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Abstract. Most research done in the bargaining literature concentrates on the situations in

which players get to be proposers alternately, with the first player being the proposer in the

first period, the second player being the proposer in the second period, and so on until the cycle

ends and the order of proposers is repeated. However, allowing for only this kind of order is a

rather simplifying assumption. This paper looks at the situation in which we allow for much

more general kind of protocols. We characterize the unique subgame-perfect equilibrium for two

players with different discount factors, give a closed-form solution for the equilibrium payoff

and finally analyze the properties of the bargaining power of the players as the function of such

elements as their discount factors or their relative position and frequency of being proposers

within each bargaining cycle.

1. Introduction. Within the last twenty years, many game-theoretical papers analyzed

the games of sequential bargaining.

The first and simplest game to be analyzed was one researched by St̊ahl (1972). In his

approach, two players bargain sequentially over a pie, being proposers alternately. What

makes the game relatively simple is that St̊ahl’s game has finite horizon and hence can

be easily solved for subgame perfect equilibrium by backward induction.

Rubinstein (1982) makes the bargaining game more complex: allowing for the infinite

horizon makes it impossible to use backward induction as straightforwardly as before.

However, Rubinstein considers only the simplest kind of the game, in which each player

is alternately a proposer and a responder and hence (because of infinite horizon), the

game starting in period 3 is essentially the same game as the original one. Using this

fact, Rubinstein is able to solve the game for a perfect equilibrium. It turns out that the

game has a unique subgame perfect equilibrium (which is also stationary). With discount
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factors equal to α for the first player, β for the second player and the size of the cake

equal to one, the outcome of the game is that the first player (the original proposer) will

propose an offer in which she keeps 1−β
1−αβ

for herself and offers the rest to the second

player and the offer is accepted.

Alternative proof of the same proposition has been provided by Shaked and Sutton

(1984).

As shown by Binmore and Dasgupta (1987), if discount factors are close to 1, the

solution of this game is close to Nash bargaining solution.

Since then the extensions of bargaining model consisted mostly of papers focusing on

either multilateral bargaining or bargaining with incomplete information. This paper will

take a look at bilateral infinite sequential bargaining with perfect information, when a

possibility of both discount factors different for each player as well as more complicated

protocols determining the order of being a proposer will be allowed.

Until recently all of the papers concentrated on situations in which players were as-

sumed to be proposers sequentially and alternately (at least to some extent, as different

papers offer different solutions to the cases when—in multilateral bargaining—some play-

ers accept an offer made by the proposer while others reject it). One paper which does

not make this kind of assumption about the regularity of the protocol is the paper by

Huang (1998). Huang’s paper focuses on a procedure for multilateral bargaining, which

in particular allows any kind of cyclical protocol (with finite periodicity). The results are

easily applicable to bilateral bargaining and indeed, the conclusions that can be drawn

from Huang’s work for 2-player case are a special case of what we discuss in this pa-

per (namely, when discount factors are equal). Similarly, Rubinstein’s paper is a special

case of what we analyze, namely the situation when the protocol is the simplest possible

(players being proposers alternately).

2. The game. One interesting extension of two-player Rubinstein’s game would be

looking at the sequential bargaining in which we do not restrict ourselves to situations

in which both players are proposers alternately.

The game is set up as typical bargaining problem discussed elsewhere in the literature:

• Players: There are 2 players, labeled A and B. In every round of the game one of the

players is a proposer and the other is a responder.

• Actions and strategies: There are two kinds of actions: offers, made by a proposer,

consisting of a pair of real numbers (x, y) such that 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and

x+y = 11; and responses, made by a responder, from the set {Y, N}, where Y denotes

accepting the offer and N denotes rejecting it. The strategy will be a contingent plan,

describing for each of the players what she should do in every decision node. Notice

in particular that we do not restrict our attention to stationary strategies. We allow

actions in a given strategy to be conditional on the previous history of the game and on

the number of a period in which given action is taken. Even without this restriction, we

1We therefore assume that the pie has the size 1. However, this is only a normalizing assump-
tion. We can think of x and y as shares in the pie of any positive size; the results we obtained
would then have to be simply changed proportionately to the size of the pie.
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will be able to show that the game has a unique subgame perfect equilibrium (which

also happens to be stationary).

• Outcomes and payoffs: When an offer (x, y) is made by a proposer and accepted by

a responder, player A gets x and player B gets y (equal to 1 − x, notice that the

size of the pie does not shrink as the bargaining continues). However, even though in

each period the whole pie is divided, players discount the outcomes using, possibly

different, discount factors α and β for player A and B, respectively. Discount factors

are nonnegative and strictly below 1. Players have selfish preferences in the sense that

they care only about their own payoffs and not about payoffs of their opponent. Hence,

if the agreement is reached for the first time in period t, payoffs that players get are

equal to uA = αt−1x and uB = βt−1y for player A and B, respectively.

• Information: The game is of complete and perfect information. Both players have full

information about the structure of the game, the history of previous moves, know and

remember all past actions.

• Timing: This element is new to the model. Following Huang’s paper on multilateral

bargaining we set up the game in the following way: assume the game is cyclical with

periodicity p < ∞ (that is, each cycle consists of p rounds). Let P = {1, . . . , p}. The

protocol will be the function specifying who is the proposer in every round of the

cycle: π : P → {A, B}. The regular protocol analyzed by Rubinstein would hence be

π(1) = A, π(2) = B with p = 2.

We will also represent the protocol by p-dimensional vector π∗ = (π(1), π(2), . . . , π(p)).

Without loss of generality, we can assume that A moves first (i.e. π(1) = A for any

π). In the further analysis, we will also assume π is onto (each player is a proposer at

least once during the game. If it is not true, then because of selfish preferences of the

players, in the equilibrium the proposer will get the whole pie in the first round and

the game will end2).

3. Equilibrium of the game. Before we show the equilibrium of the game, we will

solve the following system of equations.

Consider any two consecutive periods, t and t + 1.

Let (zi, 1 − zi) denote the offer made in period i ∈ {1, 2, . . . , p}. Let these offers be

such that for any period when A is a proposer we have zt = 1−β(1−zt+1) or equivalently

that zt − βzt+1 = 1 − β and for any period when B is a proposer we have zt = αzt+1

or equivalently zt − αzt+1 = 0. In order to find a solution in a general case, we will have

2It is easy to see that this is actually the case. Notice that any subgame following the
rejection by a responder is (because of an infinite and periodic nature of the game) identical to
the subgame preceding the rejected offer. Hence, it must be that the supremum S of what player
B will get in any subgame in any equilibrium must be the same in both these subgames (as they
are identical). On the other hand, player A will never offer player B more than βS since any
higher offer would certainly be accepted and there would always exist a lower offer, making A

better off. Hence, we get that S must be such that S ≤ βS. But since by assumption β < 1 and
only nonnegative offers are allowed, it must be that S = 0 and hence B must get 0-share in any
subgame perfect equilibrium in the game in which A is a proposer in every period
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to construct the system of p equations (one for each period in the cycle) and solve it for

zi’s. Let z denote the column vector of zi’s.

We can write the system of equations that we want to solve in the following matrix

form Mz = N , where (as is evident from the way these equations are described above)

M is a p × p matrix with the following properties:

• each row corresponding to the period when A is a proposer has 1 on the main diagonal,

−β to the right of it (or in the case of the last period, it has 1 in the last column and

−β in the first column) and 0’s elsewhere;

• each row corresponding to the period when B is a proposer has 1 on the main diagonal,

−α to the right of it and 0’s elsewhere.

and N is a p × 1 column vector with the following property:

• it has 1 − β on positions corresponding to A being the proposer;

• it has 0’s on positions corresponding to B being the proposer.

We can now find zi using Cramer’s rule. In order to find z1, we must calculate two

things:

• determinant of M ;

• determinant of M with its first column replaced by N (denoted from now on by M\N).

3.1. Determinant of M . We will expand the matrix M using its first column and Laplace

rule of expansion of cofactors. Notice that M has non-zero expressions in the first column

only in the first and the last row. It’s easy to see that matrices formed by deleting the first

column and either first or last row are triangular and hence their determinants are equal

to the product of the expressions on their diagonal (and all other cofactors corresponding

to other rows are equal to zero).

Let PA = {i : player A is a proposer and i ∈ P}. Let PB = P\PA. Hence it must

be that |M | = 1 − α|PB |β|PA| where one corresponds to cofactor obtained from deleting

the first row and the first column of M (which leaves only 1’s on the main diagonal) and

−α|PB |β|PA| corresponds to the cofactor obtained from deleting the last row and the first

column (notice that if p is even, the product of the expressions on the main diagonal of the

reduced matrix will be the product of odd number of negative terms, so it will be negative

itself. The cofactor is then achieved by multiplying this product by one more negative

term (corresponding to either −α or −β being Mp,1 element of the matrix M) and by

(−1)p+1, which with p even is also negative and so the whole expression is negative. On

the other hand, if p is odd, we still will get the negative cofactor because even though the

determinant of reduced matrix is positive it is now multiplied by negative term of −α or

−β and positive term of (−1)p+1).

3.2. Determinant of M\N . Also in this case we will expand the matrix by the first

column. Notice the following:

• the first column (= N) will now contain only 0’s or 1 − β,

• the matrix resulting from deleting first column and i-th row need not be triangular

anymore. However, it has a nice property of having −α’s and β’s above the deleted

row and 1 below it on the main diagonal.
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Notice that unlike in the situation where we were calculating the determinant of M,

now the matrices formed by deleting first column and t-th row need not be triangular

and hence finding the determinant of such a matrix will be more complicated. As it turns

out, however, M\N still has such a structure that its determinant can be found simply

by taking the product of the expressions on the main diagonal, as if it was a triangular

matrix. Suppose A is a proposer in period t. Then matrix M\N will have 1 − β as its

(t-th row, first column) element. If we delete the first column and the t-th row (which

will have to be done in order to find the necessary cofactor), the resulting matrix will

look as follows:

• in the rows corresponding to periods preceding t, there will be −α’s and −β’s on the

main diagonal and 1’s to the left of it;

• in the rows corresponding to the periods following t, there will be 1’s on the main

diagonal and −α’s and −β’s to the right of it.

Therefore, the determinant of the M\N matrix will be given by the sum of the

expressions, each of which will be a product of (1 − β) and the product of as many α’s

as many times B is the proposer in the periods preceding a given turn and as many β’s

as many times A is the proposer in the preceding periods.

Combining these two results we get that

z1 =
(1 − β)

∑

i∈PA
α|PB∩Ri|β|PA∩Ri|

1 − α|PB |β|PA|
(2)

where Ri = {0, 1, . . . , i − 1}.

As we can see, the sum in the numerator is the sum of |PA| terms, each corresponding

to one period in the cycle in which A is a proposer and each being a product of discount

factors equal to player A’s discount factor to the power of how many times player B

was a proposer in the previous periods times player B’s discount factor to the power of

how many times player A was a proposer in the previous periods. For example, with the

protocol (A, B, A, A, B), the sum would be equal to α0β0 + α1β1 + α1β2 or equivalently

1 + αβ + αβ2.

One thing worth noticing is the asymmetry in the way in which players’ discount

factors are paired with the numbers of their being proposers during the cycle, i.e. the

fact that each player’s discount factor, in expressions both in the numerator and in the

denominator, is raised to the power which is a function of the other player’s position as

a proposer.

It would be also worth noticing that we can express (2) in another way. Notice in

particular the exponent at β in the numerator sum. As it depends on the number of

periods player A is the proposer and since the sum is taken over all periods when A is the

proposer, the sum in the numerator will have the property that in each expression β will

be raised to the power 1 higher than in the previous expression. Also, the sum of exponents

at α and β at each term of the sum must be equal to the number of a corresponding

period in the cycle diminished by one (since the sum of exponents corresponds to the

number of times either player was a proposer in the preceding periods, which is naturally

the same as the number of preceding periods itself). Hence, if we denote the periods in
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which player A is the proposer during the cycle by 1 = t1 < t2 < . . . < tk ≤ p, the

expression given by (2) is the same as

z1 =
(1 − β)

∑k
i=1

αti−iβi−1

1 − αp−kβk
(3)

We can now formally characterize the equilibrium of the game.

Theorem. The only subgame perfect equilibrium of the game described in Section 2 is

one in which:

• in period t, a proposer offers a split (zt mod p, 1 − zt mod p) with z0 = zp.

• in period t, player A accepts if offered at least zt mod p, player B accepts if offered at

least 1 − zt mod p.

Proof. The idea of the proof follows Shaked and Sutton (1984) and Muthoo (1999) for a

regular protocol (A, B) and is as follows:

Let SA
i ,SB

i denote suprema of payoffs that players A and B, respectively, can receive

in any subgame perfect equilibrium starting in period i, and similarly, let IA
i ,IB

i denote

infima of payoffs that players A and B, respectively, can receive in any subgame perfect

equilibrium starting in period i.

Consider any two consecutive periods i and i+1 such that player A is the proposer in

period i. Player A knows that any offer below discounted value of player B’s next round

infimum (that is any offer such that player B is offered less than βIB
i+1) must be necessarily

rejected in any equilibrium (since otherwise B would not be best-responding), so we must

have that SA
i ≤ 1 − βIB

i+1. Suppose though that SA
i < 1 − βIB

i+1. Then there must exist

subgame perfect equilibrium payoff to player B equal to u such that SA
i < 1−βu. But by

definition of a supremum, it follows that there are no subgame perfect equilibria in which

player A gets the share of 1 − βu. But u can be supported as the equilibrium outcome

by the pair of strategies in which the split offered in the previous round is x = 1 − βu

and responders will only accept offers at least as good. But then player A gets 1− βu in

such an equilibrium, which contradicts the fact that SA
i < 1 − βIB

i+1. So it follows that

we must have SA
i = 1 − βIB

i+1.

Similarly we can argue that IA
i = 1 − βSB

i+1, and for every period i in which player

B is the proposer we similarly get IB
i = 1 − αSA

i+1 and SB
i = 1 − αIA

i+1.

Now notice that the game starting in period p + 1 is exactly the same as the game

starting in period 1, so they must have the same equilibria, and so suprema and infima

of payoffs that players get in these two games must be identical, so SA
1 = SA

p+1 and

IA
1 = IA

p+1.

Notice also that in any equilibrium the whole good must be divided because players

care only about their own share. If there was an equilibrium in which not all good was

divided, then the proposer might take the remaining share and improve her utility, so

the split less than full cannot happen in equilibrium. It must therefore be that for any i,

SA
i = 1 − IB

i and IA
i = 1 − SB

i .

We can therefore express the above conditions using as unknowns suprema and infima

of payoffs of player A only—for any period i in which player A is the proposer we get

SA
i = 1−βIB

i+1 = 1−β(1 − SA
i+1) and therefore SA

i −βSA
i+1 = 1−β and similarly for any
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period i in which player B is the proposer we get IB
i = 1−SA

i = 1−αSA
i+1 and therefore

SA
i − αSA

i+1 = 0. But if so, the solution to vector {Si}
p
i=1 is given by expressions found

in the previous section. In particular,

SA
1 =

(1 − β)
∑

i∈PA
α|PB∩Ri|β|PA∩Ri|

1 − α|PB |β|PA|
.

Similarly, using the expressions with infima of payoffs of player A only we can solve in

the same way for all IA
i , and in particular we can find that

IA
1 =

(1 − β)
∑

i∈PA
α|PB∩Ri|β|PA∩Ri|

1 − α|PB |β|PA|
.

But if so, we get that SA
1 = IA

1 , so it must be that in any subgame perfect equilibrium

the equilibrium payoff will be equal to

(1 − β)
∑

i∈PA
α|PB∩Ri|β|PA∩Ri|

1 − α|PB |β|PA|
,

and in a similar manner we can argue that in any equilibrium the split offered in period t

must be equal to zt mod p, 1 − zt mod p (with z0 = zp), where zi’s are solutions to the

equation system solved in the previous section.

Notice further that the same argument can be used for calculating the equilibrium

payoff in any subgame starting at any given period t (the unique equilibrium offer must be

(zt mod p, 1− zt mod p)(with z0 = zp)). It’s easy to see that the described part of strategies

hence supports vector z as equilibrium partition for a given period. Also, there is no

other pair of strategies that would support it as the equilibrium: by the argument about

suprema and infima, no other offer can be made on the equilibrium path and similarly,

since players are best responding, they will always accept offers higher than the described

equilibrium offers and reject offers lower than those.

There is one thing about the equilibrium payoff that is worth mentioning. Even though

we made the assumption that player A is the first proposer in the game and made all the

calculations based on this fact, it turns out that the expression for the equilibrium payoff

for player B can also be described in the same manner: it is the product of 1− α (= the

other player’s discount factor) and the sum which assigns to each period in which B is

a proposer an expression which is the product of α’s raised to the number of periods in

which B was a proposer before and β’s raised to the number of periods in which A was a

proposer before, all divided by 1 − α|PB |β|PA|. In order to prove this claim we will have

to show that the sum of these two expressions is equal to 1. Hence we have

(1 − β)
∑

i∈PA
α|PB∩Ri|β|PA∩Ri|

1 − α|PB |β|PA|
+

(1 − α)
∑

i∈PB
α|PB∩Ri|β|PA∩Ri|

1 − α|PB |β|PA|

=

∑

i∈PA
α|PB∩Ri|β|PA∩Ri|−β

∑

i∈PA
α|PB∩Ri|β|PA∩Ri|

1−α|PB |β|PA|

+

∑

i∈PB
α|PB∩Ri|β|PA∩Ri|−α

∑

i∈PB
α|PB∩Ri|β|PA∩Ri|

1−α|PB |β|PA|

=

∑

i∈P α|PB∩Ri|β|PA∩Ri|−β
∑

i∈PA
α|PB∩Ri|β|PA∩Ri|−α

∑

i∈PB
α|PB∩Ri|β|PA∩Ri|

1−α|PB |β|PA|
. (4)
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But now notice the following: the first expression in the numerator has one term for

each period of the cycle. The first of these terms will be equal to 1, which is equal to

α0β0 (both powers are zero since no one was to be a proposer prior to period 1). On

the other hand, all other expressions of this sum cancel with one of the expressions of

two other sums, namely with the expression corresponding to the preceding period: the

term in the first sum is equal to the product of α’s to the power of how many times

B was the proposer before and β’s to the power of how many times A was a proposer

before, the term in one of two other sums corresponding to the preceding period will be

equal (after being multiplied by α or β standing before these sums) to exactly the same

amount. Hence, because only players A and B get to be proposers in any period and one

and only one of them must be a proposer in each period, the only two terms that will

not cancel out in the numerator will be 1 corresponding to the first period in the first

sum and the expression in one of two latter sums, corresponding to the last period (since

there is no period in the cycle following the last period and hence, there is no term in the

first sum that this last term could get canceled with). This last expression that will not

get canceled out, will be equal to the product of α to the power of how many times B

was the proposer in all but last periods times β to the power of how many times A was

the proposer in all but last periods, all multiplied by negative β if A is the last proposer

or negative α if B is the last proposer.

But notice that if so, this expression is equal exactly to α|PB |β|PA| and hence the

whole sum given by expression (4) is equal to 1. Therefore, the equilibrium payoff of both

players can be characterized in exactly the same way and easily determined from the

protocol.

4. Properties of the equilibrium outcome. Properties of the equilibrium outcome

are quite intuitive:

4.1. z1 increases with α. One of the properties that we would expect of the bargaining

equilibrium payoff would be that as the player becomes more and more patient (i.e. the

discount factor she uses to evaluate the value of the payoff she gets), her bargaining

power should increase. In particular that would mean that as α increases, z1 should also

increase. Let

W (α, β, π) =
∑

i∈PA

α|PB∩Ri|β|PA∩Ri| =

k
∑

i=1

αti−iβi−1 (5)

Then we have

∂z1

∂α
= (1 − β)

(∂W
∂α

)(1 − α|PB |β|PA|) + W |PB|α
|PB |−1β|PA|

(1 − α|PB |β|PA|)2

= (1 − β)
∂W
∂α

− ∂W
∂α

α|PB |β|PA| + W |PB|α|PB |−1β|PA|

(1 − α|PB |β|PA|)2

= (1 − β)
∂W
∂α

+ α|PB |−1β|PA|(W |PB| − α∂W
∂α

)

(1 − α|PB |β|PA|)2
. (6)

But now notice the following:

• Since β is bounded by 1 from above, 1 − β is positive;
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• (1 − α|PB |β|PA|)2, being a square of non-zero expression (which is assured by the fact

that we require α and β to be strictly below 1), must also be positive;

• ∂W
∂α

=
∑k

i=1
(ti − i)αti−i−1βi−1 which is nonnegative (ti ≥ i since A can be proposer

for the i-th time not sooner than in the i-th period);

• Finally, notice that

W |PB| =
k

∑

i=1

(p − k)αti−iβi−1 (7)

and

α
∂W

∂α
=

k
∑

i=1

(ti − i)αti−iβi−1 (8)

that is, both expressions are sums of products of α’s and β’s raised to the same power

and differ only by coefficients standing at each of its terms. Notice however by definition,

ti−i cannot be higher than p−k for any i and hence, all coefficients in (8) are (weakly)

lower than coefficients in (7). Therefore, also the last expression that we had to look

at must be nonnegative.

But since (6) is the sum and product of nonnegative expressions, it must itself be

nonnegative (and in fact, with β < 1, it is always strictly positive unless k = 1 and α or

β are equal to zero). Therefore, the bargaining power of the player, expressed by the pie

share that she gets in the equilibrium, increases as the player becomes more patient.

4.2. z1 decreases with β. Because of the (1 − β) factor in the expression for z1, the

actual calculation of the ∂z1

∂β
derivative and checking whether this derivative is negative

for all admissible values of α and β and all possible protocols is not an easy task. There is

however an easier way to see that the above claim is actually true and that the bargaining

power of a player decreases as her opponent becomes more patient.

Notice the following: as we have shown in section 3, the expressions for the equilibrium

outcomes of both players are symmetrical and calculated in the same manner. Hence, since

the argument showing that z1 would increase with α did not rely in any part on the fact

that A is the original proposer, it must also be true that for the original responder (i.e.

for player B), his equilibrium payoff will increase with his discount factor. Therefore,

by the same argument as before, we may argue that 1 − z1 will increase with β, which

directly implies that z1 itself will decrease with β.

4.3. Informally, the sooner one is the proposer, the higher her power (if we switch a

period when A was a proposer with a period when B is a proposer so that now A is a

proposer in an earlier period, z1 will increase).

More formally, let π be any protocol. Let π1 be a protocol formed from π in the

following way:

• for some i and j in P (i < j), π(i) = π1(j) = B, π(j) = π1(i) = A;

• for all k 6= i, j, π(k) = π1(k).

Then z1 is (weakly) higher under π1 than under π.

In order to verify that this is true, we will have to compare the expressions for z1

under both protocols. Notice however that in the expression for z1 (given by (2) or (3)),
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1−β is the same under both protocols and the denominator is also the same under both

protocols (which is because under both protocols A (or B) is a proposer the same number

of times and what matters for the expression in the denominator is only the number of

times each player gets to be a proposer and not their relative order within the cycle).

Therefore, since these two expressions are equal (and positive) under both protocols,

in order to establish that z1 is higher under π1 than under π, it is enough to show that

W (α, β, π1) > W (α, β, π) or equivalently that W (α, β, π1) − W (α, β, π) > 0.

Notice now, that all terms in W are the products of α and β raised to the appropriate

power corresponding to the number (but not order) of one of the player’s being the pro-

poser in all periods preceding the period for which a given product is taken. Therefore, in

both W (α, β, π1) and W (α, β, π) all expressions corresponding to periods prior to i will

be the same (since there is no change prior to i), and also all expressions corresponding to

periods following j will be the same (since the only thing that changes prior to these peri-

ods is the order in which A and B are proposers, but not the total number of times each of

them will make the offer). Hence, it is enough to consider changes between period i and j.

Let i < τ1 < . . . < τm = j denote periods between i and j in which player A is

a proposer under a protocol π. Then we must have that under π1 player A will be the

proposer in periods τ0 = i, τ1, . . . , τm−1. Let ϕ = αµβν where µ is the number of periods

player B was a proposer prior to i and ν is the number of periods player A was a proposer

prior to i. Then the difference whose sign we have to check will be given by

αµβν
(

m−1
∑

n=0

ατn−τ0−nβn
)

− αµβν
(

m
∑

n=1

ατn−τ0−n+1βn−1
)

= αµβν

m
∑

n=1

(ατn−1−τ0−n+1βn−1 − ατn−τ0−n+1βn−1)

= αµβν

m
∑

n=1

ατn−1−τ0−n+1βn−1(1 − ατn−τn−1).

But now, since by construction τn − τn−1 > 0, it must be that 1 − ατn−τn−1 > 0 as well

and hence the whole difference must be also positive. Therefore, the player cannot lose by

this kind of swapping positions in a way that she gets to be a proposer in earlier periods.

Using the same argument in the opposite direction, we can argue that the player

cannot benefit by the situation in which the swap in the order moves her towards the

end of the cycle. Also, by repeating the same argument, if we make a number of swaps,

in each of which the same player will be moved closer to the beginning of the cycle, this

player will benefit of these changes. As a corollary to this we have the following result: if

the game cycle has a length of p and player A is a proposer in k of p periods in each cycle,

she will get the highest equilibrium payoff under the protocol in which PA = {1, 2, . . . , k}

and PB = {k + 1, k + 2, . . . , p}.

Notice also that this result does not imply—unlike in the original Rubinstein model—

that the bargaining power of the first proposer is higher than that of the first responder. It

may be beneficial to be the responder in the first period if one is a proposer in sufficiently

many following periods.
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4.4. Informally, the more often one is a proposer, the higher her bargaining power (re-

placing B with A in the protocol for some periods while keeping protocol intact for all

periods when A was an original proposer, increases z1).

One property that we would also expect of the bargaining power is that it should

increase if the player gets to be a proposer more often. Of course, because of discount

factors this will not hold unconditionally. Suppose for example that α = 0. Then player

A will only care about how much she gets in the first period of the game, since if the

game does not reach the agreement then, player A will get zero-utility no matter when

the game will end and what split of the pie will be adopted. But if so, player with zero

discount factor can get positive equilibrium payoff only if she is the original proposer.

Otherwise, no matter what the protocol is, there is no reason for the original proposer to

make any positive offer, since there is always lower offer that is still going to be accepted

by the player with zero-discount factor and since there is no lowest positive number, the

only offer that could be sustained as the equilibrium would be z1 = 1. In fact, using (2),

it is easy to see that if α = 0, then no matter how big p is and even if A is the proposer

only in the first period of the cycle, we will get that

z1 = 1 − β

which is strictly positive as long as β < 1.

On the other hand, if β = 0, then even if player B is the proposer in each but the

first period of the cycle, as is apparent from (3) and (4), what he gets in the equilibrium

is equal to

1 − z1 = 0,

Hence, player with zero discount factor is better off by being the proposer only once but

at the very beginning of the game then being the proposer for all other periods of the

cycle if she is the responder in the first period.

What we postulate is hence not that the player benefits by the mere fact that she

gets to be a proposer more often but rather that the player cannot lose if for the given

protocol she will get more periods when she is the proposer while still being a proposer

in all periods in which she was the proposer under the original protocol.

Let π : P → {A, B} be some protocol and let π1 be the protocol identical to π except

for one period in which we replace B by A. More formally, we have that there exists

j ∈ P such that π(j) = B, π1(j) = A and π1(i) = π(i) for all i 6= j, i ∈ P . Then the

equilibrium payoff of player A is higher under protocol π1 than under protocol π.

Although this property is both desirable and quite intuitive, it is not at all obvious

from the form of the solution that we got in (2). In particular, notice that if we replace

B by A for one of the periods of the cycle, then the following will happen:

• the terms in the sum given by expression (5) for the periods earlier than j will not

change;

• there will appear an additional positive (and strictly positive, if both α and β are

strictly positive) term in the above sum, corresponding to the fact that A gets to be a

proposer one more time under π1 than under π;
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• the terms corresponding to the periods following j under π1 will be equal to the terms

under π multiplied by β
α

(which reflects the fact that for any such period, B is now

a proposer one period fewer in the preceding periods and A is a proposer one period

more). In particular, that would mean that if α > β, each of these terms is actually

higher under π than under π1 (or, in other words, even though player A benefits from

the facts that she is the proposer in one additional period, if α > β it is not clear that

her total equilibrium payoff will actually increase);

• moreover, since under the new protocol player A is actually the proposer one time more

often, the denominator in (2) will also change to become 1 − α|PB |−1β|PA|+1 under π1

as compared to 1 − α|PB |β|PA| under π 3. If α > β, this denominator will increase,

causing a decrease in the equilibrium payoff under π1 protocol).

It is clear from the above reasoning that if α < β, z1 will increase if we make A a

proposer in one more period. What we still have to show is that even if α > β the increase

in z1 resulting from the fact that one more term (corresponding to one more period when

A is the proposer) is added, compensates for the decrease resulting from the two other

effects described above.

However, showing it in the general case is rather complicated. Rather than trying to

prove the result for the general situation, we will just show that a player benefits even if

she becomes the proposer under π1 in the last period of the cycle in which her opponent

was a proposer under π and then we will argue that this implies the result stated in

subsection 4.4.

Because of the identical way the equilibrium payoffs are determined for both players,

as shown in (4), without loss of generality we can focus on one of the players, say player A.

We want to show that adding one more period in which player A will be a proposer must

(weakly) increase z1.

Notice that two things may happen: either A or B is the proposer in the last period of

the cycle. Suppose player B is the proposer in the last period of the cycle and π1 differs

from π only at that last period. Since only the last period is affected, only two things

will change in the expression for z1: one more term will be added to the numerator (and

all other terms in the sum will remain the same as before since there is no change in the

periods prior to periods to which they correspond) and the denominator will change from

1 − α|PB |β|PA| to 1 − α|PB |−1β|PA|+1.

Let ϕ be the sum of all terms in W corresponding to the periods in which player A was

the proposer under π (and hence is the same under both protocols). Then the difference

whose sign we have to check is equal to

(1 − β)(ϕ + α|PB |−1β|PA|)

1 − α|PB |−1β|PA|+1
−

(1 − β)ϕ

1 − α|PB |β|PA|
.

We need to show that this difference is nonnegative. Notice that this difference is equiv-

alent to

(1 − β)(ϕ + α|PB |−1β|PA|)(1 − α|PB |β|PA|) − (1 − β)ϕ(1 − α|PB |−1β|PA|+1)

(1 − α|PB |−1β|PA|+1)(1 − α|PB |β|PA|)
.

3|PB| and |PA| in these two expressions stand for the cardinality of PB and PA under π.
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And since both 1− β and the denominator are positive, it is enough to check the sign of

(ϕ + α|PB |−1β|PA|)(1 − α|PB |β|PA|) − ϕ(1 − α|PB |−1β|PA|+1)

= −α|PB |β|PA|ϕ + α|PB |−1β|PA| − α2|PB |−1β2|PA| + α|PB |−1β|PA|+1ϕ

= α|PB |−1β|PA|(−αϕ + 1 − α|PB |β|PA| + βϕ)

and again, since α|PB |−1β|PA| is nonnegative, it is enough to check the sign of the other

expression, −αϕ + 1 − α|PB |β|PA| + βϕ.

Let t1, . . . , tk be the periods in which player A is the proposer under π. Then by

definition, ϕ will be equal to
∑k

i=1
αti−iβi−1. But if so, we get that

(α − β)ϕ + α|PB |β|PA| = (α − β)
k

∑

i=1

αti−iβi−1 + αp−kβk

=
k

∑

i=1

αti−i+1βi−1 −
k

∑

i=1

αti−iβi + αp−kβk

and by grouping the expressions with the same exponents at β’s we get that this is equal

to

αt1 +

k−1
∑

i=1

(αti+1−i − αti−i)βi + (αp−k − αtk−k)βk. (9)

But now notice that:

• Since α is less than 1 and t1 is at least equal to 1, it must be that αt1 < 1;

• Since by construction ti+1 > ti, it must be that αti+1−i < αti−i for any i and similarly

since p > tk, we must have αp−k < αtk−k.

But if so, then the expression in (9) is the sum of a term that is less than 1 and k

nonpositive terms. Therefore expression in (9) must be weakly less than 1 and hence the

claim that A will benefit by replacing B as a proposer in the last period of the cycle is

true.

Now, if it is A who is the proposer in the last period, we can always find the last

period in which B was a proposer (since π is onto), swap A and B in these two periods,

thus (by the result in subsection 4.3) making A better off and then repeat the above

argument. Hence, from these two observations we can conclude that if A replaces B as a

proposer in the last period in which B was the proposer, then A will benefit from such a

change.

But now, we can invoke the result from subsection 4.3 again and argue that since A

is better off by replacing B as a proposer in the last period in which B was a proposer,

then also A will be better off when replacing B as a proposer in any period. The reason

for this is the following: let π be the original protocol, π1 be the protocol formed from

π by replacing B by A in the last period when B was a proposer and π2 the protocol

formed from π1 by swapping proposers in the period in which we made change from π to

π1 and the period in which we want the actual change to take place. Notice that by the

reasoning we gave in this subsection, π1 is better for A than π and by the result from

subsection 4.3 π2 is better for A than π1 and hence π2 is better for A than π and the
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only difference between these two protocols is that A is a proposer one more time under

π2 than under π.

Obviously, by iterating this argument we can easily show that if we add more than

one period to PA, player A will benefit from such a change. In particular, player A will

be best off if P = PA (i.e. player A is the proposer in every period of the game).

4.5. Normalization of the pie size does not matter. Finally, as already noted at the

beginning, although the size of the pie is assumed to be equal to 1, this assumption is

not crucial to the results we obtained. In principle, we could have any size D of the pie

that players bargain over as long as D > 0 and rather than treat x and y as absolute

sizes, we could treat them as the shares in the pie of any given size. That is, with the pie

of size D and under an offer (x, y), player A would get xD and player B would get yD

of the pie in absolute terms. Hence, it is clear that the assumption that the pie has

the size 1 is just a matter of normalization and that if we vary the size of the

pie, all equilibrium payoffs zi will just vary proportionately.

5. Conclusions and possible extensions. We have shown what form the equilibrium

will take in the simplest case if we allow for general form of a protocol and different

discount factors. There are a number of ways in which this result can be further extended:

• We can allow for non-zero outside options. Typically in the practical applications the

negotiations need not last forever but may be terminated at some point in which case

players get some (status quo) outside options. We can modify the model in such a way

that following every rejection, the nature with some probability decides whether the

game will continue or terminate, in which case both players would receive some known

payoffs.

• As we know from bargaining experiments, the assumption that players are selfish and

care only about their own payoffs is rather simplifying. In fact we observe players who

decide to share the pie even in dictator games, when there is no threat of the offer

being rejected. We can extend the model to allow for more general form of preferences,

in which players’ utilities would depend on both x and y.

• Looking for the perfect Bayesian-Nash equlibrium of the game extended to one in

which there is some uncertainty about discount factors of the players would also be

an interesting extension, leading probably to the delay in the agreement being reached

in an equilibrium. However, allowing for imperfect information in the game of infinite

horizon in which proposers may choose from infinitely (and uncountably) many decision

every time the split is offered, may turn out to complicate the game to a degree when

it is not tractable analytically.
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