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Abstract. Let M be a finite von Neumann algebra acting on the standard Hilbert space L?(M).
We look at the space of those bounded operators on L2 (M) that are compact as operators from
M into L? (M). The case where M is the free group factor is particularly interesting.

1. Introduction. In the paper [Oz1], it is proved that the free group factor LF, is solid,
i.e., the relative commutant B’ N LF,. of any diffuse subalgebra B is amenable. The proof
relies on C*-algebra techniques. (See [Pée, [Po2] for purely von Neumann algebraic proofs
of this fact.) In particular, the crucial ingredient in [Ozl] is Akemann and Ostrand’s
theorem ([AQ]) stating that the *-homomorphism

p: C5Fr @ug C3F 3 ) " ax @z — Y axax + K(C°F,) € B(°F,) /K(£°F,)

is continuous w.r.t. the minimal tensor norm. It would be interesting to know how much
of the proof in [OzI] can be carried out at the level of von Neumann algebras. In this
paper, we will prove a version of Akemann and Ostrand’s theorem in the von Neumann
setting. For this purpose, we consider the set of those operators in B(L?(M)) that are
compact as operators from M into L?(M), where M = LF, or any finite von Neumann
algebra.

2. Compact operators. Let H be a Hilbert space. We denote by B(H) (resp. K(H))
the C*-algebra of all bounded (resp. compact) linear operators on H. Let & C H be a
closed balanced bounded convex subset. (Recall that 2 is said to be balanced if a2 C
for a € C with |a| < 1.) We define the closed left ideal K& of B(H) by

K§ = {z € B(H) : 2Q is norm compact in H}.
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We define a seminorm || - || on B(H) by
[zl = sup{llz€]| : € € 2}
We will use the following trivial proposition without quoting it.
PROPOSITION. Let Q C H be as above. Then, for x € B(H), the following are equivalent.

1. z € K§.

2. x is weak-norm continuous on €.

3. For every weakly null sequence (&,) in §, one has ||x&,| — 0.

4. For every sequence of (finite-rank) projections (Qy) strongly converging to 1 on 'H,
one has ||z — Qnx|q — 0.

5. There exists a sequence () in K(H) such that ||z — zp]lq — 0.

DEFINITION. We denote by Kq the hereditary C*-subalgebra of B(H) associated with
the left ideal K&:
Ko = (K§)" NK§ = (K§)” - Kg.
Let z € Kq. For finite-rank projections @, , 1 on ‘H, we define x,, = a@,b, where
b= |z|'/? and @ = 2b~! are in Kq. Then, x,, € K(H) satisfies ||x,| < ||=| and ||z —
Zlla + [l2* = 23l — 0.

3. Finite von Neumann algebras. Let M be a finite von Neumann algebra with a
distinguished faithful normal trace 7, and L?(M) be the GNS-Hilbert space associated
with (M, 7). We will write a for a € M when viewed as a vector in L?(M), and |laz =
la|l = 7(a*a)/?. From now on, we set
Q={a:acM, |a| <1} c L*(M)

and write K, instead of Kq. It is clear that both M and M’ are in the multiplier of
Kps. The C*-algebra Kj; is much larger than K(L?(M)). Indeed, if p, are mutually
orthogonal projections in M (or in M’) and x,, are compact contractive operators such

that x,, = ppxnpn, then > x,, € Kjs. The following is useful in understanding the nature
of the norm || - ||q.

LEMMA. For every x € B(H), one has

[zllo < mf{{lyl[10]l2 + [[2]lc'[l2} < 4]lz[q,
where the infimum is taken over all possible decompositions x = yb+zc¢' with y, z € B(H),
be M andc € M'.

Proof. Since

lyblle = sup yball < lyll sup |lball <ly[l sup [|bl[[lall = [lyll[|bl
aE(M)l (lE(M)l aG(M)l

and [|zc[|q < ||z[[[|'[|2 similarly, one has [[yb + zc'[la < [ly[[[[b]l2 + [[2[[[|]|2-

To prove the other inequality, let € B(H) be given such that ||z||q = 1. We observe
that ||z||q is nothing but the norm as an operator from M into L?(M). It follows from
the noncommutative little Grothendieck inequality (Theorem 9.4 in [Pi]) that there are
unit vectors ¢,n € L?(M) such that ||za|? < ||ac||? +||nal/? for all a € M. We view ¢ and
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7 as square integrable operators affiliated with M (see Appendix F in [BOJ or Chapter
IX in [Ta]), and let ¢ = X (jjz)12,00) (CC¥)s P = X(||z)|2,00) (177). It follows that
lza)* < 2(llz(ptag)II* + 2 (pagH)|I? + [lx(aq)|*)
< 2(llag*ClI3 + [lnp™all3 + |z [pall3 + |z laql3)
= 2([[ball3 + l|c'all3),
where b is the left multiplication operator by (ptn*npt + ||z||?p)'/? and ¢’ is the right
multiplication operator by (¢-¢¢* gt +||z(|?¢)'/2. Note that one has b € M, ||b|| < ||z|| and

Ibll2 < |I<|l2 = 1; and likewise for ¢/ € M'. It follows that there are operators y, z € B(H)
with yy* + zz* < 2 such that x = yb+ z¢’. =

1/2

The “cb-version” of the norm || - ||q is defined to be

1/2
sup { (3 llzll?) " (@n)2y € M such that Y- aga;, <1}
= |lz: M’ 3 d’ + zd'l € L*(M)cot|en
= inf{||ly[|||b]l2 : y € B(H) and b € M with = = yb}.

[E41E

We do not elaborate on this norm here. See [Ma] for more information about the topology
associated with this norm.

4. Free group factors. We write A and p respectively for the left and the right regular
representation of a countable discrete group I' on #2T". Recall that the group I is in the
class § if it is exact and the x-homomorphism

p: C5T @aig C;T 3> ap @y — Y apay, + K(ET) € B(°T) /K(£°T)

is continuous w.r.t. the minimal tensor norm. Free groups as well as hyperbolic groups
are in the class S. (See [0z2].) Let T be an ICC group so that the group von Neumann
algebra LI' = \(I')”" C B(¢?T") is a factor. We note that L?(LI") is canonically isomorphic
to £2T". We denote RT' = (p(T'))” = (LT')’ and consider the *-homomorphism

m: C*(LT,RT) 3 > apwp = Y ap @z, € LT @pin RT C B(PT @ £°T),

which is well-defined by Takesaki’s theorem on the minimal tensor norm. The following
theorem extends Akemann and Ostrand’s theorem ([AQ]).

THEOREM. Let I' be an ICC group which is in the class S. Then
kerm = Kep NC*(LT, RT).

Proof. Take any sequence (&,) of unit vectors in Q = {a : a € LT, |ja|]| < 1}, which
weakly converges to 0. We define a state w on C*(LT', RT") by the Banach limit w(x) =
Lim(z¢,, &) Let y € alg(LT,RT) be arbitrary. Since yQ C K,Q for some constant
K, > 0, one has w(y* - y) < K}7(-) both on LI’ and on RT. Therefore, the GNS
representation 7, of w is binormal on C*(LT", RT"). Moreover, since K,r NC* (LT, RT") C
ker 7, the *-homomorphism from C{I'®a1g C; T into 7, (C* (LT, RI)) is continuous w.r.t.
the minimal tensor norm. It follows from Lemma 9.2.9 in [BO] that the *-homomorphism
from LT ®a1¢ RI' into 7, (C*(LT,RT)) is continuous w.r.t. the minimal tensor norm,
too. Because of simplicity of LI, this means that 7, (C*(LI,RT)) = LT Qmin R, or
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equivalently that kermw, = kerm. Therefore, K,r N C*(LT,RT) C kerw. On the other
hand, if z > 0 and = ¢ K, then there is a normalized weakly null sequence (&,) in £
such that w(z?) = Lim ||2&,||? > 0 and a fortiori x ¢ kerr,,. m

It follows that K(¢T') C kerm C Kr. The first inclusion is strict. Indeed, it is not
hard to show that ker 7 is non-separable. It is likely that the second is strict as well.

Recall that a finite von Neumann algebra N has the property (I') if there is a se-
quence (uy,) of unitary elements in N such that u, — 0 ultraweakly and [u,,a] — 0
ultrastrongly for every a € N. We observe the following: Let M C B(L?(M)) be a finite
von Neumann algebra and N C M be a von Neumann subalgebra with the property
(T"). Then, one has Ky, N C*(N, M') = {0}. Indeed, if (u,) is as above, then on the one
hand u}zu,, — x for every x € C*(N, M’), but on the other hand «} zu, — 0 for every
x € Kjs. This observation, combined with the above theorem, implies the main theorem
of [OzI]: A von Neumann subalgebra of £I" which has the property (T") is necessarily
amenable.

5. Boundary of free group factors. Let F, be the free group of rank r € N. For each
t € F,., we define x; € {*°F,. to be the characteristic function of the set of those elements
in IF,. whose last segments in the reduced forms are t. Let

A=C"({x::t €F,}) CL<F,

and observe that [A, C;F,] C K(¢*F,). Indeed, A(s)x:A(s)*0, = x¢0 if |z > |s| + |¢],
and hence [x¢, A(s)] has finite rank. It is well-known that B := C*(A4, p(F,)) & A x F,. is
nuclear. Akemann and Ostrand’s theorem stating that I, is in the class S follows from
this and

[C;F,, B] C norm-cl(C5F, - [C5F,, A]) C K(¢°F,).

It would be interesting to know whether a similar fact holds true at the level of von
Neumann algebras. Namely,

PROBLEM. Is it true that [A, LF,] C Kzp, ?

We recall Popa’s theorem ([Poll]) stating that every derivation from a von Neumann
algebra M C B(H) into K(H) is inner. In particular, [z, M] C K(H) only if z € K(H) +
M'’. Nevertheless, the above problem has a positive answer if r = 1, i.e., if F, = Z.
Indeed, let x = x>0 for simplicity. Then, the projection x is the Riesz projection which
is bounded on L*(Z) (or on any L7 with 1 < q < oo, see [Ga)). It follows from the Hélder
inequality that for every a € £(Z) = L*(Z), one has

I allle < lIxllz.allallsoo + llall2,allxlls,00 < Cllall ez,

~ ~

where || - ||, stands for the operator norm from L%(Z) into LP(Z). Since CZ is dense
in £Z w.r.t. the L*norm and [x, C5Z] € K({*Z), one obtains that [x, £LZ] € K.z. The
author is unable to extend this argument to F, with r > 2, because he does not know
whether the ‘Riesz projection’ on F,. is a bounded operator from LF, into L*(LF,).
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