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Abstract. This paper examines implications of different random recognition rules used to se-

lect proposal-makers on the payoffs of players participating in a weighted majority game. In

particular, incentives to strategically alter the set of players by strategic splits or mergers are

investigated.

1. Introduction. The paper proposes a model which is a general case of the infinite

bargaining problem analyzed by Rubinstein (1982) and is an extension to the model of

Baron and Ferejohn (1989), in which players are selected randomly to make a proposal in

a one-dimensional distributive space. Such proposals have to be approved by a winning

coalition of voters.

Such a model can be used to describe both a legislative game in parliamentary democ-

racies, in which a candidate for a prime minister (a formateur) is selected according to

some recognition rule and needs approval from a majority of parliamentarians to install

the proposed government, or a common-stock company in which the role of individual

shareholders is analogous to the role of political parties in the parliamentary setting.

Empirical evidence (see e.g. Diermeier and Merlo, 1999a) indicates that random recogni-

tion rules are appropriate for modeling such situations, which is contrary to the intuitive

assumption that the order of selection of proposal-makers is affected through a rule that

follows the ordering of weights of players, i.e. the biggest shareholder or political party is

always selected first, with the rest following in a fixed order.

The paper studies different random recognition rules. Some normative and technical

criteria used in the analysis are introduced. The rule that is the most popular in the

literature is a proportional rule in which selection probabilities are proportional to weights

assigned to each player. It is shown that it leads to non-zero expected payoffs for dummy
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players and hence possible surplus coalitions. As a general rule, this proportional rule

provides the players with wide-spread incentives to strategically split or merge with other

players. Other recognition rules studied in the paper are based on decisive structures, e.g.

use power indeces such as Shapley values as recognition probabilities. While such rules

eliminate the counter-intuitive property of surplus coalitions and dummy players with

positive payoffs, they still fail to prevent the rise of abundance of incentives for strategic

splits or mergers.

It is shown that there always exists a unique class of recognition rules that can pre-

vent strategic splits or mergers. The formula and properties of such a “stable rule” are

established. This uniqueness, and hence also relatively unlikely occurrence of such a

split-and-merger-proof recognition rule, indicates that—while convenient for analytical

reasons—the common assumption of fixing the set of players while modeling such games

has important consequences and may be inconsistent with the incentive structure of the

underlying bargaining problem.

2. The model. The model is based on Baron-Ferejohn model of bargaining. However

some extensions and modifications are necessary to evaluate the possibility of splits or

mergers.

First of all, in order to evaluate strategic splits and mergers, we cannot treat parties

or shareholders as individual players, as is common in literature. We must go down to the

individual legislators or stocks. On the other hand, the recognition rule to be used will

be defined over the partition of this set of players into bigger groups—a party structure.

Moreover, we assume that some initial party structure exists and each player is assigned

to a single party. More formally:

Denote the set of players by N = {1, 2, . . . , n}. Those players are partitioned into

k parties, 1 ≤ k ≤ n, i.e. each player belongs to one and only one party. A partition

K of the set N will be called a party structure. For every game there exists an initial

party structure denoted K∗. Weights of parties correspond to sizes of respective parties,

i.e. numbers of players belonging to them. The elements of the set of players N will be

denoted by subscripts i, j while elements of the set of parties K will be denoted by

subscripts p, q.

We will also define payoffs for individual players in their relation to the payoffs of

their own parties. We will denote the payoff for a party p under partition K by Vp ,

p ∈ K, and the payoffs for individual players by vi, i ∈N . The payoff for a party is a

sum of payoffs for all players belonging to the party, i.e. Vp =
∑

i∈p vi. A sharing rule for

a party p will be a function s which for every Vp assigns a vector of payoffs to individual

players belonging to that party such that Vp ≥
∑

i∈p vi.

It remains to be defined how the individuals decide about possible splits, i.e. split

rules. In general, for each party we can define a set of decisive coalitions D and if a set

of players that constitutes a decisive coalition strictly prefers some split to a status quo

for a given initial party structure, we would say such a structure is vulnerable to splits.

The most permissive rule would allow each individual to be the decisive coalition and

a split would occur if there exists a single player that prefers such split to status quo.
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The most restrictive rule would require unanimity. The more restrictive the rule, the less

likely maintaining of stability is.

The game would consist of two phases: in the first, organizational phase, splits are

allowed. At the end of this phase the structure is fixed and no more splits are allowed

between various rounds during the next phase. The detailed description of assumptions

made about this phase is presented later. The organizational phase is followed by the

bargaining phase. The latter phase follows the standard Baron-Ferejohn model: k parties

compete to divide a unit of good. At each round a party is selected according to a

recognition rule r to be a proposer. The proposer party makes a proposal specifying

a particular division of the unit of good (x1, . . . , xk),
∑k

p=1
xp ≤ 1. Then, each party

accepts or rejects the proposal. If parties constituting a majority1 accepted the proposal

at round t, each gets utility δt−1xp, with δ being a common discount factor, such that

δ ∈ [0, 1]. Otherwise, the next round starts, another player is selected, makes a proposal

and so on.

Austen-Smith and Banks (1988) first applied this type of model to bargaining in

legislature. This paper follows main features of the model first introduced by Baron and

Ferejohn (1989). As in the models mentioned earlier, parties bargain over a fixed amount

of good. However, unlike in the traditional Rubinstein and Austin-Smith and Banks

models, proposers (in the legislative settings called formateurs) are chosen randomly in

each round. In general, a recognition rule would be a probability distribution specifying

probability of being recognized as the proposer for each round, for each party structure

and each party.

This paper aims at finding the recognition rules that are stable, i.e. if applied, the

initial party structure K∗ is not vulnerable to splits and mergers. If a recognition rule

lacks such property, it would imply there are incentives for parties to split or merge. Such

strategic splits and mergers to increase one’s bargaining power would put the common

assumption of a fixed set of players into question.

3. The assumptions. In order to make the described model more tractable, several

simplifying assumptions have been made. The assumptions and the rationale for choosing

them are presented below.

• For the organizational phase, only 1 round is allowed. It means that given an initial

partition K∗, players evaluate possible splits by comparing the payoffs they expect to get

under K∗ with payoffs that result from the hypothetical split K ′. They do not have to

consider implications of the splits for another round of splits etc. Additionally, thanks to

this assumption, in order to find a stable rule (i.e. such that for any K∗ no party has an

incentive to split) we only have to consider unilateral deviations by the party concerned

against the status quo of K∗. A more general setup of the phase would allow for a much

more complicated incentive structure which would interfere with the general picture. The

minimalist model with this assumption is sufficient to create enough incentives to make

splits almost universal, hence adding additional level of complexity is not necessary.

1We would require simple majority of players for an approval of a proposed division, but the
model can be easily extended to supermajorities or more general decisive structures.
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• Furthermore, we allow each party to split into 2 smaller parties only. The assumption

is conservative in terms of vulnerability to splits, as we simply consider a rule stable even

if there are incentives for splitting into 3 or more parties. As with other conservative

assumptions, since we will prove that splits are likely even under this assumption, such

an assumption is reasonable.

• The sharing rule according to which players divide the payoff of their own party

provides for an equal division of the payoff, i.e. if individual i belongs to party p of

size sp and the party gets in round t payoff Vp the payoff for individual is given by

vi =
Vp

sp
. Again this is a simplifying and conservative assumption. If even under this

restrictive assumption splits are likely, then allowing for more general setup would make

the structure even more vulnerable to splits.

• Another conservative assumption applies to split rules. Suppose that under some

recognition rule and a structure K, the expected payoff for a party p of size sp is Vp, i.e.

Vp/sp per player belonging to the party. We will say a party has incentives to split only

if expected average payoff per player in all the new parties formed from the old party is

greater than before split. For a split into 2 parties on the party level that translates into

the condition that

Vp < Vp1 + Vp2,

where Vp1 and Vp2 are the expected payoffs for the newly formed parties.

• We assume, again conservatively, that for a split to succeed the players must be

strictly better off.

• The most important assumptions are buried beneath the shape of utility functions

and choice space in general. First of all, we have only one, distributive dimension and

players have no ideological positions, as in the original model of Baron and Ferejohn

(1989). Some form of spatial choice space was considered for example by Baron (1991,

1993), Banks and Duggan (2000, 2001), while the paper by Jackson and Moselle (2002)

gives interesting insights into the case with both ideological and distributive dimensions.

Similarly, we assume the amount of good to be divided is fixed (and normalized to

1). That in particular leads to the no-delay property of the equilibrium: the game in

equilibrium always ends in the first round2. If we follow Merlo and Wilson (1995, 1998)

or Diermeier and Merlo (1999b) and make the amount of good stochastic, a similar model

can explain possible failures of government-formation process in the first round which is

more consistent with empirical evidence.

• We also need some assumptions on recognition rules. Since in other papers such a

rule was generally fixed as proportional rule, i.e. probability of recognition for a party

was equal to respective weights (share of seats/stocks each party holds), it is necessary

to develop some more general conditions. The proposed assumptions are all satisfied by

proportional rule and are as follows:

(i) Recognition rule is time-invariant. Although it is quite conceivable that this

may be violated (e.g. if a proposer party that fails to get its proposal approved may be

recognized with smaller probability in the next round), for simplicity we assume that the

2For discussion and simple proof, see Baron and Ferejohn (1989), pp. 1193–4.
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rule is time-invariant. This will give the natural meaning and power to the equilibrium

concept we will use—that of a stationary subgame-perfect equilibrium—and will allow

us to use directly the results from Baron and Ferejohn (1989) about the existence and

uniqueness of such equilibria.

(ii) Recognition rule is anonymous, i.e. probabilities of recognition depend on

weights of the parties only and if we just switch labels it should not affect the results.

Again, we gain tractability, though it might be viewed as important simplification in the

light of the estimation results of Diermeier and Merlo (1999b) indicating a significant

incumbency premium3.

(iii) Recognition rule is weakly increasing, i.e. for a given party system K, for

any pair of parties p and q if sp and sq denote their respective weights and pp and pq

recognition probabilities, then sp > sq implies pp ≥ pq.

4. Solution concept. Once we apply the assumptions, our simplified model looks as

follows:

1. Nature chooses initial party structure K∗.

2. Each party p ∈ K∗ selects a particular split into disjoint parties p1 and p2, i.e.

p = p1 ∪ p2. If no split occurs, it is represented by p1 or p2 = ∅. The result is new party

structure K ′.

3. Let the round t = 1 start.

4. Party qt is selected according to the recognition rule r.

5. Party qt makes a proposal xt = (x1, . . . , xk′),
∑k

p=1
xp ≤ 1.

6. Each party votes for or against the proposal.

7. If more players vote for than against the proposal, it is accepted. Each player

belonging to party p gets
δt−1xp

sp
, where sp is a number of players belonging to party p.

Otherwise, increase t by 1 and go to item 4.

The stages described in 3-7 are the same as in the standard Baron-Ferejohn (1989) model

that was amended by a single split stage at the beginning of the game. We will use the

concept of a stationary subgame-perfect equilibrium.

General properties of the solution (stationary subgame-perfect equilibrium) for the

bargaining stage of the model follow directly from their paper. The equilibrium condition

for each party p is given by:

pp

(

1 − min
C∈Dp

(

∑

l∈C

δVl

))

+ qpδVp = Vp,

with Vp being the party’s expected payoff from the game (i.e. its continuation value), pp

is the party’s recognition probability, qp is the probability of being asked by some other

party to join a coalition, δ is a common discount factor and Dp is given by

Dp = {C ∈ 2K′

: |C ∪ p| > n/2}

i.e. in our case the set of all coalitions that together with party p are decisive, since

together they constitute a majority of n players. It is easy to see that—if selected—each

3Diermeier and Merlo (1999b), p. 17.
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party distributes positive amounts only to the jointly cheapest coalition partners offering

them δV l in order to make the parties indifferent between the offer and the parties’ respec-

tive continuation values, hence indifferent between accepting and rejecting the proposal

in that round. This selection corresponds to the values of qp in the equilibrium condition

above. Solving the system of equations for each party we can find continuation values

and probabilities q for each party.

In the extended game which includes the additional organizational phase it is neces-

sary to add just one additional condition for equilibrium: K∗ = K ′. Notice that in order

to find the equilibrium it is enough to consider each party’s incentives to deviate from

K∗ = K ′ i.e. it is enough for each party to check possible splits for the party concerned

assuming other parties do not split.

What follows is an examination of different recognition rules using the above model.

A. Proportional rule. According to this rule, the probability of recognition is equal to

the weight, which is equal to the share of players belonging to each party. This rule is

usually amended so that in the case a party has more that half of all players, the party

is recognized with probability one. Such amended rule is the most common assumption

made in literature. Note that in this case, and in many other cases considered later, even

different probabilities of recognition might lead to the same continuation values. It is easy

to understand what may go wrong with such rule if we consider the following very simple

example:

Example 1. There are initially 3 parties in the 30-player set, each having the same

number of 10 players. By the neutrality assumption, they all have the same continuation

values of 1/3. Suppose one of them considers a possible split into 2 parties of sizes 1 and

9 respectively. It is easy to check that in the new 4-party system all 3 parties having 9

or 10 seats have the same continuation values. The small party however, has non-zero

continuation value, as in the event of being recognized it gets positive share of the unit

of good. That implies the members of the splitting party are better off.

The benefit in this example comes from the fact that a small new party is created

without any significant changes to decisive structure of the game. Although the small

party is never asked to join a majority coalition, it is nevertheless recognized with positive

probability and gets positive expected payoff at expense of other parties. Hence, “dummy”

parties get positive expected payoff and a surplus coalition might happen.

B. Rule dependent on decisive structure. The above example suggested that part of the

problem with stability is related to the possibility of formation of parties that are never

pivotal in a majority coalition necessary to accept a proposal. Note that the common

assumption already excludes such parties from being recognized if a party has majority

of players. The natural way would be to extend the requirement to other partitions. Hence,

a party would be recognized with positive probability only if it can be pivotal, i.e. there

exists a majority coalition such that if the party is excluded the coalition no longer has

the majority of players. One possible candidate is to use Shapley values of parties as the

probabilities of recognition. They naturally employ the pivotalness requirement, including

the common assumption about majority party. They sum up to 1, so no normalization



WEIGHTED MAJORITY GAMES 191

is necessary in order to use them as probability measures. They reflect the feature that

minority coalition has value 0 (cannot provide anything to its members) and majority

coalition can divide whole unit among themselves, hence the value of any majority party

is 1. However, we have to be very careful to make the distinction between power and the

Shapley values in this model. Although Shapley values are called ”power indices”, if used

as proposed in this model they only represent recognition probabilities. The ”real” power

is represented by continuation values, which are determined by the probabilities, but are

quite distinct. As in the case of proportional rule, different probabilities of recognition

may lead to the same continuation values. The Shapley values are used here as an example

of a much more general class of rules that are dependent solely on the decisive structure

of the game.

As we can see from the next example, making recognition probabilities dependent

only on decisive structures does not guarantee split-proofness. Since the calculations are

tedious, they are skipped here.

Example 2. Consider any 3-party system. Suppose the probabilities of recognition are

dependent solely on the decisive structure of the game and are equal to Shapley values

for each of the parties. It can be shown that every non-degenerate case of 3-party systems

is vulnerable to splits. Basically, a party that is pivotal, but has surplus majority, can

divide itself into 2 parties each of them being pivotal in the new configuration.

C. Split-proof rule. In this section I will present a recognition rule that is completely

split-proof, anonymous and weakly increasing. First note the following 2 facts:

1. ”Worst case scenario”: If probability of recognition pp for a party p is non-zero,

it has strictly positive continuation value Vp. Since in the worst possible case the party

has to offer δ (1 – Vp) and additionally might be always offered zero if selected by

other parties, the minimal achievable continuation value as the function of recognition

probability satisfies

V W
p = pp(1 − δ(1 − V W

p )),

V W
p =

pp − ppδ

1 − ppδ
.

2. ”Best case scenario”: If, on the other hand, the party is always offered non-zero

payment and does not have to pay anything to get votes of majority if being selected as

the proposer, the maximal continuation value (given pp) satisfies

V B
p = pp · 1 + (1 − pp)δV

B
p ,

V B
p =

pp

1 − δ + ppδ
.

Now we can construct the split-proof rule. The rule will assign probabilities of recognition

in relation to size of each party. We will construct the following increasing sequence

(πi)
n

i=1
, where n is the total number of players:

• start with some small π1 = ε ,

• πi+1 = x
1−δ+δx

, where x = 2·πi

1−δ+πiδ
,

• continue until size of the set n is reached.
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For each party system, probability of recognition for a party having s players is equal

to πs with ε chosen so that the probabilities sum up to 1. The way in which the sequence

was constructed guarantees that splitting would make the splitting party worse off: sum of

continuation values is constant and the construction maintains strong relative differences

between parties with different number of players. Any 2 parties with smaller number of

players have a lower sum of valuations than any party with even only one more seat.

The rule proposed here is of course very crude and makes probability of recognition for

smaller parties extremely low compared to their counterparts with only slight advantage

in terms of number of players.

D. General split-proof and merger-proof rule. The rule is based on a very simple principle.

As it was shown before, it is not enough to choose recognition probabilities that are

proportional to weights to prevent splits and mergers, as what really matters in this

calculus are continuation values. However, if we can choose recognition probabilities so

that the continuation values are proportional to the weights, we are done! We just apply

an inverse function that transformed the recognition probabilities into continuation values

and for any vector of weights we get the vector of probabilities that assures stability. Since,

given the assumptions we made, the function is onto the appropriate set, the existence is

assured. The following is an example of application of such rule:

Example 4. 3 parties, weights (numbers of players) satisfying 1/2 > s1 > s2 > s3.

In this case, any 2 parties can form a majority coalition. Given the weights, the

conditions on probabilities of recognition are given by:

p1(1 − δs3) + 0 = s1,

p2(1 − δs3) + s3δs2 = s2,

p3(1 − δs2) + (s1 + s2)δs3 = s3,

which gives the following solution after a simple transformation:

p1 =
s1

1 − δs3

, p3 =
s3(1 − δ)

1 − δ + δs1

, p2 = 1 − p1 − p3.

Note that the above method is more general: in this case the vector of continuation values

is equal to weights of the players, but one might find recognition rules which produce also

continuation values corresponding to e.g. Shapley values. The more formal formulation

of the result follows.

Theorem. There exists a unique class of recognition rules which are stable. They are

characterized by continuation values which for each party in the initial party structure

are equal to the number of players belonging to that party.

The result that if the condition on continuation values is not satisfied then such a

recognition rule is not stable is straightforward. Any exception to equity similar to the

split-proof rule presented in C would be vulnerable to mergers, and a similar principle

applies the other way round. Consider the following two initial party systems: s = (s1, s2,

. . . , sp, sp+1, sp+2, . . . , sk), with k parties and s′ = (s1, s2, . . . , sp + sp+1, sp+2, . . . , sk),

with k−1 parties. The only way to prevent splits if the initial system is s′ and mergers if

the initial system is s is to have the sum of continuation values for parties p and p + 1
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for system s to be equal to the continuation value of the corresponding party with size

sp + sp+1 for system s′. As by anonymity labeling does not matter and the same must

be true for any pair of parties for any given system of any size k and a corresponding

system of size k + 1 which differ only by the fact that one of its parties split, it follows

the continuation values must be equal to weights.

Now we need to prove that there exist recognition probabilities that will result in the

continuation values we need for stability. We will use the following lemma:

Lemma. For any vector of continuation values V = (V1, V2, . . . , Vp, . . . , Vk), there exists

a vector of probabilities of recognition p = (p1, p2, . . . , pp, . . . , pk) resulting in payoffs for

parties equal to V .

The proof will be by construction. For each of the parties we will have the following

condition:

pp

(

1 − min
C∈Dp

(

∑

l∈C

δVl

))

+ qpδVp = Vp.

However, now the continuation values are known and we need to find relevant probabili-

ties. Order the parties in terms of their required continuation values. As the continuation

values are known, it is uniquely determined what value of the cheapest coalition partners

needed by each party to gain majority is. It means the value of minC∈Dp
(
∑

l∈C δVl) is

constant. We will denote the value of cheapest partners for party p by cp. The values

of qp are also already determined unless in some situation two different sets of coalition

partners cost the same (e.g. 2 parties have the same continuation values). If this is the

case, make any assumption on the probabilities of choosing the respective alternatives

and apply it consistently to each equation. Then, as everything else is known, simply

calculate the respective values of probabilities:

pp =
Vp(1 − qpδ)

1 − minC∈Dp
(
∑

l∈C δVl)
.

It is easy to check that the probabilities sum up to 1. By adding all the conditions for

each party we will get the following, as the sum of continuation values equals 1:
∑

p∈K

pp−δ
∑

p∈K

ppcp + δ
∑

p∈K

qpVp = 1.

However, we have
∑

p∈K

ppcp =
∑

p∈K

qpVp,

as the left-hand side sum represents all offers made by players to all other players and

the right-hand side sum adds all the offers received by all players. Now it follows that
∑

p∈K

pp = 1.

Notice that the probabilities are well-defined no matter how we allocate probabilities qp

in those situations in which players are indifferent between 2 or more sets of cheapest

coalition partners. That is the reason why in the theorem we talk about a class of recog-

nition rules. However, each recognition rule within such a class corresponds to the same

continuation values.
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The lemma is much more general than we need. As it applies to any vector of contin-

uation values it is in particular true for continuation values that are equal to weights of

parties (proportion of players belonging to each of them). This ends the proof.

Notice that this rule does not allow for a majority party to be the default winner

in each case. Any such recognition rule would be vulnerable to mergers as by forming

a majority party it would automatically exclude other parties and make their expected

payoffs equal to 0.

5. Summary. In this paper we evaluated implications of different recognition rules,

concentrating on the impact they have on stability of party systems. The common as-

sumption that the probability of recognition is proportional to weights (number of seats

in a legislature or number of stocks) is not sufficient for stability, neither is making a

rule dependent only on the decisive structures. It can be replaced with a similar principle

related to continuation values which provides the only rule ensuring stability. Since such

a situation is unlikely, it suggests that treating parties as single players in such a setting

constitutes a significant constraint imposed on players’ actions.
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