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Abstract. This note explains how the two measures used to define the µ-deformed Segal-
Bargmann space are natural and essentially unique structures. As is well known, the density
with respect to Lebesgue measure of each of these measures involves a Macdonald function.
Our primary result is that these densities are the solution of a system of ordinary differential
equations which is naturally associated with this theory. We then solve this system and find the
known densities as well as a “spurious” solution which only leads to a trivial holomorphic Hilbert
space. This explains how the Macdonald functions arise in this theory. Also we comment on why
it is plausible that only one measure will not work. We follow Bargmann’s approach by imposing
a condition sufficient for the µ-deformed creation and annihilation operators to be adjoints of
each other. While this note uses elementary techniques, it reveals in a new way basic aspects of
the structure of the µ-deformed Segal-Bargmann space.

1. Introduction. Before getting into details, let us remark that we will be studying
deformations, depending on a dimensionless deformation parameter µ > −1/2 (which is
fixed throughout the note), of standard analysis and quantum mechanics. Our goal is
to provide motivation for Definitions 1.1 and 1.2 below, including an explanation of the
appearance of the Macdonald function in those definitions.

We start by recalling some definitions and notation that appear in [3]. Also see [2],
[12], [13], [14] and [18] and references therein for other related work.

Definition 1.1. Say λ > 0 We define measures on the complex plane C by

dνe,µ,λ(z) := νe,µ,λ(z)dxdy,

dνo,µ,λ(z) := νo,µ,λ(z)dxdy,
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whose densities are defined by

νe,µ,λ(z) := λ
2

1
2−µ

πΓ(µ+ 1
2 )
Kµ− 1

2
(|λ 1

2 z|2)|λ 1
2 z|2µ+1 , (1.1)

νo,µ,λ(z) := λ
2

1
2−µ

πΓ(µ+ 1
2 )
Kµ+ 1

2
(|λ 1

2 z|2)|λ 1
2 z|2µ+1 (1.2)

for 0 6= z ∈ C, where Γ (the Euler gamma function) and Kα (the Macdonald function of
order α) are defined in [10]. Moreover, dxdy is Lebesgue measure on C.

The function Kα is also known as the modified Bessel function of the third kind or
Basset’s function. (See [7], p. 5.) But it is also simply known as a modified Bessel function.
(See [8], p. 961, and [1], p. 374.) An explanation of where the Macdonald functions in
Definition 1.1 come from was the motivation for writing this note.

From the formulas (1.1) and (1.2), one can see why the case µ = −1/2 has not been
included. One should refer to the discussion of the Bose-like oscillator in [15] (especially,
note Theorem 5.7) for motivation for the condition µ > −1/2.

Let H(C) be the space of all holomorphic functions f : C → C. We note that
fe := (f+Jf)/2 (respectively, fo := (f−Jf)/2) defines the even (respectively, odd) part
of f , where Jf(z) := f(−z) for all z ∈ C is the parity operator. So, f = fe + fo.

We use throughout the article the standard notations for L2 spaces, for their inner
products, and for their norms.

Definition 1.2. The µ-deformed Segal-Bargmann space for λ > 0 is

B2
µ,1/λ := H(C) ∩ {f : C→ C | fe ∈ L2(C, νe,µ,λ) and fo ∈ L2(C, νo,µ,λ)},

where f = fe + fo is the decomposition of a function into its even and odd parts. Next
we define the norm

‖f‖B2
µ,1/λ

:= (‖fe‖2L2(C,νe,µ,λ) + ‖fo‖2L2(C,νo,µ,λ))
1/2

for all f ∈ B2
µ,1/λ.

This definition is due to Marron in [11] and Rosenblum in [16]. The reason for using
1/λ instead of λ in the notation has to do with maintaining consistency with the notation
of Hall in [9]. For more on the historical background of this definition, see [3]. We have
that B2

µ,1/λ is a Hilbert space (see [11]) with inner product defined by

〈f, g〉B2
µ,1/λ

:= 〈fe, ge〉L2(νe,µ,λ) + 〈fo, go〉L2(νo,µ,λ). (1.3)

Of course, f = fe + fo and g = ge + go are the representations of f and g as the sums
of their even and odd parts. (We will often use such representations without explicit
comment, letting the notation carry the burden of explanation.) When µ = 0 and λ = 1
this reduces to the usual Segal-Bargmann space, denoted here by B2. (See [5, 17].) For
simplicity of notation we put λ = 1 for the rest of this article. We also put B2

µ = B2
µ,1

There is a way of seeing a relation of this article to standard Segal-Bargmann analysis.
In general this is to find relations in the µ-deformed theory that do not depend on the
parameter µ. This means that the relations for µ 6= 0 are exactly the same as those for
the standard case µ = 0. This will be our approach in Section 2 where we motivate the



SEGAL-BARGMANN SPACE 267

definition of the measures in the µ-deformed Segal-Bargmann space and, in particular,
show how the Macdonald functions arise naturally.

2. The measures in the Segal-Bargmann spaces. It turns out that B2
µ is the image

of a µ-deformed Segal-Bargmann transform (see [11]) which is unitary. This unitarity is
a consequence of the definition of the inner product on B2

µ in terms of the two measures
defined in Definition 1.1. We wish to motivate this definition of the inner product in-
trinsically, that is, without reference to the µ-deformed Segal-Bargmann transform but
rather as a basic structure that arises naturally for holomorphic functions. We will do
this modulo a normalization factor that is left undetermined intrinsically. Rather than
prove theorems, the purpose of this note is to show how the definitions (1.1) and (1.2) are
naturally motivated. We follow an idea given in [5]. To achieve this we will use µ-deformed
creation and annihilation operators defined for arbitrary holomorphic functions.

Definition 2.1. Let f ∈ H(C) be a holomorphic function and z ∈ C. Then the µ-
deformed creation operator a∗µ : H(C)→ H(C) is defined by

a∗µf(z) := zf(z).

The µ-deformed annihilation operator aµ : H(C)→ H(C) is defined by

aµf(z) :=
∂f

∂z
+
µ

z
(f(z)− f(−z)),

(Here we use the standard notation ∂/∂z = (1/2)(∂/∂x− i∂/∂y) from complex variable
theory for the complex derivative operator. We also mention in passing that aµ is a variant
of the Dunkl operator adequate for complex variable theory.)

These operators satisfy the µ-deformed commutation relation

[aµ, a∗µ] = I + 2µJ (2.1)

onH(C). This commutation relation, which is the central identity of µ-deformed quantum
mechanics, was originally introduced by Wigner in [19].

For example, in the original theory in [5] when µ = 0, Bargmann defines the inner
product in terms of a measure on the phase space, namely,

〈f, g〉B2
0

:=
∫
C

dxdy νGauss(z)f(z)∗g(z)

for all holomorphic functions f and g that are in L2(C, νGauss). Here, the density νGauss

is defined by

νGauss(z) :=
1
π
e−|z|

2
(2.2)

for all z ∈ C. Moreover, Bargmann’s motivation for this definition of the measure on the
phase space comes from formally analyzing for holomorphic f and g the condition

〈a∗0f, g〉L2(C,ν) = 〈f, a0g〉L2(C,ν) ,

where ν(z) is an unknown density function which defines the measure ν(z)dxdy on C.
We can try a similar strategy for the µ-deformed creation and annihilation operators a∗µ
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and aµ in place of the usual creation and annihilation operators a∗0 and a0. So we want
to consider, again for f and g holomorphic, the identity〈

a∗µf, g
〉
L2(C,νµ)

= 〈f, aµg〉L2(C,νµ)

and try to find the unknown density function νµ(z) for a measure νµ(z)dxdy on C. We
have been unable to prove that this has no solution when µ 6= 0, though this seems to
be the case. However, we have shown that the sufficient condition on νµ(z) given by a
formal integration by parts argument (as done by Bargmann in [5]) has no solution if
µ 6= 0. We will come back to this point later.

In any event, what Marron in [11] and Rosenblum in [16] did was to define two
measures on the phase space C and use formula (1.3) to define the inner product. We do
not know what motivation they had to write down these measures, but we have been able
to construct the following intuitive reasoning à la Bargmann in [5]. We do not believe
that the following exposition is new. Indeed, we fully expect it was known to Rosenblum.
However, we have not found it in the literature. Unfortunately, Marvin Rosenblum died
some time after giving us a copy of [16], which is a sketchy preliminary document that
was as far as we know never put into a publishable form.

First, we consider the desired relation〈
a∗µf, g

〉
B2
µ

= 〈f, aµg〉B2
µ
. (2.3)

Since the non-local parity operator J figures in the µ-deformed canonical commutation
relation (2.1), it seems plausible to divideH(C) into the two eigenspaces for this operator,
i.e., the subspaces of even and odd functions, respectively. So we propose to introduce two
measures with densities νe and νo on the phase space C and define an inner product by

〈f, g〉B2
µ

:= 〈fe, ge〉L2(νe)
+ 〈fo, go〉L2(νo)

, (2.4)

using the even and odd parts of f and g on the right hand side of this definition.
Next, we want to see what restriction (2.3) places on the unknowns νe and νo. Since a∗µ

and aµ interchange the even and odd subspaces of H(C) and since these are orthogonal
subspaces for the proposed inner product (2.4), there are exactly two non-trivial cases of
(2.3). The first such case is for f even and g odd. Then we have the condition〈

a∗µf, g
〉
L2(νo)

= 〈f, aµg〉L2(νe)
. (2.5)

The second non-trivial case is for f odd and g even, in which case we have〈
a∗µf, g

〉
L2(νe)

= 〈f, aµg〉L2(νo)
. (2.6)

Next, we write out these conditions in terms of integrals. The first condition (2.5)
gives ∫

C

dxdy νo(z)z∗f(z)∗g(z) =
∫
C

dxdy νe(z)f(z)∗aµg(z)

=
∫
C

dxdy νe(z)f(z)∗
(
∂g

∂z
+

2µ
z
g(z)

)
=
∫
C

dxdy

(
−∂νe
∂z

+ νe(z)
2µ
z

)
f(z)∗g(z), (2.7)
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where we used the fact that g is odd to calculate aµg and then we integrated formally by
parts, using ∂f∗/∂z = 0 since f is holomorphic.

The second condition (2.6) gives∫
C

dxdy νe(z)z∗f(z)∗g(z) =
∫
C

dxdy νo(z)f(z)∗aµg(z)

=
∫
C

dxdy νo(z)f(z)∗
∂g

∂z

=
∫
C

dxdy

(
−∂νo
∂z

)
f(z)∗g(z), (2.8)

where we used the fact that g is even to evaluate aµg. Again, the last equality is a formal
integration by parts. Clearly a sufficient condition for these two conditions (2.7) and
(2.8) to hold is this system:

z∗νo(z) = −∂νe
∂z

+ νe(z)
2µ
z
,

z∗νe(z) = −∂νo
∂z

,

which is equivalent to

|z|2νo(z) = −z ∂νe
∂z

+ 2µνe(z), (2.9)

|z|2νe(z) = −z ∂νo
∂z

. (2.10)

While this is a sufficient condition for (2.5) and (2.6), it is not clear whether it is also
necessary, since the functions f and g in the integral identities (2.5) and (2.6) are both
holomorphic and of specific parities.

If we try to use only one measure on C and impose Bargmann’s condition, we find
(by almost the same argument) that (2.9) and (2.10) hold provided that we set νe = νo
in them. But this pair of equations would then have no nonzero solution for µ 6= 0. This
leads us to believe that the µ-deformed Segal-Bargmann space cannot be realized as a
subspace of L2(C, ν) for some measure ν that is absolutely continuous with respect to
Lebesgue measure.

Next we note that in the standard polar coordinates r, θ in C we have that

z
∂

∂z
=

1
2

(
r
∂

∂r
− i ∂

∂θ

)
.

Since we are seeking real solutions νe and νo, it follows by equating imaginary (respec-
tively, real) parts on both sides of (2.9) and (2.10), when written in polar coordinates,
that

∂

∂θ
νe = 0,

∂

∂θ
νo = 0,

r2νo = − 1
2
r
∂

∂r
νe + 2µνe,

r2νe = − 1
2
r
∂

∂r
νo.

Thus, we are looking for two functions of r > 0 only (since they do not depend on θ

according to the first two equations) satisfying these last two equations, which form a first
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order, homogeneous linear system with variable real-valued coefficients in the unknown
pair (νe, νo). Therefore these real-valued solutions satisfy the coupled equations

νo = − 1
2r

d

dr
νe +

2µ
r2
νe, (2.11)

νe = − 1
2r

d

dr
νo, (2.12)

and so form a vector space of dimension two over R. Substituting the first equation into
the second, we get

d2νe
dr2

− (1 + 4µ)
r

dνe
dr

+
(

8µ
r2
− 4r2

)
νe = 0, (2.13)

while by substituting the second into the first, we have that

d2νo
dr2

− (1 + 4µ)
r

dνo
dr
− 4r2νo = 0. (2.14)

Now (2.13) and (2.14) are decoupled second order linear differential equations, which
impose sufficient conditions on the solutions νe and νo of the original coupled system
(2.11) and (2.12). Since each one of the equations (2.13) and (2.14) has a space of real-
valued solutions of dimension two over R, the pairs of these solutions (νe, νo) form a space
of dimension four, which includes the two dimensional space of solutions of the coupled
system (2.11) and (2.12). Our method will be to find the general solution of both of the
equations (2.13) and (2.14) and then identify the two dimensional subspace of solutions
to the coupled system.

Making the change of dependent variable, νe(r) = rαφ(r2) in (2.13) we find that

φ′′(r2) +
α− 2µ
r2

φ′(r2) +
(
α2 − 2α− 4αµ+ 8µ

4r4
− 1
)
φ(r2) = 0, (2.15)

which looks something like Bessel’s equation of order ν ([10], p. 98), namely

u′′(x) +
1
x
u′(x) +

(
1− ν2

x2

)
u(x) = 0

for x = r2. (This change of variable may seem unmotivated, as is often the case with
this method, but it is really not that unusual.) To get better agreement with the form of
Bessel’s equation, we choose the exponent α in the change of variable such that α−2µ = 1,
that is α = 2µ+1. With this value for α we calculate that α2−2α−4αµ+8µ = −4(µ−1/2)2

and so (2.15) becomes

φ′′(r2) +
1
r2
φ′(r2)−

(
(µ− 1/2)2

r4
+ 1
)
φ(r2) = 0, (2.16)

which is not Bessel’s equation but rather a related equation known as Bessel’s modified
equation of order ν, namely

u′′(x) +
1
x
u′(x)−

(
1 +

ν2

x2

)
u(x) = 0

with x = r2 and ν = µ− 1/2. Its general real valued solution ([10], p. 110) is

φ(r2) = aIµ−1/2(r2) + bKµ−1/2(r2),
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where Iµ−1/2 is the modified Bessel function of the first kind and of order µ−1/2, Kµ−1/2

is the Macdonald function of order µ− 1/2 and a, b ∈ R. See [10] for more details about
these special functions. Consequently,

νe(r) = r2µ+1[aIµ−1/2(r2) + bKµ−1/2(r2)]

is the general real valued solution of (2.13), where a, b ∈ R.
Similarly the change of variable, νo(r) = rαψ(r2) converts (2.14) into

ψ′′(r2) +
α− 2µ
r2

ψ′(r2) +
(
α2 − 2α− 4αµ

4r4
− 1
)
ψ(r2) = 0, (2.17)

and again we choose α = 2µ + 1 for the same reason as before. So, α2 − 2α − 4αµ =
−4(µ+ 1/2)2 follows and (2.17) becomes

ψ′′(r2) +
1
r2
ψ′(r2)−

(
(µ+ 1/2)2

r4
+ 1
)
ψ(r2) = 0. (2.18)

This is again Bessel’s modified equation, but now of order µ+ 1/2 instead of µ− 1/2. So
its general real valued solution is

ψ(r2) = cIµ+1/2(r2) + dKµ+1/2(r2),

where c, d ∈ R. Thus

νo(r) = r2µ+1[cIµ+1/2(r2) + dKµ+1/2(r2)]

is the general real valued solution of (2.14). It only remains to eliminate the superfluous
solutions, namely the solutions of the individually decoupled equations that do not pair
up to give a solution of the coupled system (2.11) and (2.12). For example, starting with
the right side of (2.12) and putting νo(r) = r2µ+1Kµ+1/2(r2) and using s = r2 we see
that (

− 1
2r

)
d

dr

(
r2µ+1Kµ+1/2(r2)

)
= − d

ds
(sµ+1/2Kµ+1/2(s))

= sµ+1/2Kµ−1/2(s) = r2µ+1Kµ−1/2(r2)

where the second equality is an identity that can be found in [10], p. 110. This shows
that the pair

(r2µ+1Kµ−1/2(r2), r2µ+1Kµ+1/2(r2)) (2.19)

is a solution of the coupled system. Since K−1/2(z) = K1/2(z) (see [10]), we see that these
two densities are equal when µ = 0. But when µ 6= 0, these densities are not equal and so
we find that our sufficient condition does not give one measure on the phase space, but
rather two.

Since the coupled system solution space has dimension two, we still need one more lin-
early independent pair solving the coupled system. But we have the following calculation
that is very similar to the previous one:(

− 1
2r

)
d

dr
(r2µ+1Iµ+1/2(r2)) = − d

ds
(sµ+1/2Iµ+1/2(s))

= −sµ+1/2Iµ−1/2(s) = −r2µ+1Iµ−1/2(r2)
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by another identity from [10], p. 110. So the pair

(−r2µ+1Iµ−1/2(r2), r2µ+1Iµ+1/2(r2)) (2.20)

is another, linearly independent solution of the coupled system. Now, Kν(x) > 0 and
Iν(x) > 0 for all x > 0. This means that the solution (2.19) gives a pair of positive
densities, which then define positive measures. However, the solution (2.20) gives a pair
of densities with opposite signs even after multiplying by any nonzero real number. This in
itself is not a fatal flaw with the solution (2.20) since one can develop interesting theories
with signed measures. The real problem with this solution is its asymptotic growth as
r →∞ for each function in the pair. (Precise information on this growth to infinity can
be found in [10] but that is not relevant to this discussion.) Since we are looking for
measures for holomorphic functions which, except for the constants, also go to infinity
as r → ∞, there is no way to use the solution (2.20) to construct a pair of nontrivial
holomorphic L2 function spaces. On the other hand, both of the functions in (2.19) are
integrable with respect to the measure rdr, which is the radial part of Lebesgue measure
rdrdθ in polar coordinates. (See [3] or [13].) With a suitable normalization either one of
the functions in (2.19) (but not both if µ 6= 0) can be made into a probability measure.
The definition in (1.1) and (1.2) has the normalization that makes dνe,µ into a probability
measure. (Recall again that we are only considering in detail here the case λ = 1, but
the case for general λ > 0 follows immediately.)

We can understand the particular normalization in (1.1) and (1.2) in terms of the µ-
deformed Segal-Bargmann transform Bµ. (This paragraph uses definitions and notations
from [18], which should be consulted for more details.) It turns out that Bµ has been
normalized so that Bµ1 = 1. But 1 is a unit vector in the domain L2(R, dρµ) of Bµ, since
dρµ is a probability measure. Since we want Bµ to be a unitary transform, a necessary
condition is that 1 in the codomain also be a unit vector. Since 1 is an even function, this
forces dνe,µ to be a probability measure, while imposing no restriction on dνo,µ. Clearly
the normalization of the two measures cannot be made intrinsic to the holomorphic side
of the theory by just using the Bargmann condition, which is itself homogeneous in the
measures.

We would like to close this presentation of our understanding of where the Macdonald
functions in the µ-deformed Segal-Bargmann space come from by reiterating that all of
this discussion fits into the way of understanding why this theory should be thought of as
a type of Segal-Bargmann analysis, as we described at the very end of Section 1. This is
because the relation between the creation and annihilation operators, namely that they
are adjoints, does not depend on the deformation parameter µ.

3. Open problems. A completely different way was introduced by Hall in [9] for defin-
ing an intrinsic inner product on the codomain of his generalized Segal-Bargmann trans-
forms. This is done in terms of a heat kernel measure defined on the phase space. We do
not go into details here, but merely note that his method produces only one measure (for
each of his three versions: A, B and C), and so it appears not to be applicable to the
case of the µ-deformed Segal-Bargmann transform, where we have two measures when
µ 6= 0. Notice that this relates to the general problem posed in [6] of finding some measure
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ν on the phase space in order to realize an abstract Hilbert space, introduced there as
a generalized Segal-Bargmann space associated with a Coxeter group, as a subspace of
L2(ν). In particular, it indicates that the problem may be to find a finite family of mea-
sures on the phase space instead of merely one. It would be interesting if one could find
a construction of the measures for the µ-deformed Segal-Bargmann space using methods
from heat kernel analysis, although this cannot be in strict analogy with Hall’s method
as we have noted above. We consider this is to be a major challenge remaining in this
area of research.

Nothing in our discussion excludes the possibility that there may well be ways of
putting three or more measures on the phase space and using them to construct a Segal-
Bargmann type space together with an associated Segal-Bargmann transform. And we
have not proved definitively that this theory cannot be made to work with only one
measure, though this seems plausible on account of our earlier remarks. In this context,
we should note that Asai has shown in [4] under some rather stringent hypotheses that
the Segal-Bargmann space associated to a probability measure on the configuration space
R can be realized as the L2 space of holomorphic functions on the phase space C for a
unique probability measure on C. However, the case of µ-deformed quantum mechanics
considered here is not included among the cases considered in [4].

Finally, the “spurious” solution which we have found for the coupled system (2.11)
and (2.12) may still be useful in the construction of some sort of related theory. This is
a highly speculative as well as vague comment.
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