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Abstract. On a non-trivial partially ordered real vector space (V,6) the orthogonality relation
is defined by incomparability and ζ(V,⊥) is a complete lattice of double orthoclosed sets. We
say that A ⊆ V is an orthogonal set when for all a, b ∈ A with a 6= b, we have a ⊥ b. In our
earlier papers we defined an integrally open ordered vector space and two closure operations
A → D(A) and A → A⊥⊥. It was proved that V is integrally open iff D(A) = A⊥⊥ for every
orthogonal set A ⊆ V . In this paper we generalize this result. We prove that V is integrally open
iff D(A) = W for every W ∈ ζ(V,⊥) and every maximal orthogonal set A ⊆W . Hence it follows
that the lattice ζ(V,⊥) is orthomodular.

1. Introduction. This paper is a complement to our earlier papers [3] and [4]. Let
(V,6) be a partially ordered real vector space with a positive cone P = {b ∈ V : b > 0}
such that P 6= {0}. A set {a+ ωb ∈ V : ω ∈ R}, a, b ∈ V, b > 0, is called a P -line (see
[3]). Let us denote VP the family of all P -lines. We define the orthogonality relation

a ⊥ b ⇔ a 
 b and b 
 a ⇔ there is no g ∈ VP such that {a, b} ⊆ g.

The pair (V,⊥) is called the orthogonality space generated by V . For a ∈ A and A ⊆ V

we denote:

a⊥ = {b ∈ V : b ⊥ a}, A⊥ =
⋂
a⊥ and A⊥⊥ = (A⊥)⊥.

The family of double orthoclosed sets ζ(V,⊥) = {A ⊆ V : A = A⊥⊥} partially ordered
by set-theoretical inclusion and equipped with the orthocomplemention A → A⊥, with
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l.u.b. and g.l.b. given respectively by the formulas∨
Aj = (

⋃
Aj)⊥⊥,

∧
Aj =

⋂
Aj ,

forms a complete orthocomplemented lattice (see [1]). This lattice is called orthomodular
(see [1]) if the following condition is satisfied:

If A ⊆ B then B = A ∨ (B ∧A⊥).

We say that A ⊆ V is an orthogonal set when for all a, b ∈ A with a 6= b, we have
a ⊥ b. Foulis and Randall [6] proved that ζ(V,⊥) is a complete orthomodular lattice iff
the following condition is satisfied:

(OM) If W = W⊥⊥ ⊆ V and A is a maximal orthogonal subset of W , then A⊥⊥ = W .

We consider two closure operations A→ D(A) and A→ A⊥⊥, where D(A) is called the
causal closure of A (see [2]) and A⊥⊥ is called the ortho closure of A

D(A) = {b ∈ V : ∀g ∈ VP , b ∈ g ⇒ g ∩A 6= ∅},

A⊥⊥ = {b ∈ V : ∀g ∈ VP , b ∈ g ⇒ g ∩A⊥ = ∅}.

Let us notice that D(A) ⊆ A⊥⊥.
The space V is called integrally open (see [3]) if

b > 0 and a < b ⇒ ∃n ∈ N, a+ nb > 0.

It was shown in [3] that if V is integrally open, then the lattice ζ(V,⊥) is orthomodular.
In [4] it was proved that V is integrally open iff D(A) = A⊥⊥ for every orthogonal set
A ⊆ V . In this paper we generalize this result. We prove (Theorem 2.1(5)) that V is
integrally open iff the following condition is satisfied:

If W = W⊥⊥ ⊆ V and A is a maximal orthogonal subset of W , then D(A) = W .

Hence it follows that if V is an integrally open space, then the lattice ζ(V,⊥) is ortho-
modular (Corollary 2.1).

The space V is directed (see [1]) if

∀a, b ∈ V ∃c ∈ V, a 6 c and b 6 c.

By a strong unit of V we mean an element a ∈ V such that

∀b ∈ V ∃n ∈ N, na > b.

It was proved in [3] that V is integrally open and directed iff every positive element of
V is a strong unit. The integrally open concept is closely related to the open set in the
Euclidean topology in a finite dimensional ordered vector space (the only topology in
which a finite dimensional vector space is a topological vector space). For the case in
which V is finite dimensional we proved in [3] that V is integrally open and directed iff
int(P ) = P\{0}, where int(P ) denotes the interior of P in the Euclidean topology of V .
In this paper we complete this result. For the case in which V is finite dimensional we
prove (Theorem 3.2) that V is integrally open and directed iff int(A+) = A+\A for every
orthogonal set A ⊂ V (for every maximal orthogonal set A ⊂ V ). Hence it follows that
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if V is finite dimensional, integrally open and directed, then any maximal orthogonal set
in V is closed in the Euclidean topology of V (Corollary 3.1).

2. Ortho and causal closure operations. Let (V,⊥) be the orthogonality space gen-
erated by V . For a ∈ A and A ⊆ V we define:

a+ = {b ∈ V : a 6 b}, A+ =
⋃
a+,

a− = {b ∈ V : b 6 a}, A− =
⋃
a−.

Theorem 2.1. The following conditions are equivalent:

1. V is an integrally open space.
2. g ∈ VP , a ∈ V, g ∩ a− 6= ∅ ⇔ g ∩ a+ 6= ∅.
3. g ∈ VP , a /∈ g ⇒ g ∩ a+ has no smallest element.
4. g ∈ VP , a /∈ g ⇒ g ∩ a− has no largest element.
5. If W = W⊥⊥ ⊆ V and A is a maximal orthogonal set in W , then D(A) = W .
6. D(A) = A⊥⊥ for every orthogonal set A ⊆ V .
7. D(A) = V for every maximal orthogonal set A ⊆ V .

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) were proved in [3] and implications
(6)⇒ (7) ⇒ (1) were proved in [4].

(2)∧ (3)∧ (4) ⇒ (5). Let W = W⊥⊥ and A be a maximal orthogonal set in W . Suppose
g ∈ VP and g ∩W 6= ∅. Since A is a maximal orthogonal set in W , g ∩W ⊆ A− ∪ A+.
Suppose g ∩ A+ ∩ W 6= ∅ (the proof in the case g ∩ A− ∩ W 6= ∅ is analogous). By
condition (2), g ∩A− and g ∩A+ are nonempty sets. Hence g ∩A+ is a ray with an end
point x. First we prove that x ∈W . Since x+∩W 6= ∅, then x−∩W⊥ = ∅. If there exists
y ∈ x+ ∩W⊥, then x is the largest element of g ∩ y− and we obtain a contradiction with
condition (4), because y /∈ g. Hence x+ ∩W⊥ = ∅ and x ∈ W⊥⊥ = W . Now we prove
that x ∈ A. Since x ∈ g ∩W ⊆ A− ∪A+, then one of the following cases occurs:

i) x ∈ A+,
ii) x ∈ A−.
Case i) There exists s ∈ A such that x is the smallest element of g ∩ s+. Hence, by
condition (3) s ∈ g and x = s ∈ A.
Case ii) Since the set A is orthogonal, then there exists t ∈ A such that x is the largest
element of g ∩ t−. Hence, by condition (4) t ∈ g and x = t ∈ A.
(5) ⇒ (6). Let us notice that if A is an orthogonal set, then it is a maximal orthogonal
set in A⊥⊥.

Corollary 2.1. If V is an integrally open space, then ζ(V,⊥) is a complete orthomod-
ular lattice.

Proof. Suppose V is an integrally open space. Let W = W⊥⊥ ⊆ V and A be a maximal
orthogonal set in W . Since D(A) ⊆ A⊥⊥ ⊆W⊥⊥ = W , then by Theorem 2.1(5) D(A) =
A⊥⊥ = W . Hence the implication (OM) is satisfied.
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3. Integrally open and directed vector spaces. Let (V,⊥) be the orthogonality
space generated by V . For a, b ∈ V , a 6= b, (a, b) denotes the set of all points of the form
αa + βb, α > 0, β > 0, α + β = 1. Let S ⊂ V . A point a ∈ S is a core point of S if for
each point b ∈ V , with b 6= a, there exists a point c ∈ (a, b) such that (a, c) ⊂ S. The set
of such core points is called the core of S (see [6]). A translation of a one dimensional
subspace of V is called a line.

Theorem 3.1. The following conditions are equivalent:

1. V is an integrally open and directed space.
2. Every positive element of V is a strong unit.
3. The core of P is P \ {0}.
4. If A ⊆ V is an orthogonal set, then the core of A+ is A+ \A.
5. If A ⊆ V is a maximal orthogonal set, then the core of A+ is A+ \A.
6. If A ⊆ V is a maximal orthogonal set and g is a line such that g ∩ A+ 6= ∅ and

g ∩A− 6= ∅, then g ∩A 6= ∅.

Proof. The equivalence (1) ⇔ (2) was proved in [3] and the equivalence (1) ⇔ (3) was
proved in [4].

(3) ⇒ (4). If A is an orthogonal set, then by (3)

core(A+) ⊆ A+ \A ⊆
⋃
a+\{a} =

⋃
core(a+) ⊆ core(A+).

(4) ⇒ (5). Obvious.

(5)⇒ (6). Suppose A is a maximal orthogonal set. Then {A−\A, A, A+\A} is a partition
of V . If g is a line such that g∩(A+ \A) 6= ∅ and g∩(A− \A) 6= ∅ then by (5) g∩(A− \A)
and g ∩ (A+ \A) are nonempty open sets in the topology of line g. Hence g ∩A 6= ∅.
¬(3) ⇒ ¬(6). Suppose a > 0, b ∈ V and g = {a + ωb : ω ∈ R} is a line such that
g∩0+ ⊆ {a+ωb : ω ≥ 0}. If g∩0⊥ 6= ∅ then there exists γ < 0 such that c = a+γb ∈ g∩0⊥.
Since c ∈ 0⊥ then a+ λ c /∈ 0− for λ > 0. Hence a+ λ c /∈ {µc : µ ≤ 0}− for λ > 0. Since
(1 + λ)−1(a + λ c) = (1 + λ)−1(a + λ a + λ γ b) = a + (1 + λ)−1λ γ b ∈ g and γ < 0, we
have (1 + λ)−1(a + λ c) /∈ 0+ for λ > 0. Hence a + λ c /∈ {µc : µ ≤ 0}+ for λ > 0. Thus
we have

j) {a+ λc : λ > 0} ⊆ {µc : µ ≤ 0}⊥.
Since a+ ωb < a+ ωb+ γ−1ωa = a+ γ−1 ω(a+ γb) = a+ γ−1ωc ∈ {a+ λc : λ > 0} for
ω < 0 and a+ ωb > γ−1ωa+ ωb = γ−1ω(a+ γb) = γ−1ωc ∈ {µc : µ ≤ 0} for ω ≥ 0, and
c ∈ 0⊥, it follows that

jj) {a+ ωb : ω < 0} ⊆ {a+ λc : λ > 0}− and {a+ ωb : ω ≥ 0} ⊆ {µc : µ ≤ 0}+,
jjj) {a+ωb : ω < 0}∩{a+λc : λ > 0} = ∅ and {a+ωb : ω ≥ 0}∩{µc : µ ≤ 0} = ∅.
Since c ∈ 0⊥, by j) {a + λc : λ > 0} ∪ {µc : µ ≤ 0} is an orthogonal set. Let A be a
maximal orthogonal set such that {a+ λc : λ > 0} ∪ {µc : µ ≤ 0} ⊆ A. By jjj), jj) and
j), g ∩ {a + λc : λ > 0} = ∅ and g ∩ {µc : µ ≤ 0} = ∅. Hence by jj) g ∩ A = ∅. Since
a ∈ g ∩A+ and c ∈ g ∩A− the implication (6) is not satisfied.
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If g∩0⊥ = ∅, let A be a maximal orthogonal set such that 0 ∈ A. Since 0 /∈ g ⊆ 0+∪0−,
we have g ∩ A = ∅. Hence the implication (6) is not satisfied because g ∩ 0+ 6= ∅ and
g ∩ 0− 6= ∅.

Suppose V is a finite dimensional real vector space. Valentine [6] proved that if S ⊆ V
is a convex set then int(S) = core(S), where int(S) denotes the interior of S in the
Euclidean topology of V . Hence, in this case, Theorem 3.1 has the following formulation:

Theorem 3.2. If V is a finite dimensional vector space, then the following conditions
are equivalent:

1. V is an integrally open and directed space.
2. Every positive element of V is a strong unit.
3. The interior of P is P \ {0}.
4. If A ⊆ V is an orthogonal set, then int(A+) = A+ \A.
5. If A ⊆ V is a maximal orthogonal set, then int(A+) = A+ \A.
6. If A ⊆ V is a maximal orthogonal set and g is a line such that g ∩ A+ 6= ∅ and

g ∩A− 6= ∅, then g ∩A 6= ∅.
Corollary 3.1. If V is finite dimensional, integrally open and directed, then any max-
imal orthogonal set in V is closed in the Euclidean topology of V .

Proof. If A ⊆ V is a maximal orthogonal set, then A is the complement set of the union
(A− \A)∪ (A+ \A). By Theorem 3.2(5), A− \A = int(A−) and A+ \A = int(A+). Hence
A is a closed set in the Euclidean topology of V .

Let us notice that if V = R2 as a lexicographically ordered vector space, then V is
not integrally open (because int(P ) 6= P \ {0}) but every maximal orthogonal set in V is
closed in the Euclidean topology of R2 (because every maximal orthogonal set is a one
point set).
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