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Abstract. A new concept of mutual pressure is introduced for potential functions on both
continuous and discrete compound spaces via discrete micro-states of permutations, and its
relations with the usual pressure and the mutual information are established. This paper is a
continuation of the paper of Hiai and Petz in Banach Center Publications, Vol. 78.

Introduction. Entropy and pressure are two basic quantities in statistical physics as
well as information theory, which are in the duality relation via the Legendre transforms
of each other. Mutual information is another important entropic quantity in information
theory. The aim of this paper is to seek for the mutual version of pressure whose Legendre
transform is equal to the mutual information.

The mutual information of two random variables X and Y is defined as the relative
entropy

I(XANY) =Syl ux @ py),

where p(x vy is the joint distribution measure of (X,Y’) and pux ® py is the product of
the respective distribution measures of X, Y. This is also expressed as

I(XAY)=—S(X,Y)+ S(X) + S(Y)

in terms of the Shannon entropy S(-) when X,Y are discrete random variables. When
X,Y are continuous variables, the expression holds with the Boltzmann-Gibbs entropy
H() in place of S(-) (as long as H(X) and H(Y) are finite). These definitions and
expressions are naturally extended to the case of more than two random variables.

In the classical (= commutative) probability setting, we developed in the previous
paper [0] a certain “discretization approach” to the mutual information by using “discrete
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micro-states” of permutations. In this paper we apply the same idea to introduce the
notion of the “mutual pressure” for (continuous) potential functions on compound phase
spaces. We consider the n-fold product [—R, R]" of the bounded interval [—R, R], which
is regarded as the phase space for an n-tuple of real bounded random variables. For a
real continuous function h on [—R, R]™ the usual pressure of h is given by

P(h) := log/ et dx.
[-R.R]"
For an n-tuple (p1,...,u,) of probability measures on [—R, R], we choose an approxi-
mating sequence (& (N),...,&,(N)) such that & (N) are vectors in [~ R, R]Y (having the
coordinates in increasing order) and & (N) — p; in moments as N — oo for 1 < i < n.
We define the mutual pressure Piym(h @ g1, ..., fy) of h with respect to (p1,. .., fn) to
be the limsup as N — oo of the asymptotic average

Vo X eV, o)),

01,..,0nESN

over permutations o; € Sy, where Ky (h(X1,...,Xy)) = % Z;Vd hxj, ..., xpn;) for x; =
(%i1,...,2in) € [-R, RN, 1 <i <n (Definition 2.1). Then the inequality

n

P(h) > Psym(h Sy ) JFZH(Ni)

i=1
is shown to hold, and the equality case is characterized in a natural way (Theorem 3.2).
Moreover, for a probability measure p on [—R, R]™ with marginal measures p,..., i
on [—R, R], the Legendre transform of Psym(h : p1,. .., 1,) is shown to be equal to the
mutual information —H (p)+ Y, H(y;) as long as H(u;) > —oc for 1 < i < n (Theorem
3.5).

The same approach can be also applied to the setting of discrete phase spaces, when
the Shannon entropy takes the place of the Boltzmann-Gibbs entropy. We deal with the
discrete case in Section 4 separately since the discussions are considerably different from
the continuous case due to the difference of entropies.

1. Preliminaries in the continuous case. Let R > 0 and n € N be fixed throughout.
We denote by Prob([—R, R]™) the set of probability measures on the n-fold product
[—R, R]"™ (C R™), and by Cr(|—R, R]™) the real Banach space of real continuous functions
on [—R, R]™ with the sup-norm || f|| := max{|f(x)| : x € [-R, R]|"}. The Boltzmann-Gibbs
entropy of a probability measure p on [—R, R]™ is defined to be

H(p) = - /[_M]np(x) log p(x) dx

if 12 has the joint density p(x) with respect to the Lebesgue measure dx on RY; otherwise
H(p) :== —oo. A measure pu € Prob([—R, R]") typically arises as the joint distribution
of an n-tuple (X1,...,X,) of real random variables bounded by R (i.e., |X;| < R) on a
probability space. In this case, we have H(u) = H(X1,...,Xn).
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For a vector x = (x1,...,2x) in RY we write ||x||; :== N~! Z;V:l |z;j|. The mean
value of x is given by

N
=1

For each N,mm € N and § > 0 we define ( i N,m,d) to be the set of all n-tuples
(X1,...,Xp) of X; = (241,...,2;n) € [-R,R]™, 1 <i < n, such that

2 \

|/€N(Xi1 "'Xik) _N(xil xlk)' <90

for all 41,...,9, € {1,...,n} with 1 < k < m, where x;, ---x;, stands for the pointwise
product, i.e.,
N
Xy Xy, = (%‘11 Ty 1, L2 L2y -e - 3L N T 'xikN) eRY,
and

u(xi1~~xik)::/ Ty e Ty, (X, .o, X))
[-R.R]"
Then it is known [4] 5.1.1] that the limit
. 1 n
Jim = log AR (A (s; N, m, 8))
exists, where A\ stands for the Lebesgue measure on RY, and furthermore we have

Hw= lm  lim; o ~ 10g AS" (A (js; N, m, 8)).

In [5] we introduced some kinds of mutual information Isym(x) and Tsym (i), and estab-
lished their relations with H(u) as follows.

DEFINITION 1.1. Let u € Prob([—R, R]™) and p; be the restriction (or the marginal) of
p to the ith component [—R, R] of [-R, R]"” for 1 <4 < n. Choose and fix a sequence
of n-tuples Z(N) = (&(N),...,&.(N)), N € N, of R¥-vectors &( ) in [-R,R]Y
{(z1,...,2n) € [-R,RIN : 21 < --- < zn} such that sy (&(N)F) — [ 2F dp,( )

N — oo forall k € N, ie., §(N) — p; in moments for 1 < i < n. We call such a sequence
Z(N) an approxzimating sequence for (u1,. .., ). For N € N the action of the symmetric
group Sy on RY is given by

o(x) = (Tg-1(1)s -+ To-1(N))

for 0 € Sy and x = (z1,...,2x5) € RY. For each N,m € N and § > 0 we define
Agym(p : 2(N); N,m, d) to be the set of all (01,...,0,) € S} such that

(01(&1(N)), .-, 0n(€n(N))) € Ar(p; N,m, 6).
We define

Iiym(p) = — m—)léon’%\‘o h]{fn—?llop N log ’Y?ﬁ(Asym(M : 2(N); N,m, 0)),
where vg,, is the uniform probability measure on Sy, and define also Tsym(ﬂ) by replacing
limsup by liminf. This definitions of Isym (1) and Isym(u) are independent of the choice
of an approximating sequence Z(N) for (p1,. .., ttn) ([B) Lemma 1.5]).
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THEOREM 1.2 (|5, Theorem 1.6]). For every p € Prob([—R, R]|"™) with marginals pi1,. ..,
tn € Prob([—R, R)),

H(p) = —Tym(p) + > H(pi) = —Toym(p) + > H(pss).
i=1 i=1
The pressure of h € Cg([—R, R]") is given by
P(h) := log/ e gx.

[7R)R]7z,

It is well known that the pressure function P(h) for h € Cr([—R, R]") and the (minus)
Boltzmann-Gibbs entropy —H (i) for u € Prob([—R, R]™) are in the duality relation in
the sense that they are the Legendre transforms of each other. That is,

H(p) = inf{—p(h) + P(h) : h € Cr([-R,R]")}, p € Prob([-R, R]"), (1.1)

P(h) = max{u(h) + H(p) : p € Prob([-R, R]")}, h € Cr([-R,R]").
Furthermore, for every h € Cr([—R, R]|") the Gibbs probability measure pp, associated
with h is given by

1
dpp(x) == A "™ dx  with  Z), = / ™) dx = eP(h),
h [7R’R]n

which is characterized by the variational equality
P(h) = pn(h) + H(pn),

that is, py, is a unique maximizer of p € Prob([—R, R]™) — pu(h) + H(u).

2. Mutual pressure and its Legendre transform. In the setting of continuous com-
pound spaces described in Section 1, we introduce the mutual version of pressure for
continuous potential functions, and consider its Legendre transform that is a version of
the mutual information.

DEFINITION 2.1. Let uy,..., u, € Prob([—R, R]) be given and choose an approximating
sequence E(N) = (£1(N),...,&n(N)) of &(N) € [-R, R]Y for (1, ..., pn) as in Defini-
tion For each h € Cgr([-R,R]") and x; = (zi1,...,7in) € [-R, RN, 1 < i < n,
define

h(Xl,. . ,Xn) = (h(xlh. . ,ZL’nl),h(le,.. . ,.’Eng),. . .,h((L’lN7. . ,(L'nN)) € RN (21)
and hence

1 N
rn(h(x,...,%p,)) = NZh(mj,...,xnj). (2.2)

For each h € Cr([—R, R]™) we define the mutual pressure of h with respect to (p1, ..., fin)
to be
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Psym(h : Mlv"'a/”‘n)
= timsup 1oz [ exp(Nrn(h(e1(61 (V). o6 (VD) 1§30 0)

— n
N—o0 o

Y. ep(Nean(h(o1(&(N)), ... 0u(E(V)))) |-

01,00, €SN

1
= lim sup — log {

1

The above definition is justified by the following:

LEMMA 2.2. Pyym(h @ pa,..., 1) is independent of the choice of an approximating se-
quence Z(N) for (u1,. .., tn).

Proof. Let E'(N) = (&1(N),...,&,(N)) be another such approximating sequence. We
write Pyym(h : E) and Py (h 1 2') for Poym(h @ g1, ..., fty,) defined in Deﬁnitionwith
Z(N) and Z'(N), respectively. Since Psym(h : E) and Pyym (h : Z') are continuous in h in
the norm (see Proposition (3) below), it suffices to prove that Psym(p : Z) = Peym(p :
Z/) for any real polynomial p of n variables 1, ...,,. Since &(N),&/(N) € [-R, R)Y,

for any & > 0 there exists a § > 0 such that, for every N € N, if ||&;(N) — €/(N)|, < &
foralli=1,...,n, then

N (P(o1(E1(N), -+, 00 (6n (V) — £ (P(O1(E1(N)), - -, on (§(N))))] < €
for all (o1,...,0,) € S%. Thanks to [6, Lemma 4.3] (also [4, 4.3.4]), there exists an
Ny € N such that if N > Ny then ||&(N) — &(N)|l1 < 6 for all i = 1,...,n. Hence we
have for every N > Ny

s X e (@), o6 (V)

01,..,0nESN

1 1

-~ 1Og{(N')” Z exp(Nen(p(o1(&L(N)), ..., an(fg(N)))))] ’ <e.
This implies that |Psym(p : Z) — Peym(p : Z')| < €. Since € > 0 is arbitrary, the desired
conclusion follows. m

The following are basic properties of Psym(h : p1,. .., tn), Whose proofs are straight-
forward.

PROPOSITION 2.3. Let pi1,. .., in, € Prob([—R, R]).

(1) When n =1, Psym(h: p1) = pa(h) for all h € Cr([—R, R]).

(2) Psym(h:pa,..., ) is a conver and increasing function on Cr([—R, R]™).

(3) |Psym(h: pia,y .oy pin)—Paym(R'  p, ..o, )| < ||h=R|| for allh, ' € Cr([—R, R]"™).

(4) If 1 <m < n, B € Cr([~R, R]™), h® € Cr([~R,R]"™™) and h(x1,...,x,) =
h(l)(xl, ey T) + h,(2)(xm+1, .oy Ty), then

Psym(h CH, .. 7ﬂn) < Psym(h(l) N A P a,Um) + Psym(h(z) ChmA1s e ,Un)-

DEFINITION 2.4. Let u € Prob([—R, R]™) with marginals p1,...,u, € Prob([—R, R]).
Define

Toym () :=sup{p(h) — Psym(h : p1, ..., ptn) : h € Cr([—R, R|™)},
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that is, Zsym (1) is the Legendre transform of Psym (b @ p1, .. ., ftp). Furthermore, we say

that p is mutually equilibrium associated with h € Cr([— R, R]™) if the variational equality
Isym(ﬂ) = ‘LL(h) - Psym(h PR 7,un)

holds.

The next proposition says that Psym(h : 1, ..., tn) is the converse Legendre trans-
form of Zgym (11).

PROPOSITION 2.5. For every h € Cr([—R, R|"™) and p1, ..., in, € Prob([—R, R]),

Py (b 2 pa, .oy i) = max{p(h) — Zsym(p) : o € Prob,, .. ((-R, R]")},

where Prob,,, .. ([—R, R|") is the set of all ;1 € Prob([—R, R]™) whose restriction to the
ith component of [—R, R)"™ is p; for 1 <i < n. Hence there exists a mutually equilibrium
probability measure associated with h whose marginals are pi1,. .., .

Proof. One can consider Prob([—R, R]") as a closed convex subset of the dual (real)
Banach space Cr([—R, R]")* of Cr([-R, R]"). Let F : Cr([-R, R]")* — (—o00,+0o0] be
the conjugate (or the Legendre transform) of Psym (h : p1, ..., tn), ie.,

F(Y) == sup{(h) = Poym(h : pa, ..., pun) - h € Cr([=R, R]")}
for ¢ € Cr([—R, R]™)*. We then prove that

{F(N) = Isym(,u) if pe PrObu1,--<,un([_Rv R]"™),

: (2.3)
F(y) = +o0 if ¢ € Cr([-R, R|")" \ Proby, ..., ([ R, R]").

The first equality is just the definition of Zgy, (1). The second follows from the following
three claims.

(a) If ¢p(h) < 0 for some h € Cr([-R, R]™) with h > 0, then F(¢)) = +o0. In fact, for
a < 0 we have Poym(ah @ pa, ..., pon) < Poym(0 ¢ pa, ..., pn) = 0 by Proposition (2)
so that

Y(ah) — Pogm(ah : p, ... pn) > ap(h) — +00
as a — —o0.

(b) If (1) # 1, then F(¢) = 4o0. In fact, since Psym(al : pi,..., ps) = afor a € R,

it follows that
Plah) = Pom(od s pa, o pn) = a(¥(1) — 1) — +o0
as o — 400 or —oo accordingly as ¥(1) < 1 or ¥(1) > 1.

(c) Assume that p € Prob([—R,R|") but u & Prob,, . .. ([—R,R]™). Then there
exists an f € Cr([—R, R]) such that pu(f®) > p;(f) for some 1 < i < n, where f®)(x) :=
f(x;) for x = (x1,...,2,) € [-R, R]™. Since

Prymn(af ) . op) = i af(6(N)) = agu(f)
for a € R, it follows that
wlaf V) = Pyu(af @ oo pn) = alp(F9) = wil(f)) — +oo

as o — +00.
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Hence (2.3)) is proved. Since Psym(h : fi1,. .., ftn) is & convex continuous function on
Cr([—R, R]™) by Proposition the duality theorem for conjugate functions implies
that

Psym(h ML, 7,U'n) = Sup{¢(h) - F(¢) : ¢ € CR([_Rv R]n)*}
= sup{,u(h) - Isym(/j“) pE PrObMLA..,un([_Ra R]n)}
Since Proby, .. .. ([—R,R]|") is weakly® compact and Zsm(p) is weakly® lower semi-

continuous on Prob,, . .. ([—R,R]"), the above latter supremum is attained by some
K € PrObﬂlv-":Nn([_R’ R]”) u

PROPOSITION 2.6. The function Psym(h: 1, ..., ) is jointly continuous on Cr([—R, R]™)
x (Prob([—R, R]))™ with respect to the norm topology on Cr([—R,R|") and the weak*
topology on Prob([—R, R)).

Proof. Let h,h' € Cr([—R, R]") and p;, p; € Prob([-R, R]), 1 < i < n. For any € > 0
choose a real polynomial p of n variables x1,...,x, such that ||[p — h|| < e. We have
| Poym(ht 1,y fin) — Pogm(h" 0 g,y )|
< Peym(h s pias oo pin) = Paym (2 pas -+ )|
+ |Psym(p : Nla---aﬂn) *Psym(p : ﬂlla"'v.u/n”
+ | Poym(p: i i) = Pagm (B2 i, o) |
< b =pll+llp = P'll + [PymP : 11, -, ptn) = Poyma (P2 145+ 1)
<26+ |h = W[+ [Py (p : pas s pin) = Poym(p s piy, - p17,)|

by Proposition [2.3](3). Recall that the weak* topology on Prob([—R, R]) is metrizable
with the metric p(v,v) := > po | (2R)~*|v(aF) — v/(2*)|, where v(a*) := [2¥dv(z). It
suffices to show that there exists a § > 0 such that if p(u;, ;) < d for 1 <i <n, then
|Psym(P Sy ) —Psym(p:pll,...,u;)| <e.
One can choose a d; > 0 such that, for every N € N, if x;,x} € [-R, R]Y and ||x; —x}||; <
61 for 1 <7 < n, then -
|I€N(p(0’1 (Xl)’ s 7UH(XTL))) - HN(QD(Ul(X,l)v s 7071(X;z)))| <e
for all (o1,...,0,) € S%. Thanks to [0, Lemma 4.3] one can choose an m € N and a
82 > 0 such that, for every N € N, if x,x’ € [-R, R]Y and |kn(xF) — kn(x'F)] < 2
for all k = 1,...,m, then |x — x'[|; < d;. Then choose a &3 > 0 such that if v,/ €
Prob([—R, R]) and p(v,v') < d3, then |v(z¥) — v/ (2F)| < §3/2 for all k = 1,...,m. Now
assume that p;, pu; € Prob([—R, R]) and p(pi,p;) < 63 for 1 < i < n. Let E(N) =
(&1(N),...,&n(N)) and E'(N) = (&(N),...,&,(N)) be approximating sequences for
(s -5 ptn) and (p}, ..., ul), respectively, with &(N),&/(N) € [-R, R]Y. There exists
an Ny € N such that if N > Ny then for 1 < i < n we have -
[n (&(N)*) = o (E1(N)P)]

< on (E(N)F) = pi(@®)] 4 [pi(@®) — pi ()] + i (@) — K (E(N))] < 8

for all k=1,...,m so that ||&(N) — & (N)|l1 < d1. Hence if N > Ny then we have

En (p(1(§1(N)); -+, o (& (N)))) — En (P(1(§1(N)), - -, on(En (V)] < €
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for all (01, ...,0,)€S%. This implies that | Psym (P : 41, - - - fin) —Peym (D ph, - - -, p)| <e,
as required. m

COROLLARY 2.7. Zgym (1) is weakly™ lower semicontinuous on Prob([—R, R]™).

Proof. Let p and u®), k € N, be in Prob([—R, R]") such that u*) — u weakly*. Let y;
and ul(-k), 1 < i < n, be the marginals of 1 and p®), respectively. Since ,ugk) — u; weakly™*

as k — oo for 1 <7 < n, Proposition implies that for every h € Cr([—R, R]™)
. k
p(h) = Poy(h s puay i) = lim {u® (h) = P, )}
< lim inf Zyyn (1 *)

so that Zeym (1) < liminfg_, o0 Isym(,u(k)), as required. m

3. Relations of Py, (h) with P(h) and of Zgyn, () with H(u). First let us recall the
Sanov large deviation in the form suitable for our purpose. Let hg € Cr([—R, R]) and pg
be the Gibbs probability measure associated with hg, i.e.,
dpuo(z) == L M@ dy with  Zp, ::/ eho@) g,
Zhy [~ R,R]
Consider the infinite product probability space ([—R, R]>, u5>°) and i.i.d. (independent
and identically distributed) random variables 1, 23, ... consisting of coordinate variables
of [-R, R]*°. The Sanov theorem (see [3, 6.2.10]) says that the empirical measure (random
probability measure)
5z1 + .o+ 5IN
N
satisfies the large deviation principle in the scale 1/N with the good rate function
S(wl| mo) for p € Prob([—R, R]), where S(u | po) denotes the relative entropy (or the
Kullback-Leibler divergence) of p with respect to po. That is,

1 o 4t 0, '

lim sup — log p§™ QGF < —inf{S(u|| uo) : p € F},
1

l}w&fﬁbgu?]\] (W\] € G) > —inf{S(u| po) : 4 € G}

for every closed subset F' and every open subset G of Prob([—R, R]) in the weak* topology.
As remarked in [4, p.211], it then follows (based on the Borel-Cantelli lemma) that the
empirical measure (0, +- - -+d,, ) /N converges to g in the weak™ topology almost surely.
In the next lemma we state some consequences of the above large deviation, which will
play a crucial role in our later discussions.

LEMMA 3.1. Let hy and po be as above. Then:
(a) For everym € N and § > 0,
i i N (Ar(po; Nym, 6)) = 1.

(b) If g1 € Prob([—R, R]) and p1 # o, then there exist an m € N and a 6 > 0 such
that

1
limsup — log 1™ (Ag(pr; Nym, ) < 0.

N—o0
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Proof. (a) For each m € N and ¢ > 0 set
Glsi0im.,6) i= {1 € Prob([~R, B]) : |u(e*) — po(a*)| < 6, 1 < k <m},

which is a weak* neighborhood of po. Note that x = (x1,...,2x5) € Ag(uo; N,m,0) is
equivalent to (0z, + -+ 055 )/N € G(u0;m, ). Since (84, + -+ dzx)/N — po weakly*
in the sense of almost sure (with respect to u$>) as remarked above, we have

5901 4+ 4+ 5931\7
15" (Ar(po; Nym, 8)) = g™ (

SN ¢ Ggim, 6)) S

as N — oo.
(b) Let p1 € Prob([—R, R]) with p; # po. One can find an m € N and a § > 0 so
that the weak™ closed subset

F(aim, 8) := {u € Prob([—R, R)) : [u(t*) — ()] <6, 1< k <m}
does not contain pg. The large deviation principle implies that

1
lim sup N log SN (Agr(p1; N,m, 6))

N—oo
(W c F(m;m’(;))

because S( || o) is weakly* lower semicontinuous and so attains the minimum (> 0) on
a weakly* compact subset F(u1;m,9). m

1
< limsup N log ugg’N

N—o0

The next theorem gives an exact relation between Pyym(h) and P(h).
THEOREM 3.2. For every h € Cr([—R, R]") and every ui, ..., i, € Prob([—R, R]),

P(h) > Pam(h: i,y ) + > H(pa). (3.1)

i=1

Moreover the following conditions are equivalent:

(Z) P(h) = Psym(h : M17~-~7Un) +ZZL:1 H(Ui);

(it) [, - .-, pn are the marginals of the Gibbs measure associated with h;
(iii) for each i = 1,...,n, p; is the Gibbs measure associated with h; € Cgr([—R, R])
defined by

h,(l‘) = log/[ A eh(wlv~-7$i—171‘7$i+17~--,$n) day - dmifldxzﬁrl - dz,

for z € [-R, R].
Proof. Consider the Gibbs probability measure p, 1= 2, Leh(®) dx associated with k so

that P(h) =log Zp. Let N,m € N and § > 0. Then it is straightforward to see that

Zy ™ (H AR(NiQNvm,(SD = /1_[
i=1

where []}_; Ag(pi; N,m, ) in the left-hand side is regarded as a subset of (R™)™ by the
Corrcspondence (Xl, . 7Xn) <~ ((1?,’1)?:1, (1:1'2)?:17 ey (l‘zN):L:l) for X; = (1‘1‘1, . ,$Z‘N).

n
exp(NHN(h(xl, e 7xn))) H dx;,
1 Ar(pisN,m,0) i=1
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Hence we have

ZN N (ﬁ Ar(pus; Nym, ) )
=1

1
~ov
T, (Ar(usN.m.o)nRY) (V)"

X Z exp(Nen(h(o1(x1), ..., 00(xn)))) dei. (3.2)

01,..,0nESN

Let Z2(N) = (£&1(N), ..., &€ (N)) be an approximating sequence for (i1, ..., ty,). For any
€ > 0 there exists a real polynomial p of variables z1,...,z, such that ||p — h| < e.
Then there exist an m € N, a § > 0 and an Ny € N such that, for every N > N, if
x; € Ar(pi; N,m,6) NRY for 1 <4 < n, then we have

[en (p(o1(X1); - - 0n(%n)) = KN (P(01(EL(N)), -, on(En(N)))] <€

so that

lkn (h(o1(x1), s on(xn)) = £n (R(01(E1(N)), -, on(6n(N))))] < 3¢
for all 01,...,0, € Sy. Hence by we obtain

n
Zy = 7 uN (H AR(M:‘;N,W,CS))
=1

> W X (Vv (G ()06 (V)

O1,..,0nESN

x [T An(Ar(ps; N,m, 8)) (3.3)

i=1

and

%?N(H r(ps; N,m, 5))

éeSNEW Y. ep(Nan(h(o1(&(N), .., 0n(éa(N)))))

01,..,0n €SN

x [[Aw (Ar(ps; N m, 6)). (3.4)

i=1

It follows from (3.3]) that

1
P(h) = N log Z}Y

> et plor| 3 en(Ven (@), o6 (V)

"1
+y ~ 108 AN (AR(ui; N, m, 5)).
=1
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This yields

" 1
P(h) > =3¢+ Psym(h CH1y 7/1'n) + Z]\/lgnoo N IOgAN(AR(Nz,Namvé))
=1

1=

thanks to the existence of the limits in the last term. Letting m — oo and 6 \, 0 gives

P(h) > =32+ Paym(h: s, pin) + Y H(pwa),
=1

which implies inequality (3.1) since € > 0 is arbitrary.
Next let us prove the equivalence of conditions (i)—(iii). For 1 <4 < n let p,; be the
1th marginal of pj. Since

1
dﬂh,i(x) - (/ M@ i1, 2T ) dwy - dwi_1dwisy - d$n> dx
[—R,R]"~1

— v ehi(@) dz, (3.5)

we notice that uy, ; is the Gibbs measure associated with h; for 1 < i < n. Hence (ii)<(iii)
follows. To prove (ii) = (i), assume that i; = jup,; for alli = 1,...,n. Then Lemma/[3.1](a)
gives

]\}EHOOMEN({(Xl, covXp) € ([FR.BRIM)™ i x; € Ag(pis Nom, 0)})
= lim uPN(Ap(wi; Nym,6)) = 1.

Therefore,

lim u%N (H Ar(pi; Nym, 5))

N—o0 .
=1

n
= J\}ijrlmugN(Q{(xl, ceyXp) 1 X € Ag(ui; Nym, 5)}) =1.
Hence it follows from ((3.4)) that

n

P(h) < 3+ Paym(h i1, pin) + > H(p),
i=1
which implies equality in (i).
Conversely, assume (i). Since (3.3 implies that

, 1 -
P(h) + lim sup N log us? ™Y (21:[1 Agr(pi; N, m, 5))

N—o0

> _35+Psym(h:Mla“-aun)_’_zH(ui)v

i=1

we have
n

: 1 QN .
h]rvnj;lopﬁloguh (1:[1 AR(ui,N,mﬁ)) > —3e.
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Here we can take m arbitrarily large and 6 > 0 arbitrarily small for any given ¢ > 0.
['herefore,
1 n
; QN . _
h]{[nsup log 11, (”1 AR(,uZ,N,m,é)> =0

for all m € N and all § > 0. Since

i=1
we have

1

lim sup — log 5 Y (Ag(ps; N,m, 6)) = 0
N—oo N ’

forallm € N, § > 0 and ¢ = 1,...,n. Lemma (b) implies that p; = pp,; for all

i=1,...,n, so (ii) holds. m

REMARK 3.3. Let E(N) = (&(N),...,&q(IN)) be an approximating sequence for the
n-tuple (p1,...,pn). Let hy,...,h, € Cr([-R,R]) and consider h; as an element of
Cr([—R, R]™) depending on the ith variable z;, 1 <i < mn, so that (hy + -+ + hy)(x) =
hi(x1) + -+ hp(zy) for x = (21,...,2,). Since

T X e (e B (@) (6N))

01,..,0nESN

B (Nl')n Z exp(Nen (M(e1(61(N)), - .., 0n(6n(N)))))

O1,..,0,ESN

X H exp(—N/@N(hi(fi(N))))

i=1
and limN_,OO K,N(hz(fz(N))) = /Li(hi), it follows that

n

Pam(h— (1 + -+ hp) tpa, oo pn) + Y P(hy)
=1

= Psym(h S >Nn) + Z(f,ul(hz) + P(h’l))
=1

Hence we notice that

Psym(h:M17---aMn)+ZH(/J/i)

i=1

— inf {Psym(h— (hy e )t s in) +ZP(hZ—)},
i=1

1s:005tn

where hy + -+ + h, is given as above for hy,...,h, € Cr([—R, R]). In particular, when
w; is the Gibbs measure associated with h; for 1 < i < n, we have

Poyn(h s i,y pin) + Y H(pts) = Pogm(h = (ha 4+ 4 ) i, i) + > P(ha).
i=1 =1
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Hence, if the equivalent conditions (i)—(iii) of Theorem are satisfied, then the equality

n

P(h) = Pom(h — (b1 + -+ hn) s pia, - pin) + 3 P(hi)

i=1

holds as well for hq,...,h, given in (iii).
The next lemma is concerned with general relation between Zgyy, (1) and Igym(p).
LEMMA 3.4. Zgm(p) < Isym(p) for every p € Prob([—R, R]™).

Proof. Let u € Prob([—-R,R]"™) and p1,...,u, be the marginals of p, and choose an
approximating sequence Z(N) = (£&1(N), ..., & (N)) for (u1,. .., pn). It suffices to prove
that

Tsym (1) > p1(p) — Poym(p : p115- -+ 5 fin)

for all real polynomials p of variables z1,...,z,. For any € > 0 there exist an m € N and
a 0 > 0 such that, for every N € N, if (01,...,05) € Agym(pt : E(N); N,m, §) then

kN (p(o1(EL(N)); - - on(€n(N)))) — ulp)| <€

so that
eN(M(p)_E) < exp(NKaN(p(m(&(N)), cee 7Jn(§n(N)))>)
Therefore,
N (up)—2) (]\71!)” # Ay (1 - E(N); N, m, )
< > exp(Nin (P01 (E1(N)), .. ., o (Ea(N)))))
(01500 EAgym (E(N);N,m,6)
S X eV EN)

—~

O1y.. 0 ESN
which implies that
1(p) — & = Isym(p) < Poym(p < pa, - -+, fin)-
This gives the desired inequality since € > 0 is arbitrary. m
The next theorem gives an exact relation between Zgym (1) and H (p).

THEOREM 3.5. For every € Prob([—R, R]"™) with marginals p1,. .., u, € Prob([—R, R]),
H(M) = _Isym(,u) + Z H(,U/z)
i=1

Moreover, if H(u;) > —oo for alli=1,...,n, then

Zoym (1) = Tsym (1) = S(pty p11 ® -+ @ i),

and Zgym (1) = 0 if and only if ft = 1 ® - - - @ Wy, i.e., the coordinate variables x1, ..., Ty
are independent with respect to .
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Proof. By (3.1 and Definition for every h € Cr([—R, R|") we have

—p(h) + P(h) = —p(h) + Psym(h : pa, - pn) + ZH(M)

i=1
Toym (1) + ZH (1i)- (3.6)
Hence by (1.1]), Lemma and Theorem [1.2| we have

H(p) > —Toym(p +ZH pi) > — L) + > H (i) = H(p)

i=1
so that the first assertion is proved. The second assertion immediately follows from the
first and [5, Corollary 1.7]. m

PROPOSITION 3.6. Let h € Cr([—R, R]|") and p € Prob([—R, R|™). Let u1, ..., p, be the
marginals of p and hy, ..., hy, be as given in (iii) of Theorem . Then the following are
equivalent:

(i) w is the Gibbs measure associated with h;
(i) p is mutually equilibrium associated with h and p; is the Gibbs measure associated
with h; for eachi=1,...,n

Proof. (i) = (ii). Assume that p is the Gibbs measure associated with h. By (3.6) and
Theorem

H(p) = —p(h) + P(h) > —pu(h) + Payma(h s pn, oo i) + > H(pss)

i=1
sym +ZH ,Ufz - )

Moreover, since p; is the ith margmal of i = pup,, it follows as in the proof of Theorem [3.2]
(see (3.5))) that u,; is the Gibbs measure associated with h; for 1 < i < n. In particular,
H(p;) > —oo foralli=1,...,n. Hence

—Isym(,u) = _M(h) + Psym(h Sy 7Mn)7

that is, p is mutually equilibrium associated with h.
(ii) = (i). Assume (ii). By Theorems [3.5and 3.2

H(p) = —Zsym( +ZHN1 = (h) + Psym(h Nla-~wﬂn)+ZH(ﬂi)
=1
Z—#(h)+P(h)

so that (i) follows. m

4. The discrete case. In information theory, random variables mostly take values in a
discrete set of alphabets and the basic quantity is the Shannon entropy rather than the
Boltzmann-Gibbs entropy. So the discrete versions of the preceding results in Sections 2
and 3 are of even more importance; they are presented in this section.
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Let X = {t1,...,tq} be a finite set of alphabets and consider the n-fold product X".
The Shannon entropy of a probability measure p € Prob(X) is

S(p) ==Y p(t)log u(t).

tex
For each sequence X = (z1,...,2y5) € XN, the type of x is a probability measure on X
given by
Ny (t )
vk (t) = ]\g ) where Ny(t) :=#{j:z; =t}, teX.

For each p € Prob(X) (resp. i € Prob(X™)) and for each N € N and 6 > 0 we denote by
A(p; N, 8) the set of all sequences x € XN (resp. x € (X™)V) such that |vy(t) — p(t)] < §
for all t € X (resp. t € X™), that is, A(u; N, ) is the set of all d-typical sequences (with
respect to p). The Shannon entropy has the following limiting formula:
. 1

S(pn) = lim, Jim - log #A(u; N, ) (41)

(see [T, 2] and also [5l §2] for a concise exposition).
For N € N let Xév denote the set of all sequences of length NV of the form

X:(tl,...,tl,tg,...,t2,...7td,...,td)

so that Xév is regarded as the set of all types from XV. The action of Sy on XN is
similar to that on R given in Definition

DEFINITION 4.1. Let p € Prob(X™) and p; € Prob(X) be the ith marginal of u for
1 < i < n. Choose an approximating sequence =(N) = (&1(N),...,&.(N)), N € N, for
(11, .- -, pn), that is, &(N) € Xév and vg,(n)(t) — pi(t) as N — oo for all t € & and
i=1,...,n. For each N € N and ¢ > 0 we define Ay (1 : E(N); N,0) to be the set of
all (o1,...,0,) € S} such that

(@1(&(N)); - -+ on(€n(N))) € A(p; N, 6).
We define
1
Lyym(p) = = Jim limsup log Y& (Asym (1 : E(N); N, 9))

N—o0
and ITsym(p) by replacing limsup by liminf. See [5, Lemma 2.4] for the independence of
the choice of Z(N) for Isym (1) and Tsym (i) as well as their equivalent definitions.

The two quantities Isym (1) and Isym (@) are equal and connected to S(u) as follows.

THEOREM 4.2 ([B, Theorem 2.5]). For every u € Prob(X™) with marginals pi1,. .., fin, €
Prob(X),

n

Tsym (1) = Tsym(ﬂ) =-=S(p) + Z S(pi)-

i=1

We denote by Cr(X™) the real Banach space of real functions on X™ with the norm
[f1] := max{| f(x)] : x € A"}
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DEFINITION 4.3. Let uq, ..., t, € Prob(X) and choose an approximating sequence Z(N)
= (&(N),...,&n(N)) for (p1,...,u,) as given in Definition For each h € Cr(X™)
and xZ XN 1 < i < n, define h(x1,...,%x,) and Ky (h(X1,...,X,)) in the same manner

as in and ( so that
HN(h’(Xla s ,Xn)) = Z h‘(t)l/(xh.“,xn)(t)

texn

for (x1,...,%,) regarded as a sequence in (X™)N. We define the mutual pressure of h
with respect to (g1, ..., tn) to be

Psym(h PHLy nun)

= limsup — log {

N—o0

Yo ep(Nan(h(e1(&(N)), - onE()))) |-

01,00 €SN

1
(VO™
Moreover, for each p € Prob(X™) with marginals p1, ..., s, € Prob(X) we define

Zsym (1) := sup{p(h) — Poym(h 2 p1, ..., pin) : h € Cr(X™)},

and we say that p is mutually equilibrium associated with h if the equality

Isym(ﬂ) = pu(h) — Psym(h S )
holds.

Then all the results in Section 2 are valid in this discrete setting as well. To see this, it is
convenient to reduce the discrete case to a special case of the continuous case of Section
2 in the following way. Choose d points #; < 5 < --- < t4 in [~R, R] corresponding
to t1,ta,...,tq in X. For each y € Prob(X"™) with marginals pu1,...,u, we have the
corresponding (atomic) probability measure ji € Prob([—R, R]™) given by

= p(x)ds,
xXEX™
and similarly fiq,..., 04, € Prob([-R,R]), 1 < i < n. Then the marginals of ji are
fi1, - .., fin. For each approximating sequence (&1 (N), ..., & (N)) for (u1, ..., t,) we have
the corresponding & (N) € [-R, R]Y, 1 <i < n. Since for all k € N,

KN Zt Ve, (n) ( Ztkuz /xkdﬂi(:ﬂ) as N — oo,

teX tex

it follows that (él (N),... n (N)) is an approximating sequence for (fi1, ..., fi,). For each
h € Cr(X™) choose an h € Cg([—R, R]™) such that h(%X) = h(x) for all x € X™. Then we
notice that Psym(h @ pi1, ..., ttn) in Deﬁnitionis equal to Psym(il i1, .- ., fin) defined in
Definition and that Zgy, (1) in Definition |4.3|is equal to Zgym () defined in Definition
[2:4] Upon these considerations it is rather straightforward to show the discrete versions
of the results in Section 2. For example, for h, h' € Cr(X™) choose h,§ € Cr([-R, R]")
such that |y = h, ||h|| = ||h||, §la» = h— R’ and ||§|| = ||h— &', and define b/ := h— §.
Then h/|x» = b and ||h—h'|| = ||h—}’||. Hence the discrete version of Propos1t10n(3)
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is seen as follows:

|Psym(h S M1, a,un) - Psym(h/ R ¥ R a/-//n)|
= |Psym(h S fin) — Psym(h/ Sy fin)| <R - hl” = [|h — hl”
Also, the discrete version of Proposition [2.5]is seen as follows:

Pagm (R i1,y i) = Pagm(h: i, fin)
= max{\(h) — Zoym(A) : A € Probg, . 4. ([—R, R]™)}
= max{u(h) — Zoym(p) : pp € Proby, ., (X™)}
since Proby, 4, ([-R,R|") = {fi: p € Prob,, .. (X"}
Now let us show the discrete version of Theorem Although the proof is essentially

the same as that of Theorem some non-trivial modifications are necessary due to the
difference between the Shannon and Boltzmann-Gibbs entropies.

THEOREM 4.4. For every h € Cr(X™) and every p1, ..., u, € Prob(X),

n

P(h) = Paym(h in,oopn) + 3 S(2), (4.2)

i=1

and the following conditions are equivalent:

(Z) P(h) = Psyrn(h CHL - 7,Un) + Z:'L:1 S(ﬂi);

(i1) 11, ...,y are the marginals of the Gibbs measure uy associated with h given by
1
pn(x) = — "™ xe X" with Z), = Z el (4.3)
Zh xXEX™

(iii) for each i =1,...,n, u; is the Gibbs measure associated with h; € Cr(X) defined
by
hi(x) = log Z @1 i n @ TitnTn) - for g e X

Ty i1, T 1oy T EX

Proof. Let ju, be the Gibbs measure given in (£3), and let (§(N),...,&.(N)) be an
approximating sequence for (1, ..., u,). For any € > 0 one can choose a 6 > 0 such
that for every i = 1,...,n and every p € Prob(X), if |p(¢t) — pi(t)| < d for all t € X,
then |S(p) — S(u;)| < €/n. This means that for each N € N and ¢ = 1,...,n, one has
|S(vx) — S(ui)| < e/n whenever x € A(p;; N, ). Furthermore, when § > 0 is small
enough, one can find an Ny € N such that, for every N > Ny, if x; € A(u;; N,8) N xY
for 1 <i < n, then B

iy (h(o1(x1), -, on(%n)) = kN (R(01(EL(N)), - on(€n(N))) <& (44)

for all (o1,...,0,) € SN.

For each sequence (N1, ..., Ny) of integers N; >0 with 27:1 Ny=N,let S(Ny,...,Ny)
denote the subgroups of Sy consisting of products of permutations of {1,..., N1}, {Ny +
1,...,Nt+No}, ..., {N1+---+Ng_1+1,...,N}, and let Sn/S(Ny,...,Ny) be the set
of left cosets of S(Ny,...,Ny). For each x € XY we write Sy for S(Nx(t1), ..., Nx(ta))-
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For N € N it then follows that
2w (TT A N, ) )
i=1

= > exp(Nen (h(x1, ..., %))
(xlv“wxn)e]._.[?:l A(M’HN#;)

- >

(%130 ETTIL, (A(uis NN

Z exp(N:‘iN(h(Ul(Xl)a-~~70n(xn))))v

([o1)s- s [on ) E(SN /Ssey oSN / Sxe)
(4.5)
where [T'_, A(u;; N, 6) in the left-hand side is regarded as a subset of (X™)" in the same

manner as in the beginning of the proof of Theorem and [o;] denotes the coset of S,
containing ¢;. Moreover we have

Z exp(N/{N(h(U1(X1),-«-,Un(Xn))))

01,..,0n €SN

= > (TLTL Vs (00!) exp (N (hior(xa). .. on(xa)).

([o1],-s[on])E(SN/Sxy s sSN /Sy, ) i=11=1
(4.6)

For each i = 1,...,n and for any x € XV, the Stirling formula implies that

d
1
NZ log Ny () '——logN'

1 & 1
- Z(Nxm)logfvx(m - Nult) + 3 log Na(u) + O(1)

(NlogN N + flogN—I-O( ))

Z\H

4 Ni(
Z N logN (t;1) —log N +o(1)
1=1

=—S(vx) +0o(l) as N — oo,

where o(1) as N — oo is uniform for x € X, Thanks to the above choice of § > 0, for
every (xi,...,%n) € [[i; A(us; N, 6) we have

exp [V (= 3 ) — =+ o(1))

H?=1 Hdzl Nx
= N

where o(1) is uniform for (x1,...,%,) € [T A(ui; N, 9).

(t:) < exp [N(— i S(pi) +e+ 0(1))} as N — oo, (47

i=1
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Combining (4.5)—(4.7)) yields

Zy ui™ (ﬁ A(ps; N, 5))
1=1

> Z (Nll n Z eXP(NKN(h(Ul(Xl)v"'70”(X”))))

(k1) €T, (A (uis NN XY ) 11T €SN

X exp [N(Zj: S(ui) —e+ 0(1))}

and the reverse inequality with +& in place of —e in the last term. From this together
with (4.4]) we obtain

2= 20 ([ s )
=1

e L SN (N (01 (6 (V) -, 0 (a(N))))

|
(N)" 01...,0,ESN

XH# (1i; N, 6) 0X< exp{ (ZSuz+o )} (4.8)

and

n

2" ([1 A 3.)
<e 2Ne __ &~ 1 Z eXp(NﬁN(h(Ul(gl(N))a~"vo-"(f"(N)))))

01...,0n,E€ESN
n

X H# (11 N, 6) N XYY - exp {N(Z S(ua) + 0(1))] (4.9)
i=1
for all N > Ny. Furthermore, since
A(pis N, 0) = {o(x) XGA/LZ,N5)QX<,[}€SN/SX}
so that

|
BApND =

xEA(uiiN.5)NXY T, Nac(t)!

we have as inequalities in (4.7))
#(A(W;N, o) N Xév) - exp [N(S(,ui) - % + 0(1))]

< #A(piy N, 6) < #(A(ui; N,6) N XY - exp [N(S(ui) + % + 0(1))] as N — oo.
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This and (4.1) imply that
e .. . .1 N
- < l}ﬂlilofﬁ log # (A (i3 N, 6) N X2 )

< lim sup % log #(A(ps; N,6) N X2) < (4.10)

<
N—o00 n

It follows from (4.8]) that
1

P(h) =+

log ZY

> _25+]1710g[ Z exp(Nen (h(o1(E1(N)), ..., 00 (& (N)))))

01,---,0n €SN

(N1)"

1
+Zﬁlog#(A(m;N,5)ﬂX§)+ZS(M¢)+0(1) as N — oo,
1=1

=1

which implies that
P(h) > =32+ Paym(h: i,y pin) + Y S(pss)
i=1

thanks to . Hence inequality follows since € > 0 is arbitrary.

To prove the equivalence of (i)—(iii), let up ; be the ith marginal of pp,. Then it follows
that pp ;(z) = Zh_lehi(m) and so p, ; is the Gibbs measure associated with h; for 1 <7 < n.
Hence (ii)«(iii) follows. Assume (ii), i.e., that p; = pp,; for all ¢ = 1,...,n. Since we
have limy oo 2 (A(ui; N, 8)) = 1 based on the Sanov theorem as in Lemma (a), it
follows that

. QN . _
as in the proof of (ii)=-(i) of Theorem Combining this with (4.9) and (4.10]) yields
P(h) <3+ Pagm(h: pirs- o pim) + 3 S(10),
i=1
which implies equality in (i). Conversely, assume (i). Then (4.8]) and (4.10) imply that
1 n
: QN . —
hj{ln—?llop N log 1y, (I[l A(pi; N, (5)) > —3e.
The same reasoning as in the last part of the proof of Theorem [3.2] gives

1

limsup — log 157 (A(ui; N, 8)) = 0
N—oc0 N ’

for all § > 0 and i = 1,...,n. Since we have a result similar to Lemma (b) in the

present discrete situation, it follows that p; = pp; for alli = 1,...,n, and so (ii) holds. m

The next theorem and proposition are the discrete versions of Theorem [3.5]and Propo-
sition[3.6] Since their proofs based on Theorems [f.2] and [.4] are similar to those in Section
3, we omit the details. Here note only that Zgym (1) < Isym(pt) for every p € Prob(X™)
can be shown similarly to the proof of Lemma[3.4] or by the same reasoning as given after
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Definition and that the Legendre transform expression as in
S(p) = inf{—u(h) + P(h) : h € Cr(X"™)}
is valid for every u € Prob(X™).
THEOREM 4.5. For every p € Prob(X™) with marginals py, ..., p, € Prob(X),

Loym (1) = Lsym () = =S(p) + Z S (pi)-

PROPOSITION 4.6. Let h € Cr(X™) and p € Prob(X™). Let p1, ..., i, be the marginals
of w and hy, ..., hy be as given in (iii) of Theorem , Then the following are equivalent:

(i) w is Gibbs measure associated with h;
(i1) w is mutually equilibrium associated with h and p; is the Gibbs measure associated
with h; for eachi=1,...,n.
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