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Abstract. Two important examples of q-deformed commutativity relations are: aa∗−qa∗a = 1,
studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koorn-
winder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta
(aa∗ = qa∗a). These two frameworks give rise to different convolutions. In particular, in the
second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present
paper we consider another convolution of measures based on the so-called (p, q)-commutativity,
a generalization of ab = qba. We investigate and compare properties of both convolutions (asso-
ciativity, commutativity and positivity) and corresponding Fourier transforms.

1. Introduction

1.1. Convolutions. In the classical probability, the convolution of measures can be
desribed as an associative and commutative operation (on measures), "associated" to the
sum of independent random variables. The ”association” goes by the distribution – the
convolution is precisely the distribution of the sum of the random variables.

The situation is more complicated in the non-commutative case, but the definitions
of convolutions mimic the classical one. Let (A, φ) be a (non-commutative) probability
space, that is a unital ∗-algebra with a state, and let a, b ∈ A be two random variables
with distributions µa, µb, respectively. If the distribution µa+b of the random variable a+b
depends only on µa and µb, then it is called an (additive) convolution of measures µa
and µb.

Note that the emphasized assumption means that we have a law to calculate all the
(mixed) moments of µa+b. In the classical case, this is guaranteed by the independence

2000 Mathematics Subject Classification: Primary 28D05, 46L53; Secondary 05A30, 42A85.
Key words and phrases: convolution, positive definiteness, q-normal elements, non-commutative
probability, deformations.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc89-0-11 [189] c© Instytut Matematyczny PAN, 2010



190 A. KULA

of random variables. In the more general context, we also have several independence
relations, each of which defines a specific convolution. The most profound examples of
independence relations and related convolution are:

1. classical (tensor) independence → (classical) convolution ∗,
2. (Voiculescu, 1986) free independence → free convolution �,
3. (Speicher, Woroudi, 1997) boolean independence → boolean convolution ],
4. (Muraki, 1995) monotone independence → monotone convolution �.

1.2. q-commutativity. We are used to the fact that a binary operation is commuta-
tive – the order of the terms involved does not matter. Addition or multiplication of
numbers is commutative. Commutativity holds for observables in classical physics. This
is also the basic assumption in the classical probability: any two random variables a, b
in a probability space satisfy the relation ab = ba. If commutativity fails – as it hap-
pens for matrices, operators or for random variables in non-commutative probability
spaces – we still want to know how much the operation fails to be commutative. The
notions of commutator [a, b] = ab − ba and anti-commutator {a, b} = ab + ba appear
in this context. They lead to the famous canonical commutation and anti-commutation
relations

ab− ba = 1 (CCR), ab+ ba = 1 (CAR).

Now, the idea of q-deformation enters the game. What happens if we add the (real
or complex) parameter q ”somewhere” to one of the commutation relations ab = ba or
ab− ba = 1?

It was probably Gauss who was the first to observe that if a and b are two elements
of an asociative algebra which satisfy the relation

ab = qba (q1)

(we shall say that they q-commute), then

(a+ b)n =
n∑
k=0

[
n

k

]
q

bn−kak, where n ∈ N,
[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
.

(Here [n]q! denotes the nth q-factorial, see subsection 1.3). This formula is the q-analogue
of the classical Newton’s binomial formula, which we get for q = 1, and the q-factorial
[n]q! appearing above is a basic notion in the so-called q-calculus (for a nice introduction
to q-calulus see [11]). This observation was the starting point to deeper studies of the
relation (q1). (Note that if ab = qba and q 6= 1, then a and b can no longer be realized
by numbers but rather by operators. On the other hand, if q = 1 we recover the classical
commutativity.)

The q-commutativity was studied in particular by T. H. Koornwinder [11] and S.
Majid [16]. The first one focused on q-special functions involving q-commuting variables,
whereas the second developed a more geometrical approach: the idea of braided algebras.
Such q-commuting variables appear also in quantum groups, describing the relations
between generators (for more on quantum groups see [9], [10] or [17]).

A special case of q-commutativity – the notion of q-normality of operators – was
defined by S. Ôta [20] (studied also with F. H. Szafraniec [21]). An operator A in a
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Hilbert space is called q-normal if it q-commutes with its adjoint (i.e. AA∗ = qA∗A).
Such operators are know to be unbounded (unless q = 1).

The idea of the q-deformation of commutation relations ab − ba = 1 came with the
generalization of the Fock space – the mathematical description of quantum systems with
unlimited number of particles. Depending on the construction, it can describe bosons’ or
fermions’ behaviour, and two important operators – creation and anihilation of a particle
– obey respectively CCR or CAR relations. In 1991, M. Bożejko and R. Speicher [4]
introduced (in the context of generalized Brownian motion) the q-Fock space Fq(H) over
a Hilbert space H, where the creation a∗(f) and anihilation a(f) operators satisfy the
q-deformation of the canonical commutation relations:

a∗(f)a(g)− qa(g)a∗(f) = 〈f, g〉I, f, g ∈ H. (q2)

For q = 1 the q-Fock space corresponds to bosons’ Fock space, CCR rule and classical
probability, q = −1 gives fermions’ Fock space and CAR, whereas q = 0 leads to the full
Fock space and free probability.

Note that, around the same time as Bożejko and Speicher, the q-relations were also
proposed by O. W. Greenberg [6] as an example for particles with “infinite statistics”.
Algebraic aspects of these commutation relations have been studied in [7]. In a particular
case, when f = g, ‖f‖ = 1 and a := a∗(f), the relation takes the form

aa∗ − qa∗a = 1,

which dates back to the paper by M. Arik and D. D. Coon [2], and which often appears
in the literature under the name of the q-(harmonic) oscillator (cf. [15], [22]).

Simple examples of elements satisfying q-normality or q-oscillator relations can be
found among weighted shifts.

Example (Weighted shifts). Let us consider a Hilbert space `2(I), where I = N or I = Z.
For a given sequence (wn)n let us define the operator

S : D(S) 3 (an)n 7→ (wnan+1)n ∈ `2(I),

with
D(S) = {(an)n∈I ∈ `2(I) :

∑
n∈I
|wnan| < +∞} ⊂ `2(I).

We say that S is a unilateral (if I = N) or bilateral (if I = Z) weighted shift with weights
(wn)n.

If wn = w0q
−n

2 , n ∈ Z, then the bilateral shift S is q-normal (i.e. SS∗ = qS∗S). If
wn =

√
[n+ 1]q, n ∈ N, then the unilateral shift S satisfies the relation SS∗− qS∗S = I.

The following is a realization of the q-commutation relations.

Example (q-Fock space [4]). The q-Fock space Fq(H) is a full Fock space F(H) =
CΩ⊕

⊕∞
n=1H⊗n equipped with (and completed with respect to) the inner product

〈g1⊗ . . .⊗ gm, h1⊗ . . .⊗hn〉q = δm,n

n∑
k=1

qk−1〈g1, hk〉〈g2⊗ . . .⊗ gm, h1⊗ . . . h̃k . . .⊗hn〉q.
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We use the notation h1 ⊗ . . . h̃k . . .⊗ hn to denote the tensor product h1 ⊗ . . .⊗ hk−1 ⊗
hk+1 ⊗ . . .⊗ hn. For f ∈ H, the creation and anihilation operators are defined as follows

a∗(f)h1 ⊗ . . .⊗ hn = f ⊗ h1 ⊗ . . .⊗ hn,

a(f)Ω = 0, a(f)h1 ⊗ . . .⊗ hn =
n∑
k=1

qk−1〈f, hk〉h1 ⊗ . . . h̃k . . .⊗ hn.

Then for any q ∈ (−1, 1) both operators can be extended to bounded operators on Fq(H),
they are adjoints of each other and they satisfy the q-deformed commutation relations

a(f)a∗(g)− qa∗(g)a(f) = 〈f, g〉id.

The realization of the q-commutativity can be obtained in braided algebra setting.

Example (Braided line [11]). The braided line A := Cq[x] with q ∈ (0, 1) is the algebra
of polynomials in one variable x with a braided bialgebra structure. The braiding Ψ :
A⊗A → A⊗A is a bijective linear mapping, defined on the basis by:

Ψ(xk ⊗ xl) = qklxl ⊗ xk, k, l ∈ N.

Then A⊗A has an algebra structure with multiplication

mΨ = (mA ⊗mA) ◦ (id⊗Ψ⊗ id).

The comultiplication ∆ : A → A⊗A is defined on the generator by the formula

∆(x) = x⊗ 1 + 1⊗ x

and the counit ε : A → C is given by ε(xn) = δn,0, both being algebra homomorphisms
(for further details, see [11] and references given there).

Then, A⊗A can be considered as the algebra with generators a = 1⊗x and b = x⊗1,
satisfying the relation ab = qba.

1.3. Notation. Unless otherwise stated, we assume that q > 0 and that sequences
appearing in the paper are indexed by non-negative integers. To avoid ambiguity while
talking about two relations describing q-deformed commutativity, we shall use the name
q-commutativity to refer to the relation (q1) and the name q-commutation relation in
case of the relation (q2). We shall also use the standard notation of q-calculus (see for
example [11]):

• q-integer: [n]q :=
1− qn

1− q
= 1 + q + q2 + . . .+ qn−1,

• q-factorial(s): [n]q! := [n− 1]q! · [n]q, (q, q)n :=
n∏
k=1

(1− qk),

• q-exponents: eq(z) :=
∞∑
n=0

zn

(q, q)n
, Eq(z) :=

∞∑
n=0

qn(n−1)/2zn

(q, q)n
,

• q-integral (Jackson integral):
∫ ∞
−∞

f(t)dq(t) := (1− q)
∞∑

k=−∞

∑
ε=±1

qkf(εqkx).
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2. Convolutions for q-commutation relations. There were several attempts to de-
fine a q-deformed convolution, which would correspond to the q-CCR scheme and inter-
polate between the classical convolution (for q = 1) and its free analogue (q = 0).

In 1995, A. Nica [18] defined the Rq-transform, q ∈ [0, 1], which is a bijection between
the space of moment sequences and the space of formal power series vanishing at 0. It
associates to a moment sequence (µn)n the series

∑∞
n=0 αnz

n, coefficients of which (called
q-cumulants) can be calculated via the generalized moment-cumulant formula

µn =
∑
π∈Pn

qc0(π)
k∏
j=1

[|Bj | − 1]q!α|Bj |. (1)

Here Pn stands for the set of all partitions of {1, . . . , n}, B1, . . . , Bk are the blocks
of partition π, |Bj | is the cardinality of the j-th block. The number c0(π) is the left-
reduced number of crossings of π. By a crossing we mean a 4-tuple (m1,m2,m3,m4)
such that 1 ≤ m1 < m2 < m3 < m4 ≤ n and for which there exists i, j such that
m1,m3 ∈ Bi and m2,m4 ∈ Bj . The left-reduced number of crossings is the number of
crossings (m1,m2,m3,m4) in which m1, m2 are minimal in the corresponding blocks.
For example, for the partition π = {{1, 3, 5}, {2, 4, 6}}, this number is three, since the
4-tuples (1, 2, 3, 4), (1, 2, 3, 6) and (1, 2, 5, 6) satisfy the definition.

Nica showed also that the Rq-transform can be described in two other ways, one of
them using the weighted shifts Sq, satisfying the q-CCR.

Now, the q-convolution �q is, by definition (see [18], Definition 4.1), the operation
on the space of moment sequences, which is linearized by the Rq-transform, that is if
µ = (µn)n and ν = (νn)n are two moment sequences, then

µ�q ν = R−1
q (Rq(µ) +Rq(ν)).

The Rq-transform is, on one hand, a q-analogue of the logarithm of a Fourier transform
(up to a linear bijection), and on the other hand, a generalization of the R-transform,
described by Voiculescu [23]. It is a useful tool in investigations of limit distributions and,
in particular, the role of central limit is played by R−1

q (z2), which is a measure associated
to q-continuous Hermite polynomials.

The definition of q-convolution was rather algebraic and it was not clear whether the
resulting object is again a measure. It was 10 years later, in 2005, when F. Oravecz [19]
gave a negative answer to this question. He proved that for 0 < q < 1, the q-convolution
does not preserve positivity, since the Poisson type limit is not a measure. More precisley,
if we consider µN = (1− λ

N )δ0 + λ
N δ1 (where δx is a Dirac measure at x, N ∈ N, λ > 0),

then the Poisson limit is
lim

N→+∞
µN �q . . .�q µN︸ ︷︷ ︸

N-fold

.

Thanks to the Rq-transform and its linearity property, the q-cumulants (coefficients αn)
of µN �q . . .�q µN are easily computed:

α(N)
n := αn(µN �q . . .�q µN ) = N · αn(µN ), n ∈ N.

The q-cumulants of the Poisson limit are the limits α̂n = limN→+∞ α
(N)
n . But, as was
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shown by Oravecz, the sequence (µ̂n)n corresponding to (α̂n)n via moment-cumulant
formula (1) is not positive definite and thus is not a moment sequence.

In 1996, H. van Leeuwen and H. Maassen [14] were the next to look for a good
q-convolution, interpolating between the free (q = 0) and the classical (q = 1) one, and
found an important obstruction. They constructed operators X0 and X1 on the q-Fock
space, that are q-independent, and show that there exists a function γ : R → R such
that X0 and γ(X0) have the same distribution, but the distributions of γ(X0) +X1 and
X0 +X1 are different. This means that the distribution of the sum of two (independent)
random variables is no longer determined by the distributions of the summands. Thus,
they concluded, no q-deformed convolution can exist.

The authors knew already the q-convolution of A. Nica and they noted that it did
not contradict their result. The clue lies in the notion of q-independence. Two random
variables X and Y in q-Fock space are called q-independent if they are of the form
X = a(f) + a(f)∗ and Y = a(g) + a(g)∗ with f ⊥ g (they are q-Gaussians corresponding
to orthogonal vectors). It turned out that the structure on the q-Fock space and the
Nica’s law for convolution give different result when applied to functions on q-Gaussians.

Finally, let us mention the paper by M. Anshelevich [1] in 2001. He defines q-cumulants
in a different way than Nica and a transform LHq linearizing them. The q-cumulants rn
corresponding to the moment sequence (µn)n (or to a measure µ uniquely determined by
the moments) are to be calculated recursively from the formula

µn = rn +
∑

π∈Pn\{1̂}

qrc(π)
∏
B∈π

r|B|,

where 1̂ denotes the one-block partition ((1, 2, . . . , n)) and rc(π) is the number of re-
stricted crossings of the partition π, defined by Ph. Biane [3]. This is the number of
crossings (m1,m2,m3,m4), where m1 follows (in the block) m3 and m2 follows m4. This
number can be described graphically: if the set {1, . . . , n} is represented on the x axis in
the plane and we join by a semicircle (above the x axis) any two points belonging to the
same block such that no other element from the same block is between them, then the
restricted crossing counts the number of intersections of the semicircles.

The difference between the number of restricted crossings rc(π) and the number of
left-reduced crossings c0(π) is that in the first case we restrict ourselves to crossings
with successive elements of blocks, whereas in the second case, we consider only those
4-tuples wherem1 andm2 are the minimal elements in blocks. In both cases, we disregard
some other crossings. For example, in the partition π = {{1, 3, 5}, {2, 4, 6}}, the crossing
(1, 2, 3, 6) counts into c0(π), but not into rc(π) (1 and 2 are minimal, but 6 does not
follow 2), while the crossing (2, 3, 4, 5) is a converse case (3 is not minimal in the block).
This is the reason why rc(π) can (but need not!) differ from c0(π). More precisely, the
number of restricted crossings can be smaller or bigger than, or equal to the number of
left-reduced crossings, as shown in the following examples:

• for π = {{1, 3, 5}, {2, 4, 6}}, rc(π) = 3 = co(π),
• for π = {{1, 3, 6}, {2, 4}, {5, 7}}, rc(π) = 3 > 2 = co(π),
• for π = {{1, 3, 4, 5}, {2, 6}}, rc(π) = 2 < 3 = co(π).



CONVOLUTIONS RELATED TO q-DEFORMED COMMUTATIVITY 195

All this implies that for q 6∈ {0, 1}, the q-cumulants defined by Anshelevich and the ones
by Nica are different.

The Lévy-Khinchin transform LHq acts on a subclass of determinate moment se-
quences (the set of the so-called q-infinitely divisible measures, denoted IDc(q)) in the
following way: for a positive Borel measure τ on R with all moments (τn)n finite and
for λ ∈ R, we define LH−1

q (λ, τ) to be a moment sequence, or equivalently a probability
measure, (uniquely) determined by the cumulants r1 = λ, rn = τn−2, n ≥ 2. Then IDc(q)
is defined as the image of LH−1

q and LHq is the inverse of LH−1
q . The q-convolution of

two moment sequences of q-infinitely divisible measures µ and ν is defined by the rule

LHq(µ ∗q ν) = LHq(µ) + LHq(ν).

Then (IDc(q), ∗q) is an abelian semigroup.

3. q-convolution. The q-deformation of the convolution corresponding to the q-com-
mutativity (ab = qba) was studied in 2001 by G. Carnovale and T. H. Koornwinder in
the paper [5]. They focused on the following definition:

Definition 1. Let us consider 0 < q < 1. Let f be a function on R such that all its
"weighted" moments

mn(f) := q
n(n+1)

2

∫
tnf(t)dq(t)

are finite and let g be a function on some subset of C. Then the q-convolution f ?q g is
defined by

(f ?q g)(x) =
∞∑
n=0

(−1)nmn(f)
[n]q!

(∂nq g)(x)

(for x ∈ C such that the above definition makes sense). Here ∂nq g denotes the nth q-
derivative of a function g, where ∂q is defined as (∂qg)(x) = g(x)−g(qx)

(1−q)x .

Three main motivations for the definition are mentioned in the paper:

1. The 1-convolution coincides with the classical convolution of sequences, so the q-
convolution can be regarded as a q-deformation of the classical convolution.

2. The q-convolution is the operation that transforms into multiplication by the q-
Fourier transform

(Fqf)(y) :=
∫ +∞

−∞
Eq(iqxy)f(x)dqx,

defined by T. H. Koornwinder [11]. This means that

Fq(µ ?q ν)(x) = Fq(µ)(x) · Fq(ν)(x). (2)

3. The q-convolution is a modification of the convolution defined by Kempf and Majid
[8] on the braided covector algebras which is bosonic and invariant under transla-
tion. The q-convolution is adapted to the braided line, where the Jackson integral is
translation invariant, but is not bosonic. Moreover, a slight modification is needed
to ensure associativity.
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The authors showed that if f and g are "good", then the convolution is well-defined,
associative and commutative. "Good function" meant there that we have some analyticity
and moments growth conditions (see [5] for details). Anyway, for "good functions" the
q-Fourier transform can be rewritten as the power series

(Fqf)(y) =
∞∑
k=0

(iy)k

(q; q)k
mk(f)

and what is more, we have a nice formula for the moments of the q-convolution

mn(f ?q g) =
n∑
k=0

[
n

k

]
q

mk(f)mn−k(g). (3)

In both formulas mk(f) denotes the "weighted" moment from Definition 1, but the for-
mula (3) remains unchanged if, instead of "weighted" moments, we take

µk(f) = qk(k−1)/2

∫
tkf(t)dq(t),

which are the kth q-moments of the measure dµ(t) = f(t)dq(t) (see [12] for more on the
notion of q-moments).

Now, the idea is to take (3) as a general definition and study the q-convolution as an
operation on sequences. This was the approach presented in [13].

Definition 2. Let q > 0 and let (µn)n, (νn)n be two sequences. Their q-convolution is
the sequence

(µ ?q ν)n =
n∑
k=0

[
n

k

]
q

µkνn−k, n ∈ N.

What can we say about such an operation? Observe that the 1-convolution coincides
with the classical convolution of the sequences, so it can be called a q-deformation of the
classical convolution.

By a direct calculation one shows that the q-convolution of two sequences is associative
and commutative.

As far as the positivity preserving property is concerned, one can show that if µ and
ν are measures on R with all moments finite and if (µn)n and (νn)n are their moment
or q-moment sequences, then the resulting sequence need neither be a moment sequence,
nor a q-moment sequence. If we restrict to q-moment sequences of measures on [0,+∞),
then the positivity is preserved only if q < 1 (see [13] for details).

Finally, the (formal) power series

(Fqµ)(y) =
∞∑
k=0

(iy)k

(q; q)k
µk

defines the q-Fourier transform which satisfies (2).

4. (p, q)-convolution. Another convolution corresponding to the (generalized) q-com-
mutativity was defined recently in our paper with E. Ricard [13].
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Definition 3. Let p, q > 0 and let (µn)n, (νn)n be two sequences. We shall call the
(p, q)-convolution of this sequences, and denote by {(µ ?p,q ν)n}n, the sequence given by
the formula

(µ ?p,q ν)n =
n∑
k=0

(
q

p

)k(n−k) [
n

k

]2

p

µkνn−k. (4)

The motivation for such a definition comes from the following algebraic interpretation
which we just sketch here (see [13] for further details).

Let us fix two parameters p, q > 0 and let (µn)n, (νn)n be two sequences. We say that
a sequence (µn)n is qPD+ if for all n ∈ N and all scalars α1, . . . , αn ∈ C

n∑
i,j=0

q−ijαiᾱjµi+j ≥ 0 and
n∑

i,j=0

q−ijαiᾱjµi+j+1 ≥ 0.

This is equivalent to saying that the sequence (µn)n is the q-moment sequence of a
measure on the positive real half-line, that is, there exists a measure µ on [0,+∞) such
that

µn = qn(n−1)/2

∫ +∞

0

tndµ(t), n ∈ N,

(see [12] for details).
Consider a unital ∗-algebra A generated by a and b that are q-normal and (p, q)-

commute, that is they satisfy

aa∗ = qa∗a, bb∗ = qb∗b, ab = pba, ab∗ = qb∗a. (5)

Moreover, let Aa and Ab be two unital ∗-subalgebras, generated by the q-normal a and
the q-normal b, respectively, i.e.

Aa = C[a, a∗]/(aa∗ − qa∗a), Ab = C[b, b∗]/(bb∗ − qb∗b).

Given the sequences (µn)n and (νn)n, we define the functionals

µ : Aa → C, µ(ama∗n) := δm,nµm,

ν : Ab → C, ν(ama∗n) := δm,nνm,

Φ : A → C, Φ[aka∗lbmb∗n] := δk,lδm,nµkνm.

Theorem 4.1. If the sequences (µn)n, (νn)n are qPD+, then the functionals µ and ν are
positive (and thus states) on Aa and Ab, respectively, and the mapping Φ is a state on A.

Now, we follow the idea that convolution is related to sums of random variables.
We consider the unital ∗-algebra C genarated by a + b. This is a subalgebra of A and
the generator a + b is q-normal. Thanks to the (p, q)-commutation relations (5), we can
compute the mixed moments of Φ on C. What we get is the following

Φ[(a+ b)m(a∗ + b∗)n] = δm,n

n∑
k=0

(
q

p

)k(n−k) [
n

k

]2

p

µkνn−k.

Moreover, we know that the sequence (Φn,n)n is qPD+, since it comes from the state on
an algebra generated by a q-normal element. We conclude:
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Corollary 4.2. The mapping(
(µn)n, (νn)n

)
7→ (Φn)n, where Φn :=

n∑
k=0

(
q

p

)k(n−k) [
n

k

]2

p

µkνn−k,

is an operation on q-moments of measures on R+.

This operation is exactly the (p, q)-convolution from Definition 3. We want to study
its properties. Note first that this is no longer a deformation of the classical convolution
(the case q = 1 does not lead to the classical convolution).

Thanks to the algebraic interpretation presented above, we get (for free!) the fact that
the (p, q)-convolution preserves measures on R+. Unfortunately, no hope for the stronger
positivity preserving conditions – the (p, q)-convolution of two measures on R need not
be a measure on R (see for example the Dirac measures µ = δ1, ν = δ−1).

A straightforward calculation shows that the (p, q)-convolution is associative and com-
mutative. What is more, we can see from the formula

(µ ?p,q ν)n =
n∑
k=0

[
n

k

]
p

[
n

k

]
p−1

qk(n−k)µkνn−k

that the (p, q)-convolution is symmetric w.r.t. p↔ p−1.
By modifying the definition of the q-Fourier transform, we can define the (formal)

power series

Fp,q(µ)(x) =
∞∑
k=0

q−k(k−1)/2xk

(p, p)k(p−1, p−1)k
µ

(q)
k ,

where µ(q)
k is the k-th q-moment of measure µ. This new transform is quite difficult to

study, but one can show that it satisfies the following property:

Fp,q(µ ?p,q ν)(x) = Fp,q(µ)(x) · Fp,q(ν)(x),

which means that it transforms the convolution of q-moments sequences into multipli-
cation of (formal) power series. So it plays the role of the Fourier transform for the
(p, q)-convolution.

5. Relations between q-convolution and (p, q)-convolution. Although the motiva-
tion and the constructions of both q- and (p, q)-convolutions were different, they have a
similar formula and share some properties. A useful way to compare them is the table
opposite.

In the special case when p = q we have a nice formula joining both convolutions. Recall
that, by the Schur’s Lemma, the pointwise (Schur-Hadamard) product of two moment
sequences is again a moment sequence. The corresponding measure transformation is the
(classical) multiplicative convolution 4.

Let us denote by N the sequence {[n]q!}n which is positive definite or, equivalently, is
a moment sequence (see [13]) and let us adopt the notation {(N4µ)n}n for the sequence
with the coefficients (N4µ)n = [n]q! · µn (for a given sequence µ = {µn}n).
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q-convolution (p, q)-convolution
Formula

nX
k=0

"
n

k

#
q

µkνn−k

nX
k=0

"
n

k

#2

p

` q
p

´k(n−k)
µkνn−k

Properties

associative,
commutative,
not symmetric q ↔ q−1,
does not preserve measures on R,
preserves measures on R+ only if q < 1.

associative,
commutative,
symmetric p↔ p−1,
does not preserve measures on R,
preserves measures on R+ for all p, q > 0.

Fourier transform

Fq(µ)(x) =

∞X
k=0

µ
(q)
k

(q, q)k
(ix)k, Fp,q(µ)(x) =

∞X
k=0

q−k(k−1)/2µ
(q)
k

(p, p)k(p−1, p−1)k
xk,

Theorem 5.1. For any sequences (µn)n and (νn)n we have

(N4µ) ?q,q (N4ν) = N4(µ ?q ν).

Proof. Indeed, we have(
(N4µ) ?q,q (N4ν)

)
n

=
n∑
k=0

[
n

k

]2

q

(N4µ)k(N4ν)n−k

=
n∑
k=0

[n]q!2

[k]q!2[n− k]q!2
[k]q!µk[n− k]q!νn−k

= [n]q!
n∑
k=0

[n]q!
[k]q![n− k]q!

µkνn−k =
(
N4(µ ?q ν)

)
n
.
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