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Abstract. Considered here are production (or market) games with transferable utility. Prime

objects are explicitly computable core solutions, or somewhat “deficit” versions of such, fully

defined by shadow prices. Main arguments revolve around standard Lagrangian duality. A chief

concern is to relax, or avoid, the commonplace assumption that all preferences and production

possibilities be convex. Doing so, novel results are obtained about non-emptiness of the core,

and about specific imputations therein.

1. Introduction. Considered below are cooperative, transferable-utility (TU) games

among parties concerned with equitable sharing of efficient production costs. There is a

nonempty finite player set I, and coalition S ⊆ I would incur cost CS ∈ R∪{+∞} if

going alone.1 Reasonably assume, as a weak form of subadditivity, that

CI ≤
∑

i∈I

Ci < +∞. (1)

Denote by C the characteristic function S 7→ CS . A cost profile c = (ci) ∈ RI is then

declared in the core—as signaled by writing c ∈ core(C), or more simply c ∈ core—iff it

embodies

(I) full cost cover :
∑

i∈I ci ≥ CI and

(II) coalitional stability :
∑

i∈S ci ≤ CS for each subset S ⊆ I.

}

(2)

Plainly, this solution concept makes good sense when core is neither empty, nor too large,
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1For the empty coalition set C∅ = 0, and posit each sum

∑

∅
= 0.
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nor very sensitive to data. Sensitivity can be mitigated by replacing each “participation

constraint” (II) with the corresponding relaxed form:
∑

i∈S ci ≤ CS + ε |S| , ε > 0. Such

relaxation, while yielding so-called ε-approximate cores [12], is quite convenient, but

not always most natural.2 In fact, regarding possible emptiness of the core, note that

coalitional stability—or voluntary participation—obtains easily by charging each player

too little payment. So, the real bite resides in the requirement that the overall charge
∑

i∈I ci covers the total cost CI .

This simple observation indicates that valuable insights might sometimes be gained

by relaxing merely inequality (I) to read instead:
∑

i∈I

ci ≥ CI −D. (3)

Here D ≥ 0 stands for a monetary deficit. Or, D is a debt the grand coalition I contracts

with outside creditors. Sometimes, if I can get away without paying CI in full, D might

be construed as a damage inflicted on the environment. A quite parallel story concerns of

course profit sharing. All inequalities in (2) are then reversed, and (3) assumes the form
∑

i∈I ci ≥ CI + D, featuring a “donation” D ≥ 0. That twin story will not be told here.

To begin and stay with cost sharing, consider rather

Example 1.1. Accommodated right here are three producers, each obliged to put out

precisely the amount ei = 1/2 of the same homogenous commodity. Cost functions fi :

Xi → R are equal, and defined by fi(xi) := the smallest integer ≥ xi ∈ Xi = [0, 1] .

Coalition S incurs cost

CS := inf
{

∑

i∈S

fi(xi) :
∑

i∈S

xi =
∑

i∈S

ei

}

. (4)

Clearly, CS = 1 when |S| ≤ 2. If some (ci) ∈ core, then ci + cj ≤ 1 for every two-

player coalition S = {i, j}. Summation of all these two-player inequalities produces the

contradiction
∑

i∈I ci ≤ 3/2 < CI = 2. Thus, because CI is “too large”, core is empty. A

substitution CI ← CI−d, using minimal deficit d = 1/2, suffices though to have ( 1

2
, 1

2
, 1

2
)

as the single core element. Alternatively, replacing fi with the largest convex function

f̌i ≤ fi in (4), we get f̌i(xi) = xi, and modified coalition costs ČS = |S| /2, these data

again admitting ( 1

2
, 1

2
, 1

2
) as unique core element. However, upon letting Xi = {0, 1} with

fi(xi) = +∞ whenever xi /∈ Xi, coalition cost equals 1 if |S| = 2, +∞ otherwise, and

again core = ∅.

The temptation—or need—to tolerate a deficit D in (I) makes it natural to declare

c = (ci) ∈ RI in the D-core(C)—and write simply c ∈ D-core—iff it satisfies (3) and
∑

i∈S ci ≤ CS ∀S ⊆ I. The set so defined is a polyhedron (i.e. an intersection of closed

half-spaces). Further, (1) implies CI − D −
∑

j 6=i Cj ≤ ci ≤ Ci, so D-core must be

bounded—whence a polytope (i.e. the convex hull of finitely many points, if any). Since

D-core decreases with D, the smallest possible deficit is worth closer scrutiny.

2In particular, why should the perturbation be “uniform” across coalitions? And how does
ε relate to underlying data?
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Proposition 1.1 (On the minimal deficit). Let d := inf{D ≥ 0 : D-core 6= ∅} denote

the minimal deficit. Then d-core is nonempty, and

d-core = ∩{D-core : D > d}.

Moreover, in terms of a primal-dual pair of linear programs, we have

CI − d = max
{

∑

i∈I

ci :
∑

i∈S

ci ≤ CS for all S ⊆ I
}

(Primal)

= min
{

∑

S

wSCS : wS ≥ 0 for all S ⊆ I, and
∑

S:i∈S

wS = 1 for all i ∈ I
}

. (Dual)

Thus, D-core(C) = core(C−D1I) for all D ≥ 0, and nonempty iff D ≥ d. 3

The proof of Proposition 1.1 follows straightforwardly from standard linear program-

ming duality: Plainly, (Primal) and (Dual) are both feasible. Therefore, their optimal

values are attained and equal. Immediately one recovers here a well known result:

Corollary 1.1 (Bondareva [2], Shapley [15]). Deficit d = 0⇔ core is nonempty ⇔ the

game is balanced ⇐⇒ CI ≤
∑

S wSCS for all families (wS) ≥ 0 of weights, balanced in

that
∑

S:i∈S wS = 1 ∀i.

Proposition 1.1 might lure one into thinking that, in principle, no more need be said.

This is certainly not so. At least four queries come straight up:

First, either linear program (Primal) and (Dual) presumes explicit knowledge of all

costs CS , in total 2|I| − 1 of them. Typically, to generate these numbers is quite a task.

So, an easier approach would be welcome. In addition, “solution” of a game typically

involves somewhat more detail than mere satisfaction of a large, linear inequality system.

Second, it appears worthwhile to assess, or estimate, d in terms of primitive data,

if any, underlying the characteristic function S 7→ CS . Instead of first generating that

function, and study it thereafter, one might want to leave structure pretty much as is

and explore the game in original form.

Third—for the sake of computation, interpretation or implementation—it is desir-

able to display explicit core solutions, or approximate versions of such, in terms of non-

processed data.

Fourth and finally, if d > 0, that is, if the game features some “imbalance”, one would

like to see exactly where and why.

This paper offers a vista on these issues as they relate to production and market

games. Admittedly, such games are somewhat special, but of frequent occurrence and

3To mitigate instances having d > 0 and empty core, when CI/(CI − d) > 0, one may follow

Gomez [7] in defining a core extension by

coreExt(C) :=
CI

CI − d
core(C−d1I).

Also, upon replacing (Primal) by the more constrained program

max
∑

i∈I

ci s.t. (II) and each i ∈ some S(i) ⊆ I such that
∑

s∈S(i)

cs ≥ CS(i),

one arrives at what is called the aspiration core, studied in [3], [8], [11].
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great importance. A sample of studies include [5], [6], [9], [10], [13], [14], [17] and references

therein.

The objectives and novelties of the paper are twofold: First, after recalling that the

minimal deficit relates to the much studied duality gap in optimization, we use related

theory to provide a new condition, concerning weak stability, which entails d = 0 whence

core 6= ∅. Second, provided the production game be stable, we shall exhibit explicit core

solutions, generated by so-called shadow prices. Numerous examples are included.

Motivation for this inquiry stems from the need to reach beyond instances with con-

vex preferences and production sets. Notably, there should be ample room for discrete

activity (decision) sets, non-divisibility of various inputs, and non-transferability of spe-

cific production factors. What imports though, is that some key resources (or production

tasks) be perfectly divisible and transferable (maybe modulo time-shared use). Bundles

of these resources are privately owned. Their scarcity generates common willingness to

pay for appropriation or utilization. Thus emerge endogenous shadow prices or user costs.

In their turn these determine specific core imputations—albeit only up to deficit D ≥ d.

Section 2 defines the games and includes a running example. Section 3 reviews some

non-standard, novel results on Lagrangian duality that prove helpful. Section 4 contains

the main results, believed to interest several sorts of readers. Particularly addressed are

mathematicians, more concerned with optimization than with games—and economists,

looking more at markets than at duality.

The following notation is convenient. When C is a (constraint) subset of some ambient

space, denote by δC the extreme penalty (or indicator) function that equals 0 on C and

+∞ elsewhere. Whenever y(·) is a linear, real-valued function, write 〈y, e〉 instead of y(e).

2. Production games. In the present setting, a nonempty coalition S, if it were to

form, would attempt to incur minimal cost

CS := inf{fS(xS) + hS(gS(xS))}. (PS)

Here the function fS takes a prescribed, but abstract set XS into R∪{+∞}; the operator

gS maps XS into a real vector space E; and finally, hS : E → R∪{+∞} is a sort of

penalty function. At this juncture, no topological or geometric properties are demanded

of XS , E, fS , gS , hS .

For interpretation construe fS : XS → R∪{+∞} as an aggregate cost function,

xS ∈ XS denoting the activity, production plan, or technological design that coalition

S opts for. Further, let gS govern—and account for—resource consumption or techno-

logical restrictions. Finally, hS : E → R∪{+∞} should be seen as a penalty mechanism

meant to enforce feasibility. Note that E, the vector space of “resource endowments” or

“production commitments”, is common to all agents and coalitions. By tacit assumption

hS(gS(xS)) = +∞ when xS /∈ XS , and the convention +∞−∞ = +∞ always applies.

To our knowledge TU production (or market) games have hitherto not been defined

in such generality. Format (PS) can accommodate a wide variety of instances. To wit,

consider

Example 2.1 (Nonlinear constrained, cooperative programming). For each i ∈ I there is

a nonempty set Xi, two functions fi : Xi → R∪{+∞}, gi : Xi → E, and a set constraint
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gi(xi) ∈ Ki ⊂ E. Let then XS := Πi∈SXi. Further, posit fS(xS) :=
∑

i∈S fi(xi) and

gS(xS) :=
∑

i∈S gi(xi). Finally, introduce KS :=
∑

i∈S Ki and let hS := δKS
be the

corresponding extreme indicator.

Of particular importance is the special case where Xi = E, gi(xi) = xi − ei, and

Ki = {0}. Coalitional cost CS is then defined by infimal convolution (4).

To advertize the appeal of games in form (PS) it is natural to state forthwith:

Proposition 2.1 (Convexity and separability ensures nonempty core). Suppose XS =

Πi∈SXi with each Xi convex . Also suppose

fS(xS) + hS(g(xS)) ≥
∑

i∈S

Fi(xi) + δ{0}

(

∑

i∈S

Aixi

)

∀S ⊆ I,

with each Fi convex , each Ai : Xi → E affine, and with equality for S = I. Then the core

is nonempty.

Proof. Let (wS) ≥ 0 be any balanced collection of weights; that is,
∑

S:i∈S wS = 1 for all

i. Pick any positive ε and for each nonempty coalition S a profile xS = (xiS) ∈ XS such

that fS(xS) + hS(gS(xS)) ≤ CS + ε and
∑

i∈S AixiS = 0. Posit xi :=
∑

S:i∈S wSxiS .

Then xi ∈ Xi,
∑

i∈I Aixi = 0, and

CI ≤
∑

i∈I

Fi

(

∑

S:i∈S

wSxiS

)

≤
∑

i∈I

∑

S:i∈S

wSFi(xiS) =
∑

S

wS

∑

i∈S

Fi(xiS) ≤
∑

S

wS [CS + ε] .

Since ε > 0 was arbitrary, it follows that CI ≤
∑

S wSCS . Proposition 1.1 now yields

d = 0.

Proposition 2.1 indicates good prospects for finding nonempty cores. It provides, how-

ever, less than full satisfaction. First, no explicit solution is listed. Second, “too much”

convexity is presumed in activity sets Xi and cost functions Fi. Third, resource aggre-

gation is “too linear.” And finally, original data somehow disappear. These drawbacks

motivate a closer look next at problems of format (PS), a chief aim being to isolate—or

identify—exactly where, and to what extent, convexity is needed.

3. Multipliers and subgradients with deficits. Problem class (PS) invites a study

of the corresponding generic format

inf{f(x) + h(g(x))}. (P )

Incorporated here are mappings f : X → R∪{±∞}, g : X → E, and h : E→ R∪{±∞}.

The set X is abstract, but E is a real vector space. By tacit assumption f(x) + h(g(x)) =

+∞ if x /∈ X. Our analysis revolves around the perturbed function

(x, e, y) ∈ X× E× Y 7→ f(x) + h(g(x) + e)− 〈y, e〉 . (5)

Here Y is a judiciously chosen, convex, nonempty set of linear functionals y : E→ R.

The appropriate nature of Y is made precise later. This means that additional properties

of the functionals y (besides linearity) will be invoked only when needed. As customary,

the expression 〈y, e〉 stands for y(e). Objective (5) features a perturbation e available at

a premium 〈y, e〉 . Thus, (5) relaxes and imbeds problem (P ) into a competitive market



108 S. D. FLÅM

where any endowment e ∈ E is evaluated at constant “unit price” y. To reflect on this

situation, associate the Fenchel conjugate

h∗(y) := sup{〈y, e〉 − h(e) : e ∈ E}

to h. If h(e) denotes the cost of an enterprise that produces output e at revenues 〈y, e〉 ,

then h∗(y) reports the corresponding profit. In economic jargon: the firm in question

is a price-taker in the output market. To avoid having h∗ ≡ +∞, suppose henceforth

that h > −∞. Clearly, h∗ : Y→ R∪{±∞} is convex. The relaxed objective (5) naturally

generates a Lagrangian

L(x, y) := inf {f(x) + h(g(x) + e)− 〈y, e〉 : e ∈ E}

= f(x) + 〈y, g(x)〉 − h∗(y),

defined on X × Y. Call now y ∈ Y a D-multiplier iff, for given deficit D ≥ 0, it belongs

to the set

MD(P ) := MD := {y ∈ Y : inf
x

L(x, y) ≥ inf(P )−D}. (6)

Note that MD is convex. Elements in M := M0, if any, are hereafter named Lagrange

multipliers. Intimately related to problem (P ) is the marginal (optimal value) function

e ∈ E 7→ V (e) := inf{f(x) + h(g(x) + e) : x ∈ X}.

Reasonably assume that its effective domain domV := V −1(R) be nonempty, in which

case function V is declared proper. Of prime interest are differential properties of V (·)

at the distinguished point e = 0 :

Definition. Given D ≥ 0, the functional y ∈ Y is called a D-subgradient (or subgradient

with deficit D) of a proper function V : E→ R∪{+∞} at e, written y ∈ ∂DV (e), iff

V (·) ≥ V (e) + 〈y, · − e〉 −D. (7)

V is called weakly subdifferentiable at e iff ∂DV (e) is nonempty for each D > 0, and

subdifferentiable at that same point iff ∂0V (e) =: ∂V (e) is nonempty.

Clearly, y ∈ ∂DV (e) iff V (e) is finite and the affine function V (e) + 〈y, · − e〉 , up to

a vertical deficit D ≥ 0, bounds V (·) globally from below. Note that ∂DV (e) is convex,

and it increases with D.

Proposition 3.1 (D-supergradient = D-multiplier [4]). Suppose inf(P ) = V (0) is finite.

Then

∂DV (0) = MD.

Proof. [4] already contains the simple proof, reproduced here for completeness. Letting

ē := g(x) + e we get

y ∈ ∂DV (0) ⇔

f(x) + h(ē) = f(x) + h(g(x) + e) ≥ V (e) ≥ V (0) + 〈y, e〉 −D ∀(x, e) ∈ X× E ⇔

f(x) + 〈y, g(x)〉+ h(ē)− 〈y, ē〉 ≥ V (0)−D ∀(x, ē) ∈ X× E ⇔

f(x) + 〈y, g(x)〉 − h∗(y) ≥ V (0)−D ∀x ∈ X ⇔

infx L(x, y) ≥ inf(P )−D ⇔ y ∈MD.

Proposition 3.2 (Weak and strong stability of problem (P ) [4]). The value function

V is weakly subdifferentiable at 0–and problem (P ) is then declared weakly stable—iff
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inf(P ) is finite and equals the saddle value

inf
x

sup
y

L(x, y) = sup
y

inf
x

L(x, y). (8)

The same function V is subdifferentiable at 0—and problem (P ) is then called strongly

stable—iff inf(P ) is finite and equals the saddle value

inf
x

L(x, ȳ) = inf
x

sup
y

L(x, y) for each Lagrange multiplier ȳ.

Proof. By Proposition 3.1

∀D > 0 ∂DV (0) 6= ∅ ⇔

∀D > 0 ∃y ∈MD ⇔

∀D > 0 ∃y such that infx L(x, y) ≥ V (0)−D ⇔

supy infx L(x, y) ≥ V (0) = inf(P ).

In this string, any ȳ ∈ ∂V (0) = M invariably applies to yield

sup
y

inf
x

L(x, y) ≥ inf
x

L(x, ȳ) ≥ inf(P ).

In addition, the inequality f(x)+h(g(x)) ≥ f(x)+〈y, g(x)〉−h∗(y) is valid for all (x, y) ∈

X×Y. Consequently, inf(P ) ≥ infx supy L(x, y). Thus, the inequality infx L(x, ȳ) ≥ inf(P )

is squeezed in sandwich:

sup
y

inf
x

L(x, y) ≥ inf
x

L(x, ȳ) ≥ inf(P ) ≥ inf
x

sup
y

L(x, y). (9)

Equalities hold in (9) because supy infx L(x, y) ≤ infx supy L(x, y).

Corollary 3.2 (Biconjugacy and weak stability). Problem (P ) is weakly stable iff the

biconjugate of marginal function

V ∗∗(e) := sup{〈y, e〉 − V ∗(e) : y ∈ Y}

satisfies V ∗∗(0) = V (0) ∈ R.

Proof. From V ∗(y) = − infx L(x, y) it follows that V ∗∗(0) = supy infx L(x, y). If (P ) is

weakly stable, the last entity equals inf(P ) = V (0) ∈ R. Conversely, V ∗∗(0) ≥ V (0) ∈ R

amounts to have the left-most inequality in (9). Since the other inequality there came for

free, weak stability of (P ) follows.

It is common in Lagrangian duality to recover the primal objective as supy L(x, y).

But here it only holds that

sup
y

L(x, y) = f(x) + h∗∗(g(x)) ≤ f(x) + h(g(x))

because the biconjugate h∗∗ always satisfies h∗∗ ≤ h. This observation indicates advan-

tages in selecting h convex, the purpose then being to achieve h = h∗∗. Anyway, if inf(P )

is attained at x̄, then necessarily h(g(x̄)) = h∗∗(g(x̄)), this telling that h, in such circum-

stances, must indeed be “convex” at the point g(x̄). Although attainment of inf(P ) is

not our chief concern, it’s worthwhile to record how Lagrange multipliers relate to primal

optimal solutions:

Proposition 3.3 (Lagrange multipliers as subdifferentials of h [4]). Suppose problem

(P ) is stable.
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• If x̄ minimizes (P ), then any Lagrange multiplier ȳ must belong to ∂h(g(x̄)) and satisfy

f(x̄) + 〈ȳ, g(x̄)〉 = min{f(x) + 〈ȳ, g(x)〉 : x ∈ X}. (10)

• Conversely, if (x̄, ȳ) ∈ X× Y satisfies (10) with ȳ ∈ ∂h(g(x̄), then x̄ minimizes (P ).

Proof. For the first bullet, given any minimizer x̄ of (P ) pick an arbitrary ȳ ∈M = ∂V (0).

It holds for each x that

f(x̄) + h(g(x̄)) = inf(P ) ≤ L(x, ȳ) = f(x) + 〈ȳ, g(x)〉 − h∗(ȳ).

Insert x = x̄ on the right hand side to have h(g(x̄)) ≤ 〈ȳ, g(x̄)〉 − h∗(ȳ) whence

h(g(x̄)) + h∗(ȳ) = 〈ȳ, g(x̄)〉 . (11)

This implies first, ȳ ∈ ∂h(g(x̄)) and second, (10). For the last bullet, (10) and ȳ ∈

h(g(x̄)⇔ (11) yield

f(x̄) + h(g(x̄)) = min
x
{f(x) + 〈ȳ, g(x)〉 − h∗(ȳ)} = min

x
L(x, ȳ).

This tells, in view of (9), that x̄ minimizes (P )—and that ȳ ∈M.

So far, using only algebra and numerical ordering, we have identified deficit multipli-

ers—or equivalently, deficit subgradients—as expedient objects for Lagrangian duality.

Needed next are arguments showing that such objects do indeed exist in common cir-

cumstances. Recall that a point c in a subset C of real vector space is declared absorbing

if for all directions d 6= 0 there exists a real r > 0 such that c+]0, r[ d ⊂ C. As customary

epiV := {(e, r) ∈ E× R : V (e) ≤ r} denotes the epigraph of V. Upon taking the convex

hull Conv of the latter set one gets Conv(epiV ) = epi(convV ) where convV denotes the

largest convex function ≤ V.

Proposition 3.4 (Linear support of V at 0). Suppose 0 is absorbing in domV. Also

suppose Conv(epiV ) contains an absorbing point, but (0, V (0)) is not of that sort. Then,

letting Y consist of all linear y : E→ R, the subdifferential ∂V (0) is nonempty.

Proof. By the Hahn-Banach separation theorem there is a hyperplane that supports

C := Conv(epiV ) in the non-absorbing point (0, V (0)). That hyperplane is defined in

terms of a linear functional (e∗, r∗) 6= 0, and

〈e∗, e〉+ r∗r ≥ r∗V (0) for all (e, r) ∈ C. (12)

Plainly, (e, r) ∈ C & r̄ > r ⇒ (e, r̄) ∈ C. Consequently, r∗ ≥ 0. If r∗ = 0, then,

since 0 is absorbing in domV, it holds that 〈e∗, e〉 ≥ 0 for all e ∈ E, whence e∗ = 0,

and the contradiction (e∗, r∗) = 0 obtains. So, divide through (12) with r∗ > 0, define

y := −e∗/r∗, and put r = V (e) to have

V (e) ≥ V (0) + 〈y, e〉 for all e ∈ E.

That is, y ∈ ∂V (0).

Proposition 3.5 (Continuous linear support of V at 0). Let E be a topological, locally

convex, separated, real vector space. Denote by convV the largest convex function ≤ V.

Suppose V is finite-valued, bounded above on a neighborhood of 0 and convV (0) = V (0).

Then, letting Y consist of all continuous linear functionals y : E→ R, the subdifferential

∂V (0) is nonempty.
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Propositions 3.4-5 emphasize the convenience of (0, V (0)) being “non-interior” to

Conv(epiV ). In particular, it simplifies things to have epiV —or equivalently, V itself—

convex.

4. Core deficit and duality gap. After this detour its is time to reconsider produc-

tion games with coalition costs CS defined in (PS). As indicated, we seek explicit cost

allocations c = (ci) ∈ D-core with small deficit D. For that purpose, in view of Example

2.1 and Proposition 2.1, recall that

LS(xS , y) = fS(xS) + 〈y, gS(xS)〉 − h∗
S(y)

is the Lagrangian of coalition S, and introduce a standing

Hypothesis on additive estimates. Let henceforth XS := Πi∈SXi and suppose there

exist for each i, three functions Fi : Xi → R∪{+∞}, Gi : Xi → E; and Hi : E→ R∪{+∞}

such that for all nonempty S ⊆ I and y ∈ Y,

inf
xS

LS(xS, y) ≥ inf
{

∑

i∈S

[Fi(xi) + 〈y, Gi(xi)〉 −H∗
i (y)] : xi ∈ Xi

}

. (13)

Further, for the grand coalition S = I it should hold that

inf
xI

LI(xI , y) ≤ sup
y

inf
{

∑

i∈I

[Fi(xi) + 〈y, Gi(xi)〉 −H∗
i (y)] : xi ∈ Xi

}

.

Proposition 4.1. The standing hypothesis holds if for all nonempty S ⊆ I, xS ∈ XS ,

y ∈ Y

fS(xS) + 〈y, gS(xS)〉 ≥
∑

i∈S

{Fi(xi) + 〈y, Gi(xi)〉}, (14)

and for all e ∈ E,

hS(e) ≥ inf
{

∑

i∈S

Hi(ei) :
∑

i∈S

ei = e
}

,

with equalities when S = I.

Example 4.1 (Positive homogeneous penalty). Let h : E→ R∪{+∞} be positively ho-

mogeneous. For example, h could be the support function of some nonempty subset of

a vector space that is pre-dual to E. Then h∗, restricted to Y, is the extended indicator

δY of some convex set Y ⊆ Y. That is, h∗(y) = 0 if y ∈ Y , +∞ otherwise. Suppose

h∗ = H∗
i = h∗

S for all i ∈ I and all S ⊆ I. Then (14) implies (13).

Example 4.2 (Cone constraints). Of special notice is the instance when h equals the

extended indicator δK of a convex cone K ⊂ E. Then h∗ = δK∗ where K∗ := {y : 〈y, K〉

≤ 0} is the negative dual (polar) cone. In Example 2.1 let all Ki be the same convex cone

K ⊂ E and posit H∗
i = h∗

S := h∗ for all i ∈ I and all S ⊆ I. Then the above hypothesis

is satisfied, and coalition S incurs stand-alone cost

CS := inf
{

∑

i∈S

fi(xi) :
∑

i∈S

gi(xi) ∈ K, xi ∈ Xi

}

.

Observe that costs and constraints are here pooled additively. However, no activity set

can be transferred from any agent to another.
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Example 4.3 (Inf-convolution of penalties). When

hS(e) := inf
{

∑

i∈S

hi(xi) :
∑

i∈S

xi = e
}

,

we get h∗
S(y) =

∑

i∈S h∗
i (y) and may thus use H∗

i = h∗
i .

Proposition 4.2 (Explicit allocations in D-core). Each D-multiplier for problem (PI)-

–that is, for the grand coalition S = I–generates a cost allocation c = (ci) ∈ D-core by

the formula

ci = ci(y) := inf{Fi(xi) + 〈y, Gi(xi)〉 −H∗
i (y) : xi ∈ Xi}. (15)

Proof. By the standing hypothesis it holds for any “price regime”y ∈ Y and each coalition

S that
∑

i∈S

ci(y) ≤ inf
xS

LS(xS , y) ≤ sup
y

inf
xS

LS(xS , y) ≤ inf
xS

sup
y

LS(xS, y)

= inf
xS

{fS(xS) + h∗∗
S (gS(xS))} ≤ inf

xS

{fS(xS) + hS(gS(xS))} = CS .

So, no coalition ought reasonably block a proposed payment scheme of the sort i 7→ ci(y).

In addition, y ∈MD(PI) entails
∑

i∈I

ci(y) = inf
xI

LI(xI , y) ≥ CI −D.

Proposition 4.3 (Overestimating the core-deficit). The duality gap

δ := inf
xI

sup
y

LI(xI , y)− sup
y

inf
xI

LI(xI , y)

majorizes the minimal core-deficit; that is: δ ≥ d ≥ 0. In particular, if δ = 0, then

core 6= ∅.

Proof. By assumption CI = inf(PI) is finite. For each deficit D > δ there is a D-

multiplier y. By Proposition 4.1 this y generates a c ∈ D-core. Consequently, δ ≥ d.

Theorem 4.1 (Weak and strong stability of (PI) yield nonempty core). If problem (PI)

is weakly stable; that is, if V (0) = V ∗∗(0)–or equivalently, if

sup
y

inf
xI

LI(xI , y) = inf
xI

sup
y

LI(xI , y),

then core is nonempty. If moreover, (PI) stable, then each of its Lagrange multipliers y

defines a cost allocation (15) that belongs to core.

Example 4.4 (Cooperative linear programming). A special and important version of

Example 2.1 has Xi := R
ni

+ , cost function kT
i xi with ki ∈ Rni , gi(xi) := Aixi − ei with

ei ∈ Rm and Ai a m × ni matrix. Posit Ki := {0} for all i to get, for coalition S, a

stand-alone cost given by the standard linear program

CS := inf
{

∑

i∈S

kT
i xi :

∑

i∈S

Aixi =
∑

i∈S

ei with xi ≥ 0 for all i
}

(linearPS)

Suppose primal problem (linearPI) and its dual

sup
{

yT
∑

i∈I

ei : AT
i y ≤ ki for all i

}

(linearDI)

are both feasible. Then inf(linearDI) is attained and, by Theorem 4.1, for any dual
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optimal solution ȳ the payment scheme ci := ȳT ei yields (ci) ∈ core. Thus, regarding ei

as the production target of “factory” or corporate division i, those targets are evaluated by

a common price ȳ. Extensions to linear games involving general cones is immediate [1].

Example 4.5 (Inf-convolution continued). Each Lagrange multiplier ȳ that applies to

Example 2.1, generates a cost allocation (ci) ∈ core via

ci := 〈ȳ, ei〉 − f∗
i (ȳ).

This formula is quite telling: agent i is charged 〈ȳ, ei〉 for his production task less the

price-taking profit f∗
i (ȳ) he can generate, both entities calculated at shadow prices.

I end this section by overestimating the deficit d when E is finite-dimensional.

Definition (Vertical convexity deficit). For any subset E ⊂ E× R its vertical convexity

deficit is defined by

vdef(E) := inf{r > 0 : ConvE ⊆ E + {0} × [−r, r]}.

The common convention inf ∅ = +∞ applies here. Clearly, if E ⊂ E× R is convex, then

vdef(E) = 0. Also, for any finite family of subsets Ei, i ∈ I, it holds that vdef(
∑

i∈I Ei) ≤
∑

i∈I vdef(Ei). Indeed, when ri > vdef(Ei) for all i, and r :=
∑

i∈I ri

Conv
∑

i∈I

Ei ⊆
∑

i∈I

ConvEi ⊆
∑

i∈I

{Ei + {0} × [−ri, ri]} ⊆
∑

i∈I

Ei + {0} × [−r, r] .

Proposition 4.4 (Overestimating the vertical deficit). Let E be finite-dimensional. For

any finite family Ei, i ∈ I, of nonempty subsets in E× R it holds that

vdef
(

∑

i∈I

Ei
)

≤ (dim E + 2) max
i∈I

vdef(Ei).

Proof. The Folkman-Shapley Lemma says that any x ∈ Conv
∑

i∈I Ei can be synthesized

as a sum x =
∑

i∈I xi with xi ∈ ConvEi for all i in some subset S ⊆ I, with cardinality

|S| ≤ dim E + 2, and xi ∈ Ei otherwise. Select any ri > vdef(Ei) and posit r :=
∑

i∈S ri.

Then

x ∈
∑

i∈S

ConvEi +
∑

i/∈S

Ei ⊆
∑

i∈S

{Ei + {0} × [−ri, ri]}+
∑

i/∈S

Ei ⊆
∑

i∈I

Ei + {0} × [−r, r] .

and the conclusion follows.

Theorem 4.2 (Overestimating the core deficit) Let E be finite-dimensional. A production

game featuring fS(xS) :=
∑

i∈S fi(xi), gS(xS) :=
∑

i∈S gi(xi), and

hS(e) = inf
{

∑

i∈S

hi(ei) :
∑

i∈S

ei = e
}

∀S ⊆ I,

with each hi lower semicontinuous convex, has minimal core deficit

d ≤ (dim E + 2) max
i∈I

vdef(Ei)

where

Ei := {(e, r) ∈ E× R : fi(x) ≤ r and gi(x) = e for some (x, r) ∈ Xi × R}.

Proof. Introduce the “partial sign shift” π(e, r) := (−e, r) and the “strict” set

E+

i := {(e, r) ∈ E× R : fi(x) < r and gi(x) = e for some x ∈ Xi}.
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It follows from [4] that

epi+VI = π ◦
∑

i∈I

E+

i +
∑

i∈I

epi+hi

where epi+hi := {(e, r) ∈ E× R : hi(e) < r} is the strict epigraph of hi. Clearly,

vdef(epih+

i ) = 0, and vdef(π ◦
∑

i∈I E
+

i ) = vdef
∑

i∈I Ei. Since d ≤ vdef(epi+VI),

the conclusion follows from Proposition 4.4.

5. Conclusion. Broadly, the paper shows that provided costs and technologies be addi-

tively separable, to have an explicit, computable, core solution of the production/market

game one really need not convexity all over the place. It suffices that the aggregated

marginal function VI be subdifferentiable (in the sense of convex analysis) at the point

e = 0 of no perturbation.
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