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Abstract. We study the nonnegative product linearization property for polynomials with even-
tually constant Jacobi parameters. For some special cases a necessary and sufficient condition
for this property is provided.

1. Introduction. Let {Pn}∞n=0 be a sequence of polynomials defined by the following
recurrence relation: P0(x) = 1 and for n ≥ 0

xPn(x) = Pn+1(x) + βnPn(x) + γn−1Pn−1(x) (1)

(under the convention that P−1(x) = 0), where {γn}∞n=0 and {βn}∞n=0 are sequences of real
numbers, called Jacobi parameters, and γn > 0. Then all Pn are monic and degPn = n.
We denote by L the linear functional on R[x] defined by: L(P0) = 1 and L(Pn) = 0 for
n ≥ 1. Then we have

L(PmPn) = δm,n · γ0γ1 . . . γm−1. (2)

In view of Favard’s theorem [5] L can be expressed as an integral with respect to a
probability measure on the real line.

Our aim is to study the linearization coefficients which are uniquely defined by

Pm(x)Pn(x) =
∑
j

c(j,m, n)Pj(x). (3)

It is known [2] that many classical orthogonal polynomials admit nonnegative product
linearization, i.e. all c(j,m, n) are nonnegative even though their exact values can be
unknown. In this case one can define a hypergroup structure [2] on the set of nonnegative
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integers by putting

δm ∗ δn :=
∑
k

c(k,m, n)Pk(x0)
Pm(x0)Pn(x0)

δk , (4)

where the normalizing point x0 is choosen such that x0 ≥ sup(suppµ), so that Pm(x0) > 0
for all m. Extending this to convex combinations one obtains an associative and commu-
tative convolution on the class of probability measures on the set {0, 1, 2, . . . }. There are
also some general criteria for nonnegative product linearization, stated in terms of the
parameters γn, βn [1, 9, 11].

Multiplying both sides of (3) by Pk and applying L we get

L(PkPmPn) = c(k,m, n)γ0γ1 . . . γk−1. (5)

We denote L(k,m, n) := L(PkPmPn) and Γ(k) := γ0γ1 . . . γk−1.
The following properties of the coefficients L(k,m, n) are easy to verify [9]:

L(k,m, k +m) = Γ(k +m), (6)

L(k1, k2, k3) = L(kσ1 , kσ2 , kσ3) (7)

L(k,m, n) = 0 whenever n > k +m, (8)

L(k,m, n) = L(k − 1,m, n+ 1) + (βn − βk−1)L(k − 1,m, n)

+ γn−1L(k − 1,m, n− 1)− γk−2L(k − 2,m, n) (9)

for any k,m, n and any permutation σ of the set {1, 2, 3}.
In particular, one can check that for 1 ≤ k ≤ m we have:

L(k,m, k +m− 1) = Γ(k +m− 1)
[ k−1∑
i=0

(βm+i − βi)
]

(10)

and
L(k,m, k +m− 2) = Γ(k +m− 2)

×
[
γm−1 +

k−2∑
i=0

(γm+i − γi) +
∑

0≤i<j≤k−1

(βm+i − βi)(βm+j−1 − βj)
]
. (11)

2. Orthogonal polynomials with eventually constant Jacobi parameters. From
now on we will assume that the coefficients γn, βn are constant from some place. Orthog-
onal polynomials of this kind and the corresponding probability measures are sometimes
encountered in various limit theorems in noncommutative probability [3, 7]. The basic
example is the Wigner measure

µ =
1

2πγ

√
4γ − (t− β)2dt (12)

on [β − 2
√
γ, β + 2

√
γ], having both sequences γn ≡ γ, βn ≡ β constant, which plays the

role of the Gaussian measure in free probability.

Assumption. For k ≥M we have βk = β, γk = γ.

The caseM = 1 is quite interesting. For example, the related four parameter family of
measures is closed under the free and boolean powers [6, 10] and {Pn} admits nonnegative
product linearization if and only if γ0 ≤ 2γ and β0 ≤ β [8]. This class of probability
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measures contains the Marchenko-Pastur measures (where γ0 = γ, β0 = γ, β = γ + 1),
which in free probability play the role of Poisson measures, as well as the limit measures
related to conditional freeness (with γ0 = a2, γ = b2, β0 = β = 0 in the central limit
theorem, and with γ0 = a, γ = b, β0 = a, β = b+ 1 in the Poisson limit theorem [3]).

We will base on the following lemma, which will be used together with relation (7).

Lemma 2.1. If n+ k −m > 2M then L(k,m, n) = γL(k − 1,m, n− 1).

Proof. Without loss of generality we can assume that k ≤ n. We proceed by induction
on j := k +m− n. Note that then

2k > 2M + j (13)

because
n > 2M +m− k = 2M + (n+ j − k)− k = 2M − 2k + j + n.

In particular, k > M and hence βn − βk−1 = β − β = 0, so we can ignore the second
summand in (9).

If j = 0 then n = k +m and

L(k,m, k +m) = Γ(k +m) = γΓ(k +m− 1) = γL(k − 1,m, k +m− 1).

If j = 1 then, by (13), M < k ≤ n. Since n = k+m− 1 we have L(k− 1,m, n+ 1) =
L(k − 2,m, n) = 0. Then, by (9), we get L(k,m, n) = γL(k − 1,m, n− 1).

Finally, assume that j ≥ 2. Then k > M + 1 and hence γk−2 = γ. Therefore, by
induction, we have L(k − 1,m, n + 1) = γL(k − 2,m, n) so in (9) the first summand
cancels with the last one, so we get L(k,m, n) = γL(k−1,m, n−1), which concludes the
proof.

Definition 2.2. We write (k′,m′, n′)
−→
R0(k,m, n) if either

k′ = k, m′ = m− 1, n′ = n− 1 and m+ n− k > 2M or
k′ = k − 1, m′ = m, n′ = n− 1 and k + n−m > 2M or
k′ = k − 1, m′ = m− 1, n′ = n and k +m− n > 2M .

Denote by
−→
R be the smallest reflexive and transitive relation containing

−→
R0. Since

(k′,m′, n′)
−→
R0(k,m, n) implies k′ ≤ k, m′ ≤ m, n′ ≤ n we see that

−→
R is weakly an-

tisymmetric and hence is a partial order. Note also that if (k′,m′, n′)
−→
R(k,m, n) then

k +m+ n− k′ −m′ − n′ := 2r is even and, in view of the Lemma 2.1,

L(k,m, n) = γrL(k′,m′, n′).

Therefore it is sufficient to examine L(k,m, n) for those triples (k,m, n) which satisfy
0 < k ≤ m ≤ n < k + m and m + n − k ≤ 2M . The set of such triples will be denoted
by Σ.

Proposition 2.3. The number of elements in Σ is equal to
M(M + 1)(M + 2)

3
. (14)

Proof. Set r := k + m − n, 1 ≤ r ≤ 2M . Then the inequalities k ≤ m ≤ n and
m+ n− k ≤ 2M are equivalent to

r ≤ k ≤ m ≤M +
r

2
. (15)
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Note that for fixed integers r ≤ s there are exactly
(s− r + 1)(s− r + 2)

2
pairs (k,m) such that r ≤ k ≤ m ≤ s. Therefore for fixed r there are exactly

(M − t+ 1)(M − t+ 2)
2

pairs (k,m) satisfying r ≤ k ≤ m ≤M + r/2, where either r = 2t or r = 2t− 1. Now we
have

M∑
t=1

(M − t+ 1)(M − t+ 2) =
M∑
s=1

s(s+ 1) =
M(M + 1)(M + 2)

3

which completes the proof.

LetR be the smallest equivalence relation containing
−→
R. Now we are going to describe

the elements (k,m, n) of Σ and their R-equivalence classes. We assume that 0 < k ≤ m ≤
n < k +m, m+ n− k ≤ 2M and put r := k +m− n. We have 1 ≤ r ≤ 2M . If r is even
we put r = 2t, otherwise r = 2t− 1, so that 1 ≤ t ≤M .

Case 0. If m + n + 2 − k ≤ 2M then (k,m, n) has no successor, so [(k,m, n)]R =
{(k,m, n)}. Applying Proposition 2.3 to M − 1 we see that the number of such triples is
(M − 1)M(M + 1)/3.

Case 1. Assume that m+n+2−k > 2M and k+n+2−m ≤ 2M . The former, together
with the third inequality in (15) leads to m = M +

[
r
2

]
. Hence, we have to choose r and

k such that 1 ≤ r ≤ 2M and r ≤ k < M +
[
r
2

]
, which gives M(M − 1) choices. Note that

in this case, for s ≥ 0 the only successor of (k,m+ s, n+ s) is (k,m+ s+ 1, n+ s+ 1).
Therefore

[(k,m, n)]R = {(k,m+ s, n+ s) : s ≥ 0}.

Case 2. Assume that k + n+ 2−m > 2M and k +m+ 2− n ≤ 2M . Then the former,
together with (15), leads to k = m = M +

[
r
2

]
(hence n = 2M − 1 if r is odd and

n = 2M if r is even), while the latter means that r ≤ 2M − 2. Hence k = m = M + t− ε,
n = 2M − ε, ε ∈ {0, 1}, 1 ≤ t ≤M − 1. This leads to 2M − 2 classes:

[(M + t− ε,M + t− ε, 2M − ε)]R

= {(M + t+ p− ε,M + t+ q − ε, 2M + p+ q − ε) : p, q ≥ 0}

= {(a, b, a+ b− 2t+ ε) : a, b ≥M + t− ε}.

Case 3. Finally, assume that r = k+m−n > 2M−2. Then (15) implies that r = 2M−ε,
ε ∈ {0, 1}, and r = k = m = n, which leads to two classes:

[(2M − ε, 2M − ε, 2M − ε)]R

= {(2M − ε+ q + s, 2M − ε+ p+ s, 2M − ε+ p+ q) : p, q, s ≥ 0}

= {(a, b, c) : a+ b− c, a+ c− b, b+ c− a ≥ 2M − ε, and a+ b+ c− ε is even}.

We will denote by Σi the set of those triples in Σ which fall to Case i.
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2.1. The case M = 2. Let us apply our results to the case when M = 2. Interesting
examples of polynomials of this kind and the corresponding measures were studied in [7].
We have

Σ0 = {(1, 1, 1), (2, 2, 2)}, Σ1 = {(1, 2, 2), (2, 3, 3)},
Σ2 = {(2, 2, 3), (3, 3, 4)}, Σ3 = {(3, 3, 3), (4, 4, 4)}.

Assume that

γn =


a if n = 0,
b if n = 1,
c if n ≥ 2,

βn =


u if n = 0,
v if n = 1,
w if n ≥ 2.

(16)

Theorem 2.4. If (16) holds then we have:

o1) L(1, 1, 1) = a(v − u),
o2) L(1,m,m) = Γ(m)(w − u) if m ≥ 2,
o3) L(k,m, k +m− 1) = Γ(k +m− 1)(2w − u− v) if 2 ≤ k ≤ m,
o4) L(k,m, n) = Γ(s− 1)(2c(2w − u− v)− b(w − u)) if 3 ≤ k ≤ m ≤ n ≤ k +m− 3

and k +m+ n = 2s+ 1,
e1) L(2, 2, 2) = ab(c+ b− a+ (w − u)(w − v)),
e2) L(2,m,m) = Γ(m)(2c− a+ (w − u)(w − v)) if m ≥ 3,
e3) L(k,m, k +m− 2) = Γ(k +m− 2)(3c− a− b+ (w − u)(w − v)) if 3 ≤ k ≤ m,
e4) L(k,m, n) = Γ(s− 1)(4c− a− 2b+ (w−u)(w− v)) if 4 ≤ k ≤ m ≤ n ≤ k+m− 4

and k +m+ n = 2s.

Proof. The formulas (o1), (o2), (o3) and (e1), (e2), (e3) are consequences of (10) and
(11) respectively. Having them, we can use (9) to compute L(3, 3, 3) and L(4, 4, 4). Now
we apply Lemma 2.1 to conclude the proof.

Corollary 2.5. Assuming (16), the polynomials {Pn} admit nonnegative product lin-
earization if and only if the following inequalities hold:

u ≤ v,
u ≤ w,

u+ v ≤ 2w,

b(w − u) ≤ 2c(2w − u− v),

0 ≤ c+ b− a+ (w − u)(w − v),

0 ≤ 4c− a− 2b+ (w − u)(w − v).

In particular, if in addition v = w then the nonnegative product linearization holds if
and only if u ≤ v, b(v − u) ≤ 2c(v − u), a ≤ b+ c and 2b+ a ≤ 4c.

Proof. To avoid the inequalities related to (e2) and (e3) we use the fact that if the first
and the last element of a finite arithmetic sequence are nonnegative then all its elements
are nonnegative.
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2.2. The case M = 3. If M = 3 then we have

Σ0 = {(1, 1, 1), (1, 2, 2), (2, 2, 3), (3, 3, 3), (2, 2, 2), (2, 3, 3), (3, 3, 4), (4, 4, 4)},

Σ1 = {(1, 3, 3), (2, 3, 4), (3, 4, 4), (2, 4, 4), (3, 4, 5), (4, 5, 5)},

Σ2 = {(3, 3, 5), (4, 4, 5), (4, 4, 6), (5, 5, 6)},

Σ3 = {(5, 5, 5), (6, 6, 6)}.

Now we assume that:

γn =


a if n = 0,
b if n = 1,
c if n = 2,
d if n ≥ 3,

βn =


u if n = 0,
v if n = 1,
w if n = 2,
z if n ≥ 3.

(17)

Theorem 2.6. Assuming (17) we have

o1) L(1, 1, 1) = a(v − u),
o2) L(1, 2, 2) = ab(w − u),
o3) L(1,m,m) = Γ(m)(z − u) if m ≥ 3,
o4) L(2, 2, 3) = abc(w + z − u− v),
o5) L(2,m,m+ 1) = Γ(m+ 1)(2z − u− v) if m ≥ 3,
o6) L(k,m, k +m− 1) = Γ(k +m− 1)(3z − u− v − w) if 3 ≤ k ≤ m,
o7) L(3, 3, 3) = abc(a(w − z) + b(u − z) + c(2z − u − v) + d(3z − u − v − w)

+ (z − u)(z − v)(z − w)),
o8) L(3,m,m) = Γ(m)(a(w−z)+b(u−z)+2d(3z−u−v−w)+(z−u)(z−v)(z−w))

if m ≥ 4,
o9) L(k,m, k+m− 3) = Γ(k+m− 3)(a(w− z) + b(u− z) + c(u+ v − 2z) + 3d(3z −

u− v − w) + (z − u)(z − v)(z − w)) if 4 ≤ k ≤ m,
o10) L(k,m, n) = Γ(s− 2)(a(w− z) + b(u− z) + 2c(u+ v− 2z) + 4d(3z−u− v−w) +

(z − u)(z − v)(z − w)) if m ≥ 4, if 5 ≤ k ≤ m ≤ n ≤ k +m− 5, k +m+ n = 2s− 1,
e1) L(2, 2, 2) = ab(c+ b− a+ (w − u)(w − v)),
e2) L(2, 3, 3) = abc(c+ d− a+ (z − u)(z − v)),
e3) L(2,m,m) = Γ(m)(2d− a+ (z − u)(z − v)) if m ≥ 4,
e4) L(3, 3, 4) = abcd(c+ 2d− a− b+ (z−u)(z− v) + (z−u)(z−w) + (z− v)(z−w)),
e5) L(3,m,m+1) = Γ(m+1)(3d−a−b+(z−u)(z−v)+(z−u)(z−w)+(z−v)(z−w))

if m ≥ 4,
e6) L(k,m, k + m − 2) = Γ(k + m − 2)(4d − a − b − c + (z − u)(z − v)

+ (z − u)(z − w) + (z − v)(z − w)) if 4 ≤ k ≤ m,
e7) L(4, 4, 4) = abcd(ac+ d(5d− 2a− 2b− c)− c(z − u)(z − v) + 2d((z − u)(z − v) +

(z − u)(z − w) + (z − v)(z − w))),
e8) L(4,m,m) = Γ(m)(ac+d(6d−2a−2b−2c)− c(z−u)(z−v)+2d((z−u)(z−v)+

(z − u)(z − w) + (z − v)(z − w)) if m ≥ 5,
e9) L(k,m, k +m− 4) = Γ(k +m− 4)(ac+ d(7d− 2a− 2b− 3c)− c(z − u)(z − v) +

2d((z − u)(z − v) + (z − u)(z − w) + (z − v)(z − w)) if 5 ≤ k ≤ m,
e10) L(k,m, n) = Γ(s−2)(ac+d(8d−2a−2b−4c)−c(z−u)(z−v)+2d((z−u)(z−v)

+ (z − u)(z − w) + (z − v)(z − w)) if 6 ≤ k ≤ m ≤ n ≤ k +m− 6, k +m+ n = 2s.
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Proof. The formulas (o1)–(o6) and (e1)–(e6) are consequences of (10) and (11). Then, us-
ing (9), we compute L(3, 3, 3), L(3, 4, 4) and L(4, 4, 5), which leads to (o7), (o8) and (o9).
Using these we get L(5, 5, 5) and hence (o10). In the same way we prove (e1)–(e10).

In the same way as before we obtain

Corollary 2.7. If we assume (17) then the polynomials {Pn} admit nonnegative product
linearization if and only if the following inequalities hold:

u ≤ v,
u ≤ w,
u ≤ z,

u+ v ≤ w + z,

u+ v ≤ 2z,

u+ v + w ≤ 3z,

a(z − w) + b(z − u) ≤ d(3z − u− v − w) + c(2z − u− v) + (z − u)(z − v)(z − w),

a(z − w) + b(z − u) ≤ 4d(3z − u− v − w)− 2c(2z − u− v) + (z − u)(z − v)(z − w),

a ≤ c+ b+ (w − u)(w − v),

a ≤ c+ d+ (z − u)(z − v),

a ≤ 2d+ (z − u)(z − v),

a+ b ≤ 2d+ c+ (z − u)(z − v) + (z − u)(z − w) + (z − v)(z − w),

a+ b ≤ 4d− c+ (z − u)(z − v) + (z − u)(z − w) + (z − v)(z − w),

d(2a+ 2b+ c− 5d) ≤ ac+ (2d− c)(z − u)(z − v) + 2d(2z − u− v)(z − w),

d(2a+ 2b+ 4c− 8d) ≤ ac+ (2d− c)(z − u)(z − v) + 2d(2z − u− v)(z − w).
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