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Abstract. Quantum detailed balance conditions are often formulated as relationships between
the generator of a quantumMarkov semigroup and the generator of a dual semigroup with respect
to a certain scalar product defined by an invariant state. In this paper we survey some results
describing the structure of norm continuous quantum Markov semigroups on B(h) satisfying a
quantum detailed balance condition when the duality is defined by means of pre-scalar products
on B(h) of the form 〈x, y〉s := tr(ρ1−sx∗ρsy) (s ∈ [0, 1]) in order to compare the resulting
quantum versions of the classical detailed balance condition. Moreover, we discuss the structure
of generators of a quantum Markov semigroup which commute with the modular automorphism
because this condition appears when we consider pre-scalar products with s 6= 1/2.

1. Introduction. Quantum detailed balance conditions generalise the well known no-
tion of reversibility for classical Markov semigroups which is expressed by the symmetry
in the L2 space of an invariant measure.

The formulation for quantum open systems is not yet established and there are several
versions involving different types of non-commutative symmetry and possibly also time
reversal operations. The best known one for a norm continuous quantum Markov semi-
group (QMS) T on the algebra B(h) of linear bounded operators on a complex separable
Hilbert space h, with a faithful invariant normal state ρ was introduced by Alicki [4], [5]
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(see also Frigerio, Gorini, Kossakowski, and Verri [16], [19]): a QMS T generated by L
satisfies the quantum detailed balance condition if there exists a linear bounded operator
L̃ on B(h) such that

tr(ρxL(y)) = tr(ρL̃(x)y) for all x, y ∈ B(h) (1)

and L − L̃ = 2i[K, · ] (2)

for some self-adjoint operator K ∈ B(h).
Condition (1) means that L̃ is the dual operator of L with respect to the pre-scalar

product 〈x, y〉0 := tr(ρx∗y) on B(h). The norm continuous semigroup T̃ = (T̃t)t≥0 gen-
erated by L̃ is called the dual semigroup of T and satisfies the corresponding equation
tr(ρxTt(y)) = tr(ρT̃t(x)y) for all t ≥ 0. Since L is conditionally completely positive by
condition (2), the quantum detailed balance condition implies that the dual semigroup
T̃ of T is still a QMS. As a consequence, all the maps T̃t commute with the modular
group (σt)t∈R associated with ρ (see Prop. 2.1 of [19]), σt(a) = ρitaρ−it; this is a quite re-
strictive condition. Indeed, Theorem 8 and the following remark show that it determines
the structure of the generator of the QMS and quantum detailed balance follows under
a simple additional condition.

Other pre-scalar products on the algebra, that are equivalent to the previous one
in the commutative case, can be defined through the state ρ. The most natural are
〈x, y〉s := tr(ρ1−sx∗ρsy) with s ∈ [0, 1], and we call s−dual semigroup of T a norm
continuous semigroup T̃ (s) satisfying tr(ρ1−sT̃ (s)

t (x)ρsy) = tr(ρ1−sxρsTt(y)) for all t ≥ 0
and x, y ∈ B(h).

Clearly T̃ (0) = T̃ . The other natural and popular choice is s = 1/2 (see for exam-
ple [3], [17] and [18]); the 1/2-dual semigroup T ′ is called symmetric dual (or standard
dual or KMS dual) and is always a QMS i.e. the maps T ′t are completely positive irre-
spectively of the commutation with (σt)t≥0. Another quantum detailed balance condition
can be defined immediately by (1) and (2) replacing L̃ by the generator L′ of the dual
semigroup.

In this paper we compare the structure of generators of norm-continuous QMS on B(h)
satisfying one of the above quantum versions of the classical detailed balance condition
in order to understand which is the most natural and flexible. Moreover, we discuss
the structure of generators of QMSs which commute with the modular group or, in an
equivalent way, the modular automorphism σ−i, because this condition appears as a
consequence of the Alicki et al. quantum detailed balance condition.

Given a special GKSL representation of L of the form

L(x) = i[H,x]− 1
2

∑
k

(L∗kLkx− 2L∗kxLk + xL∗kLk) (3)

with H = H∗, Lk ∈ B(h) (see Section 2 for the precise definition), we first describe
the structure of generators of QMSs whose dual semigroup is still a QMS: we find that
the Hamiltonian H is forced to commute with ρ, and the operators Lk can be chosen
as eigenvectors of the modular automorphism, i.e. ρLkρ−1 = λkLk for some λk > 0 (see
Theorem 4). A special GKSL representation of L with these properties is called privileged.



QUANTUM VERSIONS OF THE DETAILED BALANCE CONDITION 107

We stress the close relationship between the form of the Lk’s and the structure of the
spectrum of the modular automorphism (see Proposition 7). We also show the expression
of the generator L in terms of the so-called ladder operators (|ej〉〈ek|)j,k, where (ei)i
is an orthonormal basis of eigenvectors of ρ (see Theorem 8). This result was obtained
before by Frigerio, Kossakowski, Gorini and Verri in [19] under the stronger assumption
of quantum detailed balance.

A QMS commuting with (σt)t≥0 satisfies the quantum detailed balance condition
L − L̃ = 2i[K, · ] if and only if H − K = c for some real constant c and there exists a
unitary matrix (ukl)kl such that λ−1/2

k L∗k =
∑
l uklLl (Theorem 14). The structure of the

generator of a detailed balance QMS was already analyzed in [4] under the additional
hypothesis that L and L̃ commute; here, we prove that this assumption is not necessary
(see example 18). Moreover, we further characterize the generators of quantum detailed
balance QMSs which commute with their dual map L̃ (Proposition 16), since in this case
the generator L commutes with its derivation part δH(x) = [H,x] and it is possible to
express the dual semigroup of T as T̃t(x) = e−2itδH (Tt(x)) = Tt(e−2itδH (x)).

We also characterize QMSs satisfying the “symmetric” (also called standard [10] or
KMS [8], [18]) quantum detailed balance condition L−L′ = 2i[K, · ], where L′ is the gen-
erator of T ′ (Theorem 19): in particular, we show that this is equivalent to the symmetry
of the completely positive part of L, i.e. to the property

tr(ρ1/2Φ(x)ρ1/2y) = tr(ρ1/2xρ1/2Φ(y)), (4)

where Φ(x) :=
∑
k L
∗
kxLk (see also [13] and [15]).

Although we do not find a definite answer the above results seem to indicate that the
best known Alicki et al. quantum detailed balance condition is too restrictive and the
“standard” or “symmetric” detailed balance condition is too weak because it involves only
the completely positive part of the generator.

As a corollary of our results, we can also characterise (Theorem 21) generators of
norm-continuous KMS-symmetric QMS, i.e. satisfying L = L′, investigated by Accardi
and Mohari [2], Goldstein and Lindsay [18], Cipriani [8], Park [23] and the references
therein.

2. General setting. Let h be a complex separable Hilbert space and consider a norm
continuous quantum Markov semigroup (QMS) T = (Tt)t≥0 on B(h) with a faithful nor-
mal invariant state ρ =

∑
j≥1 ρj |ej〉〈ej | with (ej)j≥1 an orthonormal basis of h. We recall

(Theorem 30.10 [24]) that the generator L of T admits a special GKSL representation
with respect to ρ of the form (3) by means of operators H = H∗ and (Lk)k≥1 in B(h)
such that

(i) tr(ρLk) = 0 for each k ≥ 1,
(ii)

∑
k≥1 L

∗
kLk is strongly convergent,

(iii) if
∑
k≥0 |ck|2 <∞ and c0 +

∑
k≥1 ckLk = 0 for scalars (ck)k≥0 then ck = 0 for every

k ≥ 0.

Moreover, another family {H ′, L′k : k ≥ 1} of bounded operators in B(h) with H ′ self-
adjoint, satisfies equation (3) and conditions (i) − (iii) if and only if the lengths of the
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sequences (Lk)k≥1, (L′k)k≥1 are equal and

H ′ = H + α, L′k =
∑
j

ukjLj

for some scalar α and a unitary matrix (ukj)kj .

Introducing the bounded operator

G = −iH − 1
2

∑
k

L∗kLk

on h, we can also write L as

L(a) = G∗a+
∑
k

L∗kaLk + aG; (5)

we say that such a representation is special if the operators H = (G∗ −G) /2i and Lk give
a special GKSL representation of L. In this case, G is unique up to a purely imaginary
multiple of the identity operator. Indeed, if G′, {L′k} give another special representation
of L, then G′ = −iH ′ − 1

2

∑
k L
′∗
k L
′
k fulfills

G′ = −iH − iα− 1
2

∑
k,j,m

ūkjukmL
∗
jLm = −iH − iα− 1

2

∑
j

L∗jLj = G− iα

for some α ∈ R, since the matrix (ukj)kj is unitary.
Finally, let k be a Hilbert space with Hilbertian dimension equal to the length of the

sequence (Lk)k (the multiplicity space of the completely positive part of the generator)
and let (fk) be an orthonormal basis of k. Defining a linear bounded operator L : h→ h⊗k

by Lu =
∑
k Lku ⊗ fk, any special GKSL representation of L can be expressed as (see

Theorem 30.12 [24])

L(a) = i[H, a]− 1
2

(L∗La− 2L∗(a⊗ 1lk)L+ aL∗L) (6)

for all a ∈ B(h), with tr(ρLk) = 0 for all k and the set

(ii′) {(a⊗ 1lk)Lu : a ∈ B(h), u ∈ h} total in h⊗ k.

If H ′ and L′ : h → h ⊗ k′ give another special representation of L with the above
properties, then

H ′ = H + α, L′ = (1lh ⊗ V )L

for some α ∈ R and V : k→ k′ a unitary isomorphism.

Definition 1. The semigroup T is s-symmetric (with respect to ρ) if

tr(ρ1−sTt(a)ρsb) = tr(ρ1−saρsTt(b)) (7)

for all a, b ∈ B(h) and t ≥ 0.

We stress that for s = 1/2 this is exactly the definition of KMS-symmetry with respect
to the faithful state ωρ = tr(ρ ·) (see for example [8], [18] and [23]). We refer to the lecture
notes [9] for a discussion on this point.
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Definition 2. We say that T admits the s-dual semigroup with respect to ρ if there
exists a norm continuous semigroup T̃ (s) = (T̃ (s)

t )t≥0 on B(h) such that

tr(ρ1−sT̃ (s)
t (a)ρsb) = tr(ρ1−saρsTt(b)) (8)

for all a, b ∈ B(h) and t ≥ 0.
When s = 0 (resp. s = 1/2) we denote T̃ (0) (resp. T̃ (1/2)) by T̃ (resp. T ′) and we call

it the dual semigroup (resp. symmetric dual semigroup).

The s-dual semigroup T̃ (s) is uniquely determined by condition (8); moreover, T̃ (s)

and its generator L̃(s) satisfy the following properties (see [13], Proposition 3.1 and 3.2):

1. ρ1−sT̃ (s)
t (a)ρs = T∗t(ρ1−saρs) for all t ≥ 0, and a, b ∈ B(h);

2. T̃ (s)
t (1l) = 1l and T̃ (s)

∗t (ρ) = ρ for all t ≥ 0;
3. if T̃ (s)

t is positive, then it is also normal;
4. ρ1−sL̃(s)(a)ρs = L∗(ρ1−saρs) for all a, b ∈ B(h).

It is clear by 1. that
T̃ (s)
t (a) = ρ−(1−s)T∗t(ρ1−saρs)ρ−s (9)

on the dense subset ρs(h) = ρ(h) of h; therefore, the symmetric dual semigroup (case
s = 1/2) is completely positive and then it is a QMS thanks to property 3. However, if
s 6= 1/2 the maps T̃ (s)

t might not be positive and a fortiori not a QMS (see example 4.1
in [13]).

Moreover, if h is finite dimensional, equation (9) defines a norm continuous semigroup
of bounded operators on B(h) fulfilling relation (8), and so the s-dual semigroup exists.
In the general case the situation is more difficult and it is not yet clear when T admits
its dual semigroup: namely, we showed in [15] that there exists a QMS which satisfies
equation (8) for s = 1/2, but such a semigroup might not be norm continuous.

In the rest of paper, whenever we fix a value of s, we always assume that T admits
its s-dual semigroup T̃ (s).

We now focus our attention on the cases s = 0 and s = 1/2. Indeed all the cases
s 6= 1/2 have the same features, as shown in [13], Section 8.

2.1. The quantum dual semigroup. In this section we analyze the duality for s = 0:
by the general properties of T̃ (s) we have

ρT̃t(a) = T∗t(ρa) and ρL̃(a) = L∗(ρa). (10)

Since T̃t is not in general a positive map, we start finding those QMSs with dual which
is still a QMS and describing the relationship between special GKSL representations of
L and L̃.

Adapting an argument from Majewski and Streater (see [20], proof of Theorem 6),
we can show (Theorem 3.1 of [13]) the following:

Theorem 3. Leta be the set of analytic elements for (σt)t∈R. The dual semigroup T̃ is
a QMS if and only if one of the equivalent conditions holds:

(1) each Tt commutes with the modular automorphism σ−i ona ;
(2) L commutes with σ−i ona .
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In terms of operators H and Lk which give a special representation of L, we have the
following result (see Theorem 4.3 of [13]).

Theorem 4. The quantum dual semigroup T̃ is a QMS if and only if there exists a
special GKSL representation of L by means of operators H, (Lk)k such that

(1) ρLk = λkLkρ for some λk > 0,
(2) H commutes with ρ.

In particular, each of the operators L∗kLk, G and H commutes with ρ.

Definition 5. A special GKSL representation of L by means of operators H, (Lk)k is
privileged if it satisfies conditions (1), (2) of Theorem 4.

Remark 6. Introducing the multiplicity space k of the completely positive part of L,
condition (1) of Theorem 4 is equivalent to

(ρ⊗ 1lk)L = (1lh ⊗D)Lρ,

with D = diag(λ1, λ2, . . . ) =
∑
k λk|fk〉〈fk|, where (fk)k is an orthonormal basis of k.

Therefore, if H ′, L′k give another privileged representation of L, putting L′ : h→ h⊗k,
L′u =

∑
k L
′
ku⊗ fk, and D′ = diag(λ′1, λ′2, . . . ) =

∑
k λ
′
k|fk〉〈fk|, we get

H ′ = H + α, L′ = (1lh ⊗ V )L, D′ = V DV ∗.

for some unitary operator V on k and α ∈ R.
The identity D′ = V DV ∗ means, roughly speaking, that V is a change of coordinates

that transforms D into another diagonal matrix. Hence, when the λk are all different,
privileged GKSL representations of L, if any, are unique up to a permutation of the
operators Lk, a multiplication of each Lk by a phase eiθk and a constant α in the Hamil-
tonian H. On the other hand, if some λk’s are equal, then also unitary transformations
of subspaces of k associated with the same λk’s are allowed.

Condition (1) in Theorem 4 means that the operators Lk are eigenvectors of the
modular automorphism σ−i; since Lk =

∑
i,j〈ei, Lkej〉|ei〉〈ej | and the so-called ladder

operators |ei〉〈ej | are always eigenvectors of σ−i (with eigenvalues ρiρ−1
j ), the form of

the Lk’s is then strictly connected with the structure of the spectrum of the modular
automorphism.

Proposition 7. Suppose that T commutes with the modular automorphism and ρLk =
λLkρ for a fixed λ > 0.

1. If there exists a unique pair (i, j) such that ρiρ−1
j = λ, i.e. σ−i(|ei〉〈ej |) = λ|ei〉〈ej |

we have Lk = α |ei〉〈ej | for some α ∈ C.
2. If there exists (i1, j1), . . . , (id, jd) such that σ−i(|eil〉〈ejl |) = λ|eil〉〈ejl | for l =

1, . . . , d, then Lk = α1|ei1〉〈ej1 |+ · · ·+ αd|eid〉〈ejd | for some α1, . . . , αd ∈ C.

Proof. Since ρ =
∑
l ρl|el〉〈el|, the condition σ−i(|ei〉〈ej |) = λ|ei〉〈ej | is equivalent to

ρiρ
−1
j =λ. Moreover, by ρLk = λLkρ we have

ρl〈el, Lkem〉 = λρm〈el, Lkem〉 (11)

for all l,m, so that 〈el, Lkem〉 6= 0 if and only if ρlρ−1
m = λ.
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It is worth noticing that, in case 1, the self-adjoint operator − log(ρ) is generic in the
sense of Accardi et al. (see e.g. [1]).

The generator of a QMS T commuting with σ−i can be expressed in terms of the
ladder operators in the following way:

Theorem 8. The QMS T commutes with the modular automorphism if and only if its
generator assumes the form

L(x) = i[H,x] + uw- lim
N

N∑
rr′ ss′=1

Crr′ ss′

(
Prr′xPs′s −

1
2
{Prr′Ps′s, x}

)
, (12)

where

(a) Prr′ = |er〉〈er′ |;
(b) Crr′ ss′ satisfies

∑
rr′ ss′ ᾱrr′Crr′ ss′αss′ ≥ 0 for all sequences of scalars (αrr′)rr′ for

which the series converges;
(c)

∑N
rr′ ss′=1 Crr′ ss′Prr′Pss′ is ultraweakly convergent as N →∞;

(d) Crr′ ss′ρr′ρs = Crr′ ss′ρrρs′ ;
(e) H = H∗ ∈ B(h) commutes with ρ.

Proof. Suppose that L commutes with the modular automorphism and let

L(x) = i[H,x]− 1
2

({Φ(1l), x} − 2Φ(x))

be a privileged representation of L, with Φ(x) =
∑
k L
∗
kxLk. Defining

Crr′ ss′ := tr(PsrΦ(Pr′s′)) =
∑
k

〈er, L∗ker′〉〈es′ , Lkes〉 <∞,

property (b) follows immediately for finite sequences. Then it can be extended to se-
quences of scalars (αrr′)rr′ for which the series converges exploiting positivity of finite
sums.

Since Φ commutes with the modular automorphism σ−i and ladder operator Pij are
analytic, property (d) follows from

Crr′ ss′ = tr(PsrρΦ(ρ−1Pr′s′ρ)ρ−1) = tr(ρ−1
s PsrρrΦ(ρ−1

r′ Pr′s′ρs′))

= Crr′ ss′
ρr
ρr′

ρs′

ρs
.

Set QN =
∑N
r=1 Prr, EN (x) = QNxQN and

ΦN (x) := ENΦEN (x) =
∑
k

QNL
∗
kQNxQNLkQN =

N∑
rr′ ss′=1

Crr′ ss′Prr′xPs′s

for all x ∈ B(h), equation (12) is equivalent to

uw- lim
N

(
ΦN (x)− 1

2
{ΦN (1l), x}

)
= Φ(x)− 1

2
{Φ(1l), x} (13)

for all x ∈ B(h).
Since uw- limN EN (x) = x and Φ is normal, we get

tr(Pij (ΦN (x)− Φ(x))) = tr(Pij (Φ(EN (x))− Φ(x)))→N 0
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for all i, j ∈ {1, . . . , N}, so that limN tr(A (ΦN (x)− Φ(x))) = 0 for all A in the linear
span of the Prs’s; by the density of this set in the space of trace class operators on h,
we can conclude that uw- limN ΦN (x) = Φ(x), due to the boundedness of the sequence
(|tr(A (ΦN (x)− Φ(x)))|)N .

In particular, taking x = 1l we obtain property (c), and equation (13) follows then
immediately.

Conversely, assume that L is written in the form (12) and satisfies conditions (a)–(e).
Thus we can write it as

L(x) = i[H,x]− 1
2

({Φ(1l), x} − 2Φ(x))

with Φ(x) := uw- limN

∑N
rr′ ss′=1 Crr′ ss′ (Prr′xPs′s) = uw- limN ΦN (x).

Φ is well defined and normal by (c); it is completely positive since any ΦN is a
completely positive map by (b). Therefore, Φ(x) =

∑
k L
∗
kxLk for some Lk ∈ B(h) such

that
∑
k L
∗
kLk is strongly convergent and L is represented in a GKSL form. To conclude

we have to show that it commutes with the modular automorphism.
First of all, we note that∑

k

〈er, L∗ker′〉〈es′ , Lkes〉 = tr(PsrΦ(Pr′s′)) = lim
N

tr(PsrΦN (Pr′s′)) = Crr′ ss′ ;

hence, by (d) follows tr(PsrΦ(Pr′s′)) = tr(PsrρΦ(ρ−1Pr′s′ρ)ρ−1) for every r, r′, s, s′, which
implies

tr(PsrΦ(x)) = tr(PsrρΦ(ρ−1xρ)ρ−1)

for all x ∈a and r, s. This clearly means that Φ commutes with the modular automor-
phism, and so we can conclude by condition (e).

Remark 9. Notice that, according to [19] Theorem 2.2 p.99, the map L defined by
(12) satisfies the quantum detailed balance condition in the sense of Alicki et al. (see
Definition 12 with s = 0) Crr′ ss′ρr = Cs′sr′rρr′ or, equivalently, Crr′ ss′ρs = Cs′sr′rρs′ .
These identities yield immediately Crr′ ss′ρr′ρs = Cs′sr′rρr′ρs′ = Crr′ ss′ρrρs′ .

We end this section establishing the relationship between the privileged GKSL repre-
sentations of a generator L and a privileged representation of its 0-dual L̃ (see Proposi-
tion 4.3 and Theorem 4.4 in [13]).

Theorem 10. If T̃ is a QMS, then, for every privileged GKSL representation of L, by
means of operators H,Lk, there exists a privileged GKSL representation of L̃, by means
of operators H̃, L̃k such that:

(1) H̃ = −H − α for some α ∈ R;
(2) L̃k = λ

−1/2
k L∗k for some λk > 0.

As a consequence, G̃ = G∗ + ic for some c ∈ R.

2.2. The symmetric dual semigroup. We now study the case s = 1/2. We recall
that the symmetric dual semigroup T ′ of T is defined by

T ′t (a) = ρ−1/2T∗t(ρ1/2aρ1/2)ρ−1/2 (14)
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for all a ∈ B(h). The name symmetric is justified by the left-right symmetry of multipli-
cation by ρ1/2 and ρ−1/2. Equation (14) ensures that any map T ′t is completely positive,
contrary to the case s = 0. Therefore the symmetric dual semigroup T ′ is always a QMS
with generator determined by

L′(a) = ρ−1/2L∗(ρ1/2aρ1/2)ρ−1/2.

It is well-known (see e.g. [8] or [13] Theorem 7.1 p. 358) that the symmetric dual
T ′ coincides with the 0-dual T̃ if and only if each map Tt commutes with the modular
automorphism σ−i.

The relationship between the GKSL representation of generators L and L′ is the
following.

Theorem 11. For every special GKSL representation (5) of L there exists a special
GKSL representation of L′ by means of operators G′, L′k such that

(1) G′ρ1/2 = ρ1/2G∗ + icρ1/2 for some c ∈ R,
(2) L′kρ

1/2 = ρ1/2L∗k.

Condition (2) ensures that the completely positive parts Φ and Φ′ of generators L
and L′, respectively are in symmetric duality wrt ρ, i.e.

tr(ρ1/2Φ′(a)ρ1/2b) = tr(ρ1/2aρ1/2Φ(b)) (15)

for all a, b ∈ B(h). In particular, this is equivalent to ρ1/2Φ′(a)ρ1/2 = Φ∗(ρ1/2aρ1/2), Φ∗
being the predual map of Φ.

3. Quantum s-detailed balance condition. Considering the pre-scalar products 〈·, ·〉s
on B(h) the usual definition of quantum detailed balance introduced in [4], [5], [16]
and [19], can be generalised as follows:

Definition 12. A QMS T on B(h) satisfies the s-quantum detailed balance condition
with respect to a normal faithful invariant state ρ, if its generator L and the generator
L̃(s) of the s-dual semigroup T̃ (s) fulfill

L(a)− L̃(s)(a) = 2i [K, a] (16)

for some bounded selfadjoint operator K on h and for all a ∈ B(h).

Clearly the identity (16) implies that L̃(s) is conditionally completely positive, so that
the s-dual semigroup of a QMS satisfying the s-detailed balance condition is always a
QMS. Moreover the selfadjoint operator K commutes with ρ, since ρ is an invariant state
for both T and T̃ (s).

The s-quantum detailed balance condition is equivalent to L−i[K, ·] = L̃(s)+i[K, ·] for
some selfadjoint operator K; therefore, by comparing the special GKSL representations
of L − i[K, ·] and L̃(s) + i[K, ·] we find

G− iK = G̃(s) + iK + ic, L̃
(s)
k =

∑
j

ukjLj

for some unitary matrix (ukj)kj and some c ∈ R.
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Hence, a first characterization of the s-quantum detailed balance condition is the
following:

Theorem 13. T satisfies the quantum s-detailed balance condition L− L̃(s) = 2i[K, ·] if
and only if the equivalent facts below hold:

(i) for all special GKSL representations of generators L and L̃(s) by means of operators
G,Lk and G̃(s), L̃

(s)
k respectively, we have

(1) G̃(s) = G− i(2K + c) for some c ∈ R,

(2) L̃
(s)
k =

∑
j ukjLj for some unitary matrix (ukj)kj;

(ii) for all special GKSL representations of generators L and L̃(s) by means of operators
H,Lk and H̃(s), L̃

(s)
k respectively, we have

(1′) H̃(s) = H − (2K + c) for some c ∈ R,

(2′) L̃
(s)
k =

∑
j ukjLj for some unitary matrix (ukj)kj.

In the following we will specialize this result to the cases s = 0 and s = 1/2.

3.1. Quantum detailed balance condition. Assume now s = 0; in this case, we
speak of quantum detailed balance condition.

Comparing Theorems 13 and 10, we can characterize the generator of a QMS satisfying
the quantum detailed balance condition as follows:

Theorem 14. The following conditions are equivalent:

(i) T satisfies the detailed balance condition L − L̃ = 2i[K, ·];
(ii) there exists a privileged GKSL representation of L, by means of operators H,Lk,

such that

(1) H = K + c for some c ∈ R,

(2) λ
−1/2
k L∗k =

∑
j ukjLj for some λk > 0 and some unitary operator U = (ukj)kj

on k;

(iii) every privileged GKSL representation of L is given by operators H,Lk satisfying
conditions (1), (2).

In particular, the unitary matrix U satisfies Ū = U∗.

Proof. For the equivalence of items (i)–(iii) see the proof of Theorem 5.1 in [13]. We show
now only the last statement.

Since λ−1/2
j Lj =

∑
i ūjiL

∗
i by condition (2) in (ii), substituting in λ−1/2

k L∗k =
∑
j ukjLj

we have
λ
−1/2
k L∗k =

∑
ij

ukj ūjiλ
1/2
j L∗i ,

so that λ−1/2
k δki =

∑
j λ

1/2
j ukj ūji from the linear independence of the Lk. This clearly

means
D−1/2 = UD1/2Ū , (17)
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where D = diag(λ1, λ2, . . .). Moreover, set L′k := λ
−1/2
k L∗k, equation (2) in (ii) implies

that the GKSL representation given by H,L′k is also privileged and ρL′k = λ−1
k L′kρ, that

is λ′k = λ−1
k . Therefore, by Remark 6 we get

D−1 = UDU∗, (18)

so that D−1/2 = UD1/2U∗ by spectral calculus, since U is unitary.
The conclusion follows by substituting in equation (17).

Remark 15. As a consequence of the previous Theorem, if T satisfies the quantum
detailed balance condition, the completely positive part Φ(x) =

∑
k L
∗
kxLk in a privileged

representation of L is symmetric wrt ρ. Indeed,

tr(ρΦ(x)y) =
∑
k

tr(λ−1
k L∗kρxLky)

=
∑
k

tr(ρx(λ−1/2
k Lk)y(λ−1/2

k L∗k)) = tr(ρxΦ(y)),

since λ−1/2
k L∗k =

∑
j ukjLj (and so λ−1/2

k Lk =
∑
j ūkjL

∗
j ) with (ukj)kj a unitary matrix.

Theorem 14 generalizes a result of Alicki ([4], Theorem 3), in which he characterized
(in the finite-dimensional case) generators L satisfying the quantum detailed balance
condition under the additional hypothesis that the operator L is normal, i.e. it commutes
with L̃. This assumption implies that T commutes with the modular automorphism (see
Lemma 3 of [4]), but it is not necessary, as shown by Example 18.

Indeed, note first that

Proposition 16. Assume T satisfies the quantum detailed balance condition and con-
sider a privileged GKSL representation of L by means of operators H, (Lk)k. Set δH =
[H, · ], L0 = L − iδH and Φ(x) =

∑
k L
∗
kxLk, the statements below are equivalent:

(i) LL̃ = L̃L;
(ii) L0δH = δHL0;
(iii) ΦδH = δHΦ.

Proof. By Theorem 14 we have L̃ = L − 2iδH , so that

LL̃(x) = L2(x)− 2iLδH(x) = L2(x)− 2iL0δH(x) + 2δ2H(x)

L̃L(x) = L2(x)− 2iδHL(x) = L2(x)− 2iδHL0(x) + 2δ2H(x).

The equivalence (i)⇔ (ii) is now self-evident.
To conclude it is enough to note that L0(x) = Φ(x)− 1

2 {Φ(1l), x} and Φ(1l) =
∑
k L
∗
kLk

commutes with H by Theorem 4.

Remark 17. The previous proposition allows us to know when the quantum detailed
balance condition can be expressed in a simple way in terms of T and its dual T̃ ; indeed,
when L0 and the derivation δH commute, the property L − L̃ = 2i[H, · ] is equivalent to

T̃t = et
eL = etLe−2iδH = Tt e−2iδH .

Unfortunately, the following example shows that such a commutation is not, in general,
a consequence of the quantum detailed balance condition.
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Example 18. Let h = C3 with canonical basis (|ej〉)3j=1 and let D be the operator
z|e1〉〈e2|+ w|e2〉〈e3| on h with z, w ∈ C− {0}. Put

L1 = D, and L2 = λD∗

for some λ > 0, λ 6= 1, and consider the conditionally completely positive map L0 on
B(C3) defined as in (3) with H = 0. A straightforward computation shows that a faithful
normal state ρ =

∑3
j=1 ρj |j〉〈j| satisfies L0∗(ρ) = 0 if and only if

λ2 = ρ2/ρ1 = ρ3/ρ2, (19)

i.e., by the normalisation ρ1 + ρ2 + ρ3 = 1,

ρj = λ2(j−1)/(1 + λ2 + λ4), for j = 1, 2, 3.

The operator D satisfies ρD = λ−2Dρ.
Consider the generator L of a QMS defined by

L(x) = i[ρ, x]− 1
2

2∑
k=1

(L∗kLkx− 2L∗kxLk + xL∗kLk) (20)

that clearly admits ρ as a faithful invariant state. Moreover, since ρL1 = λ−2L1ρ and
ρL2 = λ2L2ρ, with our notation we have λ1 = λ−2 and λ2 = λ2. Therefore equation (20)
defines a privileged GKSL representation of L with H = ρ, and the quantum detailed
balance condition is fulfilled because(

λ
−1/2
1 L∗1
λ
−1/2
2 L∗2

)
=
(
λD∗

D

)
=
(
L2

L1

)
=
(

0 1
1 0

)(
L1

L2

)
We finally show that L is not normal, i.e. by Proposition 16, that the completely positive
part Φ(x) =

∑2
k=1 L

∗
kxLk does not commute with δH . We start computing

ΦδH(x) = D∗ρxD −D∗xρD + λ2DρxD∗ − λ2DxρD∗,

δHΦ(x) = ρD∗xD −D∗xDρ+ λ2ρDxD∗ − λ2DxD∗ρ

= λ2D∗ρxD − λ2D∗xρD +DρxD∗ −DxρD∗

and find that

Φ(δH(x))− δH(Φ(x)) = (λ2 − 1) (D[ρ, x]D∗ −D∗[ρ, x]D)

which is non-zero, e.g. for x = |e1〉〈e2|.
Note that ρ is the unique invariant state because the QMS is irreducible because the

commutant of {H,D,D∗ }, i.e. the fixed point algebra of the QMS generated by T , is
trivial (see [12]).

3.2. Quantum symmetric detailed balance conditions. We conclude this discus-
sion dealing with the 1/2-quantum detailed balance condition, or symmetric quantum
detailed balance condition

L − L′ = 2i [K, ·].

If T satisfies this condition, by Theorem 10, there exists a special GKSL representation
of L′ with G′ = G − i(2K + c) and L′k =

∑
j ukjLj for some unitary matrix (ukj)kj ;

therefore, by Theorem 11 we get
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1. Gρ1/2 = ρ1/2G∗ − (2iK + ic) ρ1/2 for some c ∈ R,
2. ρ1/2L∗k =

∑
` uk`L`ρ

1/2, for all k, for some unitary matrix (uk`)k`.

Conversely, these conditions ensure the symmetric quantum detailed balance condition;
in fact, we proved in [15] that condition 1 easily follows by 2 and by the invariance of ρ.
Hence, we obtain:

Theorem 19. T satisfies the symmetric quantum detailed balance condition if and only
if there exists a special GKSL representation of the generator L by means of operators
H,Lk such that {Lk} satisfies

ρ1/2L∗k =
∑
`

uk`L`ρ
1/2, (21)

for all k, for some unitary matrix (um`)m`.

This means that the symmetric quantum detailed balance condition depends only on
the completely positive part of the generator L. More precisely:

Theorem 20. Let L(a) = Ga+Φ(a)+aG∗ be a special representation of L. The following
conditions are equivalent:

1. T satisfies the quantum symmetric detailed balance condition;
2. Φ is 1/2-symmetric wrt ρ.

A condition on G (with K = 0) is necessary to find T 1/2-symmetric.

Theorem 21. T is KMS-symmetric if and only if one of the equivalent conditions below
holds:

(i) there exists a special GKSL representation of L by means of operators G,Lk with

(1) Gρ1/2 = ρ1/2G∗ + icρ1/2 for some c ∈ R,

(2) ρ1/2L∗k =
∑
` uk`L`ρ

1/2, for all k, for some unitary matrix (uk`)k`;

(ii) there exists a special GKSL representation of L, L(a) = Ga+ Φ(a) +aG∗ such that

(1′) Gρ1/2 = ρ1/2G∗ + icρ1/2 for some c ∈ R,

(2′) Φ is 1/2-symmetric wrt ρ.

Remark 22. Using the modular theory, we showed in [15] that (1), (2) in item (i) of
Theorem 21 can be replaced by the following conditions:

(1′′) H =
∑
kHk + c for some c ∈ R, where

Hk := i

∫
σt

(
ρ−1/4L∗kLkρ

1/4 − ρ1/4L∗kLkρ
−1/4

)
(e2πt + e−2πt)−1 dt;

(2′′) ρ1/2L∗k =
∑
` uk`L`ρ

1/2, for all k, for some unitary matrix (uk`)k`.

This is exactly the result proved by Park in Theorem 2.2 of [23].
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