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Abstract. The main purpose of this paper is to analyze a development of a scenario suggested by

Baston and Garnaev (2005) for modelling the situation where two departments in a large organi-

zation are each seeking to make an appointment within the same area of expertise, for instance,

a computer science specialist. The departments are interested in three skills of the candidate

(say, writing code, communication and in algorithms). In our scenario Department 1 wants to

employ a candidate with excellent skills in writing code and communication. Department 2 is

looking for a candidate with excellent skills in developing algorithms and communication. So,

the departments have a joint interest, as well as their own interest. The scenario is modelled by

a multistage non-zero sum game. Nash equilibrium and Stackelberg strategies are derived.

1. Introduction. The main purpose of this paper is to analyze a development of a

scenario suggested by Baston and Garnaev (2005) for modelling the situation where two

departments in a large organization are each seeking to make an appointment within

the same area of expertise, for instance, a computer science specialist. The departments

are interested in three skills of the candidate (say, writing code, communication and in

algorithms). In our scenario Department 1 wants to employ a candidate with excellent

skills in writing code and communication. Department 2 is looking for a candidate with

excellent skills in developing algorithms and communication. So, the departments have a

joint interest as well as their own interest. In Baston and Garnaev (2005) departments

were interested only in one candidate skill. The scenario for the case of two skills in

the secretary game was considered by Sakaguchi and Mazalov (2004), who investigated
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the game in which two players (President and Vice-president) both want to employ one

secretary from a set of n applicants. Excellent management ability (a foreign language)

is required by the President (Vice-president).

It is interesting to note that Ramsey and Szajowski (2006) applied the Baston and

Garnaev game as an illustrative example in their extension of the concept of correlated

strategies to Markov stopping games where the situation of multiple solutions may arise.

The main topic of this paper is strictly related to a game version of the best choice

problem (BCP) (see Ferguson (1989), Freeman (1983), Kwan and Yuan Y (1988) about

BCP and Sakaguchi (1989, 1995) about its game theoretic versions). Enns and Ferenstein

(1985), Enns, Ferenstein and Sheahan (1986) have solved a non-zero sum game related to

BCP. The full information version of the game has been solved by Chen, Rosenberg and

Shepp (1997). The relation between the players is as follows: denote the decision maker

as Player 1 and Player 2; when an item appears, then Player 1 always has the first oppor-

tunity to decide to hire the applicant or not (unless she has hired one already); one can

say that Player 1 has priority; if Player 1 does not hire the current applicant, then Player

2 can decide whether to hire the applicant or not (unless she has hired one already); if

neither Player hires the current applicant they interview the next applicant; the interview

process continues until both players have hired an applicant; a hired applicant does not

hesitate, but accepts an offer without delay and additional conditions.

Ramsey and Szajowski (2001) have considered a mathematical model of competitive

stopping of a Markov chain. Two decision makers observe goods or applicants for a

post in sequence. Each object is characterized by some random variable. The aim of the

players is to obtain the most profitable object. The rules of the game are as follows: an

object can be accepted only at the moment of its appearance; at each moment N one

object is presented; when both players want to accept the same object then some rules

for assigning priority of acceptance to one of the players is applied; any accepted object

is available with some given probability; if such an object is not available it is lost to

both players forever. The solution of such games is found by solving a system of nested

Bellman equations.

2. Preliminary notions for the three quality game. By choosing the units appro-

priately we can suppose that each applicant has three kinds of expertise (code, algorithms,

communication) drawn independently at random from the interval [0, 1] and that the cost

of a shortfall in expertise of a department not employing an applicant is c. We can think

of the situation as a multi-stage game with the r-th stage being one in which rejection

of the current applicant would leave r − 1 applicants available for interview. However,

following Baston and Garnaev (2005), we will adopt a naive approach and not use the

general theory of such games.

Consider first the decision problem in which a player has an interest in two kinds of

skills and he knows that there are r applicants remaining and the other player has filled

the post in his department. We will denote the expectation of such a player in this case

by ur. Clearly, if r = 1, the player will accept the applicant and ur = 1/4. Furthermore,

when there are r− 1 applicants available if the current one is rejected, he will accept the
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applicant he is interviewing if the applicant has expertise x and y where xy ≥ ur−1 and

reject otherwise. Thus

ur =

∫

xy>ur−1

xy dx dy +

∫

xy≤ur−1

ur−1 dx dy =
3

4
u2

r−1 −
1

2
ln(ur−1)u

2
r−1 +

1

4
.

3. The three quality game with one and two applicants. We now investigate the

scenario described in Section 1 where there are two departments (two players). The payoff

of an individual is the product of the two skill measures the player is interested in (e.g.

x-skills in code writing; y-communication skills; z-skills in developing algorithms. These

measures are assumed to be independent. Also we assume that if both players wish to

accept a candidate, the candidate accepts Player 1’s offer with probability 1/2, otherwise

he accepts Player 2’s offer.

The case when there is only one applicant presents no difficulties because both players

will want to appoint as they will not want a shortfall of expertise in their department.

Thus there is a unique Nash equilibrium and the expected payoff for each player is

(1/4 − c)/2 = (1 − 4c)/8.

The position is very different when there are two applicants. The game is now a

two-stage rather than a single shot game and what is meant by a Nash equilibrium has

to be considered. We will take a naive view and assume the players will play a Nash

equilibrium when interviewing an individual applicant. In essence, we are restricting

attention to subgame perfect Nash equilibria. When the first applicant is interviewed,

each player knows that he can expect 1/4 if he rejects and the other player accepts and

(1 − 4c)/8 if both reject. We can represent the situation at the first stage by a bimatrix

game M2(x, y, z) given by

M2(x, y, z) =

(

Accept Reject

Accept ((xy + 1/4)/2, (yz + 1/4)/2) (xy, 1/4)

Reject (1/4, yz) ((1 − 4c)/8, (1 − 4c)/8)

)

Note that

(a) for xy ≥ 1/4 and yz ≥ 1/4 Accept dominates Reject for both players,

(b) for xy ≤ max{0, (1 − 4c)/8} and yz ≤ max{0, (1 − 4c)/8} Reject dominates Accept

for both players,

(c) for xy > max{0, (1 − 4c)/8} and yz < max{0, (1 − 4c)/8} or xy > 1/4 and yz ∈

(max{0, (1 − 4c)/8}, 1/4) (Accept, Reject) is the unique Nash equilibrium,

(d) for yz > max{0, (1 − 4c)/8} and xy < max{0, (1 − 4c)/8} or yz > 1/4 and xy ∈

(max{0, (1 − 4c)/8}, 1/4) (Reject, Accept) is the unique Nash equilibrium,

(e) for xy, yz ∈ [max{0, (1 − 4c)/8}, 1/4] there are two pure Nash equilibria, namely

(Accept, Reject) and (Reject, Accept) and one mixed in which Player 1 accepts an

applicant with probability (4c−1+8yz)/(4(yz+c)) and Player 2 accepts an applicant

with probability (4c−1+8xy)/(4(xy+ c)). The payoff vector for the mixed strategy

pair is given by (v1, w1) where

v1 =
(12 + 16c)xy + 4c − 1

32(xy + c)
, w1 =

(12 + 16c)yz + 4c − 1

32(yz + c)
.
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Of course neither of the pure Nash equilibria are symmetric and this could be seen as

a drawback, because the scenario does not present any differences between the players.

However, we should not dismiss these equilibria out of hand as they could arise from

different dynamics in the organization. For instance, if one departmental head is somewhat

aggressive and the other more easy-going, it is quite likely that the more aggressive head

would state what he was going to do; in essence the aggressive head assumes the role of

a Stackelberg leader. The mixed Nash equilibrium has the advantage that each player

adopts the same strategy so that it can be argued that it is fairer than either of the

pure equilibria, but it has the drawback that the players use complicated probabilities to

decide their actions.

So far we have looked at the situation where the players are actually confronted with

the applicant’s expertise. However, from a game theoretic point of view, the strategies

should be announced before the interview takes place; in other words, we should define a

function s : [0, 1] × [0, 1] → [0, 1] for each player where s(x, y) represents the probability

of accepting an applicant with two kinds of expertise of interest x and y. Of course it is

reasonable to assume that if a player accepts an applicant with expertise x and y, then it

would appear unreasonable to expect the player to reject an applicant of expertise x′ and

y′ where x′y′ < xy. If this condition is imposed, there are just two pure Nash equilibria

for the players; one Player accepts the first applicant if and only if the applicant has

two kinds of expertise of interest x and y such that xy ≥ 1/4 and the other Player

accepts if and only if the applicant has two kinds of expertise of interest y and z such

that yz ≥ max{(1 − 4c)/8, 0}. Note that, at these Nash equilibria, both applicants will

be accepted if c ≥ 1/4 but that, for c < 1/4, there is a positive probability that only one

applicant will be accepted.

We now calculate the expectated values for the strategies at which Player 1 (the

Stackelberg leader) accepts an applicant if and only if the product of two kinds of expertise

in which he has interest is at least 1/4 and Player 2 (the Stackelberg follower) accepts if

and only if the corresponding product is at least (1 − 4c)/8. We consider two cases: (a)

c ≤ 1/4 and (b) c > 1/4.

(a) Assuming c ≤ 1/4, we have that the payoffs V2(c) and W2(c) of Player 1 and

Player 2 are given as follows

V2 =

∫ 1

1/4

∫ 1

(1−4c)/(8y)

∫ 1

1/(4y)

4xy + 1

8
dx dz dy

+

∫ 1

1/4

∫ (1−4c)/(8y)

0

∫ 1

1/(4y)

xy dx dz dy

+

∫ 1/4

(1−4c)/8

∫ 1

(1−4c)/(8y)

∫ 1

0

1

4
dx dz dy +

∫ 1

1/4

∫ 1

(1−4c)/(8y)

∫ 1/(4y)

0

1

4
dx dz dy

+

∫ (1−4c)/8

0

∫ 1

0

∫ 1

0

1 − 4c

8
dx dz dy +

∫ 1/4

(1−4c)/8

∫ (1−4c)/8y

0

∫ 1

0

1 − 4c

8
dx dz dy

+

∫ 1

1/4

∫ (1−4c)/8y

0

∫ 1/(4y)

0

1 − 4c

8
dx dz dy
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=
141

512
−

ln(2)

64
+

(

ln(2)

8
−

15

128

)

c +

(

7

16
+

ln(2)

4

)

c2

+
1

64
ln(1 − 4c) −

1

4
ln(1 − 4c)c2,

W2 =

∫ 1

1/4

∫ 1

(1−4c)/(8y)

∫ 1

1/(4y)

4yz + 1

8
dx dz dy

+

∫ 1

1/4

∫ (1−4c)/(8y)

0

∫ 1

1/(4y)

1

4
dx dz dy

+

∫ 1/4

(1−4c)/8

∫ 1

(1−4c)/(8y)

∫ 1

0

yz dx dz dy +

∫ 1

1/4

∫ 1

(1−4c)/(8y)

∫ 1/(4y)

0

yz dx dz dy

+

∫ (1−4c)/8

0

∫ 1

0

∫ 1

0

1 − 4c

8
dx dz dy +

∫ 1/4

(1−4c)/8

∫ (1−4c)/8y

0

∫ 1

0

1 − 4c

8
dx dz dy

+

∫ 1

1/4

∫ (1−4c)/8y

0

∫ 1/(4y)

0

1 − 4c

8
dx dz dy

=
289

1024
−

ln(2)

32
−

(

15

128
+

ln(2)

8

)

c −
1

128
ln(1 − 4c) +

1

16
c ln(1 − 4c)

+
21

64
c2 −

1

8
c2 ln(1 − 4c).

It is quite surprising that the function V2(c) is concave on [0, 1/4]: it is decreasing on [0, c∗]

and it is increasing on [c∗, 1/4] where c∗ = 0.079794. Thus, c∗ is the most unfavorable

shortfall payoff for the Leading player, meanwhile 1/4 is his most favorable shortfall

payoff. The Follower player payoff W2 is decreasing on [0, 1/4]. Thus, the most favorable

shortfall payoff for the Leader player is also the most Follower player unfavorable one.

Also,

V2(0) =
141

512
−

ln(2)

64
= 0.26456,

lim
c→1/4

V2(c) =
35

128
+

ln(2)

32
= 0.295098,

V2(cv∗) = 0.260617,

W2(0) =
289

1024
−

3 ln(2)

128
= 0.26056,

lim
c→1/4

W2(c) =
35

128
−

ln(2)

16
= 0.2305116.

To find how much the Stackelberg leader can gain from his leading strategy we have to

find V2(c) − W2(c) which is given as follows

V2(c) − W2(c) =
ln(2)

64
−

7

1024
+

1

4
ln(2)c +

(

7

64
+

ln(2)

4

)

c2 +
3

128
ln(1 − 4c)

−
1

16
c ln(1 − 4c) −

1

8
c2 ln(1 − 4c).

It is clear that V2(c) − W2(c) > 0 for c ∈ [0, 1/4] and V2(c) − W2(c) is an increasing

function on [0, 1/4] which increases from −7/1024 + ln(2)/64 = 0.003994 for c = 0 to
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3 ln(2)/32 = 0.064983 for c = 1/4. Thus, at c = 1/4 the Stackelberg leader gains 16.27

times more that at c = 0.

The joint payoff of Players are given as follows

V2(c) + W2(c) =
1

128
ln(1 − 4c) +

1

16
c ln(1 − 4c) −

3

8
c2 ln(1 − 4c)

+

(

49

64
+

ln(2)

4

)

c2 −
15

64
c −

3

64
ln(2) +

571

1024
.

It is clear that V2(c) + W2(c) is a concave function which gets its minimum at c∗∗ =

0.147861 and

V2(c∗∗) + W2(c∗∗) = 0.503572,

V2(0) + W2(0) =
571

1024
−

3 ln(2)

64
= 0.525126,

lim
c→1/4

V2(c) + W2(c) =
35

64
−

ln(2)

32
= 0.525214.

(b) Assuming c > 1/4, we have that the payoffs V2(c) and W2(c) of player 1 and

player 2 are independent of c and they are given as follows

V2(c) = lim
c→1/4

V2(c) =
35

128
+

ln(2)

32
= 0.295098,

W2(c) = lim
c→1/4

W2(c) =
35

128
−

ln(2)

16
= 0.2305116.

4. The general case of three quality game. We saw in the last section that the

two applicant game presented difficulties so we must expect similar ones to occur in the

general game. However, when there are three or more applicants, further complications

arise as it was pointed out by Baston and Garnaev (2005) for the One Quality Game.

In the two applicant game, the players know their expectations if both players reject the

first applicant but, when there are three applicants and both reject the first applicant,

their expectations will depend on which Nash equilibrium is adopted at the second stage.

We will assume that there is some kind of consistency in the actions of the players at

the various stages and investigate a number of scenarios to see how the payoffs differ

and how they are affected by the value of c. In the two applicant case, we have sug-

gested that, it might benefit the players to agree to randomize who takes the role of

Stackelberg leader so we will consider the situation in which, at each stage, the players

agree to randomize who takes that role. By doing this the players create a symmetric

situation where, at each stage, the players have the same expectation if both players

reject the current applicant. It is therefore very different from the situation in which the

players agree to take it in turns to assume the role of Stackelberg leader; in this case,

at any given stage, the players will in general have different expectations. If there is no

agreement to randomize concerning who takes the role of Stacklberg leader, it seems

natural to assume that a player who adopts the role of a Stackelberg leader for one stage

would take that role at every stage; we investigate how unfair this is on the Stackelberg

follower.
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Assuming Players 1 and 2 believe their expectations are respectively Vr−1 and Wr−1

if they both reject the applicant interviewed at stage r, the r-stage bimatrix is

Mr(x) =

(

Accept Reject

Accept ((xy + ur−1)/2, (yz + ur−1)/2) (xy, ur−1)

Reject (ur−1, yz) (Vr−1, Wr−1)

)

The result of the following lemma enables us to carry out a similar analysis to that

of the two applicant case.

Lemma. For all r, ur ≥ max{Vr, Wr}.

Proof. For any strategy pair in a two-person non-zero sum game, the expectations in a

Nash equilibrium are non-decreasing functions of the elements in the matrix. Because

u1 = 1/4 ≥ (1 − 4c)/8, the result follows by induction.

We now calculate the expectations for the strategies in which Player 1 (the Stackelberg

leader) accepts an applicant if and only if the product of his two kinds of expertise is at

least ur−1 and Player 2 (the Stackelberg follower) accepts if and only if this product is

at least Wr−1. Then

Vr =

∫ 1

ur−1

∫ 1

Wr−1/y

∫ 1

ur−1/y

4xy + 1

8
dx dz dy

+

∫ 1

ur−1

∫ Wr−1/y

0

∫ 1

ur−1/y

xy dx dz dy

+

∫ ur−1

Wr−1

∫ 1

Wr−1/y

∫ 1

0

ur−1 dx dz dy +

∫ 1

ur−1

∫ 1

Wr−1/y

∫ ur−1/y

0

ur−1 dx dz dy

+

∫ Wr−1

0

∫ 1

0

∫ 1

0

Vr−1 dx dz dy +

∫ ur−1

Wr−1

∫ Wr−1/y

0

∫ 1

0

Vr−1 dx dz dy

+

∫ 1

ur−1

∫ Wr−1/y

0

∫ ur−1/y

0

Vr−1 dx dz dy =

= −
3

4
u2

r−1 ln(ur−1) +
1

8
Wr−1 ln(ur−1) −

21

8
Wr−1ur−1

+
7

8
u2

r−1 −
1

8
ur−1 +

1

8
ur−1 ln(ur−1) +

3

8
Wr−1 +

5

4
u2

r−1Wr−1

+
1

4
+ ur−1Wr−1 ln(Wr−1) − ur−1Wr−1 ln(ur−1)

+(2Wr−1 − ln(Wr−1)Wr−1 + Wr−1 ln(ur−1) − ur−1Wr−1)Vr−1,

Wr =

∫ 1

ur−1

∫ 1

Wr−1/y

∫ 1

ur−1/y

4yz + 1

8
dx dz dy

+

∫ 1

ur−1

∫ Wr−1/y

0

∫ 1

ur−1/y

ur−1 dx dz dy

+

∫ ur−1

Wr−1

∫ 1

Wr−1/y

∫ 1

0

yz dx dz dy +

∫ 1

ur−1

∫ 1

Wr−1/y

∫ ur−1/y

0

yz dx dz dy
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+

∫ Wr−1

0

∫ 1

0

∫ 1

0

Wr−1 dx dz dy +

∫ ur−1

Wr−1

∫ Wr−1/y

0

∫ 1

0

Wr−1 dx dz dy

+

∫ 1

ur−1

∫ Wr−1/y

0

∫ ur−1/y

0

Wr−1 dx dz dy =

=
1

8
ur−1 +

1

8
ln(ur−1) −

1

8
u2

r−1 +
1

4

+

(

3

2
−

3

4
ur−1 +

3

4
ln(ur−1) −

1

2
ln(Wr−1)

)

W 2
r−1

+

(

1

8
−

9

8
ur−1 − ur−1 ln(ur−1) + u2

r−1 +
1

8
ln(ur−1)

)

Wr−1.

5. Conclusion. Using the results of Section 4 we can find Vr and Wr for any r. For

example for r ∈ [3, 6] if c ≥ 1/4 then Vr and Wr are constant on c and for c ∈ [0, 1/4]

they are given as follows:

c 0 0.05 0.1 0.15 0.2 0.25

V2 0.2646 0.2612 0.2609 0.2646 0.2738 0.2951

V3 0.3332 0.3317 0.3317 0.3336 0.3381 0.3482

V4 0.3813 0.3803 0.3803 0.3814 0.3841 0.3902

V5 0.4186 0.4179 .4178 0.4186 0.4204 0.4246

V6 0.4491 .4486 0.4485 0.4490 0.4503 0.4533

W2 0.2605 0.2523 0.2449 0.2385 0.2334 0.2301

W3 0.3702 0.3645 0.3595 0.3552 0.3518 0.3486

W4 0.4444 .4401 0.4364 0.4331 0.4306 0.4289

W5 0.4989 0.4955 0.4924 0.4899 0.4879 0.4866

W6 0.5409 .5381 0.5356 0.5335 0.5319 0.5308

In Section 3 we saw that, when there are just two applicants, then the payoff of the

Stackelberg leader is a concave function on c ∈ [1, 1/4] while the Follower player payoff is

decreasing on [0, 1/4]. Also it was shown that the most favorable shortfall payoff for the

Leader player is also the most Follower player unfavorable one. As it could be seen from

the above table the same pattern holds for more than two applicants.
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