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Abstract. In this article we give descriptions of some economic models that are based on

Arrow-Hahn economic model. Finally we consider a model with two major assumptions: first,

there is discontinuous excess demand function and, second, if price goes to zero, then it is possible

that excess demand may approach infinity. For this last new economic model the existence of

quasi-equilibrium is proved.

1. Introduction. One of the research directions of microeconomics is finding such con-

ditions and assumptions that there exists an equilibrium in a given economic model.

The basic assumption in equilibrium economic models is the continuity of the supply

function, demand function, excess demand function or multi function involved (see, for

example, [17], [2], [9], [3], or textbooks on microeconomics, for example, [16], [13], [15]).

We consider situations with weakened conditions of continuity.

First of all in section 2 we give the description of classical Arrow-Hahn model with con-

tinuous excess demand function ([3], chapter 1). In section 3 we consider the Arrow-Hahn

model with weakened condition of continuity: if the price is 0 then the value of the excess

demand function can tend to +∞ (see [3] too). We will weaken the condition of continuity

even more, by considering the situation with discontinuous excess demand function.
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Economic literature analyses the situations with continuous excess demand function.

The classical mathematical theory used in models of equilibrium economics is theory of

continuity (for example, Brouwer or Kakutani theorems for continuous functions). These

mathematical tools are convenient to use and therefore they are considered most often

since there are no better tools. We will apply w-discontinuous functions ([4], [5], [6]) to

the study of economics. The excess demand function is continuous in a stable economic

situation but it may not be continuous if price changes fast (i.e., very high increase of

inflation or changes in the political system); also the economic agents can suddenly change

their decision regarding to a particular good because of marketing or advertising. In

principle the considered cases are exceptional situations, extreme cases, but they exist and

influence the economic life. We note that demand and supply functions are discontinuous

for piece-goods like airplanes, hydroelectric stations, cars and even tables, shoes, shirts

and other goods being sold by unit or piece and assuming that nobody buys for example,

1/2 of the car. This is because demand or supply of such goods is measured in integers.

Therefore in section 4 we introduce the w-discontinuous functions and their properties,

in section 5 we give a short review of the Arrow-Hahn model with w-discontinuous excess

demand function (see [6]). Finally we consider the new model with basic assumptions of

sections 5 and 3 together. We use another proof technique based on results of section

5 and we prove a quasi-equilibrium theorem. We conclude that this quasi-equilibrium is

bounded.

2. The Arrow-Hahn economic model. We give the description of an economic model

considered by Arrow and Hahn in [3].

Let there be n (n ∈ N) different goods (commodities) on the market and a finite

number of economic agents: households and firms.

Let xhi be the quantity of good i which is needed to the household h. The summation

over all households will be indicated by xi =
∑

h xhi – the total demand of good i, i =

1, . . . , n.

The quantity of good i that is supplied by the firm f will be denoted by yfi. The

summation over all firms will be indicated by yi =
∑

f yfi – the supply of good i, i =

1, . . . , n.

The initially available amount (or resources) of good i in all households will be denoted

by xi. Note that xi must be non-negative.

Market equilibrium describes the economic situation that the total demand of each

good in the economy is satisfied by its total supply. This fact is obviously expressed by

saying that the difference between the total demand of each good and its total supply is

less than or equal to zero. The total supply of good i is understood as the sum of the

supply of the good i and the quantity of i which is already available, i.e., the total supply

of the good i equals yi + xi. The excess demand of good i is then defined as xi − yi − xi,

i = 1, . . . , n.

Further on we frequently make use of the natural order in Rn introduced by the cone

Rn
+ = {x = (x1, . . . , xn) ∈ Rn|xi ≥ 0, i = 1, . . . , n},

i.e., for two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) we write x ≤ y iff xi ≤ yi for all
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i = 1, . . . , n, we write x < y iff x ≤ y and xi0 < yi0 for at least one index i0. The norm

we will use in the space Rn is defined as

‖x‖ =
n
∑

i=1

|xi|, x = (x1, . . . , xn) ∈ Rn.

This norm is equivalent to the Euclidean norm which is introduced by means of the scalar

product 〈x, y〉 =
∑n

i=1 xi yi. Note that in economic publications the scalar product of two

vectors x, y ∈ Rn is usually written as x y.

For the standard economic model the following four assumptions have to be met.

Assumption F. Let p = (p1, . . . , pn) be an n-dimensional price vector with the prices pi

for one unit of the good i, i = 1, 2, . . . , n. For any p let the excess demand for i be char-

acterized by a unique number zi(p) and so the unique vector z(p) = (z1(p), . . . , zn(p))—

the excess demand function with excess demand functions for i as components (i =

1, 2, . . . , n)—is well defined.

Assumption H. z(p) = z(λp), ∀p > 0 and λ > 0.

Assumption H asserts that z is a homogeneous vector-function of degree zero. Eco-

nomically this means that the value of the excess demand function does not depend on

the price system if the latter is changed for all the goods simultaneously by the same

portion.

From Assumption H it follows that prices can be normalized (see [3], p. 20 or [8],

p. 10). If for some price p one has z(p) = 0 then z(λp) = 0 for all prices of the ray

{λp | λ > 0}. Therefore, further on we consider only prices from the (n− 1)-dimensional

simplex of Rn

Sn =

{

p = (p1, p2, . . . , pn) | pi ≥ 0 and
n
∑

i=1

pi = 1

}

.

We rule out the situations when all the prices are zero or some of them are negative.

Note that Sn is a compact and convex set in the space Rn.

Assumption W or Walras’ Law. p z(p) = 0, ∀p ∈ Sn.

Walras’ Law can be regarded as an attempt to have a model sufficiently truly reflecting

rationally motivated activities of economic agents. According to Walras’ Law all the firms

and all the households both spend their financial resources completely ([8]).

Assumption C. The excess demand function z is continuous on its domain of defini-

tion Sn.

It means that a small change of a price system will imply only a small change in the

excess demand. As a consequence from continuity of z, the standard model can be used

only for the description of economies with continuous excess demand functions.

Definition 2.1. A price p∗ ∈ Sn is called an equilibrium (price) if z(p∗) ≤ 0.

If p∗ is an equilibrium price then
∑n

i=1 zi(p
∗) ≤ 0.

For the standard model of an economy with a finite number of goods and agents such

prices always exist as is proved in the following theorem.
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Theorem 2.1 ([3]). If an economy with a finite number of goods and agents satisfies

Assumptions F, H, W and C, then there exists an equilibrium.

3. The Arrow-Hahn economic model with weakened continuity condition. In

this section we continue description of another Arrow-Hahn model with weakened conti-

nuity assumption ([3], p. 29–33).

Assumption C implies that the demand for free goods is bounded. “We shall want

to weaken this restriction for several reasons: it is not unreasonable that demand for at

least some goods might approach infinity as the price approaches zero; the non-satiation

hypothesis that underlies Walras’ law it at least partly inconsistent with satiation in

any single good; the assumption that all goods are gross substitutes, . . . , implies that

demands may approach infinity as prices go to zero.” (We cite [3], p. 29.)

Therefore we will assume that the sum of excess demands approaches infinity whenever

excess demand is undefined. First we introduce another assumption.

Assumption B. There exists a positive number B such that for all p ∈ Sn :

zi(p) > −B for all i = 1, 2, . . . , n, i.e., z(p) is bounded from below.

Now we introduce new continuity assumption.

Assumption C’. The excess demand function z is defined for every p ∈ Sn such that

pi > 0, i = 1, 2, . . . , n, and possibly for other p and is continuous whenever defined. If z

is not defined for p0, then

lim
p→p0

n
∑

i=1

zi(p) = +∞.

It is possible to show that the previous Theorem 2.1 can be modified so that an

equilibrium exist.

Theorem 3.1 ([3]). If an economy with a finite number of goods and agents satisfies

Assumptions F, H, W, B and C’ then there exists an equilibrium.

We remark that it follows from the proof of Theorem 3.1 that the equilibrium p∗ is a

price vector from Sn at which z is defined.

4. w-discontinuous mappings and their properties. A class of discontinuous map-

pings is defined as follows. Let (X, d) and (Y, ̺) be two metric spaces and w a positive

number.

Definition 4.1. A mapping f : X → Y is said to be w-discontinuous at the point x0 ∈ X

if for every ε > 0 there exists δ such that whenever x ∈ X and d(x0, x) < δ follows that

̺(f(x0), f(x)) < ε + w.

The constant w may not be the best possible (smallest) one. Very often, especially in

economic applications, there is known only a rough upper estimation for the “jump”.

A mapping f is called w-discontinuous in X if it is w-discontinuous at all points of X.

The notion of w-discontinuous maps is not new. It is already found in [14] as the

concept of oscillation or as continuity defect in [7] . The notion of w-discontinuity was

introduced by the first author in [4].
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Example 4.1. The usual Dirichlet function on R and also the generalized Dirichlet

function f : Rn → {0, 1}, defined for all x = (x1, x2, . . . , xn) ∈ Rn by

f(x) =

{

1, if all components xi ∈ Q,

0, if there exists i0 such that xi0 ∈ R \ Q,

are 1-discontinuous (and for any w ≥ 1 also w-discontinuous).

If X, Y , V are real normed vector spaces the following properties of w-discontinuous

mappings are established (simmilar as for continuous mappings). For proofs and other

comments see [6].

Proposition 4.1. Let be fi : X → Y, αi ∈ R, i = 1, . . . , k and g = α1f1 + · · · + αkfk.

Suppose wi > 0 and that fi is wi-discontinuous on the set X for each i = 1, . . . , k. Then

g = α1f1 + · · · + αkfk is a |α1|w1 + · · · + |αk|wk-discontinuous mapping.

From Definition 4.1 for w = 0 immediately follows that the 0-discontinuous mappings

are exactly the continuous ones.

Corollary 4.1. Suppose that f, g : X → Y , f is w′-discontinuous and g is w′′-dis-
continuous. Then f + g and f − g are w′ + w′′-discontinuous mappings. In particular,

if one of the mappings (f or g) is continuous, then f ± g are w′-discontinuous (or w′′-
discontinuous).

Corollary 4.2. If f : X → Y is w-discontinuous and c is a constant then c · f is a

|c|w-discontinuous mapping.

In order to consider the product of mappings we need the notion of the product in a

normed space.

Definition 4.2 ([12]). Let X, Y, Z be real normed vector spaces. A mapping

π: X × Y → Z is called a product if it satisfies the following conditions: for all a, b ∈
X, u, v ∈ Y and λ ∈ R one has

1. π((a + b, v)) = π((a, v)) + π((b, v))

2. π((a, u + v)) = π((a, u)) + π((a, v))

3. π((λa, u)) = λπ((a, u)) = π((a, λu))

4. ‖π((a, u))‖Z ≤ ‖a‖X‖u‖Y .

A simple example is given by X = Y = Rn, Z = R and π((x, y)) = 〈x, y〉, the scalar

product in Rn, i.e., 〈x, y〉 =
∑n

i=1 xi yi.

Let V, X, Y, Z be real normed vector spaces and let π: X × Y → Z be a product.

The product of the mappings f : domf ⊆ V → X and g: dom g ⊆ V → Y is understood

pointwise, i.e.,

(f · g)(v) = π(f(v), g(v)), ∀v ∈ domf ∩ dom g,

where domf, dom g ⊆ V .

Proposition 4.2. Suppose that f : domf → X is w′-discontinuous and g: dom g → Y is

w′′-discontinuous on domf ∩dom g. Then f · g is a (w′w′′ +w′‖g(x0)‖Y +w′′‖f(x0)‖X)-

discontinuous mapping at every point x0 ∈ domf ∩ dom g.
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Corollary 4.3. If f : V → X is w-discontinuous and g : V → Y is continuous then

f · g is a ‖g(x0)‖Y w-discontinuous mapping at every point x0 ∈ V .

For the division we reconcile with simplified situation, where (X, d) is again a metric

space.

Proposition 4.3. Let the function f : X → R be w-discontinuous at the point x0 and

f(x0) 6= 0. If there exists a neighbourhood U of x0 and a number α0 > 0 such that

|f(x)| ≥ α0 for all x ∈ U then the function 1
f

is w
α0|f(x0)| -discontinuous at x0.

As a special case we get

Corollary 4.4. If f : X → [1, +∞[ is w-discontinuous then 1
f

is a w
f(x0)

-discontinuous

mapping for every point x0 ∈ X

If the domain of definition for a continuous mapping is compact, then its range is

also compact and, in particular, bounded. The boundedness of the most functions used

in economic models seems to be indispensable in studying such models. The boundedness

of the range is guaranteed for w-discontinuous mappings as well, however, compactness

may not hold.

Example 4.2. Define f : [0; 1] → [0; 1] as

f(x) =

{

1, if x = 0,

x, if x ∈ (0, 1].

The function f is 1-discontinuous and its range (0, 1] is bounded, but not compact.

Theorem 4.1. Suppose that A ⊂ X is compact and let f : A → X be w-discontinuous.

Then f(A) is bounded.

The following essential result is proved by O. Zaytsev in [18] and can be considered as

a generalization of the Bohl-Brouwer-Schauder fixed point theorem for w-discontinuous

mappings.

Theorem 4.2. Let K be a nonempty, compact and convex subset in a normed vector

space X. For every w-discontinuous mapping f : K → K (w > 0) there exists a point

x∗ ∈ K such that ‖ x∗ − f(x∗) ‖≤ w.

5. Economic models with w-discontinuous excess demand functions. In this

section we shortly analyse a model of an economy with w-discontinuous excess demand

functions. For wider discussion see [6].

For the economies considered we keep the first two assumptions from the Arrow-Hahn

model in Section 2 and change the last two as follows.

Assumption DC. The excess demand function z is w-discontinuous on its domain of

definition Sn.

It is quite natural that for every price vector p ∈ Sn there exists at least one good i

with the price pi > 0 and such that the demand for it is satisfied, i.e., zi(p) ≤ 0. Therefore

for each p ∈ Sn the inequality γp =
∑

zi(p)≤0 pi > 0 is satisfied. Our next assumption

requires the existence of a uniform lower bound for the sums
∑

zi(p)≤0 pi for all p ∈ Sn.



ARROW-HAHN ECONOMIC MODELS 53

Assumption Γ. γ = infp∈Sn
γp > 0.

This Assumption Γ is independent of Walras’ Law (see [6]). This means it is possible

to find four different situations that

1) Walras’ Law holds but not Γ,

2) Γ holds but not Walras’ Law (see Example 7.1),

3) Γ and Walras’ Law both hold (see Example 7.2),

4) neither Walras’ Law nor Γ holds.

We replace Assumption W or Walras’ Law with Assumption Γ.

It would be hard to determine why an equilibrium exists in our model, but it will be

possible if we can estimate the unsatisfied aggregate demand. This leads to the concept

of quasi- or k-equilibrium.

Definition 5.1. Let k > 0. A price vector p∗ ∈ Sn is called a k-equilibrium if it satisfies

the condition
∑

zi(p∗)>0

zi(p
∗) ≤ k.

We remark that theoretically for every bounded excess-demand function there exists

a constant k such that
∑

zi(p∗)>0 zi(p
∗) ≤ k for every p. But the purpose is to clarify how

big or small this constant is for some p∗ in a given economy.

The constant k ∈ R+ as a numerical value of the maximally possible unsatisfied

demand for a given price p∗ ∈ Sn characterizes to what state the economy differs from

the market equilibrium.

We can prove now the following

Theorem 5.1. Let for some economy with a finite number n of goods the Assumptions

F, H, DC and Γ be fulfilled and put w+ =
−(n+1)+

√
(n+1)2+8nγ

2n
. If w < w+ then there

exists a k-equilibrium for each k ≥ nw2+(n+1)w
2γ−nw2−(n+1)w .

The number w+ is positive for each n and fixed γ > 0. If one takes w = 0 then k ≥ 0

and with k = 0 there is obtained the classical equilibrium in means of Definition 2.1. We

observe that in this case it is not necessary to use the Walras’ Law for establishing an

equilibrium. If one takes w > 0 then we obtain the k-equilibrium with k > 0.

Note that in the Arrow-Hahn models from Sections 2 and 3 it is impossible to carry

out any quantitative analysis. Theorem 5.1 give a chance to analyse the behaviour of an

economy for different numerical values of the parameters n, w, γ. If for fixed n and γ the

value w is sufficiently close to w+ then k is very large.

6. Economic models with weakened condition of w-discontinuous excess de-

mand functions. Our purpose in this section is to connect Arrow-Hahn model from

Section 3 with model from Section 5. The description of model takes Arrow-Hahn model

from Section 2 as a basis. We keep Assumptions F and H from Arrow-Hahn model and

make changes in other assumptions.
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Assumption DC’. The excess-demand function z is defined for every p ∈ Sn such that

pi > 0, i = 1, 2, . . . , n, and possibly for other p and is w-discontinuous whenever defined.

If z is not defined for p0 then

lim
p→p0

zi(p) =

{

+∞, if p0
i = 0

∈ R, if p0
i 6= 0

, i = 1, 2, . . . , n.

Since z is not defined in the whole set Sn then a small correction is necessary in

Assumptions B and Γ.

Let S′
n = {p ∈ Sn|z(p) is defined}.

Assumption B’. There exists a positive finite number B such that for all p ∈ S′
n :

zi(p) > −B for all i = 1, 2, . . . , n, i.e., z(p) is bounded from below in the set S′
n.

Assumption Γ’. γ = infp∈S′

n
γp > 0 where for every p ∈ S′

n : γp =
∑

zi(p)≤0 pi.

For the norm in the space Rn we use the previous norm

‖x‖ =

n
∑

i=1

|xi|, x = (x1, x2, . . . , xn) ∈ Rn.

By these assumptions we can prove existence of quasi-equilibrium in the sense of

Definition 5.1. We divide the proof in two parts. At first we prove the lemma of technical

nature for which all assumptions are not needed.

We define a mapping M : Sn → [0; 1], where M(p) = (m1(p), m2(p), . . . , mn(p)) and

if z is defined at p, then

mi(p) =







0, zi(p) < 0,

zi(p), 0 < zi(p) < 1,

1, zi(p) ≥ 1,

if z is not defined at p, then

(6.1) mi(p) =







0, limpk→p zi(p
k) ≤ 0,

limpk→p zi(p
k), 0 < limpk→p zi(p

k) < 1,

1, limpk→p zi(p
k) ≥ 1,

and the sequence (pk)k∈N consists of points from neighbourhood of p where z(p) is defined,

i = 1, 2, . . . , n, e = (1, . . . , 1) denotes the vector of Rn with all components equal to 1.

For every p ∈ Sn we define

(6.2) T (p) =
p + M(p)

(p + M(p))e
.

Lemma 6.1. Let for some economy with a finite number n of goods Assumptions F, H,

B’ and DC’ be fulfilled. Then there exists a (nw2 + w(n + 1))-discontinuous mapping

T : Sn → Sn.

Proof. We will show that the mapping (6.2) is as required. Note that
∑n

i=1 mi(p) =
∑

mi(p)≥0 mi(p) ≥ 0. Therefore

0 < (p + M(p))e =
n
∑

i=1

(pi + mi(p)) = 1 +
n
∑

i=1

mi(p).
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Then 0 ≤ ti(p) = pi+mi(p)

1+
∑

n

i=1
mi(p)

≤ 1 for every i = 1, 2, . . . , n and

n
∑

i=1

ti(p) =

∑n
i=1(pi + mi(p))

1 +
∑n

i=1 mi(p)
=

1 +
∑n

i=1 mi(p)

1 +
∑n

i=1 mi(p)
= 1.

Therefore T (p) : Sn → Sn.

The mapping M(p) is w-discontinuous for every p ∈ Sn where z(p) is defined. If z is

not defined for vector p0 then by definition of limit there exists a neighbourhood U(p0)

of point p0 where z(p) is defined. The coordinates of z(p) are less than 1 or greater or

equal to 1 for every p ∈ U(p0). By Assumption DC’: if pi = 0 then limpk→p0 zi(p
k) = +∞

where the sequence (pk)k∈N consists of points from a neighbourhood of p0 where z is

defined. By Assumption B’ the mapping z is bounded from below. Since the mapping

mi(p) is w-discontinuous in U(p0) then by definition of mi at the point p0 (6.1) follows

that the mapping mi(p) is w-discontinuous at p0 too. Therefore the mapping M is also

w-discontinuous in the whole set Sn.

The particular maps which the map T consists of, possess the following properties: the

identity map I on Sn is continuous, M(p) is w-discontinuous then by Corollary 4.1 the

map I+M(p) = p+M(p) is w-discontinuous. Then by Corollary 4.3 the map (p+M(p))e is

w||e||-discontinuous. Since ||e|| = n then (p+M(p))e is nw-discontinuous. Since for every

p ∈ Sn (p + M(p))e ∈ [1, +∞[ then the map 1
(p+M(p))e is nw

1+
∑

mi(p)>0
mi(p)

-discontinuous

by Corollary 4.4. Finally the mapping T (p) = (p + M(p)) · 1
(p+M(p))e by Proposition 4.2

is w∗(p)-discontinuous where

w∗(p) =
nw2

1 +
∑

mi(p)>0 mi(p)
+

w

1 +
∑

mi(p)>0 mi(p)
+

nw||p + M(p)||
1 +

∑

mi(p)>0 mi(p)
=

=
nw2 + w

1 +
∑

mi(p)>0 mi(p)
+ nw ≤ nw2 + (n + 1)w.

Therefore the map T is also nw2 + (n + 1)w-discontinuous on the set Sn.

Theorem 6.1. Let for some economy with a finite number n of goods the Assumptions

F, H, B’, DC’ and Γ’ be fulfilled. Let

w+ =
−(n + 1) +

√

(n + 1)2 + 4 min{ n
n+1 , γ}

2n
.

If w < w+ then there exists a k-equilibrium for each

k ≥ min

{

n − 1,
nw2 + (n + 1)w

2γ − (nw2 + (n + 1)w)

}

.

Proof. By Lemma 6.1 there exists a mapping (6.2), T : Sn → Sn, that is nw2 +(n+1)w-

discontinuous in the set Sn. Since Sn is a convex and compact subset in the normed

vector space Rn we conclude by means of Theorem 4.2 that there exists a vector p∗ ∈ Sn

satisfying the inequality

||T (p∗) − p∗|| ≤ nw2 + (n + 1)w.
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We prove that this point is the one where k-equilibrium exists. Using the norm in Rn

this yields

||T (p∗) − p∗|| =

∥

∥

∥

∥

p∗ + M(p∗)

(p∗ + M(p∗))e
− p∗

∥

∥

∥

∥

=

∥

∥

∥

∥

p∗ + M(p∗) − p∗ − p∗
∑n

i=1 mi(p
∗)

1 +
∑n

i=1 mi(p∗)

∥

∥

∥

∥

(6.3)

=

∑n
i=1 |mi(p

∗) − p∗i
∑n

i=1 mi(p
∗)|

1 +
∑n

i=1 mi(p∗)
≤ nw2 + (n + 1)w.

First we ascertain that inequality (6.3) is not true for price vectors for which the

mapping z is not defined. For these vectors p∗ by Assumption DC’ at least one coordinate

of M(p∗) is 1 and the corresponding coordinate of the price vector is 0; we assume that

it is j-coordinate.

Note that 0 < 1 +
∑n

i=1 mi(p
∗) ≤ 1 + n. Then from (6.3) it follows that

1 ≤ 1 +

n
∑

i=1, i 6=j

∣

∣

∣
mi(p

∗) − p∗i

n
∑

i=1

mi(p
∗)
∣

∣

∣
≤ (nw2 + (n + 1)w)(1 + n),

it is true that 1 ≤ (1 + n)nw2 + (1 + n)2w. From the last inequality it follows that

w ≥
−(1 + n) +

√

(1 + n)2 + 4n
n+1

2n
= w1.

w < w1 from the condition of theorem.

If the mapping z is defined for p∗ and at least one coordinate of M is 1 then 1 ≤
∑n

i=1 mi(p
∗). On the other hand by Assumption Γ’ there exists at least one nonpositive

coordinate of z(p∗), i.e., ∃j ∈ 1, . . . , n : zj(p
∗) ≤ 0 and therefore mj(p

∗) = 0. From the

last equality it follows that
∑n

i=1 mi(p
∗) ≤ n − 1. Therefore it is possible to write the

inequality (6.3) in the following way

(6.4)

n
∑

i=1

∣

∣

∣
mi(p

∗) − p∗1

n
∑

i=1

mi(p
∗)
∣

∣

∣
≤ (nw2 + (n + 1)w)(1 + (n − 1)).

The left side of (6.4) is greater than

∑

zi(p∗)≤0

∣

∣

∣
mi(p

∗) − p∗i

n
∑

i=1

mi(p
∗)
∣

∣

∣
=

∑

zi(p∗)≤0

p∗i

n
∑

i=1

mi(p
∗) =

n
∑

i=1

mi(p
∗)

∑

zi(p∗)≤0

p∗i .

Since
∑n

i=1 mi(p
∗) ≥ 1 and satisfies Assumption Γ’ then

n
∑

i=1

mi(p
∗)

∑

zi(p∗)≤0

p∗i ≥
∑

zi(p∗)≤0

p∗i ≥ γ.

Therefore in place of inequality (6.4) we consider

γ ≤ n2w2 + n(n + 1)w.

From this last inequality it follows that

w ≥ −(n + 1) +
√

(1 + n)2 + 4γ

2n
= w2.

In order to avoid this situation we have assumed that w < w2 in the conditions of theorem.
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Now we consider the situation that all coordinates of z(p∗) are strictly less than 1.

Then the numerator of the left side of inequality (6.3) can be split into two sums

∑

zi(p∗)≤0

∣

∣

∣
0 − p∗i

n
∑

i=1

mi(p
∗)
∣

∣

∣
+

∑

0<zi(p∗)<1

∣

∣

∣
zi(p

∗) − p∗i

n
∑

i=1

mi(p
∗)
∣

∣

∣

=
n
∑

i=1

mi(p
∗)

∑

zi(p∗)≤0

p∗i +
∑

0<zi(p∗)<1

∣

∣

∣
zi(p

∗) − p∗i

n
∑

i=1

mi(p
∗)
∣

∣

∣
.

By using the triangle inequality we get the estimation

∑

0<zi(p∗)<1

∣

∣

∣
zi(p

∗) − p∗i

n
∑

i=1

mi(p
∗)
∣

∣

∣
≥
∣

∣

∣

∑

0<zi(p∗)<1

zi(p
∗) − p∗i

n
∑

i=1

mi(p
∗)
∣

∣

∣
.

By Assumption Γ’
n
∑

i=1

mi(p
∗)

∑

zi(p∗)≤0

p∗i ≥ γ

n
∑

i=1

mi(p
∗).

By definition of M(p∗) it follows that
∑n

i=1 mi(p
∗) =

∑

0<zi(p∗)<0 zi(p
∗). Therefore we

obtain
n
∑

i=1

mi(p
∗)

∑

zi(p∗)≤0

p∗i +
∑

0<zi(p∗)<0

∣

∣

∣
zi(p

∗) − p∗i

n
∑

i=1

mi(p
∗)
∣

∣

∣

≥ γ
∑

0<zi(p∗)<1

zi(p
∗) +

∣

∣

∣

∣

∑

0<zi(p∗)<1

zi(p
∗)

(

1 −
∑

0<zi(p∗)<1

p∗i

)
∣

∣

∣

∣

= γ
∑

0<zi(p∗)<1

zi(p
∗) +

∑

0<zi(p∗)<1

zi(p
∗)

∑

zi(p∗)≤0

p∗i ≥ 2γ
∑

0<zi(p∗)<1

zi(p
∗
i ).

From last inequalities the inequality (6.3) can be transformed

2γ
∑

0<zi(p∗)<1

zi(p
∗
i ) ≤ (nw2 + (n + 1)w)

(

1 +
∑

0<zi(p∗)<1

zi(p
∗)
)

.

The last inequality yields

∑

0<zi(p∗)<1

zi(p
∗) ≤ nw2 + (n + 1)w

2γ − (nw2 + (n + 1)w)
,

i.e.,
∑

0<zi(p∗)<1 zi(p
∗) ≤ k, where k satisfies k ≥ nw2+(n+1)w

2γ−(nw2+(n+1)w) . In order to have the

number 2γ − (nw2 + (n + 1)w) positive

w <
−(1 + n) +

√

(1 + n)2 + 8nγ

2n
= w3.

From the conditions of the theorem w < w3. From the definition of M in this last case

we have
∑

0<zi(p∗)<1 zi(p
∗) ≤ n − 1.

If all coordinates of z(p∗) are negative then 0 ≤ nw2 + (n + 1)w which is not in

contradiction with previous conclusions.
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7. Conclusions. First we give two simple examples of an economy with discontinuous

excess demand function that illustrates Theorem 6.1.

Example 7.1. We consider the economy with 2 different goods and 2 economic agents.

Let

S2 = {p = (p1, p2) | p1, p2 ≥ 0 and p1 + p2 = 1}
be a price set. In Figure 7.1 the values of p = (p1, p2) are plotted on the horizontal axis

(the origin is point p′ = (0, 1) and farther right is plotted point p′′ = (1, 0)) and values of

z(p) coordinates are plotted on the vertical axis. We assume that excess demand function

z(p) = (z1(p), z2(p)) is

z1(p) =

{

3p2

40p1
, 0 < p1 ≤ 1

2 , p2 = 1 − p1

0, 1
2 < p1 ≤ 1, p2 = 1 − p1

,

z2(p) =

{

− 3
80 , 0 ≤ p1 ≤ 1

2 , p2 = 1 − p1
3p1

80p2
, 1

2 < p1 < 1, p2 = 1 − p1
.

This function is homogeneous (Assumption H):

z(λp) = z((λp1, λp2)) =

(

3λp2

40λp1

− 3
80

)

=

(

3p2

40p1

− 3
80

)

= z(p) if 0 < p1 ≤ 1

2
and

z(λp) =

(

0
3λp1

80λp2

)

=

(

0
3p1

80p2

)

= z(p) if
1

2
< p1 < 1.

The constant w is w = 3
40 . We illustrate this situation in Figure 7.1.

It is clear that there is no p ∈ S2 which satisfies the inequality z(p) = (z1(p), z2(p)) ≤
0. Assumptions F, H, B’ and DC’ are fulfilled. Assumption Γ′ also holds (but not Walras’

Law). Indeed, represent p = (p1, p2) ∈ S2 as

p = (1 − t)p′ + tp′′, t ∈]0, 1[,

then t ∈]0, 1
2 ] implies z1(p) > 0, z2(p) < 0 and so γp = p2 and t ∈] 12 , 1[ implies z1(p) = 0,

z2(p) > 0 and so γp = p1. In both cases we get γp ≥ 1
2 which shows that Assumption

Γ′ holds with γ = 1
2 . Theorem 6.1 guarantees the existence of k-equilibrium for k ≥

min{1; 2w2+3w
1−2w2−3w

} if

w <
−3 +

√

9 + 4 min{ 2
3 ; 1

2}
4

=
−3 +

√
11

4
>

−3 + 3.3

4
=

3

40
.

We have assumed that w = 3
40 therefore k ≥ min{1; 189

611} = 189
611 . Simple arithmetic shows

that every

p ∈
{

p = (p1, p2)

∣

∣

∣

∣

611

3131
≤ p1 ≤ 5040

5651
, p2 = 1 − p1

}

gives this 189
611 -equilibrium.

Example 7.2. Again we consider the economy with 2 different goods and 2 economic

agents. Let

S2 = {p = (p1, p2) | p1, p2 ≥ 0 and p1 + p2 = 1}
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Fig. 7.1

be the price set. We assume that the excess demand function z(p) = (z1(p), z2(p)) is

z1(p) =

{

1
20 , 0 ≤ p1 < 1

2 , p2 = 1 − p1

− p2

40p1
, 1

2 ≤ p1 ≤ 1, p2 = 1 − p1
,

z2(p) =

{

− p1

20p2
, 0 ≤ p1 < 1

2 , p2 = 1 − p1
1
40 , 1

2 ≤ p1 ≤ 1, p2 = 1 − p1
.

This function is homogeneous (Assumption H). The constant w is similar as in Example

7.1 (w = 3
40 ). We illustrate this situation in Figure 7.2.

Assumptions F, H, B’ and DC’ are fulfilled. The similar arguments as in Example 7.1

show that Assumption Γ′ holds with γ = 1
2 . But in this situation Walras’ Law holds too:

z1p1 + z2p2 = 1
20p1 − p1

20p2
p2 = p1

20 − p1

20 = 0 if 0 ≤ p1 < 1
2 , p2 = 1 − p1 and

z1p1 + z2p2 = − p2

40p1
p1 + 1

40p2 = −p2

40 + p2

40 = 0 if 1
2 ≤ p1 ≤ 1, p2 = 1 − p1.

It is clear that there is no p ∈ S2 which satisfies the inequality z(p) = (z1(p), z2(p)) ≤ 0.

Theorem 6.1 guarantees the existence of k-equilibrium for k ≥ min{1; 2w2+3w
1−2w2−3w

}

if w <
−3+

√
9+4 min{ 2

3 ; 12 }
4 = −3+

√
11

4 > −3+3.3
4 = 3

40 . We have assumed that w = 3
40

therefore k ≥ min{1; 189
611} = 189

611 . Since 1
40 < 1

20 < 189
611 ≈ 0.309 then we conclude that in

this example every p is 189
611 -equilibrium.

In this example also Assumptions F, H, DC and Γ are fulfilled. Therefore Theorem
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5.1 guarantees the existence of k-equilibrium with every

w <
−3 +

√
9 + 8

4
=

−3 +
√

17

4
>

−3 + 4.1

4
=

11

40
.

We have assumed that w = 3
40 therefore

k ≥ 2 · ( 3
40 )2 + 3 · 3

40

1 − 2 · ( 3
40 )2 − 3 · 3

40

=
189

611
.

Every p gives this 189
611 -equilibrium. We see that k = 189

611 is rough estimation. Every

p ∈ {p = (p1, p2)| 12 ≤ p1 ≤ 1, p2 = 1 − p1} is 1
40 -equilibrium.

Remarks and conclusions

1. The proof of Theorem 6.1 shows that we can estimate quasi-equilibrium only in the

case w < w+ .

2. If w = 0 (excess demand function is continuous in the set S′
n) then we obtain by our

assumptions the classical equilibrium. If w > 0 then we obtain the k-equilibrium with

k > 0.

We should like to ask the economists to consider what is the meaning of w = 0.001

or w = 10−10?

3. Examples 7.1 and 7.2 show that the value of the constant k may be smaller than the

bound in Theorems 5.1 and 6.1.

4. In the definition of the function M (see before Lemma 6.1) we use the constant 1 if

zi(p) ≥ 1 or limpk→p zi(p
k) ≥ 1. It is possible to choose another constant greater than 0.

Then we also get another constant k for quasi-equilibrium.
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5. If n → ∞ then min{ n
n+1 , γ} → min{1, γ} = γ. We think that the constant γ also is

small number; also we think that always min{ n
n+1 , γ} = γ.

6. The conclusion from Theorem 6.1 is almost the same as from Theorem 5.1 with the

major difference of having bounded constant k for every fixed n. Therefore this last

model emphasizes that the constant n (the number of goods) is an important economic

parameter.
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structive remarks and patience.
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