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Abstract. This paper deals with two-person stochastic games of resource extraction under both
the discounted and the mean payoff criterion. Under some concavity and additivity assumptions
concerning the payoff and the transition probability function a stationary Nash equilibrium is
shown to exist. The proof is based on Schauder-Tychonoff’s fixed point theorem, applied to a
suitable payoff vector space.

1. Introduction. The games of resource extraction were introduced by Levhari and
Mirman [14]. In such a dynamic game the players extract some amount of common
renewable resource at each stage of the game. The amount of available resource in a
next stage depends on the amount of the resource left by the players in the previous
stage (investment). Extraction of small amount of the resource results in small payoffs of
the players. Extraction of great amount of the resource reduces potential payoffs in the
future.

In the models of Sundaram [25] or Majumdar and Sundaram [15] the strategies of the
players were lower semicontinuous functions of the game state and utilities were the same
for all the players. In those models the existence of Nash equilibria in pure stationary
strategies was proved.

A similar model was considered by Amir [1]. He used the Topkis Theorem (see [27])—
about monotonicity of a maximand of a submodular function on a lattice—and the
Schauder fixed point theorem (see [23]).

The models of resource extraction games were also considered by Dutta and Sun-
daram [9], Cave [6], Fisher and Mirman [11], Mendelsohn and Sobel [16], Sobel [24] and
Wiecek [28].
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This paper also deals with such models. Unlike in the papers of Amir [1, 2], the state
space of the game does not have to be unbounded from above. The main assumptions
deal with the structure of transition probabilities (they have to be additive) and utility
functions of the players. The existence of a stationary pure Nash equilibria in both cases
of discounted and—under some additional assumptions—mean payoffs are proved.

Some models with similar transition probability structure were also considered by
Nowak and Szajowski [22] and Szajowski [26]. In those papers it is assumed that there
exists an absorbing state of total resource extraction (of resource level zero). This addi-
tional assumption allows for a construction of sequences converging to Nash equilibria.
However, in the model from this paper it was not the case. Similar approach can be found
in the paper of Nowak [20] and also in the one of Balbus and Nowak [3], in which the
symmetric games were considered.

A survey on the Nash and correlated equilibria in stochastic games with infinite state
space can be found in the paper of Nowak [21].

This paper is organized in the following way: in the first section we define the model,
in the second one we formulate and prove the main results concerning the discounted
game model, and in the third one, the results concerning the model with mean payoffs.
In the last section and in the appendix the results needed for the proofs in the previous
sections are discussed.

2. The model of the game—definitions, notation and assumptions. In this paper
we deal with a model of a stochastic game of resource extraction:

DEFINITION 2.1. The 2-person stochastic game of resource extraction is defined as a
4-tuple (S, D, u,p) of the following objects:

(i) S is an interval in (0,00) open from the left (called later the set of all possible
resource stocks or the state space),

(i) D == {(s,2) : s € 5, = (x1,22),2; € Ai(s) for i = 1,2}, where A;(s) :=
[0, a;(s)] represents the set of admissible decisions of player i in state s € S. The functions
a; : S — Ry :=[0,4+00) are Borel and satisfy

a1(s) + az(s) <s—inf S for each se€ 8.

(iii) @ = (u1,us2), where u; : Ry — Ry (for ¢ = 1,2) is a continuous utility function
of player 1,
(iv) p is a transition probability from the set D into S.

The game takes place in discrete time. If in some moment the state of the game is
s, then player ¢ chooses x; € A;(s) C Ry and obtains the payoff u;(z;) and the state
of the game changes according to the transition probability distribution p(:|s,Z), where
T = (.231, 1‘2).

x; may be interpreted as an amount of resource consumed by the player i in that
moment. It must be nonnegative and is bounded from above by the quantity a;(s), which
represents the maximal admissible level of consumption of player i in state s. If the game
is in a state s, it reflects the situation that the amount s of the resource is present in
the environment. The common level of players’ consumption should not lead to overcon-
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sumption, that is, the amount of the resource after players’ consumption must be greater
than some minimal level.

DEFINITION 2.2. Let H! = S and for n > 2
H'"=Dy x-+- X Dp_q1 xS,

where Dy := D,k =1,--- ,n—1. H" is called the space of histories of the game up to
the n-th state.

Let H*® = D x D x --- This is called the space of all histories of the infinite horizon
game.

REMARK 2.1. (a) The spaces H" and H* are endowed with the product o-algebras.
(b) This paper deals with the models of investment /consumption in which randomized
strategies do not have natural interpretation. Therefore we shall restrict attention to
non-randomized strategies.
(¢) The players have full information about the entire history of the game at any
stage.

DEFINITION 2.3. A strategy of player ¢ is defined as a sequence
T = (7Ti,1777i,2; T )7
where ; ,, is a Borel mapping from H™ into [0, +00) such that for every
h" = (s1,211,%2,1, 82, ,8n) € H",
we have
Tin(R"™) € Ai(sn).
The set of strategies of player ¢ will be denoted by II,.

DEFINITION 2.4. A strategy m; = (m; 1,72, --) of player ¢ such that 7, ,, depends on n
and the state s, (in the current moment n) only will be called Markovian.

DEFINITION 2.5. A Markovian strategy of player ¢ of the form 7w, = (f, f,---), where f
associates with any s € S a point f(s) € A;(s) will be called stationary.
The set of stationary strategies of player ¢ will be denoted by F;.

For every strategy profile # = (m;)2_; of both players and any initial state of the
game s; = s € S the stochastic process {(sn,Z,)} (where Z,, = (21,5, %2,)) is defined on
H® in the canonical way (see Chapter 7 in [4]), where the random variables s,, and Z,
are the state of the game and the profile of players’ strategies on n-th step of the game,
respectively.

REMARK 2.2. Existence of the stochastic process {(s,,Z,)} and the unique probability
measure on H> generated by the initial state of the game s and the transition probabil-
ities follow from the Ionescu-Tulcea Theorem (see Proposition V.1.1 in Neveu [19]).

Let us denote the above mentioned probability measure by PT and the expected value
operator associated with this measure by ET.
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DEFINITION 2.6. Put IT = II; x II5, choose 7 € II. Let 3 be a discount factor. Assuming
that 8 € (0,1), define the §-discounted expected payoff of player ¢ in the infinite horizon

game as
o0

(@) (s) = EL (D 8" wilwin) ).

n=1
where ET is the expected value operator with respect to the probability measure PT and
Z; i the i-th coordinate of the vector z,.

DEFINITION 2.7. The expected mean payoff of player i is defined as

¢i(7)(s) == lim inf E (X ui(Zin))

m—o0 m
DEFINITION 2.8. A strategy profile 7* € Il is called a Nash equilibrium in the discounted
infinite horizon stochastic game iff

Y1(7)(8) =2 (1, 73)(s),
Y2(7)(s) = y2(7, m2)(s)
for all m; € Il;, s € S.

A Nash equilibrium in the infinite horizon stochastic game with the expected mean
payoff functions is defined analogously.

In this paper we make the following additional assumptions:

AssuMPTION 2.1. For every (s,x1,22) € D the transition probability p(:|s, 21, 22) has
the form

p(:|s,x1,me) =1(s — 21 — 22)H1(+|8) + (1 — I(s — 21 — 22))Ha(+]s),
where

(i) I : S — [0,1] is increasing, concave and twice differentiable,
(i1) Hq(:|s), H2(:|s) are transition probabilities from S into S such that there is a
probability measure u on the set .S, for which

HZ(|S) < ,U/(')7 1 =1,2.
The term [(s — 21 — x2) indicates (indirectly) how much of the resource is left after
players’ consumption in a previous stage. So, the influence of the transition probability
H; on the probabiliy p increases with the common players’ investment and the influence

of Hs increases with the consumption.
Additionally we assume that the utility functions satisfy:

ASSUMPTION 2.2. w; are increasing, nonnegative, bounded, twice differentiable (at zero—
from the right-hand side) and u!(z) < 0 for each z € (0, +00).
By b > 0 we shall denote a common upper bound of the functions u;, ¢ = 1,2.

3. Nash equilibria in discounted stochastic games

THEOREM 3.1. Suppose that Assumptions 2.1 and 2.2 hold in the considered model of
the stochastic game with the 3-discounted expected payoff. Then there exists a stationary
Nash equilibrium (ff, f5) in this game.
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For the proof two additional definitions and a lemma are needed. First, consider an
auxiliary game:

DEFINITION 3.1. Let I'(v1, v, s) be a one-shot game, where the payoff function of player

i is:
(s w1, @2) = (1= B)uy(;) —i—ﬁ/ v; (s )p(ds'|s, x1, 32),
where
(v1,v2) € B := By X By,
Bii={v: 8 — Ry : ol < B},
and

[|v]|oo := esssup |v(s)].
ses

It is obvious that B; C L*°(u). Endow L%°(u) with the weak*-topology. It is well
known that a sequence {f,} C L°(u) converges to f € L>°(u) in weak*-topology iff for
all g € LY(p)

lim fn( w(ds) / f(s ds).

n—oo

REMARK 3.1. It is obvious that B is convex. From the Banach-Alaoglu Theorem (see
[8]), it follows that B; is compact in the relative weak*-topology. Hence B = By X Bj is
also compact.

DEFINITION 3.2. Let (vy,v2) € B. Put

w;i(s) = Tf,i(87if1(5)7552(5))a

Z1(s) == argmax r, (s, x1,32(s)),
z1€[0,a1(s)]
Zo(s) := argmax ng(s,il(s),xg).

z2€[0,a2(s)]
Define
W (v1,v2) := (wy,ws).
The above definition is correct, because if s € S is fixed, then the game T'(vy, vo, s)
fulfils the assumptions of Lemma 5.3. Thus there exists a unique Nash equilibrium

(Z1(s), Z2(s)) in T'(v1, v2, 5).
LEMMA 3.1. The mapping W is continuous when B is endowed with the product weak*-
topology.

Proof. Consider a sequence {(v}",v4)} C B converging to some (v1,v2) € B. We will show
that the sequence {W (v}, v5)} converges to W(vy,v2) € B.

Denote:
Z1(s) := argmax rln(s x1,25(8)),
z1€[0,a1(s)]
5 (s) := argmax 7"5;(5,50?(5),1‘2),

z2€[0,a2(s)]
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Z1(s) argmax 7'11)1(5,561,@2(5)),
z1€[0,a1(s)]

Ia(s) := argmax 1y (s, Z1(s),22).
z2€[0,a2(s)]

(Z7(s),Z5(s)) is a Nash equilibrium in the game I'(v],v7, s), and (Z1(s), Z2(s)) in the
game I'(v1,v9,s). Lemma 5.3 implies that these Nash equilibria are unique.

Note that for fixed s € S the sequence 1}, (s,x1,x2) converges to r} (s, z1,x2) (as
n — 00) uniformly in z; and xs: '

k(1) () = [0 Buaten) + 8] [ ot (s 2 = ) s
+ /S VP (s) (1= 1(s — 21 — I2))H2(d5/|5)]
(1= Byun(an) — ﬁ{/svl(s')l(s 1 — ) Hy (ds']5)
—i—/svl(s/)(l—l(s—:m —xz))Hz(ds’IS)”
_ ﬁ‘z(s — i —a2) [ [0() = o H 1)

+(1=l(s == —:cg))/s[v?(s’) —v(s')|Hay(ds']s)|. (1)

By the Radon-Nikodym Theorem, for any fixed state s € S, the probability measure
H,(:|s) has a density function, say g;. Therefore (1) can be rewritten in the following
way:

[rop (5,21, 32) — 7y, (5,21, 22)| = 5’1(5 — 1 = x3) /SW(SI) —v1(s")lg1 (s")u(ds")

(=15 — 1 — 22)) /S P(s) — va (g2 (s)ulds)|. (2)

Since I(s — 1 — x2) € [0,1] and the integrals in (2) converge to zero as n — o0

(by the convergence of the sequence {(v})} to vy in the weak*-topology) we can con-
clude that 1"11)11(5,:01, x9) converges uniformly to 7'1%1 (s,x1,22). The case of the sequence
{7’33 (s,x1,x2)} follows along the same lines.

Fix s € S. For any n > 1, z; € [0,a1(s)] and z2 € [0, az(s)] we have

rop (8,21, 35 (5)) < 1y (5,77 (5), 75 (5)), (3)
rop (5,37 (s), 2) < 13y (5,77 (5), 75 (5))- (4)
Let (29(s),29(s)) be any accumulation point of the sequence {(Z7(s),Z%(s))}. Then

there exists a subsequence {(:E’f”(s)7 :fcé”(s))} such that

k k

lim @ (s) =af(s),  lim #5"(s) = 29(s).
n—oo n—oo

Obviously, with %" (s) and Z5" (s) the inequalities (3) and (4) hold. From the unifom
convergence of the sequences {r}}? (s,z1,22)} and {7“12}3(3, x1,22)} we can conclude:

Tilxl (val’wg(s)) < Tilxl (s,x?(s),xg(s)), 7’32 (S,.’E?(S),:L’g) < 7’32 (s,x?(s),xg(s)),
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for any z1 € [0,a1(s)] and z2 € [0, az2(s)]. It means that (29(s),xJ(s)) is a Nash equilib-
rium in the game I'(vy,v9, s). Lemma 5.3 implies that the equilibrium is unique, so we
obtain

lim (Z7(s),75(s)) = (Z1(s), T2(s))

n— oo

and

wils) = 74, (5, 71(5), B2(5)) = Timn vy (s, 75(5), 75 () = lim w?'(s).

By the Lebesgue dominated convergence theorem w} — w in the weak*-topology on
B;. Thus the result follows. =

Proof of Theorem 8.1. The above lemmas and the Schauder-Tychonoff Fixed Point The-
orem (see [23]) imply the existence of v; € B; such that

W(vi,v9) = (v1,v2) p-a.e. (5)

et (f1(s), f3(s)) be the unique Nash equilibrium in the game I'(v1, v2, $), s € S. Then
from (5), it follows that

vi(s) = max ] {(1—6)1“ Ty +5/U1 p(ds'|s, x1, f5 (s ))]

z1€[0,a1(s)

vo(s) = max [(1—ﬁ)uz (z2) +ﬂ/v2 p(ds']s, f1(s),® )}

z2€[0,a2(s)]

for all s € S\ E with u(E) =0.

Let (vi,v3) be the pair of the Nash equilibrium payoffs in the game I'(vy,vq, s) for
every s € S. We have v} (s) = v;(s) for each s € S\ E, so the pair (f{(s), f3(5)) is also
the Nash equilibrium point in the game (v}, v3, s) for s € S\ E. Observe that since
p(-|s, x1, w2) < p(-) for every s € S,x; € A;(s),i=1,2. We have

i) =m0 Bule) +5 [ 0@l f56)

= max (1= PBug(zy +ﬂ/v1 p(ds'|s, 1, f5(s))

—
(@)
=

z1€[0,a1(s)] | J
vy(s) = max (1* uz (T2 +ﬂ/ )p(ds'[s, f1(s), 22)
z2€[0,a2(s)] |
— max (1= Buales )48 [ 03l |s, i (). (")
z2€[0,a2(s)]

for each s € S.

Let w}(s) = 1112(2) The above equations may be rewritten in the form

wit) = funGen) + 5 [ wip(ass,en 55 9)] ®)

z1€[0,a1(s)]

wie) = amaxfusGaa) + 5 [ w3p(as]o, 7 (5 aa)] )

z2€[0,a2(s)]

for every s € S.
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From Blackwell’s work on discounted dynamic programming [5] and the above equa-
tions ((8) and (9)), it follows that

wi(s) = M. f5)(s) = max (., £5)(6)

and
wi(s) = %2 f5)(s) = mavs 2a(f7,72)()

for each s € S. So the pair (ff, f5) is also a Nash equilibrium in the stochastic game with
the g-discounted expected payoff. m

4. Nash equilibrium in stochastic games with expected mean payoffs. Let us
make an additional assumption on our game model:

AssUMPTION 4.1. (i) The probabilities H;(-|s) do not depend on s (for simplicity of
notation we shall denote them by H;(+)).

(ii) There exist a probability measure v on S and a constant § € (0, 1) such that for
any measurable set A C .S we have

H;(A) > ov(A)
for any ¢ € {1, 2}.
REMARK 4.1. From the above assumption we conclude immediately that p(Als, z1,z2) >
0v(A) and

H, + Hy
—

THEOREM 4.1. If Assumptions 2.1, 2.2 and 4.1 hold in our model of the infinite horizon
game with the expected mean payoffs of the players, then a Nash equilibrium exists.

H, < p:=

Proof. Note that for the discounted game in which the transition probabilities are of the
form
p(~\s,x1,:c2) - 51/()

1-6

and the discount factor is equal 8 =1 — §, both Assumptions 2.1 and 2.2 are satisfied.

p(-|s, x1,22) =

Theorem 3.1 implies that in such a game there exists a stationary Nash equilibrium
(f1, f5) and the Bellman optimality equations are satisfied:

n(s) = max {ul(:cl)wL(lé)/

z1€[0,a1(s)] S

m(s’)ﬁ(ds’s,xl,f;(s))], (10)

va(s) =  max {UQ(:@H@J)/

z2€[0,a2(s)] S

vals)(ds'|s, £ (5). zzﬂ . (11)
Denote:

di =5 [5 vi(s)(ds').
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Equations (10) and (11) can be rewritten in the following form:

vi(s) = max |:u1(xl)+/Svl(s')p(ds'|s,$17f2*(5))dl],

z1€[0,a1(s)]
va(s) = max |:U2(.’E2) + / va(s")p(ds'|s, f1(s), x2) — dg].
22€[0,a2(s)] s
These are the optimality equations for the game with the expected mean payoffs (see [13]).
Thus (ff, f3) is a stationary Nash equilibrium in the infinite game with the expected mean
payoffs and the Nash equilibrium payoff of player 4 in this game is ¢;(f5, f5)(s) = d; (it
does not depend on s). =

REMARK 4.2. (a) The transformation to the discounted game used in the proof was
introduced in dynamic programming by Dynkin and Yushkevich in their book [10].

(b) Assumption 4.1 implies that the Markov process generated by the strategies in the
Nash equilibrium (f5, f3) is geometrically ergodic (see [13]) and has a stationary distri-
bution. The existence of a stationary distribution is an important question in studying
various economic models, see [2, 7].

5. The uniqueness of the Nash equilibria in a one-shot game. In this section we
shall consider the problem of uniqueness of the Nash equilibrium in an auxiliary game.

In the lemmas below we shall consider functions
wj X1 X X2 — R

for i = 1,2, where X, X5 are compact intervals. The function w; is strictly concave in
the i-th variable and its second partial derivatives are continuous.

REMARK 5.1. From the well known result of Nash (see [18]) the two-person one-shot
game with the payoff functions w; and the actions sets X; has a Nash equilibrium.

ASSUMPTION 5.1. Assume that for any = (z1,22) € X1 X X5 and i = 1,2 it holds
8211),‘ (7) > 82wi _
—(Z —— (T
al’% 8.’E1‘8.’E3,i

For any T = (x1,22) € X7 x Xo define the norm

(12)

T = a il
folloo = mae s

The first lemma in this section is a result of Moré (see [17]). The proof of this lemma,
based on the Rolle Theorem can be found in the paper of Gabay and Moulin [12].
LEMMA 5.1 (Moré). If Assumption 5.1 holds and T,y € X1 x Xy are different, then

8wi N a’LUZ _

implies that
i = il <17 = Ylloo-

The following lemma is a slight modification of Theorem 4.1 from [12].
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LEMMA 5.2. Let Assumption 5.1 be fulfilled and w; be strictly concave in x;. Then in the
two-person game in which w;(x1,x2) are the payoffs of the players, there exists a unique
Nash equilibrium.

Proof. The strict concavity of w; in x; implies that for any 7 and fixed z;, w3_;(Z) attains
its maximum at a unique point x3_;. Thus we may define the mapping:

A:X1><X2*>X1><X2
such that for (21, z2) = A(y1,y2) we have

x1 = argmax wi(x,ya), X2 = argmax wa(yi,x). (13)
r€X r€X2

Put A;(y1,y2) := x; for i = 1,2. We will prove now that
I[A@) = Ao < |7 = oo (14)

for R TRS X1 X XQ.
Consider the case in which both A;(Z) and A;(g) are inside the interval X;. Then

8’LU1 _ - 8’(1)1 _ o
9z, A1@),22) = Z(A1(B), 52) = 0
and Lemma 5.1 implies
[A1(Z) — A1 ()] < [[(A1(Z), 22) — (A7), y2)loo = |22 — w2l (15)
A similar inequality can be obtained for As:
[A2(7) — A2(9)] < [|(z1, A2(Z)) — (y1, A2(Y))|o0 = |21 — 11]- (16)

From (15) and (16) it can be easily concluded that (14) holds.

If any of the values A;(Z) or A;(y) belongs to the edge of the interval X;, we may
define (thanks to the fact that the derivatives w; are finite and X; are closed) the function
W; : R x R — R such that w;(Z) = w;(Z) for T € X7 x X3 with the same properties like
w;, that is strict concavity in x; and Assumption 5.1.

For these functions we conduct similar reasoning, as in the case of A;(Z) and A;(7)
inside the set X7 x Xs.

Define A for the function @; just as A was defined for w;. Note that

A;(®) € [Ai(2), Ai(p)]-
This implies that
[4:(7) = A:(9)| < |Ai(@) = A@)] < ||z = 3|0,
and this ends the proof of (14).
Note that there exists a Nash equilibrium in the considered game (see Remark 5.1).

Assume that there exist two different Nash equilibria: 2* € X; x X5 and " € X; x Xs.
Note that these are fixed points of the mapping A4, i.e. z* = A(z*) and §* = A(y*). Thus

127 = 7" [loo = [[A(Z") = A(F)[|oo < []7" = §"[|oo

and so we have obtained a contradiction. Therefore the game has a unique Nash equilib-

rium. m
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LEMMA 5.3. For a fized s € S C (0,00) consider a two-person game with the payoff of
player i given by

’LLZ(QJZ) + kll(s — X1 — .’EQ),
where x; € [0,a;(s)], a1(s) + az(s) < s and

(i) u; : [0,00) — [0,00) fulfils uf(x) < 0 for all x € (0,4+00) and it is increasing and
twice differentiable,
(11) ki € R,

(iii) 1 : [0,00) — [0,00) is concave, increasing and twice differentiable.
This game has a unique Nash equilibrium.

Proof. (a) Consider the case that k; < 0 or ky < 0. Assume that ko < 0 (for k1 < 0 the
proof is similar). Note that the payoff of player 2: us(z2) + k2l(s — 21 — z2) is increasing
in x5. Thus, the optimal choice of player 2 (independent of the choice of player 1) is
x5 = as(s).

If k1 > 0, then the payoff of player 1, ui(xz1) + k1l(s — x1 — x3), is strictly concave in
x1, thus there exists a unique point

x] = argmax [uj(x1) + kil(s — x1 — x3)].
z1€[0,a1(s)]

(2%, %) is then a unique Nash equilibrium.

(b) If k; <0 for i = 1,2 then a unique Nash equilibrium is (27, 23), where 27 = a1(s),
x3 = az(s).

(c) Let us consider the case that k; > 0,i=1,2.

Note that the payoff of player i is strictly concave in z; and both payoffs fulfil As-
sumption 5.1. Thus the uniqueness of the Nash equilibrium is implied by Lemma 5.2. =
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