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Abstract. We describe an approach to the unitary Weingarten function based on the JM
elements of symmetric group algebras. When combined with previously known properties of the
Weingarten function, this gives a surprising connection with the Moebius function of the lattice
of noncrossing partitions.

1. Introduction

1.1. Moments of the unitary group. Let Ud = {U ∈ GLd(C) : U∗ = U−1} be the
compact group of d×d complex unitary matrices equipped with (normalized) Haar mea-
sure dU. In the context of random matrix theory, one often wishes to compute integrals
(expectations) of the form

Id(i, j, i′, j′) =
∫

Ud

ui(1)j(1) . . . ui(n)j(n)ui′(1)j′(1) . . . ui′(n)j′(n)dU, (1)

where n is a positive integer and i, j, i′, j′ : [n]→ [d] are functions.
Integrals of this form, which describe the joint moments of the entries of a Haar-

distributed random unitary matrix from Ud, were studied extensively by Collins [C] and
Collins-Śniady [CS], where they were called the moments of the unitary group Ud. The
computation of these moments is ostensibly a probabilistic problem; however, the fact
that Ud is a compact algebraic group allows for an essentially algebraic solution.

1.2. The Weingarten function. We assume henceforth that d ≥ n. This assump-
tion simplifies the presentation of some results concerning unitary group integrals. It
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was shown in [CS] that, in most cases, this assumption can be lifted without too much
difficulty.

The main result of Collins in [C] is that there exists a function Wgd : S(n) → C,
where S(n) is the symmetric group on [n] := {1, . . . , n}, with the following remarkable
property:

Id(i, j, i′, j′) =
∑

σ,τ∈S(n)

n∏
k=1

δi(k),i′(σ(k))δj(k),j′(σ(k)) Wgd(τσ
−1), (2)

where δ is the Kronecker delta. The special function Wgd is called the Weingarten func-
tion, and formula (2) above is the Weingarten convolution formula. The existence of
the Weingarten function was deduced by Collins from the classical Schur-Weyl duality
between representations of Ud and S(n) in the tensors

Cd ⊗ Cd ⊗ · · · ⊗ Cd︸ ︷︷ ︸
n

. (3)

The problem of computing the integrals (1) is thus reduced, via the Weingarten con-
volution formula (2), to the problem of finding a tractable expression for the Weingarten
function.

1.3. Main result. Since Wg is a function on permutations, we view it as an element of
the symmetric group algebra C[S(n)], i.e. as a formal sum

Wgd =
∑

σ∈S(n)

Wgd(σ)σ. (4)

In this note we show that a remarkably simple formula for Wgd can be given in terms of
the Jucys-Murphy elements of C[S(n)] :

J1 = 0,

J2 = (1, 2),

J2 = (1, 3) + (2, 3),
...

Jn = (1, n) + (2, n) + · · ·+ (n− 1, n).

Our main theorem is the following:

Theorem 1.1. Let d ≥ n be positive integers. Then d+ J1, d+ J2, . . . , d+ Jn ∈ C[S(n)]
are invertible, and

Wgd = (d+ J1)−1(d+ J2)−1 . . . (d+ Jn)−1. (5)

2. Proofs

2.1. Background on JM elements. The JM elements J1, . . . , Jn ∈ C[S(n)] were intro-
duced independently by Jucys [J] and Murphy [M]. These seemingly simple transposition
sums have many remarkable properties, and are a key object in the modern approach
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to the representation theory of the symmetric groups initiated by Okounkov and Ver-
shik [OV]. In particular, the JM elements generate a maximal commutative subalgebra
of C[S(n)].

Let Z(n) denote the center of C[S(n)]. Let Y(n) be the set of Young diagrams with n
cells, and recall the canonical surjection T : S(n)→ Y(n) which maps each permutation
to its cycle type. Given µ ∈ Y(n), let Cµ denote the fibre of T over µ, i.e. the conjugacy
class of permutations of cycle type µ, which we identify with the sum

Cµ =
∑

T (σ)=µ

σ ∈ Z(n). (6)

We also denote by `(µ) the number of rows in a Young diagram µ. In particular,
`(T (σ)) is the number of factors in the decomposition of σ into a product of disjoint
cycles.

We will benefit greatly from the following result of Jucys:

Theorem 2.1 ([J]). For 1 ≤ r ≤ n, let

er(J1, J2, . . . , Jn) =
∑

1≤ii<i2<···<ir≤n

Ji1Ji2 . . . Jir (7)

be the elementary symmetric polynomials in JM elements. Then

er(J1, J2, . . . , Jm) =
∑

µ∈Y(n)
`(µ)=n−r

Cµ. (8)

In other words, er(J1, J2, . . . , Jn) is the indicator function of permutations with exactly
n− r cycles.

For example,
e1(J1, J2, . . . , Jn) = J1 + J2 + · · ·+ Jn (9)

is the formal sum of all permutations with exactly n− 1 cycles (i.e. the conjugacy class
of transpositions).

2.2. Proof of Theorem 1.1. Our starting point is the following fundamental theorem
of Collins [C]: for d ≥ n, the inverse of Wgd is

Wg−1
d =

∑
µ∈Y(n)

d`(µ)Cµ. (10)

Now we simply compute using Jucys’ Theorem (2.1)

(d+ J1)(d+ J2) . . . (d+ Jn) =
n∑
k=0

dn−kek(J1, J2, . . . , Jn) (11)

=
n∑
k=0

∑
µ∈Y(n)
`(µ)=n−k

dn−kCµ (12)

=
∑

µ∈Y(n)

d`(µ)Cµ. (13)
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It follows immediately from the assumption d ≥ n that d + Jk is invertible for each
1 ≤ k ≤ n. Thus

Wgd = (d+ J1)−1(d+ J2)−1 . . . (d+ Jn)−1, (14)

as desired.

3. Application: the Laurent expansion. Consider a fixed permutation σ ∈ S(n) with
cycle type τ = (τ1, τ2, . . . , τ`). Wgd(σ) is then a rational function of d with denominator
of degree n [C]. Thus there exists a Laurent expansion

Wgd(σ) =
∑
r≥0

ar(σ)
dn+r

. (15)

The structure of the Laurent coefficients remains somewhat mysterious. Collins [C] has
shown that

min{r : ar(σ) 6= 0} = n− `, (16)

and moreover
an−`(σ) = Moeb(σ). (17)

Recall that Moeb is the Moebius function defined by

Moeb(σ) =
∏̀
k=1

(−1)τk−1 Catτk−1 , (18)

where

Catm =
1

m+ 1

(
2m
m

)
(19)

is a Catalan number. Moeb coincides with the Moebius function of the lattice of non-
crossing partitions, see [NS].

The existence of the Laurent expansion (15) means that there exists a sequence of
functions a0, a1, . . . , ar, · · · ∈ C[S(n)] such that, if we define

HN =
N∑
r=0

ar
dn+r

, (20)

then
Wgd(σ) = lim

N→∞
HN (σ) (21)

for all σ ∈ S(n) (where we are assuming d ≥ n).

Theorem 3.1. For each r ≥ 0,

ar = (−1)rhr(J1, J2, . . . , Jn), (22)

where
hr(J1, J2, . . . , Jn) =

∑
1≤i1≤i2≤···≤ir≤n

Ji1Ji2 . . . Jin (23)

is the rth complete homogeneous symmetric polynomial in the JM elements (i.e. simply
the sum of all distinct monomials of degree r).
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Proof. If x1, . . . , xn, t are formal indeterminates, one has the generating function∑
r≥0

hr(x1, . . . , xn)tr = (1− x1t)−1(1− x2t)−1 . . . (1− xnt)−1. (24)

Simply specialize x1 = J1, x2 = J2, . . . , xn = Jn and t = − 1
d and apply Theorem 1.1 to

obtain the stated result.

One immediate consequence of this expression of ar in terms of the JM elements is
the following:

a0(σ) =

{
1, if σ = e,

0, otherwise.
(25)

This is simply because h0(J1, J2, . . . , Jn) is the unit element of the group algebra C[S(n)],
i.e. the indicator function of the identity element.

Let us point out how remarkably this h-function result interacts with the work of
Collins. Recall that the number |σ| := n−`(T (σ)) is the minimal length of a factorization
of σ into transpositions. Our remarks above amount to the following striking result:

Theorem 3.2. For any permutation σ ∈ S(n),

Moeb(σ) = (−1)|σ|h|σ|(J1, . . . , Jn)(σ). (26)

It should be possible to prove this remarkable fact using only intrinsic properties of
JM elements, and this will be the subject of future work.
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