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Abstra
t. This paper deals with two-person sto
hasti
 games of resour
e extra
tion under boththe dis
ounted and the mean payo� 
riterion. Under some 
on
avity and additivity assumptions
on
erning the payo� and the transition probability fun
tion a stationary Nash equilibrium isshown to exist. The proof is based on S
hauder-Ty
hono�'s �xed point theorem, applied to asuitable payo� ve
tor spa
e.1. Introdu
tion. The games of resour
e extra
tion were introdu
ed by Levhari andMirman [14℄. In su
h a dynami
 game the players extra
t some amount of 
ommonrenewable resour
e at ea
h stage of the game. The amount of available resour
e in anext stage depends on the amount of the resour
e left by the players in the previousstage (investment). Extra
tion of small amount of the resour
e results in small payo�s ofthe players. Extra
tion of great amount of the resour
e redu
es potential payo�s in thefuture.In the models of Sundaram [25℄ or Majumdar and Sundaram [15℄ the strategies of theplayers were lower semi
ontinuous fun
tions of the game state and utilities were the samefor all the players. In those models the existen
e of Nash equilibria in pure stationarystrategies was proved.A similar model was 
onsidered by Amir [1℄. He used the Topkis Theorem (see [27℄)�about monotoni
ity of a maximand of a submodular fun
tion on a latti
e�and theS
hauder �xed point theorem (see [23℄).The models of resour
e extra
tion games were also 
onsidered by Dutta and Sun-daram [9℄, Cave [6℄, Fisher and Mirman [11℄, Mendelsohn and Sobel [16℄, Sobel [24℄ andWi�
ek [28℄.2000 Mathemati
s Subje
t Classi�
ation: Primary 91A15.This paper is a part of the dissertation of the author. The author wishes to thank hissupervisor, Prof. Andrzej Nowak, for inspiration and mu
h help.The paper is in �nal form and no version of it will be published elsewhere.
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292 P. SZAJOWSKIThis paper also deals with su
h models. Unlike in the papers of Amir [1, 2℄, the statespa
e of the game does not have to be unbounded from above. The main assumptionsdeal with the stru
ture of transition probabilities (they have to be additive) and utilityfun
tions of the players. The existen
e of a stationary pure Nash equilibria in both 
asesof dis
ounted and�under some additional assumptions�mean payo�s are proved.Some models with similar transition probability stru
ture were also 
onsidered byNowak and Szajowski [22℄ and Szajowski [26℄. In those papers it is assumed that thereexists an absorbing state of total resour
e extra
tion (of resour
e level zero). This addi-tional assumption allows for a 
onstru
tion of sequen
es 
onverging to Nash equilibria.However, in the model from this paper it was not the 
ase. Similar approa
h 
an be foundin the paper of Nowak [20℄ and also in the one of Balbus and Nowak [3℄, in whi
h thesymmetri
 games were 
onsidered.A survey on the Nash and 
orrelated equilibria in sto
hasti
 games with in�nite statespa
e 
an be found in the paper of Nowak [21℄.This paper is organized in the following way: in the �rst se
tion we de�ne the model,in the se
ond one we formulate and prove the main results 
on
erning the dis
ountedgame model, and in the third one, the results 
on
erning the model with mean payo�s.In the last se
tion and in the appendix the results needed for the proofs in the previousse
tions are dis
ussed.2. The model of the game�de�nitions, notation and assumptions. In this paperwe deal with a model of a sto
hasti
 game of resour
e extra
tion:Definition 2.1. The 2-person sto
hasti
 game of resour
e extra
tion is de�ned as a4-tuple (S, D, ū, p) of the following obje
ts:(i) S is an interval in (0,∞) open from the left (
alled later the set of all possibleresour
e sto
ks or the state spa
e),(ii) D := {(s, x̄) : s ∈ S, x̄ = (x1, x2), xi ∈ Ai(s) for i = 1, 2}, where Ai(s) :=

[0, ai(s)] represents the set of admissible de
isions of player i in state s ∈ S. The fun
tions
ai : S → R+ := [0, +∞) are Borel and satisfy

a1(s) + a2(s) < s − inf S for ea
h s ∈ S.(iii) ū = (u1, u2), where ui : R+ → R+ (for i = 1, 2) is a 
ontinuous utility fun
tionof player i,(iv) p is a transition probability from the set D into S.The game takes pla
e in dis
rete time. If in some moment the state of the game is
s, then player i 
hooses xi ∈ Ai(s) ⊆ R+ and obtains the payo� ui(xi) and the stateof the game 
hanges a

ording to the transition probability distribution p(·|s, x̄), where
x̄ = (x1, x2).

xi may be interpreted as an amount of resour
e 
onsumed by the player i in thatmoment. It must be nonnegative and is bounded from above by the quantity ai(s), whi
hrepresents the maximal admissible level of 
onsumption of player i in state s. If the gameis in a state s, it re�e
ts the situation that the amount s of the resour
e is present inthe environment. The 
ommon level of players' 
onsumption should not lead to over
on-



GAMES OF RESOURCE EXTRACTION 293sumption, that is, the amount of the resour
e after players' 
onsumption must be greaterthan some minimal level.Definition 2.2. Let H1 = S and for n ≥ 2

Hn = D1 × · · · × Dn−1 × S,where Dk := D, k = 1, · · · , n − 1. Hn is 
alled the spa
e of histories of the game up tothe n-th state.Let H∞ = D ×D × · · · This is 
alled the spa
e of all histories of the in�nite horizongame.Remark 2.1. (a) The spa
es Hn and H∞ are endowed with the produ
t σ-algebras.(b) This paper deals with the models of investment/
onsumption in whi
h randomizedstrategies do not have natural interpretation. Therefore we shall restri
t attention tonon-randomized strategies.(
) The players have full information about the entire history of the game at anystage.Definition 2.3. A strategy of player i is de�ned as a sequen
e
πi = (πi,1, πi,2, · · · ),where πi,n is a Borel mapping from Hn into [0, +∞) su
h that for every

hn = (s1, x1,1, x2,1, s2, · · · , sn) ∈ Hn,we have
πi,n(hn) ∈ Ai(sn).The set of strategies of player i will be denoted by Πi.Definition 2.4. A strategy πi = (πi,1, πi,2, · · · ) of player i su
h that πi,n depends on nand the state sn (in the 
urrent moment n) only will be 
alled Markovian.Definition 2.5. A Markovian strategy of player i of the form πi = (f, f, · · · ), where fasso
iates with any s ∈ S a point f(s) ∈ Ai(s) will be 
alled stationary.The set of stationary strategies of player i will be denoted by Fi.For every strategy pro�le π̄ = (πi)

2
i=1 of both players and any initial state of thegame s1 = s ∈ S the sto
hasti
 pro
ess {(sn, x̄n)} (where x̄n = (x1,n, x2,n)) is de�ned on

H∞ in the 
anoni
al way (see Chapter 7 in [4℄), where the random variables sn and x̄nare the state of the game and the pro�le of players' strategies on n-th step of the game,respe
tively.Remark 2.2. Existen
e of the sto
hasti
 pro
ess {(sn, x̄n)} and the unique probabilitymeasure on H∞ generated by the initial state of the game s and the transition probabil-ities follow from the Iones
u-Tul
ea Theorem (see Proposition V.1.1 in Neveu [19℄).Let us denote the above mentioned probability measure by P π̄
s and the expe
ted valueoperator asso
iated with this measure by Eπ̄

s .



294 P. SZAJOWSKIDefinition 2.6. Put Π = Π1 ×Π2, 
hoose π̄ ∈ Π. Let β be a dis
ount fa
tor. Assumingthat β ∈ (0, 1), de�ne the β-dis
ounted expe
ted payo� of player i in the in�nite horizongame as
γi(π̄)(s) := Eπ̄

s

(

∞
∑

n=1

βn−1ui(xi,n)
)

,where Eπ̄
s is the expe
ted value operator with respe
t to the probability measure P π̄

s and
xi,n is the i-th 
oordinate of the ve
tor x̄n.Definition 2.7. The expe
ted mean payo� of player i is de�ned as

φi(π̄)(s) := lim inf
m→∞

Eπ̄
s (

∑m

n=1 ui(xi,n))

m
.Definition 2.8. A strategy pro�le π̄∗ ∈ Π is 
alled a Nash equilibrium in the dis
ountedin�nite horizon sto
hasti
 game i�

γ1(π̄
∗)(s) ≥ γ1(π1, π

∗
2)(s),

γ2(π̄
∗)(s) ≥ γ2(π

∗
1 , π2)(s)for all πi ∈ Πi, s ∈ S.A Nash equilibrium in the in�nite horizon sto
hasti
 game with the expe
ted meanpayo� fun
tions is de�ned analogously.In this paper we make the following additional assumptions:Assumption 2.1. For every (s, x1, x2) ∈ D the transition probability p(·|s, x1, x2) hasthe form

p(·|s, x1, x2) = l(s − x1 − x2)H1(·|s) + (1 − l(s − x1 − x2))H2(·|s),where(i) l : S → [0, 1] is in
reasing, 
on
ave and twi
e di�erentiable,(ii) H1(·|s), H2(·|s) are transition probabilities from S into S su
h that there is aprobability measure µ on the set S, for whi
h
Hi(·|s) ≪ µ(·), i = 1, 2.The term l(s − x1 − x2) indi
ates (indire
tly) how mu
h of the resour
e is left afterplayers' 
onsumption in a previous stage. So, the in�uen
e of the transition probability

H1 on the probabiliy p in
reases with the 
ommon players' investment and the in�uen
eof H2 in
reases with the 
onsumption.Additionally we assume that the utility fun
tions satisfy:Assumption 2.2. ui are in
reasing, nonnegative, bounded, twi
e di�erentiable (at zero�from the right-hand side) and u′′
i (x) < 0 for ea
h x ∈ (0, +∞).By b > 0 we shall denote a 
ommon upper bound of the fun
tions ui, i = 1, 2.3. Nash equilibria in dis
ounted sto
hasti
 gamesTheorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold in the 
onsidered model ofthe sto
hasti
 game with the β-dis
ounted expe
ted payo�. Then there exists a stationaryNash equilibrium (f∗

1 , f∗
2 ) in this game.



GAMES OF RESOURCE EXTRACTION 295For the proof two additional de�nitions and a lemma are needed. First, 
onsider anauxiliary game:Definition 3.1. Let Γ(v1, v2, s) be a one-shot game, where the payo� fun
tion of player
i is:

ri
vi

(s, x1, x2) := (1 − β)ui(xi) + β

∫

S

vi(s
′)p(ds′|s, x1, x2),where

(v1, v2) ∈ B := B1 × B2,

Bi := {v : S → R+ : ||v||∞ ≤ b},and
||v||∞ := esssup

s∈S

|v(s)|.It is obvious that Bi ⊆ L∞(µ). Endow L∞(µ) with the weak*-topology. It is wellknown that a sequen
e {fn} ⊂ L∞(µ) 
onverges to f ∈ L∞(µ) in weak*-topology i� forall g ∈ L1(µ)

lim
n→∞

∫

S

fn(s)g(s)µ(ds) =

∫

S

f(s)g(s)µ(ds).Remark 3.1. It is obvious that B is 
onvex. From the Bana
h-Alaoglu Theorem (see[8℄), it follows that Bi is 
ompa
t in the relative weak*-topology. Hen
e B = B1 × B2 isalso 
ompa
t.Definition 3.2. Let (v1, v2) ∈ B. Put
wi(s) := ri

vi
(s, x̃1(s), x̃2(s)),

x̃1(s) := argmax
x1∈[0,a1(s)]

r1
v1

(s, x1, x̃2(s)),

x̃2(s) := argmax
x2∈[0,a2(s)]

r2
v2

(s, x̃1(s), x2).De�ne
W (v1, v2) := (w1, w2).The above de�nition is 
orre
t, be
ause if s ∈ S is �xed, then the game Γ(v1, v2, s)ful�ls the assumptions of Lemma 5.3. Thus there exists a unique Nash equilibrium

(x̃1(s), x̃2(s)) in Γ(v1, v2, s).Lemma 3.1. The mapping W is 
ontinuous when B is endowed with the produ
t weak*-topology.Proof. Consider a sequen
e {(vn
1 , vn

2 )} ⊂ B 
onverging to some (v1, v2) ∈ B. We will showthat the sequen
e {W (vn
1 , vn

2 )} 
onverges to W (v1, v2) ∈ B.Denote:
x̃n

1 (s) := argmax
x1∈[0,a1(s)]

r1
vn

1

(s, x1, x̃
n
2 (s)),

x̃n
2 (s) := argmax

x2∈[0,a2(s)]

r2
vn

2

(s, x̃n
1 (s), x2),
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x̃1(s) := argmax
x1∈[0,a1(s)]

r1
v1

(s, x1, x̃2(s)),

x̃2(s) := argmax
x2∈[0,a2(s)]

r2
v2

(s, x̃1(s), x2).

(x̃n
1 (s), x̃n

2 (s)) is a Nash equilibrium in the game Γ(vn
1 , vn

2 , s), and (x̃1(s), x̃2(s)) in thegame Γ(v1, v2, s). Lemma 5.3 implies that these Nash equilibria are unique.Note that for �xed s ∈ S the sequen
e ri
vn

i

(s, x1, x2) 
onverges to ri
vi

(s, x1, x2) (as
n → ∞) uniformly in x1 and x2:
|r1

vn

1

(s, x1, x2) − r1
v1

(s, x1, x2)| =

∣

∣

∣

∣

(1 − β)u1(x1) + β

[
∫

S

vn
1 (s′)l(s − x1 − x2)H1(ds′|s)

+

∫

S

vn
1 (s′)(1 − l(s − x1 − x2))H2(ds′|s)

]

−(1 − β)u1(x1) − β

[
∫

S

v1(s
′)l(s − x1 − x2)H1(ds′|s)

+

∫

S

v1(s
′)(1 − l(s − x1 − x2))H2(ds′|s)

]∣

∣

∣

∣

= β

∣

∣

∣

∣

l(s − x1 − x2)

∫

S

[vn
1 (s′) − v1(s

′)]H1(ds′|s)

+(1 − l(s − x1 − x2))

∫

S

[vn
1 (s′) − v1(s

′)]H2(ds′|s)

∣

∣

∣

∣

. (1)By the Radon-Nikodym Theorem, for any �xed state s ∈ S, the probability measure
Hj(·|s) has a density fun
tion, say gj . Therefore (1) 
an be rewritten in the followingway:
|r1

vn

1

(s, x1, x2) − r1
v1

(s, x1, x2)| = β

∣

∣

∣

∣

l(s − x1 − x2)

∫

S

[vn
1 (s′) − v1(s

′)]g1(s
′)µ(ds′)

+ (1 − l(s − x1 − x2))

∫

S

[vn
1 (s′) − v1(s

′)]g2(s
′)µ(ds′)

∣

∣

∣

∣

. (2)Sin
e l(s − x1 − x2) ∈ [0, 1] and the integrals in (2) 
onverge to zero as n → ∞(by the 
onvergen
e of the sequen
e {(vn
1 )} to v1 in the weak*-topology) we 
an 
on-
lude that r1

vn

1

(s, x1, x2) 
onverges uniformly to r1
v1

(s, x1, x2). The 
ase of the sequen
e
{r2

vn

2

(s, x1, x2)} follows along the same lines.Fix s ∈ S. For any n ≥ 1, x1 ∈ [0, a1(s)] and x2 ∈ [0, a2(s)] we have
r1
vn

1

(s, x1, x̃
n
2 (s)) ≤ r1

vn

1

(s, x̃n
1 (s), x̃n

2 (s)), (3)
r2
vn

2

(s, x̃n
1 (s), x2) ≤ r2

vn

2

(s, x̃n
1 (s), x̃n

2 (s)). (4)Let (x0
1(s), x

0
2(s)) be any a

umulation point of the sequen
e {(x̃n

1 (s), x̃n
2 (s))}. Thenthere exists a subsequen
e {(x̃kn

1 (s), x̃kn

2 (s))} su
h that
lim

n→∞
x̃kn

1 (s) = x0
1(s), lim

n→∞
x̃kn

2 (s) = x0
2(s).Obviously, with x̃kn

1 (s) and x̃kn

2 (s) the inequalities (3) and (4) hold. From the unifom
onvergen
e of the sequen
es {r1
vn

1

(s, x1, x2)} and {r2
vn

2

(s, x1, x2)} we 
an 
on
lude:
r1
v1

(s, x1, x
0
2(s)) ≤ r1

v1
(s, x0

1(s), x
0
2(s)), r2

v2
(s, x0

1(s), x2) ≤ r2
v2

(s, x0
1(s), x

0
2(s)),



GAMES OF RESOURCE EXTRACTION 297for any x1 ∈ [0, a1(s)] and x2 ∈ [0, a2(s)]. It means that (x0
1(s), x

0
2(s)) is a Nash equilib-rium in the game Γ(v1, v2, s). Lemma 5.3 implies that the equilibrium is unique, so weobtain

lim
n→∞

(x̃n
1 (s), x̃n

2 (s)) = (x̃1(s), x̃2(s))and
wi(s) = ri

vi
(s, x̃1(s), x̃2(s)) = lim

n→∞
ri
vn

i

(s, x̃n
1 (s), x̃n

2 (s)) = lim
n→∞

wn
i (s).By the Lebesgue dominated 
onvergen
e theorem wn

i → w in the weak*-topology on
Bi. Thus the result follows.Proof of Theorem 3.1. The above lemmas and the S
hauder-Ty
hono� Fixed Point The-orem (see [23℄) imply the existen
e of vi ∈ Bi su
h that

W (v1, v2) = (v1, v2) µ-a.e. (5)Let (f∗
1 (s), f∗

2 (s)) be the unique Nash equilibrium in the game Γ(v1, v2, s), s ∈ S. Thenfrom (5), it follows that
v1(s) = max

x1∈[0,a1(s)]

[

(1 − β)u1(x1) + β

∫

S

v1(s
′)p(ds′|s, x1, f

∗
2 (s))

]

,

v2(s) = max
x2∈[0,a2(s)]

[

(1 − β)u2(x2) + β

∫

S

v2(s
′)p(ds′|s, f∗

1 (s), x2)

]

for all s ∈ S \ E with µ(E) = 0.Let (v∗1 , v∗2) be the pair of the Nash equilibrium payo�s in the game Γ(v1, v2, s) forevery s ∈ S. We have v∗i (s) = vi(s) for ea
h s ∈ S \ E, so the pair (f∗
1 (s), f∗

2 (S)) is alsothe Nash equilibrium point in the game Γ(v∗1 , v∗2 , s) for s ∈ S \ E. Observe that sin
e
p(·|s, x1, x2) ≪ µ(·) for every s ∈ S, xi ∈ Ai(s), i = 1, 2. We have

v∗1(s) = max
x1∈[0,a1(s)]

[

(1 − β)u1(x1) + β

∫

S

v1(s
′)p(ds′|s, x1, f

∗
2 (s))

]

= max
x1∈[0,a1(s)]

[

(1 − β)u1(x1) + β

∫

S

v∗1(s′)p(ds′|s, x1, f
∗
2 (s))

]

, (6)
v∗2(s) = max

x2∈[0,a2(s)]

[

(1 − β)u2(x2) + β

∫

S

v2(s
′)p(ds′|s, f∗

1 (s), x2)

]

= max
x2∈[0,a2(s)]

[

(1 − β)u2(x2) + β

∫

S

v∗2(s′)p(ds′|s, f∗
1 (s), x2)

] (7)for ea
h s ∈ S.Let w∗
i (s) =

v∗
i
(s)

1−β
. The above equations may be rewritten in the form

w∗
1(s) = max

x1∈[0,a1(s)]

[

u1(x1) + β

∫

S

w∗
1(s′)p(ds′|s, x1, f

∗
2 (s))

]

, (8)
w∗

2(s) = max
x2∈[0,a2(s)]

[

u2(x2) + β

∫

S

w∗
2(s′)p(ds′|s, f∗

1 (s), x2)

]

, (9)for every s ∈ S.



298 P. SZAJOWSKIFrom Bla
kwell's work on dis
ounted dynami
 programming [5℄ and the above equa-tions ((8) and (9)), it follows that
w∗

1(s) = γ1(f
∗
1 , f∗

2 )(s) = max
π1∈Π1

γ1(π1, f
∗
2 )(s)and

w∗
2(s) = γ2(f

∗
1 , f∗

2 )(s) = max
π2∈Π2

γ2(f
∗
1 , π2)(s)for ea
h s ∈ S. So the pair (f∗

1 , f∗
2 ) is also a Nash equilibrium in the sto
hasti
 game withthe β-dis
ounted expe
ted payo�.4. Nash equilibrium in sto
hasti
 games with expe
ted mean payo�s. Let usmake an additional assumption on our game model:Assumption 4.1. (i) The probabilities Hi(·|s) do not depend on s (for simpli
ity ofnotation we shall denote them by Hi(·)).(ii) There exist a probability measure ν on S and a 
onstant δ ∈ (0, 1) su
h that forany measurable set A ⊆ S we have

Hi(A) ≥ δν(A)for any i ∈ {1, 2}.Remark 4.1. From the above assumption we 
on
lude immediately that p(A|s, x1, x2) ≥

δν(A) and
Hi ≪ µ :=

H1 + H2

2
.Theorem 4.1. If Assumptions 2.1, 2.2 and 4.1 hold in our model of the in�nite horizongame with the expe
ted mean payo�s of the players, then a Nash equilibrium exists.Proof. Note that for the dis
ounted game in whi
h the transition probabilities are of theform

p̃(·|s, x1, x2) =
p(·|s, x1, x2) − δν(·)

1 − δand the dis
ount fa
tor is equal β = 1 − δ, both Assumptions 2.1 and 2.2 are satis�ed.Theorem 3.1 implies that in su
h a game there exists a stationary Nash equilibrium
(f∗

1 , f∗
2 ) and the Bellman optimality equations are satis�ed:

v1(s) = max
x1∈[0,a1(s)]

[

u1(x1) + (1 − δ)

∫

S

v1(s
′)p̃(ds′|s, x1, f

∗
2 (s))

]

, (10)
v2(s) = max

x2∈[0,a2(s)]

[

u2(x2) + (1 − δ)

∫

S

v2(s
′)p̃(ds′|s, f∗

1 (s), x2)

]

. (11)Denote:
di := δ

∫

S

vi(s
′)ν(ds′).



GAMES OF RESOURCE EXTRACTION 299Equations (10) and (11) 
an be rewritten in the following form:
v1(s) = max

x1∈[0,a1(s)]

[

u1(x1) +

∫

S

v1(s
′)p(ds′|s, x1, f

∗
2 (s)) − d1

]

,

v2(s) = max
x2∈[0,a2(s)]

[

u2(x2) +

∫

S

v2(s
′)p(ds′|s, f∗

1 (s), x2) − d2

]

.These are the optimality equations for the game with the expe
ted mean payo�s (see [13℄).Thus (f∗
1 , f∗

2 ) is a stationary Nash equilibrium in the in�nite game with the expe
ted meanpayo�s and the Nash equilibrium payo� of player i in this game is φi(f
∗
1 , f∗

2 )(s) = di (itdoes not depend on s).Remark 4.2. (a) The transformation to the dis
ounted game used in the proof wasintrodu
ed in dynami
 programming by Dynkin and Yushkevi
h in their book [10℄.(b) Assumption 4.1 implies that the Markov pro
ess generated by the strategies in theNash equilibrium (f∗
1 , f∗

2 ) is geometri
ally ergodi
 (see [13℄) and has a stationary distri-bution. The existen
e of a stationary distribution is an important question in studyingvarious e
onomi
 models, see [2, 7℄.5. The uniqueness of the Nash equilibria in a one-shot game. In this se
tion weshall 
onsider the problem of uniqueness of the Nash equilibrium in an auxiliary game.In the lemmas below we shall 
onsider fun
tions
wi : X1 × X2 → Rfor i = 1, 2, where X1, X2 are 
ompa
t intervals. The fun
tion wi is stri
tly 
on
ave inthe i-th variable and its se
ond partial derivatives are 
ontinuous.Remark 5.1. From the well known result of Nash (see [18℄) the two-person one-shotgame with the payo� fun
tions wi and the a
tions sets Xi has a Nash equilibrium.Assumption 5.1. Assume that for any x̄ = (x1, x2) ∈ X1 × X2 and i = 1, 2 it holds

∣

∣

∣

∣

∂2wi

∂x2
i

(x̄)

∣

∣

∣

∣

>

∣

∣

∣

∣

∂2wi

∂xi∂x3−i

(x̄)

∣

∣

∣

∣

. (12)For any x̄ = (x1, x2) ∈ X1 × X2 de�ne the norm
||x̄||∞ = max

i∈{1,2}
|xi|.The �rst lemma in this se
tion is a result of Moré (see [17℄). The proof of this lemma,based on the Rolle Theorem 
an be found in the paper of Gabay and Moulin [12℄.Lemma 5.1 (Moré). If Assumption 5.1 holds and x̄, ȳ ∈ X1 × X2 are di�erent, then

∂wi

∂xi

(x̄) =
∂wi

∂xi

(ȳ)implies that
|xi − yi| < ||x̄ − ȳ||∞.The following lemma is a slight modi�
ation of Theorem 4.1 from [12℄.



300 P. SZAJOWSKILemma 5.2. Let Assumption 5.1 be ful�lled and wi be stri
tly 
on
ave in xi. Then in thetwo-person game in whi
h wi(x1, x2) are the payo�s of the players, there exists a uniqueNash equilibrium.Proof. The stri
t 
on
avity of wi in xi implies that for any i and �xed xi, w3−i(x̄) attainsits maximum at a unique point x3−i. Thus we may de�ne the mapping:
A : X1 × X2 → X1 × X2su
h that for (x1, x2) = A(y1, y2) we have

x1 = argmax
x∈X1

w1(x, y2), x2 = argmax
x∈X2

w2(y1, x). (13)Put Ai(y1, y2) := xi for i = 1, 2. We will prove now that
||A(x̄) − A(ȳ)||∞ < ||x̄ − ȳ||∞ (14)for x̄, ȳ ∈ X1 × X2.Consider the 
ase in whi
h both Ai(x̄) and Ai(ȳ) are inside the interval Xi. Then

∂w1

∂x1
(A1(x̄), x2) =

∂w1

∂x1
(A1(ȳ), y2) = 0and Lemma 5.1 implies

|A1(x̄) − A1(ȳ)| < ||(A1(x̄), x2) − (A1(ȳ), y2)||∞ = |x2 − y2|. (15)A similar inequality 
an be obtained for A2:
|A2(x̄) − A2(ȳ)| < ||(x1, A2(x̄)) − (y1, A2(ȳ))||∞ = |x1 − y1|. (16)From (15) and (16) it 
an be easily 
on
luded that (14) holds.If any of the values Ai(x̄) or Ai(ȳ) belongs to the edge of the interval Xi, we mayde�ne (thanks to the fa
t that the derivatives wi are �nite and Xi are 
losed) the fun
tion

w̃i : R × R → R su
h that w̃i(x̄) = wi(x̄) for x̄ ∈ X1 × X2 with the same properties like
wi, that is stri
t 
on
avity in xi and Assumption 5.1.For these fun
tions we 
ondu
t similar reasoning, as in the 
ase of Ai(x̄) and Ai(ȳ)inside the set X1 × X2.De�ne Ã for the fun
tion w̃i just as A was de�ned for wi. Note that

Ai(x̄) ∈ [Ãi(x̄), Ãi(ȳ)].This implies that
|Ai(x̄) − Ai(ȳ)| ≤ |Ãi(x̄) − Ãi(ȳ)| < ||x̄ − ȳ||∞,and this ends the proof of (14).Note that there exists a Nash equilibrium in the 
onsidered game (see Remark 5.1).Assume that there exist two di�erent Nash equilibria: x̄∗ ∈ X1 × X2 and ȳ∗ ∈ X1 × X2.Note that these are �xed points of the mapping A, i.e. x̄∗ = A(x̄∗) and ȳ∗ = A(ȳ∗). Thus
||x̄∗ − ȳ∗||∞ = ||A(x̄∗) − A(ȳ∗)||∞ < ||x̄∗ − ȳ∗||∞and so we have obtained a 
ontradi
tion. Therefore the game has a unique Nash equilib-rium.



GAMES OF RESOURCE EXTRACTION 301Lemma 5.3. For a �xed s ∈ S ⊆ (0,∞) 
onsider a two-person game with the payo� ofplayer i given by
ui(xi) + kil(s − x1 − x2),where xi ∈ [0, ai(s)], a1(s) + a2(s) < s and(i) ui : [0,∞) → [0,∞) ful�ls u′′

i (x) < 0 for all x ∈ (0, +∞) and it is in
reasing andtwi
e di�erentiable,(ii) ki ∈ R,(iii) l : [0,∞) → [0,∞) is 
on
ave, in
reasing and twi
e di�erentiable.This game has a unique Nash equilibrium.Proof. (a) Consider the 
ase that k1 ≤ 0 or k2 ≤ 0. Assume that k2 ≤ 0 (for k1 ≤ 0 theproof is similar). Note that the payo� of player 2: u2(x2) + k2l(s− x1 − x2) is in
reasingin x2. Thus, the optimal 
hoi
e of player 2 (independent of the 
hoi
e of player 1) is
x∗

2 = a2(s).If k1 > 0, then the payo� of player 1, u1(x1) + k1l(s− x1 − x2), is stri
tly 
on
ave in
x1, thus there exists a unique point

x∗
1 = argmax

x1∈[0,a1(s)]

[u1(x1) + k1l(s − x1 − x∗
2)].

(x∗
1, x

∗
2) is then a unique Nash equilibrium.(b) If ki ≤ 0 for i = 1, 2 then a unique Nash equilibrium is (x∗

1, x
∗
2), where x∗

1 = a1(s),
x∗

2 = a2(s).(
) Let us 
onsider the 
ase that ki > 0, i = 1, 2.Note that the payo� of player i is stri
tly 
on
ave in xi and both payo�s ful�l As-sumption 5.1. Thus the uniqueness of the Nash equilibrium is implied by Lemma 5.2.
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