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Abstra
t.We dis
uss sto
hasti
 dynami
s of �nite populations of individuals playing symmetri
games. We review re
ent results 
on
erning the dependen
e of the long-run behavior of su
hsystems on the number of players and the noise level. In the 
ase of two-player games withtwo symmetri
 Nash equilibria, when the number of players in
reases, the population undergoesmultiple transitions between its equilibria.1. Introdu
tion. Many so
io-e
onomi
 and biologi
al pro
esses 
an be modeled as sys-tems of intera
ting individuals; see for example Santa Fe 
olle
tion of papers on e
onomi

omplex systems [1℄, e
onophysi
s bulletin [2℄, and statisti
al me
hani
s and quantitativebiology ar
hives [3℄.Here we will 
onsider game-theoreti
 models of many intera
ting agents [4, 5, 6℄. Insu
h models, agents have at their disposal 
ertain strategies and their payo�s in a gamedepend on strategies 
hosen both by them and by their opponents. A 
on�guration ofa system, that is, an assignment of strategies to agents, is a Nash equilibrium if forany agent, for �xed strategies of his opponents, 
hanging the 
urrent strategy will notin
rease his payo�. One of the fundamental problems in game theory is the equilibriumsele
tion in games with multiple Nash equilibria. In two-player symmetri
 games with twostrategies we may have two Nash equilibria: a payo� dominant (also 
alled e�
ient) anda risk-dominant one. In the e�
ient equilibrium, players re
eive highest possible payo�s.The strategy is risk-dominant if it has a higher expe
ted payo� against a player playingboth strategies with equal probabilities. It is played by individuals averse to risks.One of the sele
tion methods is to 
onstru
t a dynami
al system where in the long runonly one equilibrium is played with a high frequen
y. Here we will dis
uss an adaptive2000 Mathemati
s Subje
t Classi�
ation: 91A10, 91A22, 92D15, 92D25.Key words and phrases: evolutionary game theory, Nash equilibrium, equilibrium sele
tion,adaptive dynami
s, sto
hasti
 stability.The paper is in �nal form and no version of it will be published elsewhere.
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238 J. MIĘKISZdynami
s introdu
ed by Robson and Vega-Redondo [7℄. In their model, at any timeperiod, individuals play only one game with randomly 
hosen opponents (they do notplay against an average strategy as in the repli
ator dynami
s or the adaptive model ofKandori, Mailath, and Rob [8℄). The sele
tion part of the dynami
s ensures that if themean payo� of a given strategy at the time t is bigger than the mean payo� of the otherone, then the number of individuals playing the given strategy should in
rease in t + 1.In addition, with a small probability representing the noise of the system, players maymake mistakes.To des
ribe the long-run behavior of sto
hasti
 dynami
s, Foster and Young [9℄ in-trodu
ed a 
on
ept of sto
hasti
 stability. A state of a system (a number of individualsplaying the �rst strategy in our models) is sto
hasti
ally stable if it has a positive proba-bility in the stationary state in the limit of zero noise. It means that in the long run weobserve it with a positive frequen
y.Here we review re
ent results 
on
erning the dependen
e of the long-run behaviorof the above desribed dynami
s on the number of players and the noise level. We will
ombine these results to show that in the 
ase of two-player games with two symmetri
Nash equilibria, when the number of players in
reases, the population undergoes multipletransitions between its equilibria.2. Adaptive dynami
s with mistakes. We will 
onsider a �nite population of nindividuals who have at their disposal one of two strategies: A and B. At every dis
retemoment of time, t = 1, 2, ..., they are randomly paired (we assume that n is even) to playa two-player symmetri
 game with payo�s given by the following matrix:
A B

A a b

U =

B c dwhere the ij entry, i, j = A, B, is the payo� of the �rst (row) player when he plays thestrategy i and the se
ond (
olumn) player plays the strategy j. We assume that bothplayers are the same and hen
e payo�s of the 
olumn player are given by the matrixtransposed to U ; su
h games are 
alled symmetri
.An assignment of strategies to both players is a Nash equilibrium if for ea
h player,for a �xed strategy of his opponent, 
hanging the 
urrent strategy will not in
rease hispayo�. If a > c and d > b, then (A, A) and (B, B) are two Nash equilibria. If a+b < c+d,then the strategy B has a higher expe
ted payo� against a player playing both strategieswith equal probabilities. We say that B risk dominates the strategy A (the notion of therisk-dominan
e was introdu
ed and thoroughly studied by Harsányi and Selten [10℄). If inaddition a > d, then we have a sele
tion problem of 
hoosing between the payo�-dominant(also 
aled e�
ient) equilibrium (A, A) and the risk-dominant (B, B).At every dis
rete moment of time t, the state of our population is des
ribed by thenumber of individuals, zt, playing A. Formally, by the state spa
e we mean the set
Ω = {z, 0 ≤ z ≤ n}.



EQUILIBRIUM TRANSITIONS 239Now we des
ribe the dynami
s of our system. It 
onsists of two 
omponents: sele
tion andmutation. The sele
tion me
hanism ensures that if the mean payo� of a given strategy,
πi(zt), i = A, B, at the time t is bigger than the mean payo� of the other one, then thenumber of individuals playing the given strategy should in
rease in t + 1.Let pt denote the random variable whi
h des
ribes the number of 
ross-pairings, i.e.the number of pairs of mat
hed individuals playing di�erent strategies at the time t. Letus noti
e that pt depends on zt. For a given realization of pt and zt, mean payo�s obtainedby ea
h strategy are as follows:

πA(zt, pt) =
a(zt − pt) + bpt

zt

, (1)
πB(zt, pt) =

cpt + d(n − zt − pt)

n − zt

,provided 0 < zt < n.The probability that a given player may 
hange his strategy should be proportionalto the length of the time period (whi
h we normalized to 1 in our models). We assumethat in any time period, ea
h individual has a revision opportunity with a small positiveprobability τ and adopts a strategy with the higher mean payo�. This is a dynami
sintermediate between the parallel (all individuals may 
hange their strategies at anytime period) and the sequential one (only one randomly 
hosen individual may revise hisstrategy).Players may make mistakes. At every time period, ea
h player who has a revisionopportunity, instead of following the sele
tion rule may adopt the other strategy with asmall probability ǫ. It is easy to see, that for any two states of the population, there is apositive probability of the transition between them in some �nite number of time steps.We have therefore obtained an irredu
ible Markov 
hain with n+1 states. It has a uniquestationary state (a probability mass fun
tion) whi
h we denote by µǫ
n. For any z ∈ Ω,

µǫ
n(z) is the frequen
y of visiting the state z in the long run. The following de�nition wasintrodu
ed by Foster and Young [9℄.Definition. z ∈ Ω is sto
hasti
ally stable if limǫ→0 µǫ

n(z) > 0.3. Equilibrium transitions. We review here re
ent results 
on
erning the dependen
eof sto
hasti
 stability of equilibria on the number of players.They are based on a 
ertain tree representation of stationary states of irredu
ibleMarkov 
hains ([11, 12, 13℄; see also Appendix). Be
ause at any time period, ea
h indi-vidual has a positive probability of 
hanging his strategy, there are no other re
urren
e
lasses besides the two absorbing states, z = 0 and z = n. After a �nite number of stepsof the noise-free dynami
s, we arrive at one of these two states and stay there forever.Therefore to obtain a stationary state in the limit of zero noise, it is enough to 
ount anumber of mistakes the population needs to evolve between these states. If one requires,for example, fewer mistakes to evolve from z = 0 to z = n than from z = n to z = 0,then z = n is sto
hasti
ally stable.Robson and Vega-Redondo proved that for a su�
iently big number of players, thee�
ient strategy A is sto
hasti
ally stable [7℄. They showed that limǫ→0 µǫ
n(n) = 1 whi
hmeans that in the long run, in the limit of no mistakes, all individuals play A.



240 J. MIĘKISZHowever, their proof requires the number of players to be su�
iently big. It wasshowed in [14℄ that the risk-dominant strategy B is sto
hasti
ally stable if the number ofplayers is below (2a − c − b)/(a − c).Let us re
all the proof. If the population 
onsists of only one B-player and n − 1

A-players and if c > [a(n−2)+ b]/(n−1), that is n < (2a− c− b)/(a− c), then πB > πA.It means that one needs only one mistake to evolve from z = n to z = 0. It is easy to seethat two mistakes are ne
essary to evolve from z = 0 to z = n whi
h �nishes the proof.To see sto
hasti
ally stable states, we need to take the limit of the zero noise level. Itwas showed in [14℄ that for any arbitrarily low �xed noise level, if the number of players isbig enough, then in the long run only a small fra
tion of the population plays the e�
ientstrategy A. Smaller the noise level is, fewer individuals play A.Let us note that the above theorem 
on
erns an ensemble of states, not an individualone. In the limit of the in�nite number of players, that is the in�nite number of states ofthe system, every single state has zero probability in the stationary state. It is an ensembleof states that might be stable. Ensemble and sto
hasti
 stability in spatial games withlo
al intera
tions were re
ently dis
ussed in [15, 16, 17℄. For an interesting dis
ussion onthe importan
e of the order of taking di�erent limits (τ → 0, n → ∞, and ǫ → 0) inevolutionary models (espe
ially in the Aspiration and Imitation model) see [18℄.Now we 
ombine the above theorems and obtainTheorem. For any δ > 0 and β > 0 there exists ǫ(δ, β) su
h that, for all ǫ < ǫ(δ, β),there exist n1 < n2 < n3(ǫ) < n4(ǫ) su
h that
• if n < n1 = 2a−c−b

a−c
, then µǫ

n(z = 0) > 1 − δ,

• if n2 < n < n3(ǫ), then µǫ
n(z = n) > 1 − δ,

• if n > n4(ǫ) and τ < ǫ/n3, then µǫ
n(z ≤ βn) > 1 − δ.Small τ means that our dynami
s is 
lose to the sequential one. The quantities

n3(ǫ), n4(ǫ), n3(ǫ) − n2, and n4(ǫ) − n3(ǫ) all tend to ∞ as ǫ → 0.We see that for a �xed noise level, when the number of players in
reases, the popula-tion undergoes twi
e a transition between its two equilibria. Let us re
all that if n > n2,then z = n is sto
hasti
ally stable. Therefore, for any �xed number of players, n > n2, ifthe noise level is su�
iently small, then almost all individuals will play in the long runthe e�
ient strategy A.In order to study the long-run behavior of sto
hasti
 population dynami
s, we shouldestimate the relevant parameters to be sure what limiting pro
edures are appropriate inspe
i�
 examples. Equilibrium transitions in other sto
hasti
 dynami
s of �nite popula-tions were re
ently investigated in [19, 20℄.Appendix. The following tree representation of stationary distributions of Markov
hains was proposed by Freidlin and Wentzell [11, 12℄, see also [13℄. Let (Ω, P ) be anirredu
ible Markov 
hain with a state spa
e Ω and transition probabilities given by
P ǫ : Ω × Ω → [0, 1]. It has a unique stationary distribution, µǫ, also 
alled a station-ary state. For X ∈ Ω, let an X-tree be a dire
ted graph on Ω su
h that from every
Y 6= X there is a unique path to X and there are no out
oming edges at X. Denote by
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T (X) the set of all X-trees and let

qǫ(X) =
∑

d∈T (X)

∏

(Y,Y ′)∈d

P ǫ(Y, Y ′), (2)where the produ
t is over all edges of d. We have that
µǫ(X) =

qǫ(X)∑
Y ∈Ω qǫ(Y )

(3)for all X ∈ Ω.Let us assume now that after a �nite number of steps of the noise-free dynami
s, i.e.
ǫ = 0, we arrive at one of two absorbing states, say X and Y , and stay there forever -there are no other re
urren
e 
lasses. Let Z be any state di�erent from X and Y . qǫ(Z) in(2) is of higher order in ǫ than qǫ(X) and qǫ(Y ). It follows from the tree representation (3)that Z has zero probability in the stationary distribution in the zero-noise limit. Considera dynami
s in whi
h P ǫ(Z, W ) for all Z, W ∈ Ω, is of order ǫm, where m is the number ofmistakes involved to pass from Z to W . Then one has to 
ompute the minimal numberof mistakes, mXY , needed to make a transition from the state X to Y and the numberof mistakes, mY X , to evolve from Y to X. qǫ(X) is of order ǫm(Y X) and qǫ(Y ) is of order
ǫm(XY ). Let us assume for example that mY X < mXY . We then take the limit ǫ → 0 in(3) and obtain that limǫ→0 µǫ(X) = 1 hen
e X is sto
hasti
ally stable.
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