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Abstract. We shed some light on the inter-connections between different characterizations
leading to the classical Meixner family. This allows us to give free analogs of both Sheffer’s and
Al-Salam and Chihara’s characterizations in the classical case by the use of the free derivative
operator. The paper closes with a discussion of the q-deformed case, |q| < 1.

1. Introduction. A remarkable and exciting feature of Mathematics is the fact that
several independent and seemingly unrelated works may lead to a common result. It
is often the lack of communication between various schools that prevents the full un-
derstanding of the existing inter-connections, thereby arises the problem of unifying the
different approaches, which stands out as an important, useful and also tricky task. In this
spirit, the so-called Meixner family of probability distributions, referred to as Meixner
distributions, admits the following characterizations:

• When it first appeared in [22], the Meixner family was defined as the set of probabil-
ity measures µ with finite exponential moments in a neighborhood of zero such that:

ψ(z, x) :=
∑
n≥0

Pn(x)zn =
exH(z)

E(eXH(z))
, (1)

where H is analytic around z = 0 such that H(0) = 0, H ′(0) = 1, X is a random
variable in some probability space (Ω,F ,P) with law µ = P ◦X−1 and (Pn)n≥0 is
the set of orthogonal polynomials (OP) with respect to µ. ψ is an OP generating
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function of exponential-type. Up to translations and dilations, the Meixner family
consists of Gaussian, Poisson, Gamma, negative binomial, Meixner and binomial
distributions, the latter being non-infinitely-divisible in the classical sense. Another
proof of this characterization was given in [18].
• Sheffer characterized (Pn)n as the set of OP of type zero ([25]).
• Meixner laws are the solutions of a quadratic regression problem ([20]).
• Morris showed that the variance of the natural exponential family parametrized by

the mean associated with a probability measure µ, is an at most quadratic polyno-
mial in the mean if and only if µ belongs to the Meixner family ([23]).

• OP with respect to Meixner laws form a distinguished subclass of the so-called
Al-Salam and Chihara set of OP ([1]).

After the birth of free probability theory, for which miscellaneous analogs of known results
in classical probability theory were derived, the free Meixner family was defined in [4]
and covers six probability distributions called analogously to their classical counterparts
free Gaussian or Wigner, free Poisson or Marchenko-Pastur, free Gamma, free negative
binomial, free Meixner and free binomial, also known as the free stationary Jacobi law
([13], [15], [16]). Their study produced free versions of some of the above characteriza-
tions: the exponential-type OP generating functions are replaced by generating functions
of Cauchy–Stieltjes type ([4], [10], [19]), free Meixner distributions solve a quadratic re-
gression problem in a free setting ([9]) and have associated Cauchy–Stieltjes type families
with linear means and quadratic variances ([11]). To our best knowledge, no free analogs
of Sheffer’s and Al-Salam and Chihara’s characterizations exist in literature.

In the present paper, we highlight some connections between the different characteri-
zations in both the classical and free settings. More precisely, we start by explaining how
Sheffer’s characterization leads to Al-Salam and Chihara results and vice versa. Then we
do the same for both Kubo’s and Morris’s characterizations. In the free setting, a connec-
tion is found between Bryc and Ismail’s characterization using Cauchy-Stieljes families of
quadratic variances and the one given by the authors via Cauchy-Stieltjes-type generating
functions of OP ([10]).

The study of those connections shows a parallel between the classical and free settings
manifested by classical and free cumulants generating functions on the one hand and by
classical and free derivatives on the other hand. As a matter of fact, it reveals what
free Sheffer’s and free Al-Salam and Chihara characterizations should be. Moreover, we
observed that, to a given OP generating function of a probability measure satisfying suit-
able integrability conditions, corresponds a family of probability measures parametrized
by the mean such that the variance is an at most quadratic polynomial in the mean
(we will say for short ‘an at most quadratic variance’). This fact is an immediate conse-
quence of the orthogonality or equivalently the three-terms recurrence relation satisfied
by the OP. Moreover, the coefficients of the variance are easily expressed in terms of
the Jacobi-Szegö parameters. This general observation gives a machinery that we used
to solve the problem of characterizing probability distributions µλ (of finite all order
moments) having ultraspherical-type generating functions ([16]). The paper is closed by
pointing out the difficulties arising in the q-deformed case, |q| < 1.
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Remark 1.1. The Meixner family will be referred to as the classical Meixner family.
Moreover, we shall often use the word ‘law’ instead of ‘probability distribution’ and
also the acronymes ‘Meixner, Al-Salam Chihara, Sheffer, Kubo etc...’ to refer to the
corresponding characterizations cited above. We hope there will be no confusion while
reading the paper.

2. On Sheffer and Al-Salam and Chihara characterizations. Few years after
Meixner’s classification was given, Sheffer ([25]) provided an easy proof of it while study-
ing the following general situation: let (Qn)n be a set of polynomials, with Qn of degree n
for each n ≥ 0, which are not necessarily orthogonal. Let D denote the derivative operator
and take Q0(x) = 1. Then there exists a (unique) differential operator J :=

∑
n≥1 cnD

n

with constant coefficients (cn)n, c1 6= 0 such that JQn = Qn−1, Q−1 = 0. (Qn)n is then
said to be a set of type zero with respect to J or belongs to J . Sheffer showed that being
a set of type zero is equivalent to∑

n≥0

Qn(x)zn = A(z)exH(z) (2)

where A is an entire function around zero (called the determining function) and H is
the inverse function of J when the latter is viewed as an entire function (of course, the
series defining J is supposed to be a convergent). It is then obvious that one immediately
recovers the Meixner family under the additional orthogonality assumption on (Qn)n. In
the middle 70’s, Al-Salam and Chihara ([1]) adressed the following problem: characterize
the set of OP (rn)n, (qn)n such that their convolution

sn(x, y) =
n∑
k=0

rk(x)qn−k(y) (3)

defines a set of OP in the variable x for all y. (rn)n and (qn)n belong then to the so-called
Al-Salam and Chihara set of OP. If one further requires that sn(x, y) := pn(x + y) for
some polynomial pn, then rn = qn for all n and (rn)n are OP with respect to a probability
measure from the classical Meixner family.

Remark 2.1. This last characterization was first noticed by Lancaster in [21] and we
would like to thank Prof. Gérard Letac for helping us with this reference.

2.1. From Sheffer to Al-Salam and Chihara. Let us now see how one carries over
the Al-Salam and Chihara problem into the setting of Sheffer. Let (rn)n, (qn)n, (pn)n be
three sets of OP related by the convolution

pn(x+ y) =
n∑
k=0

rk(x)qn−k(y) (4)

and let us prove that (rn), (qn) are of type zero with respect to the same operator. Denote
by J and J̃ the (unique) operators ([25]) such that J(rn) = rn−1 and J̃(qn) = qn−1 and
write

J =
∑
k≥1

ck(x)Dk, J̃ =
∑
k≥1

c̃k(x)Dk
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where ck, c̃k are polynomials of degree at most k − 1 and c1 = c̃1 = 1. Note first that if
(4) holds, then cn(x) = c̃n(x) for all n and this follows from the symmetry of (x, y) 7→
pn(x+ y) in both arguments. More precisely,

J(pn(·+ y))(x) =
n∑
k=1

rk−1(x)qn−k(y) = pn−1(x+ y)

=
n−1∑
k=0

rk(y)qn−k−1(x) = J̃(pn(·+ y))(x),

which proves our claim by induction on the degree n. Again, the symmetry gives

pn−1(x+ y) = J(pn(·+ y))(x) = J(pn(x+ ·))(y),

which yields cn(x) = cn(y) = cn for all n. As a result, (rn)n, (qn)n are of type zero with
respect to the same operator J (hence the same H) and Sheffer’s result applies.

Remark 2.2. Since the expectation of ψ(z,X) equals 1 when (Pn)n is a set of OP, then
A(z) = 1/E(eH(z)x) and is then entirely determined by the knowledge ofH. Thus, rn = qn
for all n whenever both sets of OP belong to the same lowering operator J . This claim
is no more true for sets of not necessarily OP.

2.2. From Al-Salam and Chihara to Sheffer. Consider a set (rn)n of OP with re-
spect to a probability distribution µ having a finite exponential moment in a neighborhood
of zero and assume that it is of type zero with respect to J :

J =
∑
n≥1

cnD
n, c1 = 1.

Form the convolution

sn(x, y) =
n∑
k=0

rk(x)rn−k(y),

it then follows that Jsn(·, y)) = J(sn(x, ·)), which implies (by induction) that sn(x, y) =
pn(x+ y) for a certain polynomial pn. The orthogonality of (pn(·+ y))n follows from∫

R
pn(x+ t)pm(x+ t)µ(dx)µ(dt) =

n∑
k=0

m∑
l=0

∫
R
rk(x)rl(x)µ(dx)

∫
R
rn−k(t)rm−l(t)µ(dt)

=
n∑
k=0

m∑
l=0

||rk||2||rn−k||2δklδn−k,m−l =
n∑
k=0

||rk||2||rn−k||2δn,m,

where µ is the orthogonality probability distribution of (rn)n.

Remark 2.3. Since

pn(x) =
n∑
k=0

rk(x− y)qn−k(y),

for all y, (pn)n belongs to J too and by orthogonality, pn = rn for all n.

3. On Kubo and Morris characterizations. In the early eighties, the classical Meix-
ner family appeared in [23] as the set of probability measures which generate natural
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exponential families parametrized by the means, such that the variance of a given expo-
nential family is at most quadratic in the mean. More precisely, given a (non-degenerate)
probability measure µ with finite exponential moments in some neighborhood of zero, its
natural exponential family is the one-parameter family of probability measures defined by

Pθ(dx) :=
eθx

E(eθX)
µ(dx).

Let z and V denote respectively the mean and the variance of Pθ for a given θ. Then
z = τ ′(θ) and V = τ ′′(θ) where

τ(θ) := log E(eθX)

is the cumulants generating function of µ. Since V = V (θ) > 0, then τ ′ is invertible and
θ = (τ ′)−1(z) := S(z) makes sense for small z. We also have S(0) = 0, S′(z) = 1/V (z)
and S′(0) 6= 0 which one may suppose to equal 1. This gives rise to a new exponential
family parametrized by the mean z

Pz(dx) :=
eS(z)x

E(eS(z)X)
µ(dx)

of mean z and variance V (z) = τ ′′(S(z)). It was shown in [23] that V is at most quadratic
in z if and only if µ belongs to the classical Meixner family.

Few years ago, another proof of Meixner’s classification was given in ([18]) via OP
generating functions using Asai-Kuo-Kubo’s criterion ([2]). Keeping the notations in (2),
the author proved that (2) generates orthogonal polynomials if and only if

bH−1(z) + a = τ ′(z), (5)

where a ∈ R, b > 0 are respectively the mean and the variance of the orthogonality
measure and

H ′(z) =
1

βz2 + γz + 1
, (β ≥ 0) or (β < 0, b/β ∈ R \ Z). (6)

The values (β < 0, b/β ∈ Z) correspond to a signed measure. Note that, for a = 0, b = 1.
(5) together with (6) give a Riccati-type equation for τ ′:

τ ′′(z) = (H−1)′(z) =
1

H ′(τ ′(z))
= β(τ ′)2(z) + γτ ′(z) + 1.

3.1. From Kubo to Morris. It is known that the analyticity assumptions on S (since
S−1 = τ ′ and τ ′ is analytic near z = 0) allow one to expand

eS(z)x

E(eS(z)x)
=
∑
n≥0

Pn(x)zn, (7)

where Pn is a polynomial of exact degree n and (Pn)n≥0 need not to be orthogonal (see
[24] p. 45). Assume that µ has zero mean and unit variance (standard), then one uses
Kubo’s results above after identifying S with H so that S′(z) = H ′(z) = 1/V (z) fits (6)
(one further needs to check the sign of the parameters involved in the variance).
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3.2. From Morris to Kubo. Let (Vn)n be the set of monic OP with respect to the
standard µ and consider the exponential generating function

eH(z)x

E(eH(z)X)
=
∑
n≥0

anVn(x)zn =
∑
n≥0

1
n!
Vn(x)zn (8)

where the latter equality follows from substituting x with x/z then letting z → 0 and
finally using H ′(0) = 1. It is known that

xVn(x) = Vn+1(x) + αnVn(x) + ωnVn−1(x), V−1 := 0, ω0 := 1

where (αn)n, (ωn)n are the Jacobi-Szegö parameters ([14]). Then, inverting the order of
integration and using the orthogonality of (Vn)n, it easily follows that

m(z) :=
∑
n≥0

∫
R
xVn(x)µ(dx)

zn

n!
= α0 + ω1z = z

since µ is standard. Similarly, one gets

V (z) = (ω2 − 2)
z2

2
+ α1z + 1

which fits into the work of Morris and identifies the coefficients β, γ in (6).
What is quite interesting is that every OP generating function of a given measure

satisfying suitable integrabiltiy conditions defines a one-parameter family of probability
measures parametrized by the mean such that, for a fixed value of the parameter (the
mean), the variance is at most quadratic in the mean. When the OP generating function
is manageable (which is not the case for instance for the q-Meixner family due to the
infinite product, [5]), one gets a machinery that can be used to characterize a family of
probability measures via their OP generating functions. This is, as we will see, the case
of the free Meixner family with Cauchy-Stieltjes-type OP generating functions and of a
natural generalization of ultraspherical polynomials ([16]).

4. Free Meixner family. A parallel definition of Lévy-Meixner processes in free prob-
ability theory appeared in [4] after the pioneering work of Biane [7] on free processes
with free increments, where the author derived free analogs of exponential martingales
involving free cumulant generating functions. Then, the free Meixner family was defined
in [9] by proving a free Laha-Lukacs characterization and it consists of six laws which we
think of as the free analogs of the six laws forming the classical Meixner family (see the
introduction). Only the free binomial distribution is not infinitely divisible with respect
to the free additive convolution. Similarly to the classical case, one can find the connec-
tion between Bryc and Ismail characterization via Cauchy-Stieltjes families with at most
quadratic variances and the one recently given by the authors via Cauchy-Stieltjes-type
OP generating functions ([9]).

On the one hand, a combination of [4] and [9] allowed us to characterize the free
Meixner distributions and Asai-Kuo-Kubo criterion ([2]) was used to derive analogous
identities to (5) and (6) involving the free cumulant generating function ([10]). More
precisely, let µ be a standard probability distribution with all moments finite. Then, µ
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belongs to the free Meixner family if and only if

ψ(z, x) :=
∑
n≥0

Pn(x)zn =
1

u(z)[f(z)− x]
(9)

where

f(z) = K(u(z)) = z +
1

u(z)
, (10)

u(z)
z

=
1

1 + az + bz2
, (11)

for a ∈ R, b ≥ −1 (parameters of µ, not to be confused with a, b used previously), where
K is the right inverse in a neighborhood of zero of the Cauchy-Stieltjes transform of µ:

G(z) :=
∫

1
z − x

µ(dx), z ∈ C \ supp(µ).

The second equality in (10) is analogous to (5) if it is written as R(u(z)) = z where
R(z) = K(z) − 1/z is the free cumulant generating function, while (11) is analogous to
(6) where the classical derivative is replaced by the free derivative defined byD0(f)(z) =

f(z)− f(0)
z

, z 6= 0,

D0(f)(0) = f ′(0).
(12)

On the other hand, to a compactly-supported probability measure is associated a
Cauchy-Stieltjes family defined by ([12]){

Pθ(dx) :=
1

M(θ)
1

1− θx
µ(dx)

}
,

for small complex θ, where M is the moment generating function defined by

M(θ) :=
∫

R

1
1− θx

µ(dx) =
1
θ
G

(
1
θ

)
.

If µ is not a Dirac mass, then the mean of Pθ

z :=
∫

R
xPθ(dx) =

M(θ)− 1
θM(θ)

:= k(θ)

is invertible as a function of small enough θ, thus a new parametrization by the mean is
performed on Pθ giving rise to

Pz(dx) :=
1

M(v(z))
1

1− v(z)x
µ(dx), θ := k−1(z) = v(z).

Let V = V (z) denote the variance of Pz for z small enough. Then

Pz(dx) :=
V (z)

V (z) + z(x− z)
µ(dx) (13)

when µ has mean zero. It was shown in [12] that V is quadratic if and only if µ belongs
to the free Meixner family. To deduce this result using OP generating functions, expand
the ratio in (13) as

V (z)
V (z) + z(x− z)

=
∑
n≥0

Pn(x)zn
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with not necessarily OP. Set u(z) := z/V (z) with V (z) = 1 + az + bz2. Then equation
(2.1) in [12] fits the second equality in (10). It follows that the density in (13) is given by
(9) which gives the result.

Conversely, suppose we are given a standard probability measure with all moments
finite and the OP generating function (9) with u(0) = 0, u′(0) = 1, uf(0) = 1. Then,
one defines a Cauchy-Stieltjes family (Pz)z parametrized by the mean with an at most
quadratic variance. Since z 7→ R(z) is defined and analytic in a neighborhood of zero, µ
is compactly-supported ([6]). Moreover, setting V (z) = z/u(z), Pz takes the form of (13)
so that Theorem 1.2 in [12] applies.

5. Free-type zero polynomials and free Sheffer characterization. Let (Un)n be
the set of monic Tchebycheff polynomials of the second kind ([14]) defined by∑

n≥0

Un(x)zn =
1

1− zx+ z2
.

It is easy to see from the above OP generating function that (Un)n can not be a set of
finite A,B,C-types described in [25] (the A-type includes the type zero). This was already
noticed for the Legendre polynomials (see p. 621-622 in [25]) and the same reasoning
applies for (Un)n. This is due to the fact that the above generating function is not of
an exponential type (A-type) and its derivative with respect to either x or z will raise
it to the square so that, for each n, the polynomial coefficients in the expansion of U ′n
(B-type) and nUn (C-type) in terms of (Un−1, . . . , U0) have unbounded degrees in n.
Nevertheless, they will be of type zero in the free sense, that is, when substituting the
classical derivative D by its free analog D0 defined by (12) and the exponential function
by x 7→ (1− x)−1. Following Sheffer, we first define ‘free differential operators’ by

J0 :=
∑
n≥0

cn(x)(D0)n

where cn are polynomials. We will say that a set of polynomials (Pn)n (where Pn has
degree n) belongs to J if J0Pn = Pn−1, P0 6= 0, P−1 := 0. Since (D0)kxn = xn−k for
1 ≤ k ≤ n andD01 = 0, then the sum defining J0 terminates when acting on polynomials.
In addition, J0 maps xn to a polynomial of degree ≤ n− 1 if and only if c0 = 0 and the
degree of ck, 1 ≤ k ≤ n does not exceed k − 1. Writing in that case

ck(x) = ck,0 + ck,1x+ · · ·+ ck,k−1x
k−1, 1 ≤ k ≤ n,

J0 maps xn to a polynomial of exact degree n−1 if and only if there exist at least k such
that ck,k−1 6= 0.

Second, to a given set of polynomials (Pn)n corresponds a unique free differential
operator J0 such that J0Pn = Pn−1 and c1 6= 0, for otherwise P1 will be constant which
disagrees the fact that (Pn)n is a set of polynomials. Recall also ([25]) that (Pn)n and
(Qn)n belong to the same operator J0 if and only if there exists a sequence (an)n≥0 such
that for each n

Pn(x) = a0Qn(x) + · · ·+ an−1Q1(x) + anQ0(x), a0 6= 0. (14)
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Finally, (Pn)n is said to be of free type k, k ∈ N with respect to J0 if it belongs to J0

and, for all n ≥ 1, the degree of cn is at most k. Thus, a set of free type zero if and only
if cn(x) = cn ∈ R for all n ≥ 1.

Let us suppose that c1 = 1 (which holds for instance if (Pn)n are monic) such that
J0, viewed as an entire series, is invertible near 0 with inverse ρ with ρ′(0) = 1. Since D0

acts on x 7→ (1− zx)−1 by multiplication by z similarly as D does on x 7→ ezx, we claim
that a set of polynomials (Pn)n is of free type zero if and only if∑

n≥0

Pn(x)zn = A(z)(1− ρ(z)x)−1, A(0) =
∑
n≥0

anzn. (15)

As a result, the free Sheffer characterization is stated as: (Pn)n is a set of monic OP
with respect to a probability measure µ with finite all order moments and of free-type
zero with respect to a given J0 if and only µ belongs to the free Meixner family with
ρ(J(z)) = z. Recall from (10) that:

ρ(z) =
1

f(z)
=

1
K(u(z))

, A(z) =
1

f(z)u(z)
=
f(z)− z
f(z)

= 1− zρ(z)

when µ is a standard free Meixner distribution of parameters a ∈ R, b ≥ −1. This
shows that the knowledge of J is enough to characterize (Pn)n and implies that J(z) =
R(G(1/z)) for small enough z (recall that R(u(z)) = z). Using the relation

R(G(z)) +
1

G(z)
= z

it follows that

J(z) =
1
z
− 1
G(1/z)

=
1
z
− F

(
1
z

)
.

Remark 5.1. The lowering operator J was used in [4] when characterizing OP of Cauchy–
Stieltjes type generating functions. However, no explicit expression as a free differential
operator with constant coefficients was given.

6. Free Al-Salam and Chihara characterization. Let µ be a standard free Meixner
distribution with parameters a ∈ R, b ≥ −1 and (Pn)n be the set of monic OP with respect
to µ. Recall that these polynomials satisfy the three-terms recurrence relation ([4])

xPn(x) = Pn+1(x) + aPn(x) + (1 + b)Pn−1(x), n ≥ 2

with P0(x) = 1, P1(x) = x− a, and that

Pn(x) = (1+b)n/2Un(x−a,
√

1 + b)+aUn−1(x−a,
√

1 + b)+bUn−2(x−a,
√

1 + b) (16)

where

Un(x− a,
√

1 + b) := (1 + b)n/2Un

(
x− a√
1 + b

)
is the monic shifted Tchebycheff polynomial of the second kind. Using the elementary
relation

x− y
(z − x)(z − y)

=
1

z − x
− 1
z − y

, x 6= y
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we have ∑
n≥0

Pn(x)− Pn(y)
x− y

zn = u(z)ψ(z, x)ψ(z, y)

where ψ is given by (9). Since and P0(x) = P0(y) = 1 and z/u(z) = 1 + az + bz2, we
obtain

(1 + az + bz2)
∑
n≥0

Pn+1(x)− Pn+1(y)
x− y

zn = ψ(z, x)ψ(z, y). (17)

Set

Rn(x, y) :=
Pn+1(x)− Pn+1(y)

x− y
.

Then R0(x) = 1 and Rn is a linear combination of

xk+1 − yk+1

x− y
= xk + xk−1y + · · ·+ xyk−1 + yk =

k∑
r=0

yr(D0
x)r(xk) =

k∑
r=0

xr(D0
y)r(yk)

as one easily checks. Thus, (7) is equivalent to
n∑
k=0

Pk(x)Pn−k(y) = Rn(x, y) + aRn−1(x, y) + bRn−2(x, y), R−1 = R−2 := 0. (18)

For a = b = 0, one has
n∑
k=0

Uk(x)Un−k(y) =
Un+1(x)− Un+1(y)

x− y

which was already considered in [5] when studying free Appell sets. One also easily checks
that if a polynomial sn in two variables (x, y) of total degree n satisfies the Cauchy
equation D0

xsn = D0
ysn , then it is a linear combination of xk + xk−1y + xyk−1 + yk, 0 ≤

k ≤ n. Therefore, the free Al-Salam and Chihara characterization is stated as

Proposition 6.1. Let (rn)n, (qn)n be two sets of monic OP and let

sn(x, y) =
n∑
k=0

rn(x)qn−k(y)

be their convolution. Then, sn has the expansion

sn(x, y) =
n∑
k=0

bk
xk+1 − yk+1

x− y

if and only if rn = qn for all n and (rn)n belongs to the free Meixner family.

Remarks. 1. A remarkable difference with the classical setting is the fact that (sn(·, y))n
no longer defines a set of OP. Let us for instance consider the case of monic Tchebycheff
polynomials (Un)n. Then one easily derives for all n ≥ 1,

xRn(x, y) = Rn+1(x, y) +Rn−1(x, y)− Un+1(y).

This can also be noticed from Al-Salam and Chihara’s paper [1], where it is shown that,
in order to get the desired orthogonality, it is not allowed, except for the classical Meixner
family, to take rn = qn, n ≥ 1.
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2. Integrating (18) with respect to µ, one obtains

Qn(x) + aQn−1(x) + bQn−2(x) = Pn(x), Qn(x) :=
∫

R

Pn+1(x)− Pn+1(y)
x− y

µ(dy).

Qn−1 is the n-th numerator polynomial of Pn ([14]) and Qn is known to be equal to
Un(x− a,

√
1 + b) ([14] p. 89). Thus, the above equality coincides with (16).

Proof of Proposition 6.1. The sufficiency was already proved and the necessity can be
proved using the free Sheffer characterization. Indeed, let

J =
∑
k≥1

ck(x)(D0)k, J̃ =
∑
k≥1

c̃k(x)(D0)k,

denote the unique operators satisfying J(rn) = rn−1, J̃(qn) = qn−1 (c1 = c̃1 = 1). Then,
by symmetry of (x, y) 7→ sn(x, y) in both variables, we first get that J = J̃ . Using

D0
x(xk + xk−1y + · · ·+ xyk−1 + yk) = xk−1 + xk−2y + · · ·+ xyk−2 + yk−1

= D0
y(xk + xk−1y + · · ·+ xyk−1 + yk)

for k ≥ 1, one has J0sn(·, y) = J0sn(x, ·). Thus, cn(x) = cn(y) = cn, n ≥ 1 by induction
on n, for some constants (cn)n so that (rn)n is a family of OP of type zero. Moreover, we
have already seen that a set of OP is entirely determined by the knowledge of J thereby
rn = qn.

6.1. Wick product. We have already seen that for the classical Meixner family, the
convolution polynomial sn(x, y) = pn(x + y) for some polynomial pn in one variable. In
the free setting, we have a similar relation but with noncommutative variables and even
more, it is related to the so-called Wick product ([8]).

Let (H , 〈·〉) be a complex Hilbert space and let H ⊗n be the n-fold tensor product
of H with H ⊗0 = CΩ for a distinguished unit-norm vector Ω ∈ H called the vacuum.
Let Γ0(H ) denote the full Fock space associated with H defined by

Γ0(H ) :=
⊕
n≥0

H ⊗n

and for f ∈ H , consider the creation and the annihilation operators on Γ0(H ) defined
respectively by

afΩ = f,

af (f1 ⊗ f2 ⊗ · · · ⊗ fn) = 〈f, f1〉f2 ⊗ · · · ⊗ fn
and

a?fΩ = 0,

a?f (f1 ⊗ f2 · · · ⊗ fn) = f ⊗ f1 ⊗ f2 ⊗ · · · ⊗ fn.

These operators satisfy the free commutation relation

a?faf = 〈f, f〉1,

where 1 is the identity operator ([8]). Take f ∈ H such that 〈f, f〉 = 1. Then it was
shown in [8] that for all n

(a?f )n + (a?f )n−1af + · · ·+ a?fa
n−1
f + anf = Un(af + a?f )
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and it is known as the free Wick product. As a result, with the same notations of the
above Proposition,

sn(af , a?f ) =
n∑
k=0

bkUk(af + a?f ).

7. Concluding remarks: the q-deformed Meixner family, |q| < 1. Though both
the classical and free settings provide different characterizations of their corresponding
Meixner families, the q-deformed setting is rather complicated and we record below the
main difficulties arising in this case. Let us first recall that the q-deformed Meixner family
was already defined in [5] and its elements are (up to a rescaling) the orthogonality
measures of the Al-Salam and Chihara OP characterized by the following property: (rn)n
and (qn)n belong to the Al-Salam and Chihara family of OP if and only if their convolution

sn(x, y) =
n∑
k=0

rn(x)qn−k(y)

defines a set of OP in x for infinitely many y ([1]). Up to a rescaling, their generating
function is given by ([11], p. 14)

ψq(z, x) =
∞∏
k=0

1 + aqkz + bq2kz2

1 + (a− (1− q)x)qkz + (b+ 1− q)q2kz2
,

for a ∈ R, b ≥ −1 + max(q, 0), which may be written as

ψq(z, x) = Aq(z)
∞∏
k=0

1
1− (1− q)qkHk(q, z)x

(19)

for some analytic function H(q, ·) around zero with H(q, 0) = 0, H ′(q, 0) 6= 0. Thus, ψq
can not in general be expressed through the q-exponential function eq defined by

eq(x) :=
∑
k≥0

xk

[k]q!
=
∞∏
k=0

1
1− (1− q)qkx

whenever it makes sense. The difficulties arising in this case sum up into the infinite
products or the infinite sums involved in the expressions, which reduce to only one term
when q = 0:

1. The infinite product form of ψq prevents one from deriving q-analogs of relations
(5), (6), (10), (11) by performing direct computations of the first and the second moment.

2. The following characterization via q-exponential families was given in [11]: a q-
exponential family associated with a compactly-supported measure and parametrized
by the mean has an at most quadratic variance if and only if the measure belongs to
the q-Meixner family. Thus, regarding relations (6) and (11), one considers a quadratic
variance function

V (z) = bz2 + az + 1, b ≥ −1 + max(q, 0), a ∈ R
of a q-Meixner distribution and defines f by

Dqf(q, z) =
1

V (z)
, f(q, 0) = 0, z ∈ V (0),

where Dq is the q-derivative defined by
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Dqf(q, z) :=
f(q, z)− f(q, qz)

(1− q)z
.

It is easy to see that

f(q, z) = (1− q)
∑
k≥0

qkz

1 + aqkz + bq2kz2
.

Then, f is invertible and we think of its inverse as a q-analog of the free cumulant
generating function for |q| < 1. Unfortunately, the inversion procedure is a hard task (use
Lagrange’s formula for instance).

3. Though eq is uniquely determined by the requirement

Dq
x(eq(zx)) = zeq(zx),

it is not immediate that ψq is given by (19) since the function H may depend on both k
and q.

4. Finally, the dependence of H on q shows that

Dx
q [ψq(z, x)ψq(z, y)] 6= Dx

q [ψq(z, x)ψq(z, y)]

in general (except in the case a = b = 0 corresponding to the q-Hermite polynomials,
[8]). Nevertheless, a polynomial sn in two variables x, y of degree n satisfies the Cauchy
equation Dq

xsn = Dq
ysn if and only if sn is a linear combination of the homogeneous

polynomials
hk(x, y) :=

n∑
k=0

(
n

k

)
q

xkyn−k, 1 ≤ k ≤ n.

where
()
q
is the q-binomial coefficient ([8]) and the Wick product representation holds,

that is,
hk(af , a?f ) = Hq

k(af + a?f )

where Hq
k is the k-th q-Hermite polynomial and af , a?f are the annihilation and creation

operators satisfying the q-commutation relation afa?f−qa?faf = 1 for a unit norm function
f in an infinite dimensional Hilbert space ([8]).
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