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Abstra
t. The problem of existen
e of a fore
ast (or planning) horizon has been 
onsideredin many spe
ial models, more or less pre
isely. We spe
ify and investigate this problem forfamilies of 
heapest paths in networks with weakly ordered nodes. In a dis
rete network, thestandard forward algorithm �nds the subnetwork generated by optimal paths. The proposed for-ward pro
edure redu
es subnetworks su
h that the fore
ast horizon remains un
hanged. Basedon the �nal subnetwork, we have an answer to the fore
ast horizon questions. In parti
ular,we show that many questions about rationality of initial de
isions be
ome NP-hard. To im-prove the performan
e of heuristi
s, we introdu
e the notion of potentially rational initial de
i-sions.1. Introdu
tion. The idea of a fore
ast horizon 
ame from pra
ti
al management prob-lems when the dynami
 parameters are not known for the future. In some 
ases, a fewinitial de
isions are not a�e
ted by future data (beyond a 
ertain period). We 
onsideroptimal solutions for a long time horizon with a given fore
ast window of data. Thede
isions in the �rst or �rst few periods are usually those of immediate importan
e tomanagers. Horizon resear
h attempts to quantify the diminishing e�e
t of fore
ast forfuture data on initial de
isions. The 
on
ept of fore
ast and planning horizons have beenformalized in �o± [1967℄ for a dynami
 programming environment. The paper by Lundinand Morton [1975℄ initiated resear
h in this dire
tion through the introdu
tion of 
ompu-tational aspe
t. We refer to Rempaªa [1991℄ for the formalization of the horizon 
on
eptin the more general settings.The notion of fore
ast horizon is 
losely 
onne
ted with performan
e heuristi
s fornearly optimal solution in a wide variety of dynami
 de
ision problems; see e.g. rolling2000 Mathemati
s Subje
t Classi�
ation: 90B50, 90B10, 93C41.Key words and phrases: 
heapest paths problem, fore
ast and planning horizons, dynami
lot sizing, heuristi
s.The paper is in �nal form and no version of it will be published elsewhere.
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64 S. BYLKAhorizon pro
edure (Lee and Denardo [1986℄), re
eding horizon 
ontrol (Mayne and Mi
hal-ska [1990℄), repetitive 
ontrol (Kraw
zyk and Kara
aoglu [1993℄) and moving horizon
ontrol (Van den Broek [2002℄).The literature on 
omputational results of a fore
ast horizon pro
edures is ratherlimited. Chand and Morton [1986℄ were the �rst to develop pro
edures for determiningminimal regeneration sets and minimal fore
ast horizon (for dynami
 lot�size problems).For a given value of T, the pro
edure establishes whether or not T is a fore
ast horizon.On
e the minimal regeneration set has been identi�ed, it only remains to test whether allthe adequate optimization problems have a 
ommon �rst period produ
tion quantity forat least one optimal solution. In this paper, our exploration goes in the two dire
tions:(1) we 
on
entrate on planning�fore
ast horizon pro
edures in more general setting (wedon't take into a

ount the nature of the regeneration sets), and (2) we formulate someknown and new 
hara
terizations for the horizons taking into a

ount the set of de
isionsredu
ed by regeneration sets.Deterministi
 dynami
 optimization problems 
an be formulated as shortest (
heap-est) path problems in a network. Among all 
lasses of problems in network optimization,shortest-path problems have been one of the most extensively studied; see e.g. the mono-graph of Evans and Minieka [1992℄, and see also Po
het and Wolsey [1995℄ for lot sizingproblems.For many problems, depending on available information (a fore
ast window), there isa "small" set of nodes (a regeneration set) whi
h is visited by optimal paths ended behindthe window. At best, su
h set has only one element, a 
ut node. In this 
ase, optimalpaths end behind the window (longer than a fore
ast horizon) extending an optimal pathto the 
ut node. As a generalization of these notions, we de�ne a (planning) horizon pathwith respe
t to the fore
ast horizon of a given family of paths in the network. In any
ase, a fore
ast window leads to a set of "rational" initial de
isions.The purpose of this paper is to show that the stru
ture of a sub-network generatedby the family of optimal paths together with a given regeneration set determinates theexisten
e of a fore
ast horizon and planning horizon paths.When we verify the length of a fore
ast horizon (with respe
t to our knowledge), wefa
e two problems of a di�erent nature: to �nd a (minimal) regeneration set and to takepotentially rational initial de
isions. The �rst problem is spe
i�
 for every parti
ularmodel. The se
ond one 
an be investigated as a 
ombinatorial problem of a network.Pro
edures for �nding regeneration sets and horizons typi
ally 
onsist of solving problemswith in
reased length until some stopping 
riterion is satis�ed. We refer to Chand andMorton [1986℄, Bylka, Sethi and Sorger [1992℄ and Federgruen and Tzur [1995℄ for adetailed literature review of algorithms in parti
ular dynami
 models.The arti
le is organized as follows. The next se
tion introdu
es the notation andexplains the foundation of the time-indexed networks. In Se
tion 2 we also de�ne thebasi
 notions with respe
t to subnetworks generated by families of paths. Some proper-ties, whi
h are su�
ient for existen
e of a horizon path with adequate algorithm (alsofor �nding a set of rational initial de
isions with respe
t to the fore
ast window), arepresented in Se
tions 3 and 4.



FORECAST HORIZON AND PLANNING HORIZON PATHS 652. Time-indexed networks (t.i.n.'s)2.1. The de�nition and notation. We use the standard notions of graph theory. ℜ+denotes the set of all nonnegative real numbers. The 
ardinality of a set S will be denotedby |S|.By a network we mean a dire
ted graph with a valuation fun
tion�the length�onar
s (sometimes also a 
ost). In a natural way we extend su
h fun
tions to paths. Forour investigation it is 
onvenient to represent a dire
ted graph by the adja
ent list�themultifun
tion F whi
h lists all prede
essors nodes
F : V → 2V ,where V is the set of nodes. We say that the graph F has V (written also as V (F )) asthe set of nodes and

E(F ) = {(u, v) | v ∈ V (F ), u ∈ F (v)}as the set of ar
s. Therefore, for ea
h node u ∈ F (v), the pair (u, v) is an ar
 of the graph
F. The multifun
tion

F−1(v) = {u | v ∈ F (u)}lists all nodes that are attained by an ar
 from the node v.A graph F is said to be a rooted graph if there exists exa
tly one node, say u0, 
alledthe root, su
h that F (u0) = ∅ and F−1(u0) 6= ∅. Therefore, we assume:if F (u) = ∅ then F−1(u) = ∅ if only u 6= u0.In fa
t, su
h a graph 
onsists of a 
onne
ted graph and a set of isolated nodes.A fun
tion τ : V (F ) → ℜ+ su
h that
τ (v) − τ (u) ≥ 0 for every (u, v) ∈ E(F )is 
alled a time index of the verti
es of the graph F. We may think of the length of an ar


l((u, v)) = τ (v) − τ (u) (1)as of the "time distan
e" between its initial and terminal nodes.Definition 1. We 
all (F, τ ) the time-indexed network (t.i.n. for short) if1. F is a rooted graph and τ a time index of its nodes;2. For every x ∈ ℜ+ the set {v ∈ V (F ) | τ (v) = x} is �nite.3. There is a lower bound l∗ > 0 of the lengths of ar
s, i.e. for every ar
(u, v)either l((u, v)) ≥ l∗ or l((u, v)) = 0.

F is a lo
ally �nite t.i.n. if additionally:4. F (v) is a �nite set for every node v.Time-indexed networks have nodes weakly ordered by "time" (there is a possibilityof existen
e of di�erent nodes with the same time indi
es). (F, τ ) is a dis
rete network if
V (F ) is a dis
rete set. Without loss of generality, we 
an assume that τ (u0) = 0 (if not,one 
an transform the time indi
es into τ (v) − τ (u0) for every node v).By a path in F we mean a sequen
e of nodes

s = (s1, . . . , sn), n ≥ 2, su
h that si−1 ∈ F (si) for ea
h i = 2, . . . , n.



66 S. BYLKAThe length of s is equal to the sum of the lengths of all its ar
s. Therefore l(s) =

τ (sn) − τ (s1) by (1).For a t.i.n. F we will denote by
VT (F ) � the set of nodes {v ∈ V (F ) | τ (v) > T and F (v) 6= ∅};
Pu(F ) � the set of all paths starting from the node u;
~P (F ) � the set of all paths from the root, i.e. ~P (F ) = Pu0

(F );

PW (F ) � the set of all paths from the root to a node v ∈ W ⊂ V ; P v ≡ P {v};
~PT (F ) � the set of all paths from the root and longer than T, i.e.

~PT (F ) = PVT (F )(F ) = {s ∈ ~P (F ) |l(s) > T}.We say that (A, τ ) is a subnetwork of (F, τ ), denoted A ⊂ F, i�
V (A) ⊂ V (F ) and A(v) ⊂ F (v) ∩ V (A) for ea
h node v.We will denote by F |T the subnetwork with all ar
s whi
h terminate at nodes having thetime indi
es not greater than the number T.We write A ⊂T F i� A ⊂ F and we have the following impli
ation:if τ (v) > T and P v(F ) 6= ∅ then P v(A) 6= ∅.We say that S ⊂ F is a sele
tion from F i� F (v) 6= ∅ implies |S(v)| = 1.Property 1. Let F be a t.i.n. If A ⊂T F is a t.i.n., then every sele
tion S from A isalso a t.i.n. and S ⊂T F.2.2. Subnetworks generated by families of paths. Families of paths in a t.i.n. 
an be givenarbitrary or 
onstru
ted by a pro
edure. For a set P of paths in a network F, the minimalsubnetwork A ⊂ F su
h that, every path in P is a path in A (the network generated by

P) will be denoted by ωP . Therefore,
ωP(v) = {u ∈ F (v) | (u, v) forms an ar
 of a path from P}and for every l∗ < T < T ′ we have

ω~P T ′ (F ) ⊂T ′ ω~P T (F ) ⊂T F.Of 
ourse, if F is a 
onne
ted network then F = ω~P (F ).Example 1. Now we think of time-indexed networks as networks with two valuationfun
tions (the length and the 
ost of ar
s). We look for stru
tural properties of t.i.n.'sgenerated by the sets of optimal (
heapest) paths.Let (F, τ ) be a lo
ally �nite t.i.n. and c : E(F ) → ℜ+ be a 
ost fun
tion on the ar
s(and thus on all paths, too). We extend this 
ost on paths whi
h is the sum of 
osts ofall its ar
s.We deal with problems of �nding all c-
heapest paths from the root. A simple op-timization problem states: Find all paths s ∈ P v(F ) having minimal 
ost c(s). We willdenote by
P̃ v(F, c) � the subset of all 
heapest paths in P v(F ) and
Ωc � the subnetwork generated by the family of all c-
heapest paths.
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Fig. 1. Exemplifying t.i.n. Ωc|7 with possible 7-regeneration set R (nodes in dark 
olours) andadequate subnetwork A ⊂5 Ωc (bold ar
s).
Therefore,

Ωc = ωΠc(F ), where Πc(F ) =
⋃

v∈V

P̃ v(F, c)and for ea
h node v we have:
Ωc(v) = {u ∈ F (v) | (u, v) forms the last ar
 of a path s ∈ P̃ v(F, c)}.A

ording to the above notation, 
onsider the following dis
rete t.i.n.:

F (v) = {0, . . . , v − 1} for v = 1, 2, . . . and F (0) = ∅,with τ (v) = v and a 
ost fun
tion c given on F |7. If, for example, the set of optimalpaths Πc(F |7) is given by
v : 1 2 3 4 5 6 7

P v(F ) : {(0, 1)} {(0, 2)} {(0, 3)} {(0, 2, 4)} {(0, 2, 5)} {(0, 3, 6)} {(0, 2, 5, 7)}then the indu
ed subnetwork is (see Figure 1) of the form:
v : 0 1 2 3 4 5 6 7

Ωc(v) : ∅ {0} {0} {0} {2} {2} {3} {5}Of 
ourse, the subnetwork Ωc generated by all optimal paths in t.i.n. (F, τ, c) is alsot.i.n.�a subnetwork of F. Knowing c only on ar
s of F |T we 
an 
onstru
t Ωc|T step bystep using standard forward pro
edure.Let γc(u, v) be the minimal 
ost of a path, that begins at the root, ends at vertex vwith the restri
tion, that (u, v) is the last ar
 of the path. Our fo
us will be the "
lassi
al"re
urrent equation for the minimal total 
ost fun
tion Ψc de�ned on the set of nodes:
Ψc(uo) = 0 for the root and for other nodes

Ψc(v) = min
u∈F (v)

γc((u, v)) = min
u∈F (v)

[Ψc(u) + c((u, v))]and so on
Ωc(v) = {u ∈ F (v) | Ψc(v) = γc((u, v))}.In the 
ase of lo
ally �nite network, to �nd Ωc|T , this algorithm requires no more than

O(ρ2
T ) 
omputations, where ρT = |V (F |T )|. See also the dis
ussion in Federgruen andTzur [1995℄ for a more general 
ase.Usually, families of optimal (
heapest) paths are hereditary in the following sense. Wesay that a set of paths P is hereditary if both:



68 S. BYLKA1. Together with a path (s1, . . . , sn) it 
ontains (s1, . . . , si) for ea
h 1 < i < n;2. Together with 
rossing paths (s1, . . . , si, . . . , si+k) and (s′1, . . . , s
′
j , . . . , s

′
j+k′) su
hthat si = s′j for some i > 1, it 
ontains ea
h path of the form

(s1, . . . , si, s
′
j+1 . . . , s′j+k′) or ( s′1, . . . , s

′
j , si+1 . . . , si+k).Property 2. If w ∈ V (F ) and P ⊂ Pw(F ) then ωP is a t.i.n. with the root w. If,additionally, P is hereditary, then Pw(ωP) = P and

ωP(v) = {u ∈ F (v) | (u, v) forms the last ar
 of a path from P}.From now on, we think of a hereditary family of paths as being a time indexedsubnetwork of F, say A = ωP for some P ⊂ ~P (F ).2.3. Regeneration sets and planning paths. If a path s′ = (s1, . . . , sn, . . . , sn+k), k ≥ 0,then we say that s′ extends s = (s1, . . . , sn) to sn+k or, if only k > 0, that (sn, . . . , sn+k)is a 
ontinuation of s to sn+k. The set Psn
(F ) is exa
tly the set of all 
ontinuations of sin F.We say that a path s = (s1, . . . , sn) visits a set of nodes W ⊂ V (F ) if it has a node

si, i > 1, at W. We 
all two paths alternative if both start and terminate at the samenodes.Definition 2. We say that a set R ⊂ V (F | T ) is a T -regeneration set of F if everypath s ∈ ~PT (F ) (i.e. longer than T ) has an alternative one whi
h visits R. It is minimalif R \ {r} is not a T -regeneration set for ea
h r ∈ R.Let us de�ne another two useful notions: planning set and planning path:Definition 3. A set of nodes U ⊂ F−1(u0) is 
alled a planning set to a set of nodes Win F if for ea
h v ∈ W there exists a path in P v(F ) whi
h visits U and for every u ∈ Uthere is a path from u to a vertex in W.A path s = (s1, . . . , sn) from the root is said to be a planning path to a set of nodes
W in F if there exists U ⊂ F−1(sn) whi
h is a planning set to W, in the subnetwork
ωPsn

(F ).We will denote by
psR(F ) = {U ⊂ F−1(u0) | U is a minimal planning set to R in F}.It is easy to see the following relationships between planning sets and regenerationsets.Property 3. Assume that T is large enough, i.e. there is no v ∈ VT (F ) su
h that (u0, v)is the only one path to v in F. Then

(i) If U is a planning set to VT (F ) then U is a T -regeneration set of F (
alled alsoa "planning" T -regeneration set);
(ii) If R is a T -regeneration set of F then every planning set to R in F is also a

T -regeneration set of F ;

(iii) If A ⊂T F and R is a T -regeneration set of A, then R is a T -regeneration setof F.



FORECAST HORIZON AND PLANNING HORIZON PATHS 69These are some general properties of the notion introdu
ed above.Property 4. Assume that A ⊂H F are t.i.n's, H ∈ ℜ+ is large enou
h and s∗ =

(s∗1, . . . , s
∗
n) ∈ ~P (A|H) (or s∗ ∈ ~P (F |H)). Let us formulate the following statements:1.a Every path s ∈ ~PH(A) has an alternative path whi
h extends s∗ in A.1.b Every path s ∈ ~PH(F ) has an alternative path whi
h extends s∗ in F.2.a The path s∗ is a planning path to the set of nodes VH(A) in A.2.b The path s∗ is a planning path to the set of nodes VH(F ) in F.3.a Ea
h singleton {s∗i }, i = 2, . . . , n is an H-regeneration set of A.3.b Ea
h singleton {s∗i }, i = 2, . . . , n is an H-regeneration set of F.4.a The path s∗ is a planning path to an H-regeneration set of A.4.b The path s∗ is a planning path to an H-regeneration set of F.The statements satisfy:4.a ⇒ 1.a ⇔ 2.a ⇔ 3a,4.b ⇒ 1.b ⇔ 2.b ⇔ 3b,and ea
h k.a ⇒ k.b, for k = 1, . . . , 4.Proof. We have s∗ ∈ P {sn}(A). From the de�nitions, it follows immediately that 1.a ⇒2.a ⇒ {sn} is an H-regeneration set of A ⇔ 3.a.On the other hand, if {sn} is an H-regeneration set of A, then 1.a, be
ause ~PT (A) ishereditary.Assume 4.a. Let R be an H-regeneration set of A su
h that s∗ is a planning path to

R. Let sr ∈ P r(A) be a path whi
h extends s∗, r ∈ R. For every v ∈ VH(A), there existsa path pv ∈ P v(A) whi
h visits R, say pv = (pv
1, . . . , p

v
nv

) and pv
kv

= rv ∈ R, for some
kv < nv. The path (srv , pv

kv+1, . . . , p
v
nv

) ∈ P v be
ause P v(A) is hereditary. It extends s∗.This establishes the statement 1.a.The same proof works for analogous impli
ations for k.b, k = 1, . . . , 4.We have k.a ⇒ k.b, for k = 1, . . . , 4, be
ause A ⊂H F and Property 3.2.4. Planning and fore
ast horizons. The notion of fore
ast horizon was given for fami-lies of optimal solutions of dynami
 programs in �o± [1967℄ and Blikle, �o± [1967℄ (andindependently, for optimization problems in more spe
i�
 models, in Lundin and Morton[1975℄, as well in Bensoussan, Crouhy and Proth [1983℄). In this paper we will de�ne thenotions of horizons for t.i.n's, only. For an example of the 
ase of �nite networks with
y
les with positive lengths see Bylka and Sethi [1992℄.Our de�nition is 
onsistent with mentioned above, if optimal solutions in a model areinterpreted as 
heapest paths.Definition 4. Let (F, τ ) be a t.i.n. A number H ∈ ℜ+ is a fore
ast horizon of a familyof paths P ⊂ Pu(F ), u ∈ V (F ), if there exists a path s∗ ∈ Pu(F |H + τ (u)), 
alled an
H-horizon planning path of P, su
h that every path s ∈ P, l(s) > H + τ (u), has analternative path s′ ∈ P whi
h extends s∗.The length l(s∗) = h is de�ned to be a planning horizon of the family P. Then (h, H)is its adequate horizon pair.If P = ~P (F ), we say that s∗ is an H-horizon planning path of the t.i.n. F.



70 S. BYLKAOf 
ourse, if s∗ is an H-horizon planning path, then s∗ is an H ′-horizon planningpath for every H ′ ≥ H. If additionally P is hereditary, s̃ is an H-horizon planning pathfor every s̃ whi
h is alternative to s∗.Immediately from the de�nitions given above we have the following properties of
H-horizon planning paths:Property 5. (i) s∗ is an H-horizon planning path of F if and only if s∗ is a planningpath to the set of nodes VH(F ) in F (i.e. 2.b of Property 4).

(ii) If s∗ is an H-horizon planning path of P, then s∗ is an H-horizon planning pathof ωP . The reverse impli
ation is also true for hereditary P.If, additionally, u is the root of F and ωP ⊂H F, then s∗ is an H-horizon planningpath of F.�o± de�nes the planning path as a single ar
 path. The Lundin and Morton de�nitionuses arbitrary paths as above. If P is a set of paths, whi
h extend s∗, then l(s∗) = h = His a fore
ast as well as a planning horizon (see Bensoussan, Crouhy and Proth [1983℄ forthis spe
ial 
ase) of P.2.5. Horizons of subnetworks generated by regeneration sets. A subnetwork F redu
edby a regeneration set R, denoted by RF, is de�ned as the subnetwork generated by theset of all paths from the root going through R and longer than T, i.e.:
RF = ωP where P = {s ∈ ~PT (F )| s visits R}. (2)Property 6. Let R be a T -regeneration set of a t.i.n. F. We have

RF ⊂T Fand
psR(F ) = psR(F |T ) = psR(RF |T ).Additionally, ea
h element of psR(F ) is a planning T -regeneration set of F.For a T -regeneration set of F, by Property 4, if a singleton {q} ∈ psRF, then the onear
 path s∗ = (u0, q) is a T -horizon planning path of F. For more general 
ase we havethe following theorem.Theorem 1. Let A ⊂H F and s∗ be a path from the root in A|H, say s∗ ∈ P {q}(A). Thefollowing statements are equivalent:

(i) s∗ is an H-horizon planning path of A;

(ii) The singleton {q} forms an H-regeneration set of A;
(iii) There exists a sele
tion S from A su
h that s∗ is an H-horizon planning path of S.Ea
h of (i) − (iii) is a 
onsequen
e of:
(iv) R is an H-regeneration set of A and s∗ is a planning path to R.Additionally, ea
h of (i) − (iii) implies
(v) s∗ is an H-horizon planning path of F.



FORECAST HORIZON AND PLANNING HORIZON PATHS 71Proof. We see at on
e that (i) ⇔ (ii) ⇒ (v) and (iv) ⇒ (i), whi
h is 
lear from Property4 (be
ause (i) ⇔ 1 .a and (iv) ⇔ 4 .a).Assume (i). We 
onstru
t the sele
tion S whi
h satis�es (iii). Consider the set ofpaths
P = {s ∈ ~PH(A)|s extends s∗}.Let S be a sele
tion from the network ωP . S is a sele
tion from A and s∗ is an H-horizonplanning path of the family of paths ~P (S). Hen
e, S = ω~P (S) and, by Property 5(ii), wehave (iii).Assume (iii). The statement (i) follows from Property 4 be
ause s∗ is an H-horizonplanning path of S ⊂H A.From (iii) of Theorem 1, we 
on
lude that:Corollary 1. The problem of the existen
e of a planning�fore
ast horizon pair (or an

H-horizon planning path) of a time indexed network is NP hard, even of the t.i.n. islo
ally �nite and dis
rete.We investigate the 
lass of optimization problems with limited information aboutthe future. To verify if our knowledge leads to a "good" initial de
ision, we ask aboutexisten
e of a planning�fore
ast horizon pair. In parti
ular, one looks for the minimalfore
ast horizon of families of solutions of optimization problems in a 
onsidered model(see Chand and Morton [1986℄, Federgruen, Tzur [1995℄ and Bylka, Sethi [1992℄).In a parti
ular model we ask about a 
olle
tion of assumptions whi
h guarantee theexisten
e of optimal plans as well as regeneration sets. In the presented general setting, wesimply assume the existen
e of optimal plans�
heapest paths. Additionally, we assumethat the set of all optimal paths is hereditary.3. Algorithm for horizon planning paths. In this se
tion it is required that 
onsid-ered networks are lo
ally �nite.3.1. Some spe
i�
 regeneration sets. The notion of T -regeneration set of a t.i.n. wasgiven in De�nition 2 with a spe
i�
ation in Properties 3 and 6 given as a planning
T -regeneration set. In fa
t, we are interested in other more spe
i�
 T -regeneration sets.We 
all a T -regeneration set R to be T -
ut if every path longer than T visits R.Let us denote:

CutT F = F (VT (F )) \ VT (F ) = {u ∈ V (F | T )|u ∈ F (v) for some v ∈ VT (F )}.It is the "over-T" minimal 
ut of F. If the root u0 6∈ CutT F then it is a T -regenerationset of F.Definition 5. A T -regeneration set R of F is 
alled an over-T regeneration set if R ⊂
CutT F. It is 
alled adequate if, additionally,

F−1(R) ∩ VT (F ) = F−1(CutT RF ) ∩ VT (F ). (3)Of 
ourse, every T -regeneration set R of F is a 
ut of the t.i.n. RF (i.e. of the subnetwork
F redu
ed by R). On the other hand, the set CutT RF is an over-T regeneration set of F.



72 S. BYLKAGenerally, we have
R ⊂ CutT RF ⊂ CutT F for any over-T regeneration set R of F.For suitable networks we have

RF ⊂T (CutT RF )F for any T -regeneration set R of F.In parti
ular, if R is a T -
ut set of F then
RF (v) = F (v) for any v ∈ VT (F ). (4)Property 7. Let R be an over-T 
ut set of a t.i.n. F. Then

(i) R is a T -regeneration set of A for any t.i.n. A ⊂T F ;

(ii) For every T ′ > T and T ′-regeneration set R′ ⊂ R ∪ VT (F ) we have
R′F = R′RF.Additionally, for every sele
tion S from RF

F̃ (v) =

{

S(v) if τ (v) ≤ T ,
F (v) ∩ (VT (F ) ∪ R) otherwise.is a t.i.n. and

R′ is a T ′-regeneration set of F ⇔ R′ is a T ′-regeneration set of F̃ .It is desired, in spe
i�
 models, that a sequen
e of T -
ut sets should be done (on thebasis of our knowledge about the future). In this aspe
t, Property 7(ii) 
an be utilizedstep by step.For relations between fore
ast horizons and regeneration sets, we have the followinguseful 
orollary of Theorem 1 and Property 7.Corollary 2. Let R be an H-regeneration set of a t.i.n. F. The following three state-ments are equivalent:
(i) H is a fore
ast horizon of RF ;

(ii) There exist an over-H regeneration set R̃ of RF and a set U ∈ psR̃(RF ) su
h that
|U | = 1;

(iii) There exists a sele
tion S from RF su
h that H is a fore
ast horizon of S.Additionally, if R is an H-
ut set of F, then (i) takes a more general form:
(i′) H is a fore
ast horizon of any t.i.n. A ⊂H F.Remark 1. In order to verify whether T is a fore
ast horizon of a t.i.n. F, we 
an verifyit on a subnetwork RF through its sele
tions. If R is a T -
ut of F, then this redu
tion isperfe
t, i.e. the answer with respe
t to existen
e is the same for F and for RF.3.2. The 
an
elling operators. Let F be a t.i.n. and R be a set of nodes of F |T. Wewill 
onsider the behaviour of the "
an
elling" operator ΦT,R, whi
h applied to F yieldsa subnetwork of F. We de�ne them in the following way.Denote

ZT,R(F ) = {v ∈ V (F |T ) | v 6∈ R}.
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φT,RF (v) =







∅ if (F |T )−1(v) = ∅ and v ∈ ZT,R(F ),

F (v) \ ZT,R(F ) if τ (v) > T,

F (v) otherwise. (5)The operator φT,R eliminates all ar
s of F |T whi
h terminate at �dead ends� (i.e. at nodesfrom whi
h no ar
 starts and whi
h do not belong to R). The m-th iteration of φT,R willbe denoted by φm
T,R. It is 
lear that

φm+1
T,R F ⊂T φm

T,RF.Finally, we obtain the operator
ΦT,RF = lim

m→∞
φm

T,RF.In the lo
ally �nite t.i.n. 
ase we have the equality for some m̄, i.e.
ΦT,RF = φm̄+1

T,R F = φm̄
T,RF.Property 8. Let R be a T -regeneration set of a t.i.n. F. Then ΦT,R(F )(v) 6= ∅ if andonly if either there exists a path from v to R in F or there exists s = (s1, . . . , sn) ∈ Sv(F )su
h that si ∈ R and τ (si+1) > T for some i ≤ n. We have

ΦT,R(F )(v) = F (v) \ ZT,R(F ) if only ΦT,R(v) 6= ∅.3.3. The main properties of the 
an
elling 
on
eptsLemma 1. If R is a T -regeneration set of a t.i.n. F, then ΦT,R(F |T ) is a t.i.n. Addi-tionally, if R is an adequate over-T regeneration set, then ΦT,RF is a t.i.n. su
h that
ΦT,R(F |T ) = (ΦT,RF ) | T.Proof. Assume ΦT,RF−1(v) 6= ∅ for a vertex v ∈ V (RF ).If τ (v) ≤ T, then ΦT,RF (v) = F (v) 6= ∅ by the de�nition of the operator ΦT,R.Therefore ΦT,R(F |T ) is a t.i.n.Suppose 
ontrary to our 
laim that τ (v) > T and ΦT,RF (v) = ∅. Then F (v) ⊂ ZRand so on v 6∈ F−1(R) in spite of (3). Therefore, ΦT,RF is a t.i.n., also.Assume τ (v) ≤ T. If there exists a path from v to R in F then ΦT,R(F )(v) =

F (v) = ΦT,R(F |T )(v), by Property 8. In the opposite 
ase ΦT,R(F )(v) = ∅ as well as
ΦT,R(F |T )(v) = ∅.Theorem 2. If R is an adequate over-T regeneration set, then ΦT,RF is a t.i.n. su
hthat

ΦT,RF ⊂T RF with equality if, additionally, R = CutT RF.Proof. By Lemma 1, ΦT,RF is a t.i.n.If u ∈ ΦT,R(F )(v) then u ∈ RF (v), by Property 8.Assume u ∈ RF (v). It follows that (u, v) forms the last ar
 in a path whi
h visits
R. From (3) and Property 8, it follows that ΦT,R(F )(v) 6= ∅. If τ (u) > T then u ∈
ΦT,R(F )(v), be
ause u 6∈ ZT,R(F ) and by Property 8.If τ (u) ≤ T and R = CutT (RF ) then u ∈ ΦT,R(F )(v). In the opposite 
ase, by (3),there exists r ∈ R su
h that v ∈ F−1(r). Therefore, ΦT,R(F )(v) 6= ∅ and the proof is
omplete.
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psRF ⊂ {B−1(u0) | B ∈ ϕRF},where

ϕRF = {ΦT,RS | S is a sele
tion from ΦT,R(F |T )}.Proof. Assume U ∈ psR(F ). Thus, U ⊂ F−1(u0) and U is a minimal planning set to R.Let us de�ne the following sets of paths:
P = {s ∈ ~PT (RF ) | s visits U}.and denote A = ωP . We have A ⊂T RF, be
ause U is a T -regeneration set of RF. This
learly for
es

A ⊂T F and ΦT,RA|T ⊂ ΦT,RF |T.From the 
onstru
tion of A we obtain (A|T )−1(u0) = U. From minimality of U we have
(ΦT,RW̃ )−1(u0) = U (6)for every sele
tion W̃ from A|T.Let W̃ be a sele
tion from ΦT,RA|T. It 
an be improved to a sele
tion S from ΦT,RF |Tsu
h that S̃(v) = S(v) if only S̃(v) 6= ∅. We have ΦT,RS = ΦT,RS̃. From (6), we have thedesired in
lusion.3.4. The algorithm. Here and subsequently the symbol T |F |T ′, for T ′ > T, denotes themultifun
tion F restri
ted to the set of nodes V (T |F |T ′) = {v ∈ V (F ) | T < τ (v) ≤ T ′}.The following properties (
onsequen
es of Property 7 and Corollary 2) of the 
an
ellingoperators are useful from 
omputational point of view.Property 9. Let R be a T -
ut set of F and R′ ⊂ R ∪ V (T |F |T ′) be a T ′-regenerationset of F, where T ′ > T. Then

(i) ΦT ′,R′ΦT,RF = ΦT ′,R′F.

(ii) If U ∈ psR(F ), then there exists U ′ ⊂ U su
h that U ′ ∈ psR′(ΦT,RF ) ⊂ psR′(F ).

(iii) If S̃ ∈ ϕR(F ), S′ is a sele
tion from T |F |T ′ and
S(v) =

{

S̃(v) if τ (v) ≤ T ,
S′(v) otherwise,then S is a t.i.n. and ΦR′S ∈ ϕR′(F ).In fa
t instead of the assumption "R be a T -
ut set of F", we 
an take R being anadequate over-T regeneration set of F (for some restri
tions see Remark 1).The properties of the 
an
elling operators suggest the following pro
edure for 
hoosinga potentially rational initial ar
 (possibly planning horizon ar
).Pro
edure Sele
tStep 0. We start with a subnetwork F |T having the root u0 and with a T -
ut (or anover-T regeneration set) R.Step 1. Use the 
an
elling operator to �nd the subnetwork ΦT,R(F |T ). If the set

[ΦT,R(F |T )]−1(u0) is a singleton, say {u1}, take s∗ = (u0, u1) and go to End. Otherwise,go to Step 2.
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tion S from ΦT,R(F |T ) su
h that (ΦT,RS)−1(u0) is a single-ton. We may exploit Property 9(iii) in the 
ase given t-regeneration set Rt and ϕRt
(F )for some t < T . If su
h a sele
tion, say S∗, is found, then take s∗ = (u0, u1, . . . , uk) su
hthat

[ΦT,R(S∗)]−1(ui−1) = {ui} for i = 1, . . . , k and |[ΦT,R(S∗)]−1(uk)| > 1,and go to End. In the other 
ase, 
omplete ϕR(F |T ) and go to End.End.We 
onstru
ted ΦR,T (F |T ) and either s∗ = (u0, u1, . . . , uk), k ≥ 1 given expli
-itly together with an adequate sele
tion S∗ or ϕR(F ). In the last 
ase we 
an 
onstru
t
psR(F ) (the family of planning sets to R) and S∗ ∈ ϕR(F ).Consider the 
ase where the output of the pro
edure is a family ϕR(F ) withoutsingletons in psR(F ). We 
an 
hoose S∗ ∈ ϕR(F ) su
h that

|S∗−1(s0)| = min
U∈psR(F )

|U |,or by any other pro
edure. If the �rst de
ision has to be 
hosen, de�ne s∗ = (u0, u1) with
u1 ∈ S∗−1(s0). It will be potentially rational.If we obtain a new information as a T ′-regeneration set, then we ought to ask aboutan initial de
ision in an updated network. Suppose that in a 
onse
utive period T ′ > Twe obtain an extension of the subnetwork as T |F |T ′ and an over�T ′-regeneration set
R′ ⊂ R ∪ V (T |F |T ′) (with respe
t to new information). We 
onsider two possibilities:either an initial de
ision was taken or it wasn't. In ea
h 
ase we use Pro
edure Updateand replay Pro
edure Sele
t with updated subnetwork F ′|T ′ and R′.Pro
edure UpdateStep 0. We start with an output of Pro
edure Sele
t; a subnetwork ΦT,RF |T and anextension of the subnetwork T |F |T ′ for some T ′ > T. If an initial de
ision was taken, goto Step 1. Otherwise, go to End.Step 1. We have S∗ and s∗ = (u0, u1, . . . , uk) with k ≥ 1. We improve S∗ by taking

S̃(v) =

{{u1} if v ∈ S∗−1(S∗−1(u0)),

S(v) otherwise.It 
hanges S∗ in the 
ase k = 1 and S∗−1(u0) has more than one element.The node uk be
omes the root of F ′, su
h that F ′(uk) = ∅ and for other nodes
F ′(v) =

{

S̃(v) if τ (uk) ≤ τ (v) ≤ T ,
F (v) \ ZT,R otherwise.De�ne

u′
0 = uk and τ ′(v) = τ (v) − τ (uk) for v ∈ V (F ′)and go to End.End. We have F ′|T ′ obtained in Step 1. Otherwise, de�ne F ′|T ′ = F |T ′.The algorithm is a generalization of the solution pro
edures given by Chand andMorton [1986℄ for the Wagner�Whitin model and Bylka, Sethi and Sorger [1992℄ for anequipment repla
ement model. It yields a horizon pair if there exists a fore
ast horizon.
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h 
ase, the algorithm 
onstru
ts a set of potentially rational initial de
isions withrespe
t to the fore
ast window.4. Examples. The example given below illustrates a possibility how optimization prob-lems in a dynami
 model 
an be transformed into equivalent 
heapest path problems ina t.i.n.Example 2. Consider the following inventory model with 
ontinuous demand and dis-
rete replenishment. The demand appears with a given rate D(t) at 
ontinuous time t, andall demand must be met. Every sequen
e (t0, . . . , tn) where 0 = t0 ≤ t1 ≤ . . . ≤ tn = Trepresents a replenishment s
hedule on [0, T ] su
h that in ea
h ti−1, i = 1, . . . , n, the sizeof the replenishment is equal to the 
umulative demands in the time interval [ti−1, ti], i.e.
W ti

ti−1
=

∫ ti

ti−1

D(t)dt.For a given �xed 
ost of replenishment K > 0 and sto
k holding 
ost per item per time
h, the 
ost of the s
hedule is equal to

c(t0, . . . , tn) = nK + h

n
∑

i=1

Zti

ti−1
,where

Zv
u =

∫ v

u

(W v
u − W t

u)dtis the 
umulative holding inventory in the time interval [u, v]. For any given T, we wantto determine a replenishment s
hedule with the minimal 
ost. It is easy to see that if Tis not too small than we have the 
ondition 3 of De�nition 1, i.e. there is a l∗ su
h that
ti − ti−1 ≥ l∗.Consider a t.i.n. F with ℜ+ as the set of nodes and

E = {(u, v) ∈ ℜ+ ×ℜ+ | v − u ≥ l∗ and ether u = 0 or u ≥ l∗}as the set of ar
s. We have F (v) = {u ∈ ℜ+ | u ≤ v − l∗ either u = 0 or u ≥ l∗}, withtime indi
es τ (v) = v and ar
 
osts c(u, v) = K + hZv
u.Every path (t0, . . . , tn) from the root t0 = 0 to tn = T represents a replenishments
hedule having the 
ost

c(t0, . . . , tn) =
n

∑

i=1

c(ti−1, ti).For a given T we look for all 
heapest path of the length T (optimal paths from the root
0 to the node T ) in F.The 
ase of pie
ewise 
onstant demand rate D is presented in Bylka and Rempaªa[2004℄.A

ording to (more general) Example 1, we 
an investigate families of optimizationproblems. The limited information means that instead of c from C we know c|T i.e. the
osts of all ar
s in the subnetwork F |T. Su
h a 
ost is 
alled a T -fore
ast 
ost. The



FORECAST HORIZON AND PLANNING HORIZON PATHS 77additional information is 
ontained in the set of all possible extensions of c|T to 
ostfun
tions from C, i.e.:
c|T |C = {d ∈ C | d((u, v)) = c((u, v)) if only τ (v) ≤ T}.For families of optimization problems, given by c ∈ C in F, we ask if c|T 
onstitutes asu�
ient knowledge to �nd a fore
ast horizon and horizon planning path (see De�nition4). The same sytuation we have for every family of optimal paths Πd(F ) for d ∈ c|T |C.Definition 6. Consider a family of optimization problems c|H|C in F.(i) We say that a path s∗ is an H-horizon planning path for the family c|H|C if it isan H-horizon planning path of Ωd for every d ∈ c|H|C.(ii) An ar
 from the root is said to be a potentially rational initial de
ision if it is the�rst ar
 of a d�
heapest longer than H path for a 
ost d ∈ c|H|C.A set U0 ⊂ F−1(u0) is said to be a su�
ient planning set for c|H|C, if it is aplanning set to VH(Ωd) in any Ωd, if only d ∈ c|H|C. Additionally, U0 ought to beminimal.The se
ond 
on
ept given above is a "rationality" of initial de
ision with respe
t toour knowledge. Of 
ourse, we shall be interested to �nd su
h sets U0 as small as possible.In parti
ular, if U0 = {q} then the one ar
 path s∗ = (u0, q) is an H-horizon planningpath of the family of optimization problems.The information about the network F and the 
ost fun
tion given by c|T |C withrespe
t to the future, 
an be transformed to T -regeneration sets. The main question is,to �nd a spe
i�
al T -regeneration set R of the t.i.n. Ωc|T |C , where

Ωc|T |C(v) =
⋃

d∈c|T |C

Ωd(v). (7)Namely, R ought to be a T -regeneration set of
Ωd ⊂T Ωc|T |C for every d ∈ c|H|C.A 
ut of Ωc|T |C 
an be used as su
h 
ommon regeneration set.Example 2 (
ontinued). We are 
on
erned with a 
onstant demand rate

D(t) = a for some a > 0, K > 0 and h = 1.There is the 
ase where C = {c}. The fore
ast window as well as the family of optimizationproblems are determined by its length only.We have: Zu
0 = 1

2au2 and for 
osts
c(v, v + t) = c(0, t) = K +

1

2
at2.There is exa
tly one ar
, say (0, t∗), from the root with minimal average 
ost. Furthermore,

t∗ =
√

2K
a
, with average 
ost √2Ka and c(0, t∗) = 2K.All replenishment problems of the length T = nt∗ or T = ∞ have average 
ost √2Kaand optimal paths 
ontain only ar
s of length t∗. Let us denote su
h a path with nar
s by (0, t∗)n. It is easy to 
he
k that, in general, in optimal paths all ar
s have thesame length. Additionally, for every T = nt∗ + α, where n > 0 and 0 ≤ α < t∗, there
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tly one optimal path. From Theorem 1 in Bylka and Rempaªa [2004℄ we have
P̃ {T}(F, c) = {s(T )}, with

s(T ) =

{

(0, t∗ + α
n
)n if α ≤ rnt∗,

(0, t∗ − t∗−α
n+1 )n+1 if α ≤ rnt∗,where rn =

√
n2 + n − n. In this 
ase Ωc = Ωc|T |C and |Ωc(v)| = 1 for every node v ∈ ℜ+.For every T = nt∗ + α, as above, the interval

RT =

(

T − t∗ − max

{

α

n
,
t∗ − α

n + 1

}

, T

]

is a T -regeneration set of Ωc. There is exa
tly one sele
tion from Ωc. Therefore, with re-spe
t to Theorem 1, there is no fore
ast horizon planning path for this family of problems.The set
U0 =

(

t∗
√

1 − 1

n + 1
, t∗

√

1 +
1

n

)

is a planning set to VT (Ωc) su�
ient for potentially rational initial de
isions.Remark 2. In dis
rete networks, we have 
ommon T -regeneration sets for Ωd, d ∈ c|T |C,in ea
h of the following two 
ases:
• Every ar
 of Ωc|T |C has the length not greater than a number, say k∗, and T > k∗.Then the set

RT = {v ∈ V (Ωc|T |C) | T − k∗ < τ (v) ≤ T}is a 
ut of Ωc|T |C (as in Example 2);
• There are no two ar
s (u′, v′) and (u′′, v′′) in Ωc|T |C su
h that τ (u′′) < τ (u′) <

τ (v′) < τ (v′′) and u ∈ Ωc|T |C(v) with τ (v) = T then the set
RT = {w ∈ V (Ωc|T |C) | τ (u) ≤ τ (w) ≤ T}is a 
ut of Ωc|T |C .The last 
ase is typi
al for models of Wagner and Whitin type. Generally, in models whi
hadmitted 
apa
ity for produ
tions or sto
ks, the subnetworks generated by families ofoptimal paths do not satisfy 
onditions given above.A sequen
e of T -regeneration sets for T = t0, t0 + 1, . . . , say (Rt0 , Rt0+1, . . .) is 
alledmonotoni
 i� for every t ≥ t0 we have

Rt+1 ⊂ Rt ∪ {v | τ (v) = t + 1}. (8)In models without 
apa
ities, monotoni
 sequen
es of minimal 
ut sets Rt for t = t0, t0 +

1, . . . (with t0 as small as possible) are algorithmi
ally 
onstru
ted in Chand and Morton[1986℄ and Bylka, Sethi and Sorger [1992℄. The perfe
t lot-size pro
edure given by Bastian[1992℄ 
onstru
ts the sequen
e of minimal 
ut-regeneration sets to obtain the minimalfore
ast horizon. In every 
ase, su
h sequen
e makes a possibility to de�ne a perfe
tpro
edure for �nding planning and fore
ast horizons.A

ording to De�nition 6(ii), the relation between sets of potentially rational initialde
isions and regeneration sets is established by the following theorem.



FORECAST HORIZON AND PLANNING HORIZON PATHS 79Theorem 4. Consider a family of optimization problems c|H|C in F. Let R be an ade-quate over H-regeneration set of Ωc|H|C .

(i) There exists a sele
tion S from Ωc|H su
h that (ΦH,RS)−1(u0) is a su�
ient plan-ning set for (c|H|C).

(ii) If there exists a sele
tion S from Ωc|H su
h that any path to R in ΦH,RS is anextension of s∗ ∈ ~P (Ωc|H), then s∗ is an H-horizon planning path for the family
c|H|C. If R is a 
ut set of Ωc|H|C , then we have the opposite impli
ation also.Proof. Property 7(i) now shows that R is an adequate over H-regeneration set of Ωdfor ea
h d ∈ c|H|C. The �rst statement of the theorem is a 
onsequen
e of Theorem 3,be
ause Ωd|H = Ωc|H.The se
ond statement of the theorem is a simpli�
ation of the impli
ation (iv) ⇒ (i)in Theorem 1, be
ause the same {q} is an H-regeneration set of ea
h Ωd.Let s∗ ∈ Sq(Ωc|H). If R is a 
ut set of Ωc|H|C , then s∗ ∈ ~P (RΩc|H|C) and we may �ndappropriate S.Example 3. Consider the problem of determination of the s
hedule that minimizes thetotal operating 
ost in a dis
rete equipment repla
ement model with multiple te
hnolo-gies. A repla
ement poli
y determines when to sale an old ma
hine and 
hange it toanother one from a set of te
hnologi
al possibilities M = {1, . . . , m̄}.We look at t.i.n. F with the set of nodes V = M ×N , time index τ (m, t) = t and

F (m, t) =

{{(m, t′) | t′ < t} ∪ {(m′, t) | m′ 6= m} if m > 0,

{(m′, t) | m′ 6= m} if m = 0.
• An ar
 of the form e = ((m, t′), (m, t)) represents the de
ision to buy ma
hine ofte
hnology m at the beginning of period t′ +1, to utilize it and to sale at the end ofperiod t. The 
ost c(e) 
onsists of the pur
hase 
ost minus the salvage value resalema
hine and the sum of operation 
osts in periods t′ + 1, . . . , t.

• An ar
 of the form ((m′, t), (m, t)), m > 0, is related to swit
h between di�erentte
hnologies with adequate 
ost at period t.

• The node u0 = (0, 0) is the root of the t.i.n. F. An ar
 of the form ((0, 0), (m, 0)) isrelated to the beginning of the program-de
ision with respe
t to te
hnology of thema
hine buying at the beginning of the �rst period. Ar
 of the form ((m, t), (0, t))for t > 0, is related to the end of the program (we have F−1(0, t) = ∅). Ea
h su
har
 e has the 
ost c(e) = 0.The produ
tion plant under 
onsideration starts its business in period 1 and goes outof business at the end of period T. Ea
h path from the root (0, 0) to the node (0, T ) de�nesa possible repla
ement plan. The problem of minimizing this 
ost over all admissible plansis equivalent to the problem of 
heapest pat
h. Bylka, Sethi and Sorger [1992℄ developmethods that 
an be used to 
he
k whether a fore
ast horizon exists in a 
ertain familyof "monotoni
" 
osts M. Their numeri
al example leads to the t.i.n. Ωc|8, presented inFig. 2, with over 8-regeneration set R8 (nodes in dark 
olours) adequate to the family ofsubnetworks Ωd, d ∈ c|8|M.
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Fig. 2. The t.i.n. Ωc|8 with over8-regeneration set R8 (nodes in dark 
olours) adequate for thefamily of subnetworks in Example 3.

Fig. 3. The subnetworks S and Φ8,R8
S (illustrated by bold ar
s)

We use the Algorithm to verify the existen
e of horizon planning paths sear
hed sele
-tions from the t.i.n. Ωc|8. Look at S presented in Fig. 3. It is easy to 
he
k that ea
h pathin Φ8,R8
S (illustrated by bold ar
s) is an extension of the path s∗ = ((0, 0), (3, 0), (3, 3)).Therefore, by Theorem 3 (ii), H = 8 is a fore
ast horizon with s∗ as a horizon planningpath.The algorithm is a generalization of the solution pro
edures given by Chand andMorton [1986℄ for the Wagner�Whitin model and Bylka, Sethi and Sorger [1992℄ for anequipment repla
ement model. It obtains a horizon pair if there exists a fore
ast horizon.In ea
h 
ase, the algorithm 
onstru
ts a set of potentially rational initial de
isions withrespe
t to the fore
ast window.
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luding remarks. The results 
an be used to improve known heuristi
s in se-le
ting lot size quantities. Ea
h heuristi
 has its own formula for 
hoosing a de
ision�anar
 from A−1(u0). The general idea is to start with a 
hosen heuristi
 and improve it inthe following way (see Bylka [1999℄):
• For a given fore
ast window, say up to the period T, �nd a T -
ut set R and 
onstru
tthe su�
ient planning set U , of potentially rational initial de
isions with respe
t to

R (see De�nition 6 and Theorem 4).
• Use a given heuristi
 for 
hoosing a de
ision from U.It is still an open problem when the improved heuristi
s have a narrower error band. Thealgorithm looks for a minimal fore
ast horizon. Pro
edures to dete
t a maximal planninghorizon for a given fore
ast window in a family of inventory 
ontrol problems have beenre
ently developed by Bensoussan et al. [1983℄. The presented pro
edure 
an be easilyimproved to obtain a maximal horizon planning path.
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