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Abstract. Vagueness is one of the phenomena which cannot be separated from the real bar-
gaining and cooperative situations. The aim of this paper is to offer a brief survey of the recent
state-of-art of the modelling of vagueness in coalitional games with transferable utility. It may
be recognized in two components of these games, namely, in vague structure of coalitions where
each player may simultaneously participate in several of them, and in vague expectations of
coalitional pay-offs. Both these cases are described in the paper and approaches to including
them into the game model are analyzed. An attempt to unify both cases into one uniform model
is discussed as well.

1. Introduction. The bargaining and coalitions forming in real cooperative situations
is usually connected with some kind of vagueness following from the fact that the agree-
ments about cooperation are accepted before the real run of the game, and that also
the expectations of pay-offs and mutual relations among particular players are often
connected with subjectivity. These facts are not included in the classical models of coop-
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eration and corresponding solution concepts (cf. [20, 19, 7]). Some attempts to treat the
phenomenon of uncertainty into the coalitional game theory were done with the devel-
opment of fuzzy set theory, and they continue till now. This paper aims to offer a brief
overview of the recent state-of-art in this endeavour, and to discuss some open problems
still existing in this field.

We limit our attention to the model of games with transferable utility (TU-games)
which is simpler and more lucid. Nevertheless, it is useful to keep in mind that some of
the suggested models (see, e.g. [1, 2, 15]) are suitable for the games with non-transferable
utility (NTU-games), as well.

After a brief presentation of the very elementary concepts and notations of both,
TU-games and fuzzy sets, the main section is devoted to particular models of fuzziness
in cooperative games. The considered deterministic model of game is very simple it
consists of two concepts, coalition and coalitional pay-off (characteristic function), and
both of them can be fuzzified. The fuzzification of coalitions is based on the fact that
many real players may participate in more than one coalition, parallelly. They distribute
their activity among several groups of partners and cooperate with them with different
intensity. The first models of games in which the coalitions are fuzzy subsets of the set of
all players, were suggested in seventieth (see, e.g. [1, 2]), and they are developed till now
([3, 11, 17]). The fuzzification of the pay-offs was suggested in the nineties and the first
results were summarized in [10]. Also this model was developed and some modifications
were suggested (cf. [16]). An elementary attempt to suggest the fuzzy modification of
cooperative market equilibrium was done in [12].

In the main part of this paper the particular attempts to the fuzzification of TU-games
are discussed and some of the still open problems connected with them are mentioned.
Moreover, the possibility of construction of a universal fuzzy TU-game covering both
types of vagueness is considered and its eventual attributes are analyzed.

If M is a set then we denote, in the whole paper, by P(M) the class of all subsets
of M.

2. Coalitional game with transferable utility. Let us recall, very briefly, that a
TU-game is defined by a pair (I,v), where I = {1,2,... ,n} is the set of players and
v:P(I) — R, where R is the set of real numbers, is the characteristic function. Every set
of players K C I is a coalition and the characteristic function value v(K) is the expected
total pay-off of coalition K. We suppose that for the empty coalition @), v()) = 0. Every
real-valued vector @ = (21, 2,...,2,) € R" is called an imputation.

The game is said to be superadditive iff for every pair of disjoint coalitions K, L
v(KUL) > v(K)+4v(L), and it is called convez iff for every pair of coalitions v(K U L) +
v(KNL)>v(K)+v(L).

The core of the game (I, v) is a set of imputations

Cy = {a} € R": in <wo(I)and VK C I,Z:z:i > v(K)}.
iel €K
All these concepts are elementary in the theory of games (see, e.g., [19, 7, 20]) and
they were recalled here to fix the notations.
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3. Fuzzy set and fuzzy quantity. The concepts of fuzzy set theory will be used, here,
for modelling the vagueness of some components of TU-games. Let us recall the seminal
paper [21] and many others among which [8, 4, 6, 5] will be especially referred to in the
following sections.

If U is a non-empty set (sometimes called universe), then its fuzzy subset A is defined
by a membership function pa : U — [0,1]. The membership function p4 is interpreted
as a generalization of the characteristic function ¢4 of the deterministic (also called
crisp) set A C U, where for each v € U, pa(u) = 0 iff u ¢ A and pa(u) = 1 iff
u € A. In the fuzzy set theory, for every u € U, pua(u) = 0 if u certainly does not
belong to A, pa(u) =1 if u belongs to A without any doubts, and pa(u) € (0,1) if the
membership of v in A is vague in any sense (subjective estimation, imprecision of data,
unspecified verbal characteristics, noise, imperfect knowledge, etc.) Operations with fuzzy
sets (complement, union, intersection,. .. ) extend the analogous operations with crisp sets
(see, e.g. [21, 8, 9, 5] and many others). For any universum U we denote by F(U) the set
of all fuzzy subsets of U.

If we put the set of real numbers R for the universum then its fuzzy subset a with
membership function pu, : R — [0, 1] is called a fuzzy quantity if

— pa(xa) =1 for some z, € R.

— there exist z1, 29 € R, 21 < x, < T3, such that u,(z) =0 for all x ¢ [z1, x3].
Fuzzy quantities represent the vagueness of quantitative data, typical for many practi-
cal applications. They can be processed by algebraical operations extending the classical
operations with deterministic (crisp) numbers by means of so called extension principle
(see, e.g., [4, 8, 9, 5]). For our purpose, we need the operations of addition and product
with a crisp number. If a, b are fuzzy quantities with membership functions p,, up, re-
spectively, and if 7 € R is a real number, then the sum a ® b and crisp product r - a are
fuzzy quantities, too, with membership functions

taeb(r) = sup [min(uq (y), iz — y))],

pra() = palx/r) for 1 #0,  p0.o(0) =1, po.a(w) =0if 2 #0,
for any = € R.

The properties of these operations are summarized e.g. in [8, 9]. Let us stress that
they are not identical with the algebraical properties of deterministic numbers.

The TU-games theory frequently uses the comparison of numerical values. In some
of their fuzzified modifications dealing with fuzzy pay-offs we have to compare fuzzy
quantities. As their values are vague, the validity of ordering relations between them will
be vague, as well. It means that fuzzy inequality > is a fuzzy relation over F(R) which
is formally represented by a fuzzy subset of the Cartesian product F(R) x F(R) with
membership function v : F(R) x F(R) — [0, 1]. For every pair of fuzzy quantities a, b
the value v (a,b) denotes the possibility a > b, and it is defined by

v (a,b) = sup [min(uq (), up(y)) - 2, y € R, x > y].

4. Fuzzification of TU-games. Even if the classical model of TU-game is determin-
istic, in many real cooperative situations its both components, the coalitions and their
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expectations of pay-offs, are connected with some vagueness. In this section, we briefly
summarize the main approaches to their fuzzification. In the whole section, we preserve
the notations used in Section 2.

usually does) in more than one coalition (investor can allocate his capital in more compa-
nies, researcher may participate in several projects, there exist part time jobs, etc.). The
participation is realized with different intensity, where usually some deal of the player’s
activities (time, energy, money, creativity) is located in the one-player “coalition” of his
privacy. The deterministic TU-game model recollected in Section 2 ignores this multilat-
erality of interests and in this sense it is not realistic.

The first attempts to modify the concept of coalition and to include certain vagueness
of the structure of cooperation by means of the fuzzy set theory was done in seventieths
(see, e.g., [1, 2]), and it continues (cf., [3] or [14, 11, 17]). The fuzzified model is based
on the definition of fuzzy coalition as a fuzzy subset of the set I. It means that I is the
universe in the sense of Section 3, and each fuzzy coalition K is characterized by its
membership function 7x : I — [0, 1]. For the simplicity of the following text, we denote
the traditional crisp coalitions by K, L, ..., and their membership functions TR T - o
where for each player i € I, 7=(i) = 1 iff i € K, and 7(i) = 0 iff i ¢ K. Due to the
notations introduced in Sections 1 and 3 we denote by P(I) and F(I) the sets of all crisp
and fuzzy coalitions, respectively.

4.1.1. Systems of fuzzy coalitions. The main attention of the existing literature, starting
by [1] and [2] and continuously developing (via, e.g., [3] and other works) is focused on
the specificity of the concept of core and its modification in the “environment” of fuzzy
cooperation. Less attention is drawn to such concepts like convexity or superadditivity
(e.g., the sense of disjointness) for vague coalitions each of which regards, in some degree,
all or almost all players. Certain, very elementary, attempt to deal with this topic is
shown in [14, 11] and [17].

The fundamental analysis of the concept of core in the TU-games with fuzzy coalitions
was presented in [1], already.

First, it is necessary to introduce an extension of the characteristic function v known
in the deterministic TU-games for the games with fuzzy coalitions. It means that for
every fuzzy coalition K € F(I), there exists a real number v(K) € R representing the
expected total pay-off of K. Let us recall that the value v(K) is crisp. If 75 (i) = 0 for all
i € I then we suppose that v(K) = 0.

If 7 = (7K (2))ier is the membership function of K then we may write also v(7x)
instead of v(K). Let us suppose that for any real A > 0, v(A-7x) = A (7k) (note that A\-7x
in the usual sense of linear algebra need not be a membership function; being treated as
a general property of positive homogeneity of real functions over R™, the above condition
is correct). Then we may extend the function v on the system of all non-negative vectors
7 = (7;)icr by setting

o(r) = [Z TZ} U(ZL) where 7 € R".

ier i
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The general formula can be used for the extension of v on the class of all fuzzy coalitions.
Having introduced the notation, we may say that a real-valued vector ¢ = (¢1,...,¢,) €
R™ is blocked by a coalition K with 7 if
ZTK(i) c; < U(TK).
el
Following [1], we may define the core of such fuzzy TU-game as the set of all vectors
¢ = (¢;)ier fulfilling

Eiel ci =v(I),
forall K € F(I), > ,c;Tr(i)ei > v(K).
It is possible to prove the following fact (see [1], Proposition 2.1)

OBSERVATION 1. If the function v is concave then the core is convex, compact and non-
empty.

The present model of fuzzy cooperation is relatively well treated in the literature, and
it has its priority in the context of the TU-games with vague coalitions. Nevertheless,
there are several aspects which deserve more attention. They are mostly connected with
the attempts to join the traditional interpretation of some concepts of the TU-game
theory with their fuzzified counterparts.

First of all, the concept of the fuzzy coalition as a fuzzy subset of I rather wipes off
the fact that a player cooperates with some partners (more or less intensively) and does
not with others. That each coalition represents a common field of interests and that even
joint participation of two players in more than one coalition means that they have more
than one (maybe even very different) common interests. The above conception of fuzzy
coalition means that in principle, each player is member of any coalition (sometimes, with
vanishing degree of membership).

Further, the fuzzy coalitions demand a specific approach to the concept of their dis-
jointness, whenever we attempt to extend the notion of superadditivity on the TU-games
with fuzzy coalitions. Paper [11] offers a brief discussion of this problem.

The last aspect which would not be omitted when the games with fuzzy coalitions are
considered, is the natural relation between using deterministic and fuzzy set theoretical
methods in the processing of (crisp!) pay-off of (fuzzy!) coalitions. The traditional deter-
ministic model is based, naturally, on the additive operations with pay-offs. On the other
hand, processing of fuzzy sets is usually based on the monotonicity of the relevant set
functions. The finding of adequate combination of both approaches, however it is briefly
mentioned in [11], remains an open field of study. Some attempt in this respect was done
in [17].

In the following subsection we briefly recall a method which can be used for modelling
the structure of cooperative relations in the case of fuzzy coalitions. Nevertheless, it can
serve as a starting point of further considerations even regarding the disjointness of fuzzy
coalitions and additivity /monotonicity relations for pay-offs of fuzzy coalitions.

4.1.2. Fluzzy extensions of coalitions. The usual and quite natural interpretation of fuzzi-
ness is that it in some sense extends the crisp concepts. In the environment of the coali-
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tions forming it means that fuzzy coalitions somehow enrich the structure of cooperative
relations—we may expect some connection between fuzzy coalitions and their crisp coun-
terparts. This connection would be reflected by the pay-offs, i.e., by the values v(K), as
well. Certain attempt to formulate and discuss these ideas was done in [14] and [11]. Let
us briefly recall its main principles.

Keeping the notations used in Subsection 4.1.1, it is easy to see that for any fuzzy
coalition K € F(I) the vector 7 = (7x(1),...,7K(n)) is a point from an n-dimensional
supercube with vertices 7 = (T3 (1),...,75(n)) representing the crisp coalitions K ¢
P(I). Let us note that 74=(i) € {0,1} for any K € P(I) and i € I. Then it is very easy
to verify (see [14, 11]) the following

OBSERVATION 2. If K € F(I) is a fuzzy coalition and 7k its membership function then
there exist crisp coalitions K1, Ko, ..., K,, € P(I) and real numbers by, bs, ..., by, € [0,1]
such that by + by +---+b,, =1 and for all 1 € I

TK(’L) = bl Tgl (’L) + bl Tgl (’L) + b2 TEz (Z) —+ -+ bm T?m (’L) (1)

It is also easy to show that there are several sets of crisp coalitions and real coefficients
representing the same fuzzy coalition K by means of convex combination (1).

Keeping the notation of Observation 2 we say that K1,...,K,,, b1,...,by is a crisp
representation of fuzzy coalition K.

This relation between crisp and fuzzy coalitions offers a possibility to formulate a
rule for the pay-offs v(K) in some degree covering our expectation that fuzzy coalitions

extend their crisp patterns. Namely, if K with 7x is a fuzzy coalition and K1,...,K,,
with "y TR, and real coefficients by, ..., b,, is one of its crisp representations then
we denote

w(Knyo Kybrs b)) = Y bio(K5),
=1

and we may demand for v(K) to be equal to maximum of u(K1, ..., K,,,b1,...,by) over
all crisp representations of K.

OBSERVATION 3. It can be shown that there exists only one crisp representation of any
crisp coalition K, and it is K itself. Consequently, the above condition does not contradict
the definition of (I, v).

The remaining paragraphs of this subsection include a rather heuristic discussion of
a topic which was not studied in the literature, except [17], and which represents an
open field for further investigation (even if some marginal steps were mentioned in [11],
already).
If I = {1,...,n} then we denote by Lo, L1,..., Ly, where N = 2" — 1 and we put,
without loss of generality, Ly = (), Ly = I. If K is a fuzzy coalition and (K1, ..., K, b1,
.., by) its crisp representation then it is possible to define a real-valued vector

/Bk = (6()’517"'56N)
such that ﬂj S [0,1] fOI‘j = O,l,...,N, ﬂj = bk lffj = fk, and ﬂj =0 1ffj # Kk
for all crisp coalitions K, from the considered crisp representation of K. The numbers
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Bo, - .., Oy fulfil all formal properties allowing to consider the vector Bk for a member-
ship function over the set of crisp coalitions {Lg, L1, ..., Ly }. Consequently, each fuzzy
coalition may be characterized by a fuzzy subset of the class of all crisp coalitions. Each
such characterization describes not only which players do cooperate but also what is the
structure of such cooperation (and of the interests reflected by the vague cooperation).
In this sense, the membership function B offers better structured and more illustrative
information about the interests of the players.

Moreover, some fuzzy coalitions may have several crisp representations, each of which
is characterized by its own fuzzy subset 3y of the set of all crisp coalitions. They do not
differ in the degree of participation of each individual player ¢ € I in the coalition K—it is
always described by the value 75 (7). They differ in the values ﬂfj for those crisp coalitions
fj for which 7 € fj. The choice of the vector By from those ones corresponding with K
includes more information about the character of the considered relations between the
vaguely cooperating players in the fuzzy coalition K.

Perhaps the most attractive feature of the suggested model is the fact that the crisp
coalitions are a well handled concept and the processing of their (even if fuzzy) classes can
effectively use our knowledge of their properties. For example, the superadditivity of fuzzy
coalitions can cause some embarrassment regarding the demand of disjointness of (fuzzy)
coalitions. Intuitively, we may expect that the disjointness of vague, i.e., fuzzy, objects is
to be a fuzzy property but the problem is, how to define its fuzziness. It is possible to
suggest several, more or less natural, approaches to this challenge. The following appears
to be intuitively acceptable.

The fuzzy disjointness is a fuzzy relation, i.e., a fuzzy subset of the set of F(I) x
F(I) with membership function ¢ : F(I) x F(I) — [0, 1], defined for any pair of fuzzy
coalitions K, K’ represented by vectors of membership values 8 = (Bo,...,0n), 8/ =
(8%, -, B,), respectively. The value 0(K, K') represents the degree in which two fuzzy
coalitions coordinate similar groups of players.

The formal definition of the values §(K, K’) demands some auxiliary steps specifying
the activities of particular players in the structure of formed cooperation. First of all, let
us define for every player ¢ € I and every fuzzy coalition K with the vector of memberships
B = (Bo, ..., n) the concept of distribution of fuzzy participation of player i in K as a
real-valued vector

A (i)
where for any j =0,1,..., N

(A @), AT (0), ..., AN () € [0, 1]V

Koy [ B itieLy,
AJ(Z)_{o ifig¢L,.

OBSERVATION 4. For any i € I and K € F(I),
N
D A () = Ti (i)
j=1

OBSERVATION 5. Obviously, for empty crisp coalition Ly = () and any i € I, )\?(z) =0
for all j =0,1,..., N.
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OBSERVATION 6. If L; € P(I) is crisp then
. 1 ific L,
P — -
i () {0 ifi¢L;.
Having introduced the above auxiliary concept of the distribution of fuzzy participa-

tion of players in (fuzzy) coalitions, we can formulate the fuzzified concept of disjointness
with membership function §(K, K') for K, K’ € F(I), and to put

§(K,K') = 1 — max[min(A\X (i), A\ (i) i € I, j = 0,1,...,N].

The interpretation of this formula based on the classical fuzzy set theoretical concepts
is easy. The value 0(K, K') represents the fuzzy logical negation of the possibility that
some group of players (crisp coalition) is active in both fuzzy coalitions K and K’.

OBSERVATION 7. If K, L are crisp coalitions then
S 1 if KNL =0,
oK, L) = {o if KNL#0.
Even the superadditivity may be defined as fuzzy property represented by a fuzzy
subset of the class of all TU-games with fuzzy coalitions and with the set of players I. Its
membership function will be denoted by ¢ and for a game (I, v) the value o(v) denoting

the possibility that (I, v) is superadditive is defined as a possibility that each pair of fuzzy
coalitions K, K’, such that

v(KUK') < v(K)+v(K')
is not disjoint. In symbols, it is given by formula
o(v) =min[l — §(K,K’) : K, K’ such that v(K UK') < v(K) +v(K")] =
=1-max[§(K,K'): K, K, v(KUK") < v(K) +v(K")].

Here, K U K’ means the usual fuzzy-set theoretical union of fuzzy subsets of I.

The described model of TU-game with fuzzy coalitions is open but it appears promis-
ing. It can be useful to test its potential possibilities, e.g., regarding the concepts of core,
convexity, value and some others. The recent or almost recent results in this field are
summarized in [17].

4.2. Fuzzy expectations of profit. In the previous subsections, we have dealt with fuzzifi-
cation of the first one of the concepts forming the game. The quite evident possibility to
fuzzify even the pay-offs v(K) for (crisp) coalitions was ignored for a relatively long time.
The first attempts to fill this gap were done in the late nineties and the basic results are
summarized in [10]. They were connected with the increasing interest in fuzzy data pro-
cessing and its applications (see, e.g., [8, 9, 4, 6] and many others). This basic model offers
both, effectively applicable results as well as urgent topics for deeper discussion. In the
next two subsections, we briefly recollect the model and discuss its possible modification

avoiding some of its discrepancies.

4.2.1. Pay-off as fuzzy quantities. The approach presented in [10] and developed in some
other publications is based on the principle that it is not realistic to assume that the
players exactly know the expected pay-offs already in the period of negotiation, it means
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before the realization of the game. In the real cooperative situations the negotiating
partners only subjectively estimate their perspectives, and the expectations of the profit
are more or less vague. This vagueness can be modelled by the tools of fuzzy quantities
theory.

In the model analyzed in [10] only the deterministic coalitions are considered. But
their pay-offs are not characterized by crisp real numbers v(K) but by fuzzy quantities
w(K) € F(R) whose membership functions are denoted by 7 : R — [0,1]. The pair
(I,w), where w is a mapping of P(I) in F(R), is called a fuzzy TU-game.

As shown in Section 3, the algebraical operations and ordering relations with crisp real
numbers which are used in the classical TU-games have their analogies in the environment
of fuzzy quantities. In principle, it is rational to accept a paradigm that the result of any
computation with fuzzy quantities is fuzzy, and that each property derived from fuzzy
values is to be vague (i.e., fuzzy), too.

In the model of TU-game with fuzzy pay-offs, the previous principles mean that, e.g.,
the superadditivity will be a vague property. More formally, the fuzzy superadditivity is
characterized by a fuzzy subset of the class of all fuzzy TU-games. The membership of
this fuzzy set will be denoted by o and for any fuzzy game (I, w) its value is defined by

o(w) = max(vs (w(w(K UL), w(K ®w(L))): K, LeP(), KNL=10).

The definition of other similar properties like fuzzy convexity is quite analogous (cf.
[10]). Even the core of fuzzy TU-games becomes a fuzzy concept. Namely, it is a fuzzy
subset of R"™ with membership function yo : R™ — [0,1]. As explained in [10], for any
vector & € R™ the value ¢ (x) is defined by

n
~v(x) = min |:l/t (w([), Z xi), n(m)}

i=1

where
n(x) = min {l/t (Z x4, w(?)) ‘K ¢€ P(I)}
ieK

(note that any crisp real number r € R can be treated as a special fuzzy quantity with
membership function condensed into a single value; in formulas, p.(r) =1, p,(x) = 0 for
x #£T).

The properties of the above (and some other) concepts are analyzed in [10]. The most
significant for this brief presentation can be summarized in

OBSERVATION 8. If the fuzzy pay-offs w(K) are substituted by crisp values v(K) then
the properties of the fuzzy TU-game (I,w) turn into the usual properties of deterministic
TU-game (I,v); i.e., fuzzy games really represent fuzzy extensions of the deterministic
model.

Even if the similarity of the classical results with the ones involving fuzziness reduced
to their crisp “skeleton” is impressive, the general, really fuzzy, TU-games do not preserve
some properties of the crisp games. It regards, e.g., the relation between (fuzzy) convexity
and (fuzzy) core, and also some other specific problems regarding fuzzy convexity. Almost
all those problems follow from the algebraical properties of fuzzy quantities. They are not
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identical with the well-known group properties of crisp real numbers. Namely, the exis-
tence of the opposite element and the distributivity are not guaranteed which discrepancy
can be weakened (but not avoided) by the proper specification of the concept of fuzzy
zero (or fuzzy unit) (see [8, 9]). Nevertheless, their consequences for the model of fuzzy
TU-games keep rather destructive, as shown by several examples in [10]. It means that
the model described in this subsection is adequate to some features of TU-games with
fuzzy pay-offs but it is desirable to find its modification which would be more universal.
We mention it in the next subsection.

4.2.2. Fuzzy classes of crisp games. The approach described here was delt, e.g., in [16]
and its modification for non-transferable utility was suggested in [15].

Let us denote by V the set of all crisp coalitional TU-games over the set of players I,
and let us consider a fuzzy TU-game (I, w). Then it is easy to define a fuzzy subset V,,
of V with membership function m,, : ¥V — [0, 1] such that for any game (I,v) the value
7w (v) is defined by

Tw(v) = min (ux (v(K)) : K € P(I)).

It represents the possibility that the pay-offs in all coalitions of (I, w) will be equal to
those of the crisp game (I, v). In this way, the fuzzy TU-game is transformed into a fuzzy
class of deterministic games V,,.

OBSERVATION 9. Every fuzzy TU-game (I, w) can be transformed into exactly one fuzzy
class of deterministic TU-games and vice-versa.

The above transformation allows to formulate the classical game-theoretical concepts
for the fuzzy games by means of analogical concepts of deterministic game model without
loss of the natural vagueness.

Let us start with the superadditivity. It is still a fuzzy property represented by a fuzzy
subset of the class of all fuzzy TU-games. If we denote its membership function by &,
where for any fuzzy game (I, w) the possibility that it is fuzzy superadditive is

o(w) = max [m,(v) : (I,v) € V is superadditive] .

The fuzzy convexity and several other concepts can be defined in a very analogous
way. Namely, it is a fuzzy property presented by fuzzy subset of the class of all fuzzy
TU-games. If we denote its membership function by x then for any (I, w)

x(w) = sup [my,(v) : (I,v) € V is convex] .

The general principle of the above method is applicable for a wide scale of situations.
For example, even the fuzzy core of (I,w) can be defined by means of the fuzzy class
V. It is a fuzzy subset of R™ with membership function %, defined for any = € R™ by
~F(x) = max[m, (v) : (I,v) € V, ¢ € Cy)], where C, is the core of the game (I, v).

OBSERVATION 10. If the fuzzy game (I,w) is a fuzzy extension of a crisp game (I,v) in
the sense that for all K C I, ux(v(K)) = 1 then the fuzzy superadditivity and fuzzy
core of (I,w) are fuzzy extensions of their crisp counterparts in (I,v), i.e., if (I,v) is
superadditive then 7(w) = 1 and if ¢ € C, then J,(x) = 1. It is true also for other
concepts.
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OBSERVATION 11. The relation between fuzzy convexity and fuzzy core of the above type
exists and it is expressed in the form of inequality

y(w) < sup[Fe(e) : @ € .

The method of the transformation of fuzzy TU-games into fuzzy classes of determinis-
tic games presented in this subsection deserves attention. It offers a possibility to exploit
the well-known and deeply elaborated results on deterministic games for effective pro-
cessing of uncertainty about the expected pay-offs. It can be verified that this alternative
model preserves the useful properties of deterministic games like the relation between
convexity and non-emptiness of core.

5. Universal vagueness: why and how? The aim of this contribution was to summa-
rize, even if very briefly, the main methodological approaches to the existence of uncer-
tainty, imprecision and vagueness in real cooperative situations modelled by the theory
of coalitional games with transferable utility.

We can see that there exist two separated approaches to two sources of fuzziness—
in the coalition structure and in the profit expectations. These two approaches are not
immediately compatible even if it can be desirable to construct only one unitary model. If
we accept the paradigm that the uncertainty is a universal attribute of human activities,
no matter if it follows from subjectivity of human reasoning, imprecision of our knowledge,
vagueness of natural languages or from other resources. Moreover, one general model can
simplify the complex processing and solving various real situations. The endeavour to
construct such model has its sense.

Another problem is, how to proceed in its construction. Of course, there is a possi-
bility mechanically connect both previous classical models. For example, to accept the
model of fuzzy coalitions shown in Subsection 4.1.1 and to input the fuzzy values of the
coalitional pay-offs due to Subsection 4.2.1. This procedure is formally correct but it has
also several evident discrepancies. As we have seen in 4.1.1 and 4.2.1, each of both “in-
put” methods is connected with some problems regarding, e.g., the disjointness of fuzzy
coalitions or the algebraical properties of fuzzy quantities. These problems do not vanish
after the combination of both approaches into a united model. In fact, they are combined
in accordance with the combination of models and their effect rather increases.

Moreover, the application of the fuzzy set theoretical concepts in any originally de-
terministic model significantly increases its complexity and, consequently, decreases its
flexibility and lucidity. Relatively simple deterministic concepts are substituted by their
fuzzy counterparts each of which is accompanied by membership function and more or
less complicated rules for its processing. The parallel fuzzification of both components of
the TU-game model, each of them with its specific formalism, can (and probably will)
result into a model, the complexity of which seriously limits its handling and the veri-
fication of its advanced properties except some very elementary ones. These arguments
inspire the attempts to choose another strategy for the construction of the desired united
model of uncertainty in coalitional games.

One of potentially possible but not yet tested strategies can be based on the substi-
tution of particular fuzzy elements of the game (coalitions and pay-offs) by fuzzy classes
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of their deterministic patterns (in the ideal case by fuzzy classes of deterministic games).
Partial first attempts to do so were briefly shown in Subsections 4.1.2 and 4.2.2 and also
in [16]. The modification and mutual adaptation of these two particular models aiming
to find a general one which can cover both of them is still a challenge for the future.

Another approach combining fuzzy pay-offs and fuzzy coalitions can be found in [17],
where it naturally follows from the representation of fuzzy coalitions by fuzzy classes of
crisp coalitions and from the monotonicity of their pay-offs. Results shown in [17] are
recent and their research continues.

It is possible to conclude that the endeavour to fuzzify the classical model of coalitional
TU-games is rational and useful for eventual applications. It also offers interesting topics
for theoretical research and it can, perhaps, contribute to the understanding of bargaining
and coalitions forming process.

References

[1]  J.P. Aubin, Cooperative fuzzy games, Math. Oper. Res. 6 (1981), 1-13.
[2] D. Butnariu, Fuzzy games: a description of the concept, Fuzzy Sets and Systems 1 (1978),
181-192.
[3] D. Butnariu and E. P. Klement, Triangular Norm-Based Measures and Games With Fuzzy
Coalitions, Kluwer, Dordrecht, 1993.
[4] D. Dubois, E. E. Kerre, R. Mesiar and H. Prade, Fuzzy interval analysis, in: Fundamentals
of Fuzzy Sets, D. Dubois, H. Prade (eds.), Handcontributions of Fuzzy Sets, Vol. I, Kluwer
Acad. Pub. Dordrecht, 2000, 483-581.
[5] D. Dubois and H. Prade, Fuzzy numbers: An overview, in: Analysis of Fuzzy Information,
J. Bezdek (ed.), Vol. I, CRC Press, Boca Raton, 3 39.
[6] E.E. Kerre and Xuzhu Wand, Reasonable properties for the ordering of fuzzy quantities
I, I, Fuzzy Sets and Systems 118 (2001), 375-385, 387—405.
[7] R.D. Luce and H. Raiffa, Games and Decisions, J. Wiley and Sons, London —New York,
1957.
[8] M. Mares, Computation Over Fuzzy Quantities, CRC Press, Boca Raton, 1994.
[9] M. Mares, Weak arithmetics of fuzzy mnumbers, Fuzzy Sets and Systems 91 (1997), 2,
143-154.
[10] M. Mares, Fuzzy Cooperative Games. Cooperation With Vague Expectations, Physica-
Verlag, Heidelberg, 2001.
[11] M. Mares, Vague utilities in cooperative market, in: Transactions of FSSCEF 2004, St.
Petersburg, Vol. I, 143 153.
[12] M. Mares and M. Vlach, Superadditivity in general fuzzy coalition games, Kybernetika 36
(2000), 265-277.
[13] M. Mares and M. Vlach, Fuzzy coalitional structures, in: Transactions of the 7th Czech—
Japan Seminar on Data Processing Under Uncertainty. TU Ostrava 2003 (not paginated).
[14] M. Mares and M. Vlach, Alternative model of fuzzy NTU coalitional games, Kybernetika
39 (2003), 265-274.
[15] M. Mares and M. Vlach, Fuzzy classes of coalitional games with transferable utility, Sci-
entiae Mathematicae Japonicae 60 (2004), 269-278.



[16]

[17]

[18]

[19]
[20]

[21]

OPEN TOPICS IN FUZZY COALITIONAL GAMES 225

M. Mares and M. Vlach, Fuzzy coalitional structures (Alternatives), Mathware and Soft
Computing. To appear.

M. Mare§ and M. Vlach, Fuzzy coalitions as fuzzy classes of crisp coalitions, in: Transac-
tions of 7th Japan—Czech Seminar on Decision Making under Uncertainty, Awaji, Yumebu-
tain August 30 September 2, 2004. Osaka University, School of Grad. Eng., Osaka, 2004.
I. Nishizaki and M. Sakawa, Fuzzy and Multiobjective Games for Conflict Resolution,
Physica-Verlag, Heidelberg, 2001.

J. Rosenmiiller, The Theory of Games and Markets, North-Holland, Amsterdam, 1982.
J. von Neumann and O. Morgenstern, Theory of Games and Economic Behaviour, Prince-
ton Univ. Press, Princeton, 1953.

L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.



