+p") + e(p)u.

1

() = - Dol (0) = -0l (o) | o+ 2) + vl

The map U, is a linear operator defined on R™ for all x € w(Sy).
Easy computations show that the maps ®, i ¥, have the following properties.

LEMMA 4. Let u € Hy(p) and 4 € Hy(p*) for p € S;.

(1) ®p(u) € Ho(p").
(i) {w(p), Dp(u)) = —@(p)*(p", ).
(i) W) (@ ) = .
() (Wo(p) (@), @p(w)) = (i, u).
The linear operator W, is inverse to the linear operator ®, restricted to Ho(p), for
all p € Sy, since Ho(p) C (R™\ (R} UR™)) and by property (iii) of Lemma 4.
It is clear that for any continuously differentiable on [0, 00) trajectory p(t) € S there
exists the only trajectory z(t) = w(p(t)) in w(Sy) (for t > 0). It is easy to check that

dr(t)  dw(p(t))  dp(t) ()
) = ) = B0 o) = w0 (B2,

In particular, if p(t) is a solution of the differential equation p = e(p), then z(t) is a
solution of the differential equation & = é(z), where é(z) = ®,-1(;)(e(w™*(2))).
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Similarly, for every continuously differentiable on [0, c0) trajectory z(t) € w(Sy) there
(t

exists a trajectory p(t) in Sy, given by: p(t) = w=1(x(t)) (for all ¢ > 0). We have then
dp(t)  dw '(x(t))  du(t) . B dx(t)
) _ Ao 00) 40 (1 afe)) = W (2.

Now we can formulate our main result.

THEOREM 5. Let F': Sy — R” be a lower semicontinuous multifunction with nonempty,
closed and convex values. Let F(p) be a cone for all p € Sy and F(p*) = {0} at only one
point p* € Sy. Moreover, let F(p) C Ho(p) for allp € Si. If for all p € Sy \ {p*}
*) 2 *) 2 *\2
p p Pn
F)N S (E) 20, where ) = (5, 022 (003
b1 D2 Dn

then there exists a continuous selection g of the map F such that for any p° € S there

exists a solution p : [0,00) — Sy of the equation p'(t) = g(p(t)) with the initial condition
p(0) = p° such that lim;_ o p(t) = p*.

Moreover, for any € > 0 there exist tg > 0 and § > 0 such that all solutions of the
equation p'(t) = g(p(t)) satisfy the condition: if |p(to) — p*| < & then |p(t) — p*| < € for
allt > tg.

Proof. Let V : Rt — R be defined by:

n n
(p)=v~— sz(*pi)z, where v = H(p;‘)(pf)z,
i=1 i=1

Since the function p — ], pz pi)*

(for p; < 1) is increasing and concave on R,
the function V is decreasing and convex. Thus the following system of equations is a

necessary and sufficient condition for the minimum of the function V" in S,:
VV/E) +A1=p)) =0, 1-|p|=0, AeR.
We have
- -2 (p})?
v = (I -

i=1 pj

) Hp“% Pep) = (V(p) - v)Ep).

j=1...

Hence, we obtain

*)2
{gﬁp);v)%—)\pizo, fori=1,...,n,
=1 P = 1.

For alli=1,...,n and A # 0 we have p? = w. Substituting this into the last
equation we obtain
Vp) —v)(@;)°

=1
A

I

1

Hence A = V(p) —v. Then p = p* is a solution and the minimum of the function V equals
0. Moreover, V(p) > 0 for all p € S \ {p*}.

Tt is not difficult to check that V/(S1) = [0,v). Let £ € (0,
{peSy:p;>cforalli=1,...,n} and let ¥ = Lyg(c) =

=) be such that p* € S5 =
peSy:V(p)<v—c}. Tt

=3I
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is easy to verify that ¥ is a compact set. Let us observe that for all p € E ={pesS;:
p; >eforalli=1,... n} we have

Vip)=v— Hpﬁ”f)z <wv-— 1_[5(173)2 = — el =y ¢
i=1 i=1
Thus we conclude that S5 C ¥ C Sy.
Let us observe that the condition F(p) N Hy (VV(p)) # 0 for all p € ¥\ {p*} holds
since F(p) N Hy (£(p)) # 0 implies that there exists u € F(p) such that

{u, VV(p)) = (u, (V(p) = v)&(p)) = (V(p) — v){u, £(p)) < 0.

Hence, all assumptions of the Theorem 3 are satisfied. Thus the multivalued map

~ { F(p) N Hy (VV(p)),if pe T\ {p*},
{0}, if p=p*

defined on 3, has a continuous and bounded selection g. The proof will be completed
by showing that diffeomorphic image §(-) of the selection g, which is defined by g(z) =
@w_l(m)(g(w_l(x))), fulﬁlls the assumptions of Theorems 2 and 1. Let Q = w(X). We will
show that the function V(z) = V(w™!(z)) satisfies the assumptions of Theorem 2. We
know that V() C [0,v). For all 2 € Q we have w™!(z) € £. Thus V(z) = V(v !(z)) €
[0,v). Moreover V(0) = V(w™1(0)) = V(p*) = 0. We also have

VV(2) = VV (0™ (2))  Do(w™(2)) = Ta(VV (0! (2))):
Using (iv) of Lemma 4 (with p = w™!(z)) we have

(VV(2),4(2)) = (Lo (VV (0 (@), ®u-1(a) (9w (2)))) =

= (VV(w™(2)), g(w™ (2))) = (VV(p), 9(p)) < 0.

Hence, j(z) € Hy (VV(x)) for all z € Q \ {0}. By Remark 1, §(z) € Tr, (x)(x) for all
x € @\ {0}. Therefore we have §(x) € Tg(x) for all z € @ \ {0}. Thus, by Theorem 1,
for any 20 € Q there exists a solution z : [0,00) — R"~1 of the equation 2'(t) = g(z(t))
with the initial condition z(0) = z° such that z(t) € @ for all ¢t > 0. Moreover, by
Theorem 2, we conclude that z(t) is convergent to 0. Then there exists a solution p(t) =
w™(z(t)) € ¥ of the equation p/(t) = g(p(t)) with the initial condition p(0) = w1 (x?),
where g(p) = Wy, (G(w(p))), and this p(t) is convergent to p*.

Moreover, by Theorem 2, we know that for any € > 0 there exist tg > 0 and § > 0 such
that all solutions of the equation x'(t) = g(=z(t)) satisfy a condition: if |z(to)| < § then
|z(t)| < e for all t > t¢. It is easy to check that |p(to) —p*| < |z(to)| and |p(t) —p*| < |z(¢)|
and this completes the proof. m

5. The sign-compatibility condition. A price mechanism g describes a classical price
adjustment process if it is compatible with the excess demand in the following sense. If
at some price system p the i-th coordinates of all u € E(p) are positive then g;(p) > 0. If
the i-th coordinates of all u € E(p) are negative then g;(p) < 0. If there exists u € E(p)
such that its i-th coordinate is zero then g;(p) = 0. Thus, g is specified by F' defined by

F(p) = Cl[E(p)] = ﬂ {u € R" : if v; # 0thenu,;v; > 0, if v; = Othenwu; = 0}.
vEE(p)
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We call such a price mechanism g sign-compatible with the excess demand. Observe that
for any nonempty convex set A the set C'T[A] is nonempty, closed and convex cone.

THEOREM 6. Let E be an excess demand multifunction of some pure exchange economy,
fulfilling (a0)—(a3), with only one equilibrium point p* € S,. Let

(7) C[E(p)] N Ho(p) = {0} if and only if 0 € E(p).
If for all p € Sy \ {p*} we have
(8) CB(p)] N Ho(p) N HY (£(p)) # 0,
where £(p) = (@) (p3)? (p3)* : .
p) = ( , e, ), then there exists a globally asymptotically stable

price mechanism p&;hichpzs sign—copﬁlpatible with the excess demand E.
Proof. According to Theorem 5, it is sufficient to show that the multivalued map p +—
CT[E(p)]NHo(p) is lower semicontinuous on S, with nonempty, closed and convex values.

The set CT[E(p)] N Ho(p) is a closed, convex cone for all p € S, (as an intersection
of two closed, convex cones in R™). This set is nonempty since 0 € CT[E(p)] N Hy(p) for
allpe S,. Fixp’e S,.

Let y° € CT[E(p®)] N Ho(p°). Take any sequence (p*)52, C S which is convergent to
p® and a sequence (y*)%, such that y* = (Z—gy?, Z—gyg, cey z—%yg). It is easy to check that
y* € Ho(p"). Moreover, y* € CT1[E(p°)] since sign (S—Zy?) =signy) foralli=1,...,n.

We will show now that for every p°® € R™ there exilsts a neighbourhood V such that for
all p € V we have CT[E(p")] C CT[E(p)]. If 0 € E(p°) then CT[E(p°)] = {0} C CT[E(p)].
Assume that 0 ¢ E(p°). An easy verification shows that for any nonempty, convex sets
A, B we have

(a) AC B= C'[B] CClA],

(b) there exists an open and convex set U such that A C U and CT[A] = CT[U].
Let U denote the open and convex set such that E(p°) c U and CT[E(p°)] = CT[U].
Since E is upper semicontinuous, there exists a neighbourhood V of p° such that for all
p € V we have E(p) C U. Applying (a) we have C'[U] C CT[E(p)] and we can conclude
that CT[E(p°)] € CT[E(p)]-

Then there exists K > 0 such that for all k > K we have CT[E(p®)] C CT[E(p*))].

Hence y* € CT[E(p*)] for all k > K. Let us check that the sequence (y*)s°

ne is convergent
to 0. Indeed,
o\ 2
y.
(p) — pk)? (—k)
- 3 3 pZ

n 2
k_ 0] _ p_?_ 0\2 __
=0l = D (5 (¥3)* =
. max; y! 2 k 0 ‘yo‘ k—oo
< O _pky2 [ —ZL ) < |pF —p?|——— =30.
< E (P? —pf) (minipi;) <|p"—p |minipf

n

(3

Hence we conclude that the map p +— CT[E(p)] N Hy(p) is lower semicontinuous. =

REMARK 2. The condition (7) is a necessary condition of the existence of globally asymp-
totically stable price mechanism which is sign-compatible with the excess demand.
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6. The angle-compatibility condition. When the price mechanism is sign-compat-
ible with the excess demand, we know that a price change vector and all excess demand
vectors from E(p) have to be in the same orthant of R™. In special cases, it permits the
situation when these directions are relatively divergent (the angle between these vectors
could be nearly 7). This motivates considering a price mechanism g where g(p) forms
with all excess demand vectors from F(p) an acute angle and not necessarily g(p) has to
have the same signs as all excess demands from E(p) (see [Ar]). Let a € [0, 5]. We say
that a price mechanism g is a-compatible with the excess demand E if g(p) forms with
all vectors u € E(p) an angle less than or equal to a. Thus, g is specified by F' defined by

F(p) = C*[E(p)] with C*[4] = ] C*(y),
yeA
where C*(y) = {u € R" : (u,y) > |u|ly|cosa} for y € R™\ {0} and C*(0) = {0}.

Below are some properties of C*[A] which are presented without proof.

LEMMA 7. Let o, 3 € [0, 5] and A, B be nonempty, closed and convex sets. Then

(i) ifue C(y) and v € CP(y) and a+ B < I then u € C*TA(v);
(i) C*[A] is nonempty, closed and convex cone;
(i4i) if « < 3 then C*[A] C CP[A];
(i) if A C B then C*[B] C C[A];
(v) v e C*A] if and only if A C C*(v);
(vi) let A be compact and B(A) = inf{8 € [0,Z] : CP[A] # {0}}, if O ¢ A then
CPM[A] = {\z: XA > 0} for some z € A.

THEOREM 8. Let E be an excess demand multifunction of some pure exchange economy,
fulfilling (a0) (a3), with only one equilibrium point p* € S,. Let

(9) a= sup inf{B>0:CE(p)] #{0}} < .
peS\{p*} 2
If for a € (@, %] and for all p € S; \ {p*} we have
(10) C[E(p)] 0 Ho(p) N Hy (&(p)) # 0,
_ (@D)? 3)? (r3)* - .
where £(p) ( o Ty ), then there exists a globally asymptotically stable

price mechanism which is a-compatible with the ercess demand E.

Proof. According to Theorem 5, it is sufficient to show that the multivalued map p +—
C*[E(p)|NHy(p) is lower semicontinuous on Sy, with nonempty, closed and convex values.
The set C*[E(p)] N Ho(p) is a closed, convex cone for all p € S| (as an intersection of
two closed, convex cones in R™). This set is nonempty since 0 € C*[E(p)] N Hy(p) for all
p € Sy.

Fix p° € S, \ {p*} and v° € C*[E(p")]. Hence, by (v) of Lemma 7, E(p°) C C%(v°).
Let B(E(p°)) = inf{B > 0 : CP[E(p")] # {0}}. Let z denote the nonzero vector from
E(p°) such that {\z : A > 0} = CAEED[E(P®)]. Then E(p°) c CPEP)(z). Let
us take any sequence (p¥)72, C Sy \ {p*} which is convergent to p°. Since E is upper
semicontinuous then there exists K1 > 0 such that for all k > K, we have E(p*) Cc E(p°)+
r,B(0,1) = Fy, where 73 \, 0 for k — oo. Since 0 ¢ E(p), for any § € (0, — B(E(p)))
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there exists K5 > 0 such that for all k¥ > K5 we have F}, C C’G(E(po))Jre(z) and hence
(11) 2 € COEWNH R c CoF) c CE@RD)).

Let K = max{Ki, K;}. Observe that the segment [v°, 2] has a nonempty intersection
with C¥[F}] for all k > K. Let

ty = sup{t € [0,1] : to° + (1 — t)z € C*[F}]}.

Let v% = 300 + (1 — t)2 € C%[F}] C CY[E(p°)]. The sequence (t5)72, is bounded and
increasing. Assume that limy o tx = ' < 1. Let ¢ € (#,1) and v" = t"v° + (1 — ¢")z.
Then v ¢ C[F}] for all k > K. This means that for all k& > K there exists y* € F
such that y* ¢ C%(v"). The subsequence (y*m)%°_; is convergent to some y € FE(p°)
(since the map E has compact values). Hence, (y*= v") < |y¥m|[v"|cosa, and then
{(y,v") < |y|[v"| cos a. On the other hand v’ € C*[E(p®)], so for all y € E(p°) we have
y € C*(v"). Hence, (y,v") > |y||v"”| cos a. Then we conclude that the angle between the
vectors y and v” is . But this contradicts the fact that the segment [0, 2] C C%(y)

because z belongs to the interior of C®(y) and v° € C%(y). Thus the sequence (v¥)$°,

converges to v. Hence, the map p — C*[E(p)] is lower semicontinuous. Moreover, the map
p +— Hy(p) is continuous in Wijsman topology on S and it has nonempty, closed, convex
values. We will verify that Hy(p) Nint C*[E(p)] # 0. According to (vi) of Lemma 7, for
every p € S, there exists a nonzero vector z € C*[E(p)] which belongs to E(p). Hence
E(p) € C%(2). For § € (0,a—a) let us take any u € C?(z). Then for all y € F(p) we have
u € C(y) (by (i) of Lemma 7). Hence C?(2) C Ct0(y) C C(y) for all y € E(p).
Moreover, since 6 > 0, there exists v > 0 such that z +vB(0,1) C C?(z) C C*[E(p)].
Thus z € E(p) Nint C*[E(p)]. By Walras’ Law E(p) C Hy(p) for all p € S, therefore we
have Hy(p) N int C*[E(p)] # 0. By Proposition [2.54, HuPa] we conclude that the map
p+— C*[E(p)] N Hy(p) is lower semicontinuous. m

REMARK 3. The condition (9) is a necessary condition of the existence of globally asymp-
totically stable price mechanism which is angle-compatible with the excess demand. &
is the minimal angle such that the sets C*[E(p)] contain nonzero vectors at all price
systems different from equilibrium point.

REMARK 4. Theorem 8 is true for a > a, = S(E(p*)) if we have 3(E(p)) < @, for all
peS\{r}

7. Examples

7.1. Scarf’s example. This example concerns the pure exchange model with the single-
valued excess demand, i.e. F(p) = {e(p)} (for details see [Sc]).

If we take the price mechanism g = e, the price trajectories are closed curves on the
positive part of the unit sphere S . The sets C'T[e(p)] are presented in the plane Hy(p*)
in the following way (Fig. 1): if some coordinate of all vectors from considered set is
nonnegative then we have plus. If some coordinate of all vectors from the considered
set is nonpositive then we have minus. On the lines AC’, B’C, BA’ one coordinate of
all vectors from the corresponding set is zero. The equilibrium point p* = %(1, 1,1) is
denoted by O.
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Fig. 1. Scarf’s example: price trajectories and the sets C'[e(p)]

The boundary condition does not hold (see Fig. 1). In the set ABO (along the curve
AB) the third coordinate should be positive. In the set ACO (along the curve AC) the
second coordinate should be positive. In the set BCO (along the curve BC) the first
coordinate should be positive.

We cannot use Theorem 6 since the condition (8) does not hold. At p € BA” U AC’
U CB’ we have C'[e(p)] = {Xe(p) : A > 0} and e(p) € Ho(4(p))-

Let s*(p) be the metric projection of the excess demand vector e(p) on the intersection
of the k-th wall of the cone C'[e(p)] and the set Hy(p):

s*(p) = (e(p); C'[e(p)] N Ho(p) N{u € R™ : up = 0}) € C'[e(p)] N Ho(p).

It is easy to show that s!(p) € H (£(p)) at p € AA’O U BC'O, s2(p) € Hy (£(p)) at p €
BB'O U A’'CO, s*(p) € Hy (£(p)) at p € AB'O U CC’O. The map g : S — R™ defined

b
Y (o) — {S@)s@)+ (1= 00))elp). if p€ 5.\ (BA'UAC UCB),
IPI= elp), if pe BA’UAC’ UCB,
where s'(p), if pe AA'OUBCO,
s(p) = ¢ s%(p), if p€ BB'OUA’'CO,
s3(p), if p€ AB'OUCC'O,
and
6v2(p2—p1)*[(p2—p1)° = (2ps—pa—p1)*]* iftpe S *
(5(])) = (3+\/§(p1+P2+P3))[(P2*IJ1)2+%(21)3*172*171)2]% P * \ {p }’

is a continuously differentiable selection of C'[e(p)] N Ho(p) and g(p) € Hy (£(p)) for
p#D"

Moreover, the function V', defined in the proof of Theorem 5, is a strictly decreasing
function along any solution of the differential equation p’(t) = g(p(¢)). Analysis similar
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to that in the proof of Theorem 5 shows that Visa global Lyapunov function for the
differential equation z’(t) = g(z(t)). Thus, by Barbashin—Krasovski Theorem ([Kr|, |G]]),
we conclude that there exists a globally asymptotically stable price mechanism in Scarf’s
example which is sign-compatible with the excess demand.

In the case of angle-compatibility rule we can obtain the existence of globally asymp-
totically stable price mechanism which is a-compatible with the excess demand for all
a > 0 by Theorem 8 using only arguments of geometric nature. It is sufficient to notice
that e(p) € Ho(&(p)) for all p € S.

7.2. Ezample with multivalued excess demand (1). The second example concerns the
pure exchange model with a multivalued excess demand which is constructed from the
following utility functions and initial resources: u'(z1, z2, x3) = min{z; + x2, 21 + 23},
wl = (1,1,1), u?(x1, 22, 23) = x%xé, w? = (1,2,1), u*(z1, 22, 23) = x%xé, w3 = (1,1,2).
The excess demand is defined by E(p) = {e(p,t) : t € [0, 1]} where

~forpel={peSy: L2+ >1} we have
) ) 1 71 7
e(p,t) = (_p2 p3 4 ZP1 D3 b1 | P2 )7

2p1  2p1 '2pa p2 2'2ps  ps 2
forpell ={pe S, : L2+ =1} we have

3 3 ps 3 P2 >
e(pt)= (= —2t, =2 42t -3, 22 42t -3},
P,1) <2 2 p2 2p3

—forpelll = {p€ Sy : L2+ L <1} we have e(p,t) =

3 3 1 51 5
(_@ P3 o, m P3 p1 P P2 )

2p1  2p1 '2ps patps  p2 2'2ps patps ps 2
This excess demand is single-valued at such price systems which belong to I or III. These

sets are presented in the first diagram (Fig. 2). The excess demand is multivalued at such
price systems which belong to II. This set is denoted by the line DI.

In the next diagram (Fig. 2) there are presented the sets C'T[E(p)] at price systems
from the sets I and III. It is not difficult to observe that the boundary condition is
satisfied. Along the curve AB the third coordinate is positive. Along the curve AC the
second coordinate is positive. Along the curve BC the first coordinate is positive. The
competitive equilibrium p* = %(2, 1,1) (for Z—; =1, Z_; =2,t= %) is denoted by O.

The sets C'[E(p)], when the excess demand is multivalued, are presented in the table.

| B 10353 [E.3]G2] @00 ]
u1, (u € C'[E(p)]) 0 0 0 0 0
ug, (u € CT[E(p))]) - - 0 0 +
us, (u € CT[E(p)]) + 0 0 - -
1I HI GH FG EF DE

Let us observe that CT[E(p)] = {0} at p € FG. It means that the excess demand
for all goods is both negative and positive at given price system from the line FG. At
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every price system from the segments EF and GH the intersection of C'[E(p)] and Hy(p)
consists of only zero as well. In this case the excess demand (from CT[E(p)]) is negative
for one good. Thus we conclude that condition (7) is not satisfied and there does not
exist a globally asymptotically stable price mechanism which is sign-compatible with the
excess demand. The necessary condition (7) is satisfied if at all price systems, different
from competitive equilibrium, the excess demand (from CT[E(p)]) for at least one good
is positive and for at least one good is negative.

1.25 c 1.25
1 1
0.75 0.75
0.5 0.5
D
0.25 0.25
0 0
B
A
.05 A l -0.5
-0.5 0 0.5 1 -0.5 0 0.5 1

Fig. 2. The sets I, I1, T1T and CT[E(p))

In the case of angle-compatibility rule @, is equal to % and the condition (10) is
satisfied by the excess demand vectors in I U IIT and by the vector e(p,0) + e(p,1) €
CZ[E(p)] in II. Thus, by Theorem 8, there exists a globally asymptotically stable price

compatible with the multivalued excess demand E.

mechanism which is Z-
7.3. Ezample with multivaled excess demand (2). The third example concerns the pure
exchange model with a multivalued excess demand which is constructed from the fol-
lowing utility functions and initial resources: u!(zy1, e, 73) = 22 + w3, w' = (2,0,0),
u?(x1, 9, 13) = x%x?% w? = (2,2,0), ud(x1, 22, 23) = xl%xi,%, w3 = (0,2,2). The excess
demand is defined by E(p) = {e(p,t) : t € [0,25-]} where

—forpel={peS;: B <1} we have

e(pt)=<2@+@—3@—3372+@—2)
’ P11 P ’;02 7293 ps3 ’

—forpell={pe€ S, : L =1} we have

e(p,t) = (31‘23,152,31‘2151),
b1 D2
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—forpelll ={pe S} : 2> 1} we have

e(p,t)<2@+]£3,2&+@3,&+@2>.
b1 D1 D2 b2 b3 Dp3

-0.75 -0.25 0.25 0.75 -0.75 -0.25 0.25 0.75

0.75

0.5

0.25

-0.25

-0.5

A
-0.75 -0.25 0.25 0.75 -0.75 -0.25 0.25 0.75

Fig. 3. The sets I, T1, TIT and CT[E(p)]

This excess demand is single-valued at such price systems which belong to T or III.
These sets are presented in the first diagram (Fig. 3). The excess demand is multivalued
at such price systems which belong to II. This set is denoted by the line AE.

In the next diagram (Fig. 3) there are presented the sets C'T[E(p)] at price systems
from the sets I and III. It is not difficult to observe that the boundary condition is
satisfied. The competitive equilibrium p* = \%(1,1,1) (for Z—z =1, g—f =1,t=2)1is
denoted by O. The sets C'[E(p)], when the excess demand is multivalued, are presented
in the table.

| v 10,3 [[51)[1]@00]
uy, (u € CT[E(p)]) + + 0 -
us, (e CTE@) | - | - 0] 0
us, (u € CT[E(p)]) - 0 0
11 DE OD O AO

The necessary condition (7) is satisfied. CT[E(p)] = {0} only at competitive equilib-
rium. The intersection of C'[E(p)] and Hy(p) consists of nonzero vectors at all p different
from p*. The condition (8) is satisfied by the excess demand vectors in T U TIT U DE
and by any vector from the set C'[E(p)] in AO U OD. Thus, by Theorem 6, there ex-
ists a globally asymptotically stable price mechanism which is sign-compatible with the
multivalued excess demand E.
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In the case of angle-compatibility rule @ is equal to 0.2857 and the condition (10) is
satisfied by the excess demand vectors in I U IIT and by the vector e(p,0) + e(p, 22—;) €
C®[E(p)] for p € II. Thus, by Theorem 8, there exists a globally asymptotically stable
price mechanism which is a-compatible with the multivalued excess demand FE for o >
0.2857.
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