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Abstract. The problem of existence of a forecast (or planning) horizon has been considered
in many special models, more or less precisely. We specify and investigate this problem for
families of cheapest paths in networks with weakly ordered nodes. In a discrete network, the
standard forward algorithm finds the subnetwork generated by optimal paths. The proposed for-
ward procedure reduces subnetworks such that the forecast horizon remains unchanged. Based
on the final subnetwork, we have an answer to the forecast horizon questions. In particular,
we show that many questions about rationality of initial decisions become NP-hard. To im-
prove the performance of heuristics, we introduce the notion of potentially rational initial deci-

sions.

1. Introduction. The idea of a forecast horizon came from practical management prob-
lems when the dynamic parameters are not known for the future. In some cases, a few
initial decisions are not affected by future data (beyond a certain period). We consider
optimal solutions for a long time horizon with a given forecast window of data. The
decisions in the first or first few periods are usually those of immediate importance to
managers. Horizon research attempts to quantify the diminishing effect of forecast for
future data on initial decisions. The concept of forecast and planning horizons have been
formalized in T.o§ [1967] for a dynamic programming environment. The paper by Lundin
and Morton [1975] initiated research in this direction through the introduction of compu-
tational aspect. We refer to Rempala [1991] for the formalization of the horizon concept
in the more general settings.

The notion of forecast horizon is closely connected with performance heuristics for
nearly optimal solution in a wide variety of dynamic decision problems; see e.g. rolling
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horizon procedure (Lee and Denardo [1986]), receding horizon control (Mayne and Michal-
ska [1990]), repetitive control (Krawczyk and Karacaoglu [1993]) and moving horizon
control (Van den Broek [2002]).

The literature on computational results of a forecast horizon procedures is rather
limited. Chand and Morton [1986] were the first to develop procedures for determining
minimal regeneration sets and minimal forecast horizon (for dynamic lot size problems).
For a given value of T, the procedure establishes whether or not T is a forecast horizon.
Once the minimal regeneration set has been identified, it only remains to test whether all
the adequate optimization problems have a common first period production quantity for
at least one optimal solution. In this paper, our exploration goes in the two directions:
(1) we concentrate on planning—forecast horizon procedures in more general setting (we
don’t take into account the nature of the regeneration sets), and (2) we formulate some
known and new characterizations for the horizons taking into account the set of decisions
reduced by regeneration sets.

Deterministic dynamic optimization problems can be formulated as shortest (cheap-
est) path problems in a network. Among all classes of problems in network optimization,
shortest-path problems have been one of the most extensively studied; see e.g. the mono-
graph of Evans and Minieka [1992], and see also Pochet and Wolsey [1995] for lot sizing
problems.

For many problems, depending on available information (a forecast window), there is
a "small" set of nodes (a regeneration set) which is visited by optimal paths ended behind
the window. At best, such set has only one element, a cut node. In this case, optimal
paths end behind the window (longer than a forecast horizon) extending an optimal path
to the cut node. As a generalization of these notions, we define a (planning) horizon path
with respect to the forecast horizon of a given family of paths in the network. In any
case, a forecast window leads to a set of "rational" initial decisions.

The purpose of this paper is to show that the structure of a sub-network generated
by the family of optimal paths together with a given regeneration set determinates the
existence of a forecast horizon and planning horizon paths.

When we verify the length of a forecast horizon (with respect to our knowledge), we
face two problems of a different nature: to find a (minimal) regeneration set and to take
potentially rational initial decisions. The first problem is specific for every particular
model. The second one can be investigated as a combinatorial problem of a network.
Procedures for finding regeneration sets and horizons typically consist of solving problems
with increased length until some stopping criterion is satisfied. We refer to Chand and
Morton [1986], Bylka, Sethi and Sorger [1992] and Federgruen and Tzur [1995] for a
detailed literature review of algorithms in particular dynamic models.

The article is organized as follows. The next section introduces the notation and
explains the foundation of the time-indexed networks. In Section 2 we also define the
basic notions with respect to subnetworks generated by families of paths. Some proper-
ties, which are sufficient for existence of a horizon path with adequate algorithm (also
for finding a set of rational initial decisions with respect to the forecast window), are
presented in Sections 3 and 4.
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2. Time-indexed networks (t.i.n.’s)

2.1. The definition and notation. We use the standard notions of graph theory. ¥,
denotes the set of all nonnegative real numbers. The cardinality of a set S will be denoted
by |S].

By a network we mean a directed graph with a valuation function—the length—on
arcs (sometimes also a cost). In a natural way we extend such functions to paths. For
our investigation it is convenient to represent a directed graph by the adjacent list—the
multifunction F' which lists all predecessors nodes

F:V -2V,
where V is the set of nodes. We say that the graph F has V (written also as V(F)) as
the set of nodes and
E(F) = {(u,v) |veV(F),u€ F(v)}
as the set of arcs. Therefore, for each node u € F(v), the pair (u,v) is an arc of the graph
F. The multifunction
F7Hv) ={u]v e F(u)}

lists all nodes that are attained by an arc from the node v.

A graph F' is said to be a rooted graph if there exists exactly one node, say ug, called

the root, such that F(ug) = () and F~(ug) # (). Therefore, we assume:
if F(u) =0 then F~1(u) =0 if only u # uo.
In fact, such a graph consists of a connected graph and a set of isolated nodes.
A function 7 : V(F) — R, such that
7(v) — 7(u) > 0 for every (u,v) € E(F)
is called a time index of the vertices of the graph F. We may think of the length of an arc

U((u,v)) = 7(v) — 7(u) (1)
as of the "time distance" between its initial and terminal nodes.
DEFINITION 1. We call (F, ) the time-indexed network (t.i.n. for short) if

1. F is a rooted graph and 7 a time index of its nodes;
2. For every x € R the set {v € V(F) | 7(v) = z} is finite.
3. There is a lower bound [* > 0 of the lengths of arcs, i.e. for every arc(u,v)
either I((u,v)) > 1* or I((u,v)) = 0.
F' is a locally finite t.i.n. if additionally:

4. F(v) is a finite set for every node v.

Time-indexed networks have nodes weakly ordered by "time" (there is a possibility
of existence of different nodes with the same time indices). (F,7) is a discrete network if
V(F) is a discrete set. Without loss of generality, we can assume that 7(ug) = 0 (if not,
one can transform the time indices into 7(v) — 7(ug) for every node v).

By a path in F' we mean a sequence of nodes

s=1(81,.-.,8n), m>2,such that s;_; € F(s;) foreachi=2,... n.
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The length of s is equal to the sum of the lengths of all its arcs. Therefore I(s) =
7(sn) — 7(s1) by (1).

For a t.in. ' we will denote by

Vi (F) — the set of nodes {v € V(F) | 7(v) > T and F(v) # 0};

P,(F) — the set of all paths starting from the node u;

P(F)  the set of all paths from the root, i.c. P(F) = P, (F);

PW(F) — the set of all paths from the root to anodev € W CV ; P’ = pivt

PT(F) — the set of all paths from the root and longer than T} i.e.

PT(F) =P (F) = {s € P(F) |i(s) > T}.
We say that (A, 7) is a subnetwork of (F,7), denoted A C F, iff
V(A) C V(F) and A(v) C F(v) NV (A) for each node v.

We will denote by F|T the subnetwork with all arcs which terminate at nodes having the
time indices not greater than the number T

We write A Cp F iff A C F and we have the following implication:
if 7(v) > T and PY(F) # () then PY(A) # (.
We say that S C F is a selection from F iff F(v) # () implies |S(v)| = 1.

PROPERTY 1. Let F be a tin. If A Cp F is a t.i.n., then every selection S from A is
also a t.i.n. and S Cr F.

2.2. Subnetworks generated by families of paths. Families of paths in a t.i.n. can be given
arbitrary or constructed by a procedure. For a set P of paths in a network F), the minimal
subnetwork A C F such that, every path in P is a path in A (the network generated by
P) will be denoted by wp. Therefore,

wp(v) ={u € F(v) | (u,v) forms an arc of a path from P}
and for every I* < T < T’ we have
WET! (Y Crv WET (F) Cr F.
Of course, if F' is a connected network then F' = W)

ExXAMPLE 1. Now we think of time-indexed networks as networks with two valuation
functions (the length and the cost of arcs). We look for structural properties of t.i.n.’s
generated by the sets of optimal (cheapest) paths.

Let (F,7) be a locally finite t.i.n. and ¢ : E(F) — R4 be a cost function on the arcs
(and thus on all paths, too). We extend this cost on paths which is the sum of costs of
all its arcs.

We deal with problems of finding all c-cheapest paths from the root. A simple op-
timization problem states: Find all paths s € PY(F) having minimal cost c(s). We will
denote by

P“(F, ¢) — the subset of all cheapest paths in PY(F) and

Q° — the subnetwork generated by the family of all c-cheapest paths.
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Fig. 1. Exemplifying t.i.n. °|7 with possible 7-regeneration set R (nodes in dark colours) and
adequate subnetwork A C5 Q° (bold arcs).

Therefore,
0 = wrre(p), where II%(F) = U PY(F, c)
veV

and for each node v we have:
Q°(v) = {u € F(v)| (u,v) forms the last arc of a path s € P(F,c)}.
According to the above notation, consider the following discrete t.i.n.:
Fw)=1{0,...,v—1}forv=1,2,... and F(0) =0,

with 7(v) = v and a cost function ¢ given on F|7. If, for example, the set of optimal
paths TI¢(F|7) is given by

[ | 1 2 3 4 5 6 7
P?(F) :[{(0,1)} {(0,2)} {(0,3)} {(0,2,4)} {(0,2,5)} {(0,3,6)} {(0,2,5,7)}

then the induced subnetwork is (see Figure 1) of the form:

v: 001 2 3 4 5 6 7
Q°(v) :[0 {0} {0} {0} {2} {2} {3} {5}

Of course, the subnetwork Q¢ generated by all optimal paths in t.i.n. (F, 7, ¢) is also
t.i.n.—a subnetwork of F. Knowing ¢ only on arcs of F|T we can construct Q¢|T step by
step using standard forward procedure.

Let 7.(u,v) be the minimal cost of a path, that begins at the root, ends at vertex v
with the restriction, that (u, v) is the last arc of the path. Our focus will be the "classical"
recurrent equation for the minimal total cost function W, defined on the set of nodes:
U.(u,) = 0 for the root and for other nodes

U.(v) = min v.((u,v)) = min [¥.(u)+ c((u,v))]
u€eF (v) u€F (v)

and so on
Q°(v) = {u € F(v) [ ¥e(v) = ve((u,v))}.

In the case of locally finite network, to find Q°|T, this algorithm requires no more than
O(p3) computations, where pr = |V(F|T)|. See also the discussion in Federgruen and
Tzur [1995] for a more general case.

Usually, families of optimal (cheapest) paths are hereditary in the following sense. We
say that a set of paths P is hereditary if both:
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1. Together with a path (s1,...,s,) it contains (sq,...,s;) for each 1 <i < n;

2. Together with crossing paths (s1,...,8i,...,8i1k) and (s7,...,8},..., s;-Jrk,) such
that s; = s; for some i > 1, it contains each path of the form
(sl,...,si7s;+1...,s;.+k,) or (84,00, 8h,Siq1 ey Sitk)-

PROPERTY 2. If w € V(F) and P C P, (F) then wp is a t.i.n. with the root w. If,
additionally, P is hereditary, then Py,(wp) =P and

wp(v) ={u € F(v)| (u,v) forms the last arc of a path from P}.

From now on, we think of a hereditary family of paths as being a time indexed
subnetwork of F, say A = wp for some P C P(F).

2.3. Regeneration sets and planning paths. If a path s’ = (s1,...,84,...,8n4k), k > 0,
then we say that s’ extends s = (s1,...,8n) to Spyp or, if only k& > 0, that (s,, ..., Spik)
is a continuation of s to $,4%. The set Py (F') is exactly the set of all continuations of s
in F.

We say that a path s = (s1,...,$,) visits a set of nodes W C V(F) if it has a node
si, © > 1, at W. We call two paths alternative if both start and terminate at the same
nodes.

DEFINITION 2. We say that a set R C V(F | T) is a T-regeneration set of F if every
path s € PT(F) (i.e. longer than T') has an alternative one which visits R. It is minimal
if R\ {r} is not a T-regeneration set for each r € R.

Let us define another two useful notions: planning set and planning path:

DEFINITION 3. A set of nodes U C F~!(ug) is called a planning set to a set of nodes W
in F if for each v € W there exists a path in PY(F) which visits U and for every u € U
there is a path from u to a vertex in W.

A path s = (s1,...,8,) from the root is said to be a planning path to a set of nodes
W in F if there exists U C F~1(s,) which is a planning set to W, in the subnetwork
WP, (F)-

We will denote by

psr(F) ={U C F~*(ug) | U is a minimal planning set to R in F}.

It is easy to see the following relationships between planning sets and regeneration
sets.

PROPERTY 3. Assume that T is large enough, i.e. there is no v € Vp(F) such that (ug,v)
is the only one path to v in F. Then

(1) IfU is a planning set to Vp(F) then U is a T-regeneration set of F' (called also
a "planning" T-regeneration set);

(it) If R is a T-regeneration set of F then every planning set to R in F is also a
T-regeneration set of F,

(iit) If ACr F and R is a T-regeneration set of A, then R is a T-regeneration set
of F.
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These are some general properties of the notion introduced above.

PROPERTY 4. Assume that A Cy F are tin’s, H € Ry is large enouch and s* =
(s1,...,8%) € P(A|H) (or s* € P(F|H)). Let us formulate the following statements:

1.a Every path s € ﬁH(A) has an alternative path which extends s* in A.
1.b Ewvery path s € ﬁH(F) has an alternative path which extends s* in F.
2.a The path s* is a planning path to the set of nodes Vi (A) in A.

2.b The path s* is a planning path to the set of nodes Vi (F) in F.

3.a Each singleton {sf}, i =2,...,n is an H-regeneration set of A.

3.b Each singleton {s}}, i =2,...,n is an H-regeneration set of F.

4.a The path s* is a planning path to an H-regeneration set of A.

4.b The path s* is a planning path to an H -regeneration set of F.

The statements satisfy:
4.6 = l.a & 2.0 & 3a,
4.b = 1.b & 2.b & 3b,
and each k.a = kb, fork=1,..., 4.

Proof. We have s* € P{S"}(A). From the definitions, it follows immediately that 1.a =
2.a = {s,} is an H-regeneration set of A < 3.a.

On the other hand, if {s,,} is an H-regeneration set of A, then I.a, because ﬁT(A) is
hereditary.

Assume 4.a. Let R be an H-regeneration set of A such that s* is a planning path to
R. Let s” € P"(A) be a path which extends s*, r € R. For every v € Vi (A), there exists
a path p” € PY(A) which visits R, say p” = (p{,...,p;,) and p = r, € R, for some
ky, < mny. The path (s",p} . ,...,p, ) € P’ because PY(A) is hereditary. It extends s*.
This establishes the statement 1.a.

The same proof works for analogous implications for k.b, k =1,...,4.

We have k.a = k.b, for k =1,...,4, because A Cy F and Property 3. m

2.4. Planning and forecast horizons. The notion of forecast horizon was given for fami-
lies of optimal solutions of dynamic programs in Los [1967] and Blikle, Los [1967] (and
independently, for optimization problems in more specific models, in Lundin and Morton
[1975], as well in Bensoussan, Crouhy and Proth [1983]). In this paper we will define the
notions of horizons for t.i.n’s, only. For an example of the case of finite networks with
cycles with positive lengths see Bylka and Sethi [1992].

Our definition is consistent with mentioned above, if optimal solutions in a model are
interpreted as cheapest paths.

DEFINITION 4. Let (F,7) be a t.in. A number H € R, is a forecast horizon of a family
of paths P C P,(F), u € V(F), if there exists a path s* € P,(F|H + 7(u)), called an
H-horizon planning path of P, such that every path s € P, I(s) > H + 7(u), has an
alternative path ¢’ € P which extends s*.

The length [(s*) = h is defined to be a planning horizon of the family P. Then (h, H)
is its adequate horizon pair.

ItpP= .ﬁ(F), we say that s* is an H-horizon planning path of the t.i.n. F.
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Of course, if s* is an H-horizon planning path, then s* is an H’-horizon planning
path for every H' > H. If additionally P is hereditary, 5 is an H-horizon planning path
for every § which is alternative to s*.

Immediately from the definitions given above we have the following properties of
H-horizon planning paths:

PROPERTY 5. (i) s* is an H-horizon planning path of F if and only if s* is a planning
path to the set of nodes Vi (F) in F (i.e. 2.b of Property 4).

(i4) If s* is an H-horizon planning path of P, then s* is an H-horizon planning path
of wp. The reverse implication is also true for hereditary P.

If, additionally, u s the root of F' and wp Cg F, then s* is an H-horizon planning
path of F.

T.0¢ defines the planning path as a single arc path. The Lundin and Morton definition
uses arbitrary paths as above. If P is a set of paths, which extend s*, then [(s*) = h=H
is a forecast as well as a planning horizon (see Bensoussan, Crouhy and Proth [1983] for
this special case) of P.

2.5. Horizons of subnetworks generated by regeneration sets. A subnetwork F' reduced
by a regeneration set R, denoted by RF, is defined as the subnetwork generated by the
set of all paths from the root going through R and longer than T} i.e.:

RF = wp where P = {s € PT(F)| s visits R}. (2)
PROPERTY 6. Let R be a T-regeneration set of a t.i.n. F. We have
RF Cr F
and
psr(F) = psgr(F|T) = psr(RF|T).
Additionally, each element of psr(F) is a planning T-regeneration set of F.

For a T-regeneration set of F, by Property 4, if a singleton {¢} € psgF, then the one
arc path s* = (ug, q) is a T-horizon planning path of F. For more general case we have
the following theorem.

THEOREM 1. Let A Cyy F and s* be a path from the root in A|H, say s* € P4 (A). The
following statements are equivalent:

(i) s* is an H-horizon planning path of A,
(i9) The singleton {q} forms an H-regeneration set of A;
(i4i) There exists a selection S from A such that s* is an H-horizon planning path of S.

Each of (i) — (#it) is a consequence of:
(iv) R is an H-regeneration set of A and s* is a planning path to R.
Additionally, each of (i) — (iit) implies

(v) s* is an H-horizon planning path of F.
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Proof. We see at once that (i) < (i4) = (v) and (iv) = (i), which is clear from Property
4 (because (i) < 1.a and (iv) < 4.a).
Assume (i). We construct the selection S which satisfies (ii7). Consider the set of
paths
P = {s € PY(A)|s extends s*}.

Let S be a selection from the network wp. S is a selection from A and s* is an H-horizon
planning path of the family of paths ]3(5) Hence, S = WE(s) and, by Property 5(ii), we
have (4i7).

Assume (iii). The statement (i) follows from Property 4 because s* is an H-horizon
planning path of S Cy A. =

From (iii) of Theorem 1, we conclude that:

COROLLARY 1. The problem of the existence of a planning—forecast horizon pair (or an
H-horizon planning path) of a time indezed network is NP hard, even of the t.i.n. is
locally finite and discrete.

We investigate the class of optimization problems with limited information about
the future. To verify if our knowledge leads to a "good" initial decision, we ask about
existence of a planning—forecast horizon pair. In particular, one looks for the minimal
forecast horizon of families of solutions of optimization problems in a considered model
(see Chand and Morton [1986], Federgruen, Tzur [1995] and Bylka, Sethi [1992]).

In a particular model we ask about a collection of assumptions which guarantee the
existence of optimal plans as well as regeneration sets. In the presented general setting, we
simply assume the existence of optimal plans—cheapest paths. Additionally, we assume
that the set of all optimal paths is hereditary.

3. Algorithm for horizon planning paths. In this section it is required that consid-
ered networks are locally finite.

3.1. Some specific regeneration sets. The notion of T-regeneration set of a t.i.n. was
given in Definition 2 with a specification in Properties 3 and 6 given as a planning
T-regeneration set. In fact, we are interested in other more specific T-regeneration sets.
We call a T-regeneration set R to be T-cut if every path longer than T visits R.

Let us denote:

CutpF = F(Vp(F)\Vp(F)={ue V(F |T)|u € F(v) for some v € Vp(F)}.

It is the "over-T" minimal cut of F. If the root ug & CutpF then it is a T-regeneration
set of F.

DEFINITION 5. A T-regeneration set R of F' is called an over-T regeneration set if R C
CutrF. Tt is called adequate if, additionally,

F Y R)NVp(F) = F Y (CutrRF) N Vp(F). (3)

Of course, every T-regeneration set R of F is a cut of the t.i.n. RF (i.e. of the subnetwork
F reduced by R). On the other hand, the set Cuty RF is an over-T regeneration set of F.
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Generally, we have
R C CutrRF C CutpF for any over-T regeneration set R of F.
For suitable networks we have
RF Cp (CutprRF)F for any T-regeneration set R of F.
In particular, if R is a T-cut set of F' then
RF(v) = F(v) for any v € Vip(F). (4)
PROPERTY 7. Let R be an over-T cut set of a t.i.n. F. Then

(i) R is a T-regeneration set of A for any t.in. A Cr F;
(11) For every T' > T and T'-regeneration set R’ C RUVy(F) we have

R'F = R'RF.
Additionally, for every selection S from RF
oy = {50 Fr)<T,
Fo)Nn (Vr(F)UR) otherwise.
is a t.i.n. and

R’ is a T'-regeneration set of F < R’ is a T'-regeneration set of F.

It is desired, in specific models, that a sequence of T-cut sets should be done (on the
basis of our knowledge about the future). In this aspect, Property 7(ii) can be utilized
step by step.

For relations between forecast horizons and regeneration sets, we have the following
useful corollary of Theorem 1 and Property 7.

COROLLARY 2. Let R be an H-regeneration set of a t.i.n. F. The following three state-
ments are equivalent:

(i) H is a forecast horizon of RF;
(i1) There exist an over-H regeneration set R of RF and a set U € ps(RF) such that
Ul =1;
(t3i) There exists a selection S from RF such that H is a forecast horizon of S.
Additionally, if R is an H-cut set of F, then (i) takes a more general form:
(¢/) H 1is a forecast horizon of any t.i.n. A Cyx F.

REMARK 1. In order to verify whether T is a forecast horizon of a t.i.n. F, we can verify
it on a subnetwork RF' through its selections. If R is a T-cut of F, then this reduction is
perfect, i.e. the answer with respect to existence is the same for F' and for RF.

3.2. The cancelling operators. Let F be a t.in. and R be a set of nodes of F|T. We
will consider the behaviour of the "cancelling" operator ®7 r, which applied to F yields
a subnetwork of F. We define them in the following way.
Denote
Zrr(F)={veV(FIT)|v ¢ R}.
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First, we define

0 if (F|T)"*(v) =0 and v € Zp r(F),
¢T,RF(U) = F(U) \ ZT7R(F) if T(’U) > T, (5)
F(v) otherwise.

The operator ¢  eliminates all arcs of F'|T which terminate at “dead ends” (i.e. at nodes
from which no arc starts and which do not belong to R). The m-th iteration of ¢ g will
be denoted by ¢ 5. It is clear that

TR F Cr O g F.
Finally, we obtain the operator
(I)T’RFZ lim gb?RF
m— oo ’
In the locally finite t.i.n. case we have the equality for some m, i.e.
O pF = ¢ R F = ¢F gF.
PROPERTY 8. Let R be a T-regeneration set of a t.i.n. F. Then &1 r(F)(v) # 0 if and

only if either there exists a path from v to R in F or there exists s = (s1,...,5,) € SY(F)
such that s; € R and 7(s;41) > T for some i < n. We have

Pp r(F)(v) = F(v) \ Zr,r(F) if only 1.r(v) # 0.
3.3. The main properties of the cancelling concepts

LEMMA 1. If R is a T-regeneration set of a t.i.n. F, then ®p r(F|T) is a t.i.n. Addi-
tionally, if R is an adequate over-T' regeneration set, then ®r gF 1is a t.i.n. such that
Srr(F|T) = (®1,rF) | T.

Proof. Assume &1 pF~1(v) # 0 for a vertex v € V(RF).

If 7(v) < T, then &7 rF(v) = F(v) # 0 by the definition of the operator ®r g.
Therefore @7 g (F|T) is a t.i.n.

Suppose contrary to our claim that 7(v) > T and ®p pF(v) = . Then F(v) C Zg
and so on v ¢ F~!(R) in spite of (3). Therefore, 1 zF is a t.i.n., also.

Assume 7(v) < T. If there exists a path from v to R in F' then &7 r(F)(v) =
F(v) = &1 gr(F|T)(v), by Property 8. In the opposite case &1 r(F)(v) = 0 as well as
CDTyR(F‘T)(U) = @ ]

THEOREM 2. If R is an adequate over-1' regeneration set, then ®r rF' is a t.i.n. such
that
O rF Cp RF  with equality if, additionally, R = Cutyr RF.

Proof. By Lemma 1, &7 rF'is a t.i.n.

If u € ®p r(F)(v) then uw € RF(v), by Property 8.

Assume u € RF(v). It follows that (u,v) forms the last arc in a path which visits
R. From (3) and Property 8, it follows that ®7 g(F)(v) # 0. If 7(u) > T then u €
@1 r(F)(v), because u & Zr g(F) and by Property 8.

If 7(u) < T and R = Cutp(RF) then u € &r (F)(v). In the opposite case, by (3),
there exists » € R such that v € F~!(r). Therefore, ®7 p(F)(v) # 0 and the proof is
complete. m
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THEOREM 3. Let R be a T-regeneration set of a t.i.n. F. We have
psrF C{B (uo) | B € prF},

where

orF ={®r rS | S is a selection from O g(F|T)}.

Proof. Assume U € psg(F). Thus, U C F~!(ug) and U is a minimal planning set to R.
Let us define the following sets of paths:

P ={s e P'(RF) | s visits U}.

and denote A = wp. We have A Cp RF, because U is a T-regeneration set of RF. This
clearly forces
ACr F and ‘I)T’RA‘T C (I)T7RF|T.

From the construction of A we obtain (A|T)~!(ug) = U. From minimality of U we have
(@1,:W)~H(ug) =U (6)

for every selection W from AlT.
Let W be a selection from O pA|T. It can be improved to a selection S from ®¢ g F|T
such that S(v) = S(v) if only S(v) # . We have &7, zpS = &7 S. From (6), we have the

desired inclusion. =

3.4. The algorithm. Here and subsequently the symbol T'|F|T’, for T" > T, denotes the
multifunction F restricted to the set of nodes V(T|F|T") ={v e V(F)|T < 7(v) <T'}.
The following properties (consequences of Property 7 and Corollary 2) of the cancelling
operators are useful from computational point of view.

PROPERTY 9. Let R be a T-cut set of F and R' C RUV (T|F|T") be a T'-regeneration
set of F, where T > T. Then

(Z) (bT/,R/@T,RF - ¢T',R'F'
(i) If U € psg(F), then there exists U' C U such that U' € psp/(®r,rF) C psp: (F).
(wii) If S € or(F), S" is a selection from T|F|T' and
_[S() ifrw) <T,
S(v) = {S/(v) otherwise,

then S is a t.in. and ®p/S € o/ (F).

In fact instead of the assumption "R be a T-cut set of F'", we can take R being an
adequate over-T regeneration set of F' (for some restrictions see Remark 1).

The properties of the cancelling operators suggest the following procedure for choosing
a potentially rational initial arc (possibly planning horizon arc).

PROCEDURE SELECT

STEP 0. We start with a subnetwork F'|T having the root ug and with a T-cut (or an
over-T' regeneration set) R.

STEP 1. Use the cancelling operator to find the subnetwork ®p r(F|T). If the set
(@7 r(F|T)] ! (up) is a singleton, say {u;}, take s* = (ug,u1) and go to End. Otherwise,
go to Step 2.
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STEP 2. Look for a selection S from ®7 g(F|T) such that (®1 rS) " (up) is a single-
ton. We may exploit Property 9(iii) in the case given t-regeneration set R; and ¢g, (F)
for some t < T. If such a selection, say S*, is found, then take s* = (ug,u1,...,uy) such
that

[<I)T7R(S*)rl(ui_1) ={w;} fori=1,....kand |[®rr(S*)] " (ur) >1,

and go to End. In the other case, complete pr(F|T) and go to End.

END. We constructed ®p 7 (F|T) and either s* = (ug,uy,...,ux), k > 1 given explic-
itly together with an adequate selection S* or pr(F). In the last case we can construct
psgr(F) (the family of planning sets to R) and S* € pgr(F).

Consider the case where the output of the procedure is a family @g(F) without

singletons in psp(F'). We can choose S* € pr(F) such that
w—1 :
[ (s0)l = |, in U,

or by any other procedure. If the first decision has to be chosen, define s* = (ug, u1) with
up € S*71(sp). It will be potentially rational.

If we obtain a new information as a T’-regeneration set, then we ought to ask about
an initial decision in an updated network. Suppose that in a consecutive period 77 > T
we obtain an extension of the subnetwork as T|F|T’ and an over—T’-regeneration set
R' ¢ RUV(T|F|T") (with respect to new information). We consider two possibilities:
either an initial decision was taken or it wasn’t. In each case we use Procedure Update
and replay Procedure Select with updated subnetwork F'|T" and R'.

PROCEDURE UPDATE

STEP 0. We start with an output of Procedure Select; a subnetwork @1 pF|T and an
extension of the subnetwork T'|F|T” for some T’ > T. If an initial decision was taken, go
to Step 1. Otherwise, go to End.

STEP 1. We have S* and s* = (ug,u1,...,ur) with & > 1. We improve S* by taking

() = {u1} ifve S-'**I(S**l(uo)),
S(v) otherwise.
It changes S* in the case k = 1 and S*~!(ug) has more than one element.

The node ug becomes the root of F’, such that F’(u;) = () and for other nodes

S if < <
Flv) = S(v) i T(uk? <7(v) <T,
F(v)\ Zr,r otherwise.
Define
uy = ug and 7'(v) = 7(v) — 7(uy) for v € V(F’)
and go to End.
END. We have F’|T” obtained in Step 1. Otherwise, define F'|T" = F|T".

The algorithm is a generalization of the solution procedures given by Chand and
Morton [1986] for the Wagner—Whitin model and Bylka, Sethi and Sorger [1992] for an
equipment replacement model. Tt yields a horizon pair if there exists a forecast horizon.
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In each case, the algorithm constructs a set of potentially rational initial decisions with
respect to the forecast window.

4. Examples. The example given below illustrates a possibility how optimization prob-
lems in a dynamic model can be transformed into equivalent cheapest path problems in
a t.i.n.

EXAMPLE 2. Consider the following inventory model with continuous demand and dis-
crete replenishment. The demand appears with a given rate D(¢) at continuous time ¢, and
all demand must be met. Every sequence (g, ...,t,) where 0 =tp <t; < ... <t, =T
represents a replenishment schedule on [0, 7] such that in each ¢;_1, 4 =1,...,n, the size
of the replenishment is equal to the cumulative demands in the time interval [t;_1,¢;], i.e.

ti
Wi ::/[ D(t)dt.
i—1

For a given fixed cost of replenishment K > 0 and stock holding cost per item per time
h, the cost of the schedule is equal to

c(to,.. o tn) =nK +h > Z{i |,
=1

where

u

v
70 = / (WY — Wh)dt

is the cumulative holding inventory in the time interval [u,v]. For any given T, we want
to determine a replenishment schedule with the minimal cost. It is easy to see that if T
is not too small than we have the condition 3 of Definition 1, i.e. there is a [* such that
ti —ti—g > 1"

Consider a t.i.n. F' with R as the set of nodes and

E={(u,v) e Ry xRNy |v—u>1[" and ether u =0 or u > *}

as the set of arcs. We have F(v) = {u € R4 | v < v —I* either u = 0 or u > [*}, with
time indices 7(v) = v and arc costs c¢(u,v) = K + hZ?.
Every path (to,...,t,) from the root tg = 0 to t,, = T represents a replenishment

schedule having the cost
n

cto, ... tn) = Zc(tiflvti)'
i=1
For a given T we look for all cheapest path of the length 7' (optimal paths from the root
0 to the node T) in F.
The case of piecewise constant demand rate D is presented in Bylka and Rempata
[2004].

According to (more general) Example 1, we can investigate families of optimization
problems. The limited information means that instead of ¢ from C we know ¢|T i.e. the
costs of all arcs in the subnetwork F|T. Such a cost is called a T-forecast cost. The
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additional information is contained in the set of all possible extensions of ¢|T to cost
functions from C, i.e.:

cT|IC ={d e C|d((u,v)) = c((u,v)) if only 7(v) <T}.

For families of optimization problems, given by ¢ € C in F, we ask if ¢|T constitutes a
sufficient knowledge to find a forecast horizon and horizon planning path (see Definition
4). The same sytuation we have for every family of optimal paths II¢(F) for d € ¢|T|C.

DEFINITION 6. Consider a family of optimization problems ¢|H|C in F.

(i) We say that a path s* is an H-horizon planning path for the family c¢|H|C if it is
an H-horizon planning path of Q¢ for every d € c|H|C.

(i1) An arc from the root is said to be a potentially rational initial decision if it is the
first arc of a d—cheapest longer than H path for a cost d € ¢|H|C.
A set Uy C F~Y(up) is said to be a sufficient planning set for c|H|C, if it is a
planning set to Vi (Q9) in any Q¢, if only d € ¢|/H|C. Additionally, Uy ought to be
minimal.

The second concept given above is a "rationality" of initial decision with respect to
our knowledge. Of course, we shall be interested to find such sets U; as small as possible.
In particular, if Uy = {q} then the one arc path s* = (ug,q) is an H-horizon planning
path of the family of optimization problems.

The information about the network F and the cost function given by ¢|T|C with
respect to the future, can be transformed to T-regeneration sets. The main question is,
to find a specifical T-regeneration set R of the t.in. Q7IC where

QM) = |J %) (7)
dec|T|C
Namely, R ought to be a T-regeneration set of
Q cp QTIC for every d € ¢|H|C.
A cut of Q97TIC can be used as such common regeneration set.
EXAMPLE 2 (continued). We are concerned with a constant demand rate

D(t) = a for some a >0, K >0 and h = 1.

There is the case where C = {c}. The forecast window as well as the family of optimization
problems are determined by its length only.
1

We have: Z§ = §au2 and for costs

1
c(v,v+1t)=1c(0,t) = K+ iatQ.

There is exactly one arc, say (0, t*), from the root with minimal average cost. Furthermore,

t* = ,/%, with average cost v2Ka and ¢(0,t*) = 2K.

All replenishment problems of the length T' = nt* or T = oo have average cost vV2Ka
and optimal paths contain only arcs of length ¢*. Let us denote such a path with n
arcs by (0,t*)". It is easy to check that, in general, in optimal paths all arcs have the
same length. Additionally, for every T' = nt* 4+ a, where n > 0 and 0 < « < t*, there
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is exactly one optimal path. From Theorem 1 in Bylka and Rempala [2004] we have
PATYH(E, ¢) = {s(T)}, with

(0,¢* 4+ &)» if a < rpt*,
T) = ”*
5( ) { (O,t* _ tnI?)n+l if o < rpt*,

where 7, = v/n2 + n — n. In this case Q¢ = Q°TIC€ and |Q°(v)| = 1 for every node v € R
For every T' = nt* + «, as above, the interval

a tf—«
Rr=|(T—-t"— — T
e

is a T-regeneration set of Q2°. There is exactly one selection from 2¢. Therefore, with re-

spect to Theorem 1, there is no forecast horizon planning path for this family of problems.

The set
1 1
Ug=(t"/1— —— t"/1+ —
0 <\/ n+1’ \/+n>

is a planning set to Vr(Q°) sufficient for potentially rational initial decisions.

REMARK 2. In discrete networks, we have common T-regeneration sets for Q¢ d € ¢|T'|C,
in each of the following two cases:

e Every arc of Q°I7IC has the length not greater than a number, say k*, and T > k*.
Then the set

Ry = {v e V(QITI®) | T — k* < 7(v) < T}

is a cut of Q7IC (as in Example 2);
e There are no two arcs (u',v’) and (uv”,v”) in QTIC such that 7(u") < 7(u) <
7(v') < 7(v") and u € QITIC(v) with 7(v) = T then the set

Ry = {w e V(QITI) | 7(u) < 7(w) < T}

is a cut of QeITIC,

The last case is typical for models of Wagner and Whitin type. Generally, in models which
admitted capacity for productions or stocks, the subnetworks generated by families of
optimal paths do not satisfy conditions given above.

A sequence of T-regeneration sets for T' = tg,to +1,..., say (R, Rtg+1,-..) is called
monotonic iff for every t >ty we have

Rt+1CRtU{’U|T(’U):t+1}. (8)

In models without capacities, monotonic sequences of minimal cut sets R; for t = tg,tg+
1,... (with ¢y as small as possible) are algorithmically constructed in Chand and Morton
[1986] and Bylka, Sethi and Sorger [1992]. The perfect lot-size procedure given by Bastian
[1992] constructs the sequence of minimal cut-regeneration sets to obtain the minimal
forecast horizon. In every case, such sequence makes a possibility to define a perfect
procedure for finding planning and forecast horizons.

According to Definition 6(ii), the relation between sets of potentially rational initial
decisions and regeneration sets is established by the following theorem.
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THEOREM 4. Consider a family of optimization problems c|H|C in F. Let R be an ade-
quate over H-regeneration set of QcIHIC,

(i) There ezists a selection S from Q¢|H such that (®g rS) " (uo) is a sufficient plan-
ning set for (c|H|C).

(#3) If there exists a selection S from Q°|H such that any path to R in @y rS is an
extension of s* € ﬁ(QC\H), then s* is an H-horizon planning path for the family
c|H|C. If R is a cut set of QHIC  then we have the opposite implication also.

Proof. Property 7(i) now shows that R is an adequate over H-regeneration set of Q¢
for each d € ¢|H|C. The first statement of the theorem is a consequence of Theorem 3,
because Q4| H = Q°|H.

The second statement of the theorem is a simplification of the implication (iv) = (i)
in Theorem 1, because the same {q} is an H-regeneration set of each Q<.

Let s* € S7(Q¢|H). If R is a cut set of Q9HIC then s* € P(RQHIC) and we may find
appropriate S. m

ExAMPLE 3. Consider the problem of determination of the schedule that minimizes the
total operating cost in a discrete equipment replacement model with multiple technolo-
gies. A replacement policy determines when to sale an old machine and change it to
another one from a set of technological possibilities M = {1,...,m}.

We look at t.in. F with the set of nodes V = M x N, time index 7(m,t) = ¢ and

A A{m, ) [t <t} u{(m/,t) | m' #m} ifm >0,
F(m’t)_{{(m’,t)|m’7ém} if m = 0,

e An arc of the form e = ((m,t’), (m,t)) represents the decision to buy machine of
technology m at the beginning of period ¢’ + 1, to utilize it and to sale at the end of
period t. The cost ¢(e) consists of the purchase cost minus the salvage value resale
machine and the sum of operation costs in periods ¢’ +1,...,t.

e An arc of the form ((m/,t), (m,t)),m > 0, is related to switch between different
technologies with adequate cost at period t.

e The node uy = (0,0) is the root of the t.i.n. F. An arc of the form ((0,0), (m,0)) is
related to the beginning of the program-decision with respect to technology of the
machine buying at the beginning of the first period. Arc of the form ((m,t), (0,t))
for t > 0, is related to the end of the program (we have F~1(0,t) = (). Each such
arc e has the cost c(e) = 0.

The production plant under consideration starts its business in period 1 and goes out
of business at the end of period T. Each path from the root (0, 0) to the node (0,T) defines
a possible replacement plan. The problem of minimizing this cost over all admissible plans
is equivalent to the problem of cheapest patch. Bylka, Sethi and Sorger [1992] develop
methods that can be used to check whether a forecast horizon exists in a certain family
of "monotonic" costs M. Their numerical example leads to the t.i.n. Q°|8, presented in
Fig. 2, with over 8-regeneration set Rg (nodes in dark colours) adequate to the family of
subnetworks Q% d € c|8| M.
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Fig. 2. The t.i.n. Q°|8 with over8-regeneration set Rs (nodes in dark colours) adequate for the
family of subnetworks in Example 3.

Fig. 3. The subnetworks S and ®s g, S (illustrated by bold arcs)

We use the Algorithm to verify the existence of horizon planning paths searched selec-
tions from the t.i.n. Q¢|8. Look at S presented in Fig. 3. It is easy to check that each path
in ®g .S (illustrated by bold arcs) is an extension of the path s* = ((0,0), (3,0), (3, 3)).
Therefore, by Theorem 3 (ii), H = 8 is a forecast horizon with s* as a horizon planning
path.

The algorithm is a generalization of the solution procedures given by Chand and
Morton [1986] for the Wagner Whitin model and Bylka, Sethi and Sorger [1992] for an
equipment replacement model. It obtains a horizon pair if there exists a forecast horizon.
In each case, the algorithm constructs a set of potentially rational initial decisions with
respect to the forecast window.
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5. Concluding remarks. The results can be used to improve known heuristics in se-
lecting lot size quantities. Each heuristic has its own formula for choosing a decision an
arc from A~!(ug). The general idea is to start with a chosen heuristic and improve it in
the following way (see Bylka [1999)]):

e For a given forecast window, say up to the period 7', find a T-cut set R and construct
the sufficient planning set U, of potentially rational initial decisions with respect to
R (see Definition 6 and Theorem 4).

e Use a given heuristic for choosing a decision from U.

It is still an open problem when the improved heuristics have a narrower error band. The
algorithm looks for a minimal forecast horizon. Procedures to detect a maximal planning
horizon for a given forecast window in a family of inventory control problems have been
recently developed by Bensoussan et al. [1983]. The presented procedure can be easily
improved to obtain a maximal horizon planning path.
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