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Abstract. We study a quantum extension of the Lévy Laplacian, so-called quantum Lévy-type
Laplacian, to the nuclear algebra of operators on spaces of entire functions. We give several
examples of the action of the quantum Lévy-type Laplacian on basic operators and we study a
quantum white noise convolution differential equation involving the quantum Lévy-type Lapla-

cian.

1. Introduction. In infinite dimensional analysis, the Lévy Laplacian was introduced
by P. Lévy [19] and rigorously developed by T. Hida and his school [14], [25], [22], [18].

The situation however changed with a series of papers [3], [4] where it is proved
that the Yang-Mills equations and the Lévy Laplace equation for the associated parallel
transport are equivalent. These results provide a strong motivation for a new approach
to infinite dimensional analysis based on the Brownian motion and its quantization.
On the other hand, a Fock space realization of the Lévy Brownian motion is obtained
and the corresponding quantum process is given explicitly [2]. More recently, an infinite
dimensional classical stochastic process generated by self-adjoint extensions of the Lévy
Laplacian is discussed and equi-continuous semigroups of class (Cp) generated by these
extensions are constructed [25].

The present work is mostly based on the papers [1], [24], [22] where a first path to a
quantum approach to the Lévy Laplacian is done. Then, employing the recent framework
of the theory of operators defined on spaces of holomorphic functions [7], the convolution
calculus [6], and the heat equation associated with the Lévy Laplacian [22], [24], [4], we
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specify the action of the quantum Lévy-type Laplacian on basic examples of operators
and we give the operator version of the nice connection between the Lévy Laplacian and
the quadratic quantum white noise pointed out, in the classical case, in [22], [24].

The paper is organized as follows. In Section 2 we assemble a general framework which
is necessary for our paper. In Section 3 we reformulate the so-called quantum Lévy-type
Laplacian. In Section 4 we give several examples of the action on basic white noise op-
erators and we show, in particular, that in the case of the commutative subalgebra of
convolution operators, the classical Lévy Laplacian coincides with its quantum extension
via the Laplace transform and the symbol transform. Section 5 is devoted to an investi-
gation of a quantum white noise differential equation involving the quantum Lévy-type
Laplacian. Finally, we discuss the traditional dependence of infinite dimensional Lapla-
cians and some infinite sequences of vectors.

General notation. Let X', ) be locally convex spaces.

> L(X,)): the space of all continuous linear operators from X into ) equipped with the
topology of bounded convergence.

> X ®Y: the complete Hilbert space tensor product when both X', Y are Hilbert spaces.

> X ®; Y: the complete m-tensor product. For simplicity, with no danger of confusion in
our context, ®, will be denoted by ® again.

> In both cases, ® stands for the symmetric tensor product.

2. General framework. First we review basic concepts, notations, and some results
which will be needed in the present paper. Development of these and similar results can
be found in the papers [12], [23], [6], [7].

2.1. Entire function with 0-exponential growth. Let 6 be a Young function, i.e., it is a
continuous, convex and increasing function defined on R and satisfies the two conditions:
6(0) = 0 and lim,_,», 8(x)/x = +0c0, see [11]. We define the conjugate function 6* of 6 by

0*(x) = sup (tx — 6(t)), x>0.
>0

Throughout the paper, we fix a Young function 6.

For a complex Banach space (B, ||.||) let H(B) denote the space of all entire functions
on B, i.e. of all continuous C-valued function on B whose restrictions to all affine lines
of B are entire on C. For each m > 0 we denote by Exp(B, 8, m) the space of all entire
functions on B with #-exponential growth of finite type m, i.e.

(2.1) Exp(B,0,m) = {f € H(B); | fllo.m = sup |£(2)] e mlI=) < o0},
z€

Let E be a real nuclear Fréchet space with topology given by an increasing family
{l.|p; p € N} of Hilbertian norms. Then
E = projlim F,,
p—00
where E,, is the completion of E with respect to the norm |.|,. We use E_,, to denote the
topological dual space of E,. Then the strong dual space E’ can be obtained as
E' =indlim E_,,

p—00
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where the strong topology of E’ and the inductive limit topology coincide due to the
nuclearity of E.
Let N = E+iF and N, = E, +iFE,, p € Z be the complexifications of I/ and F,,
respectively. Then N and its strong dual space N’ can be represented by
N =projlim N, and N’ =indlim N_,.

p—00 p—oo
According to (2.1), the projective system {Exp(N_,,0,m);p € N, m > 0} and the
inductive system {Exp(NNp, 8, m); p € N, m > 0} give the following two nuclear spaces:

Fo(N') = projlim Exp(N_,,0,m), Gp(N)= indlim Exp(N,,0,m).

p—o0;m]0 p—0o0;m—00

By definition f € Fy(N’) and g € Go(N) admit the Taylor expansions:

(2.2) F(2) =3 (2%, fa), z€N', fn € N®",
n=0
9(€) = (92, 65", €EN, gn € (N®"Y,
n=0

where we used the common symbol (-, -) for the canonical C-bilinear form on (N®7)’ x N&n
for all n. The Taylor series map 7 (at zero) associates to any entire function the sequence
of coefficients. For example, if f € Fy(N’) is given as in (2.2), the Taylor series map is
defined by Tf = f = (fn).
The spaces Fy(N') and Gyp(N) are characterized through the 7-transform and the
following two nuclear Fréchet spaces:
Fyp(N) = projlim Fy,,(N,), Go(N')= indlim Gg,,(N_p),

p—o0;m0 pooim=e0

where, for any pair p € N, m > 0,

Foun(Np) = {F' = (fa)s f € NS N U o 1= D 02 m " ful2 < o0},

n=0
. o0
Gom(N-p) = {B = (@,); @ € NS B, = D (016,)2m" @2, < o0}
n=0
and
0, —imf SO oo
r>0 rm

By definition, the strong dual of Fyp(N) is identified with Go(N') through the canonical

C-bilinear form
o0

(2,F)) =D nl{@n, fa)-

n=0

Moreover, we have the following duality theorem:

THEOREM 2.1 ([12]). The Taylor series map T gives two topological isomorphisms
.7:9(NI)—>F9(N) and gg*(N)HGg(N”
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Let Fop(N')* denote the topological dual space of Fy(N'). The action of a distribution
® € Fy(N')* on a test function ¢ € Fy(N') can be expressed in terms of the Taylor map
as follows:

-

<<(I>7 90>> = << ®, (5>>7

where & = (7*)71® and @ = T¢. On the other hand, it is easy to see that for each
&£ € N, the exponential function

(2.3) ee(z) i=e®® ze N

lies in Fy(N’) and the set of such test functions spans a dense subspace of Fy(N'). Thus,
for any ® € Fp(N')*, the Laplace transform of ® is defined by

(2.4) (L2)(€) = ((®,e¢)), E€N.

Therefore, we have the following duality theorem:

THEOREM 2.2 ([12]). The Laplace transform realizes a topological isomorphism
L: Fo(N")* — Go«(N).

2.2. Entire functions in two variables. Let M and N be two nuclear Fréchet spaces with
defining Hilbertian norms {|.| a7} and {|.| N}, respectively. Let M, & N, be the direct
sum of Hilbert spaces. Then the direct sum M @ N is by definition
M @ N = projlim M, ® N,,.
P00
Similarly,
(Me&N) =M®N'=indlimM_, & N_,.

p—00
By definition, an entire function in two variables on M x N is a separately entire function
f:M x N — C. On the other hand, in an obvious manner, a function f : M x N — C is
in one-to-one correspondence to a function f : M & N — C. Therefore, we will not make
distinction between them. Fore more details see e.g. [11].
According to the previous subsection, we easily check that a function f : (M@N) — C
belongs to Fy((M ¢ N)') if and only if for any pair p > 0 and m > 0
1fllo,~pm := sup_ [f(we 2)| exp (=0(m|w|nr,—p) — O(m|2z|n,—p)) < oo

we \Z

Similarly, a function g : M & N — C belongs to Go(M @ N) if and only if there exists a
pair p > 0 and m > 0 such that

19llo.p.m == sup |g(§ @ n)|exp (=0(m|¢|arp) = O(mln|n,p)) < oo
§eMneN

As in (2.3), an exponential function in two variables is defined, for £ € M and n € N,
by
ecan(z,w) = exp{(z,&) + (w,n)}, z€ N ,we M.
Then, the Laplace transform, denoted again by L, is defined as in (2.4) and the state-
ment in Theorem 2.2 remains valid. Moreover, by a standard argument with the Taylor



QUANTUM LEVY-TYPE LAPLACIAN 85

expansion, we see that the correspondence e¢q, < e¢ ® e, can be uniquely extended to
an isomorphism

(2.5) .7:9((M &) N)/) >~ .7:9(MI> ® .7:9(]\[/>.

2.3. Characterization of operators. We are interested in continuous operators from
Fo(N') into Fp(N')*. The space of such operators is denoted by L(Fp(N'), Fo(N')*)
and assumed to carry the bounded convergence topology.

Let u be the standard Gaussian measure on E’ uniquely specified by its characteristic
function

46 [ SeOuian, cer

and denote by H the Hilbert space L% (E’, u, C). Moreover, we assume that the Young
function 6 satisfies the following condition:

0
(2.6) limsup ﬁz) < +o0
xr—00 T
or equivalently
0*
(2.7) liminf x(f )

Then, under this condition on 6, we see that the spaces L(Fy(N'), Fo(N')) and L(H, H)
can be considered as subspaces of L(Fyp(N'), Fo(N')*). Moreover, identified with its re-
striction to Fy(N'), each operator T' € L(Fy(N')*, Fo(N')*) will be considered as an
element of L(Fy(N'), Fo(N')*), so that we have the continuous inclusion
L(Fo(N)", Fo(N')") € L(Fo(N'), Fo(N')").
In view of the classical kernel theorem, there is an isomorphism
L(Fo(N'), Fo(N')*) = Fo(N')" @ Fo(N')" = (Fp(N") @ Fo(N'))".

If T € L(Fp(N'), Fo(N')*) and TE € (Fp(N') ® Fo(N'))" are related under this isomor-
phism, we have

(T, 0) = (TK, o2 ).
We call TX the kernel of T.

The symbol of T' € L(Fy(N'), Fo(N')*) is by definition a C-valued function on N x N
defined by

(2.8) o(T)(&n) = ((Teg,en)) e, &meN.

Then, every operator in L(Fyg(N'), Fg(N')*) is uniquely determined by its symbol since
the exponential vectors ec span a dense subspace of Fy(N'). Therefore, in a similar
manner to the characterization theorem 2.2 for distributions in Fp(N')*, we have the
following characterization theorem for operators.

THEOREM 2.3. The symbol map yields a topological isomorphism between
L(Fo(N'), Fo(N')*) and Go-(N & N).
More precisely, we have the following isomorphisms

L(Fo(N"), Fo(N")*) — Gp= (N & N) — Gog(N') @ Go(N') = Go((N & N)');
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T O'(T)(f, ’r]) = Z<’€l,mv77®l & €®m> — K= (’il,m)l,m~

lm

REMARK 2.4. It is noteworthy that the symbol transform defined by (2.8) is sometimes
called the Wick symbol [8]. This is more like the standard notion of a symbol of a
pseudo-differential operator (see e.g. [20]). In fact, we found that our definition is more
convenient for the convolution product o(Ty * T3) = o(T1) 0(13) and for the connection
between the Lévy Laplacian acting on operators and the quadratic quantum white noise,
(see Section 5). This is due to the peculiar feature of the so-called the quantum Lévy-type
Laplacian: it receives a rigorous meaning of second order differential operator with respect
to a suitable notion of derivations on some Lie algebra of quantum white noise vector
fields. A further detailed study in this direction will appear in a future paper.

Let y € N’ and ¢ € Fyp(N'). We define the holomorphic derivative of ¢(z) =
oo (%™, ) at a point z € N’ by

o0

Dyep(z) = Z(” + 1)z, Y @1 @ny1),

n=0
where ®; is the right contraction of tensor product of degree 1 (see [21]). It is known
that D, € L(Fg(N'),Fo(N')) and hence D; € L(Fg(N')*, Fo(N')*). If, in particular,
E =SR), H= L*R,dt) and E' = S§'(R) (the Schwartz distributions space), we may
define

ay = Dét; teR
and denote its adjoint operator by a;. Then the operators a; € L(Fy(N'), Fo(N')) and
ay € L(Fo(N")*,Fo(N")*) are, respectively, called the annihilation operator and the
creation operator at a point ¢ € R. In all the remainder of this paper we shall consider
the above Schwartz standard Gelfand triple when needed.

It is shown (see [16], [23]) that Go« (N @ N) is closed under pointwise multiplication,

then the convolution product T'= Ty * Ty of Ty, To € L(Fo(N'), Fo(N')*) is defined as
the unique T' € L(Fp(N'), Fo(N')*) such that

(2.9) o(T) =o(Ty *Ty) := o(Ty) o(Ts).
We next recall the following useful result.
THEOREM 2.5 ([6]). Let ¢ be the Young function given by
ple) = (" —1)"(x), zeRy.
Then, for any T € L(Fy(N'), Fo(N')*), the convolution exponential

exp*T = io: % T*n

n=0

converges in L(F,(N'), Fo(N')*).

3. A quantum Lévy-type Laplacian. In this section, based on the paper [1], we shall
review the so-called quantum Lévy-type Laplacian.
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Let E4, E5 be two real nuclear Fréchet spaces with complexifications N; and Ny as
before. A function F' : F; & E5 — R is called of class C’Q(El @ E») if there exist two
continuous maps £ &n — F'(§,n) € (E1 ® E3) and

E@n— F'(En) € LI(E1 ® Ea), (B1 ® Ea)') = ((E1 ® B2)®?), £@ne B @ E,
such that, for any £ & n € E; & Eo, we have

1
(3.1)  F((&n) +(a,0) = F(&m) + (F'(&,m),a & b) + 5(F"(€,m), (a ® b)*?) + £ (¢, m),
where the error term satisfies

v—0 Y
and the nuclear kernel theorem is used into account. A C-valued function F' : E{®&FEy — C
lies in C?(E,® E») if so do its real and imaginary parts. In that case, F'(£,1) € (N;@No)’
and F”(f,n) € ((Nl © N2)®2)/.
Fix an arbitrary sequence {e, @& fi, }n.men in E1 @ Es, i.e. two sequences e = (e,)nen
and f = (fim)men in E; and Es, respectively. From the paper [1] we introduce the

following definition.

DEFINITION 3.1. Let F : E; @ Es — C be an element of C?(E; © E5). By a Laplacian
of Lévy-type associated with the sequence (e, f) = (en, ® fm)n,men We mean the elliptic
operator Ag defined by

N1 N3

Z Z<F//(§an)v(en@fm)®2>, 5€B77€E1€9E2,

n=1m=1

i 1
Q — 1
BLENEm = Im o,

whenever the limit exists.

The above definition is a natural extension of the usual Lévy Laplacian AL defined,
with respect to the infinite sequence e = {€,},cy C F1, on a function f € C*(Ey) by

n

(3.2) Apf)(E) == tim =S (" € ejre;), €€,

when the limit exists. To be more precise, if for example Es = {0} then f,,, = 0 for any
m € N and one can consider the identifications

Ey=E @{0}, £¢=£(®0 and F(£,0)=F(§), VE€E,
then
F'(§,0)=F'(§) and F"(5,0) = F"(¢).
So, we get the following Lemma:

LEMMA 3.2. The restriction of the Laplacian of Lévy-type A% associated with the se-
quence (e, f) = (en @ fm)n,men to the subspace Ey = E) & {0} (resp. E5 = {0} ® E3)
gives rise to the usual Lévy Laplacian Ay, on Ey (resp. E3) associated with the sequence
e = (en)nen (resp. f = (fm)men)-

The above Lemma is crucial for the operator A? acting on functions in two variables.
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Recall that for T € L(Fyp(N'),Fp(N')*), the symbol transform o(T) belongs to
Go-(N @ N). In particular, o(T) € C2(N @ N). Let € = (€,)nen and f = (fim)men be two
arbitrary sequences in N and let D?(N) denote the space of all T € L(Fp(N'), Fo(N')*)
such that o(T) € Dom(A?) and AG (o(T)) € G- (N @ N).

DEFINITION 3.3. The quantum Lévy-type Laplacian A%, acting on Dg(N), is defined by
(33) AF(T) =0 (AL(o(T))), T eDEN).
4. Basic examples. In the remainder of this Section we fix two sequences e = (e, )nen

and f = (fm)men of vectors in E. We denote by N . and N’L,f the sets of all vectors
z € N' and w € N’ such that

Ny
1
4.1 7e= lim — 2
( ) ”Z”L,e NllinooNl 7;<Z,€n> < o0,
1 &
2 R : 2
(4.2) w3 ; == Nilglmﬁn;w,fm < 00,

respectively.

4.1. Translation operators. Let y € N'. For ¢ € Fyp(N'), the translation operator 7,¢ of
¢ by y is defined by
ryp(x) =p(z+y), x€N'.

It is easy to check that 7, is a continuous linear operator from Fy(N’) into itself. We fix
y € N'. Then, for £ € N, we see that 7, e¢ = e<y’5>65. Hence, by definition, one has

() (&m) = ((Tyee, eq)) e O =W € e N.

Therefore, for any n,m € N
(4.3) (o(1)" (& n), (en @ fn)®?) = (yen)® o(ry)(&m) . &meEN.
PROPOSITION 4.1. Let y € N'. Then 7, € Dg(N) if and only if y € Ny . and, in this
case, T, s an eigenvector for A? i such a way that

A7 () = Il o7y
Proof. The proof follows from (4.3) and the definition of A%.
4.2. Integral kernel operators. Let a pair [,m € N and a distribution ; ,, € (N®(l+m))’
be given. The function ©;,, : (£,1) — (Kim,n® ® £¥™) is of polynomial growth, then
it belongs to Gg«(N @ N). Then we shall denote by T} ., (kim) € L(Fo(N'), Fo(N')*)

the unique operator associated to O, via the symbol transform. We employ the formal
integral expression:

Ty (Kim) = / Kim (81,5 Sty oy tm)as, oo af, G, oGy, dsy .. dsydty . dty,
RI+m

and call it the integral kernel operator with kernel k; ,,, (see e.g. [21]). By definition, the
symbol of T} ,,, (K1, ) is given by

U(Tl,m(”l,m))(fan) = <Hl,m7n®l ® €®m>, 5; 7’ S N
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For simplicity, we put F(&,1) := (kim,n® @ £®™). Then, by direct computation, for any
p,q € N, we have

(44) (P&, (ep ® f)®?) = 1L = 1) (kum, (P12 QFF?) @ €M)
+ m(m — D) {kpm,n%' @ (€®(m_2)®e§2)>
+ 2lm(K1 m, (77®(l71)®fq) ® (§®(m71)®€p)>~
This suggests the following;:
THEOREM 4.2. Let [,m € N. Suppose that
(4.5) Kim = 2% @ W™ € (B®Y) @ (B®™)
and denote
Ri—imey = 220D @w®m=D) - 0<i<,0<j<m.

Then, Tym (2% @ w®™) € Dg(N) if and only if 2 € £} ; and w € E7 , and in that case

(4.6) A (Tym(kim)) = 10 = 1) Timgm (ki—em)lI2l17, 4 + m(m = DTym—a(mm—2) w7 o

N, N3
. 1 . 1
+2lmT51’m1(ml’m1){th _Nl E (w,ep>} {th —N2 E (z,fq>}.
1—00 200

p=1 g=1
Proof. With our assumption (4.5), (4.4) becomes

(F" (&), (ep ® f)®?) = 11 = 1) (Ria,m, n® 7P @ €57 (2, fy)?
+m(m —1) (ki m—2,n™ @ 5 H) (w0, )
+2lm (Ki—1,m—1, 77®(l_1) ® §®(m_l)><zv fq) (w ep)
(1= 1) 0 (Ti—2,m(Ki—2,m)) (€:m)(z, fg)®
+m(m —1) o (T m—2(km—2)) (&) (w, ep)?
+2im o (Ti—1,m—1(Ki—1,m—1)) (£, M)(2, fq) (w, ).

It follows that

4.7) AL (Tim(Kim))
=11 = 1) Ti—am(Ki—2,m) 21125 +m(m — DTy 2 (kt,m—2) l0]|7

Ny N,
) 1
+ 2lmTz1,m1(f<&z1,m1){N1 %ﬂn—wo NN, Z Z@)a ep) (2, fq>}»

p=1qg=1
when the right side of (4.7) makes sense. Now if ||z\|%’f < 00 and ||w||2L7e < 00, by using
the Schwarz inequality, we have

1 N1 N2
B 2 S ) <

p=1g=1

and the statement follows. m

REMARK 4.3. Suppose that £ = S(R), H = L%*(R,dt) and E' = S'(R) (the Schwartz

distribution space). In the notations of the above Theorem, by taking z = w = J;, one can
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found the action of A? on higher powers of quantum white noises. To be more precise
let [,m e Nand t € Ry. For T = a} a" € L(F4(N’), Fo(N')*), one has

! m * m— 72 m
(48) A% (ar'a") = mim—1) 0 @l 20l . + 10 1) af a1

. 1 N1 N>
#71 m—1 :
+2lma; a} <N1,kfrgn~>oo NN, ; ;<5t7 ep) (01, fq>>

when the limits exist.
It is well-known (see [18]) that if e = f = (e, )neny C E is the complete orthonormal
basis consisting of Hermite functions of H, then sup,cp |(0¢, €n)| = O(n~'/12). Therefore,

Ny Ny
D (el = 3 n 0= O
n=1 n=1
and therefore
. 1 O 2 2
NlllinooN_l nzl<5t»€n> = [[6¢]|7, = 0.

In conclusion, the above relation (4.8) becomes
A9ar'a") =0, VImeN.

So, all the higher powers of quantum white noises are eigenvectors of the quantum Lévy-
type Laplacian A% for the eigenvalue 0.

4.3. Gross Laplacian. The Gross Laplacian (see [15], [18]) is the operator defined by its
Fock expansion as follows:

ANg =Tp2(1) = /T(s,t)asatds dt,
where 7 € (N®2)/ is the trace defined by

(r,6@mn)y =(&mn), &neN.

It is well-known that Ag is a linear operator from Fp(N') into itself. We describe the
action of the quantum Lévy-type Laplacian A% on this infinite dimensional classical
Laplacian.

PROPOSITION 4.4. The quantum Lévy-type Laplacian A% acts on the Gross Laplacian

Ag as follows:
Ni

A9 (Ag) =2 lim NLZ@,L,%)I

Ni—oo V1 n=1

if the limit exists. In particular, if e = (en)nen is an orthonormal system, then Ag €
’Dg(N) and we have

A (Dg) =21,
where I is the identity operator of L(Fg(N'), Fo(N")).

Proof. By direct computation we obtain

o(D6)(&n) = (1,69 = (£,€), &neN.
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Then, for any n,m € N
<U(AG)H(£a n)a (en D fm)®2> = 2<€n, e7l> ) 5777 € N.

Therefore
1 &
< Q B )
Ri(e(Aa)Em =2 Jim m- D fensen)

if the limit exists. To conclude, it is sufficient to remark that o(I) = 1. m

4.4. Convolution operators. By a convolution operator on the test function space Fy(N')
we mean a continuous linear operator from Fy(N’) into itself which commutes with all
translation operators 7,, x € N'.

We define the convolution ® x ¢ of a distribution ® € Fp(N’)* and a test function
¢ € Fyp(N') to be the function

(@ @) () = (B, Twp)),
Note, in particular, that the distribution ® € Fy(NN’)* acts on a test exponential function
by:

(4.9) Dxee = (LP)(E) e, E€N.

Direct calculation shows that ® x ¢ € Fy(N'), for any ¢ € Fyp(N’), and that the mapping
Ty defined by

xEN'.

To: ¢ — Pxp, @ Fo(N')

is a convolution operator on Fy(N'). Conversely, it was proved in [6] that all convolution
operators on Fy(N’) occur this way, i.e., if T is a convolution operator on Fy(N'), then
there exists a unique ® € Fy(N')* such that T' = Ty, or equivalently,

(4.10) T(p) =Ta(p) =Pxp, @ecFo(N).

Suppose @1, Py € Fy(N')*. Let Ty, and Ty, be the convolution operators given by
®; and D5, respectively, as in Equation (4.10). Tt is clear that the composition T, 0T, is
also a convolution operator on Fy(N'). Hence there exists a unique distribution, denoted
by @7 % Py, in Fy(N’)* such that

(411) TCIHOT‘I’Z = T@l*q)Q.

The distribution ®; * ®5 in Equation (4.11) is called the convolution of ®; and ®5. From
Proposition 1 of the paper [6] we have the following equality for any ®;, Py € Fy(N')* :

This proves, in particular, that the space L. of all convolution operators on Fy(N') is a
commutative subalgebra of L(Fy(N'), Fo(N')).

In the white noise theory the classical Lévy Laplacian is defined through the Laplace
transform. For ® € Fy(N')*, since L® € Gy-(N), we have L& € C?(N). Let Dy(N)
denote the space of all ® € Fy(N’)* such that

n

Au(£2)(©) = Jim D ((£0)"(€).¢; @ ;)
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exists for any € € N, and A (L(®)) € Gg- (N) (where e = (e )nen is an arbitrary infinite
sequence of elements of N). Then the Lévy Laplacian acts on ® € Dy, (N) by

(4.13) AL® = LY AL(LD)) € Fo(N')*.

The next Proposition gives a connection between the classical Lévy Laplacian Ar and
the quantum Lévy-type Laplacian A% on the algebra of convolution operators.

PROPOSITION 4.5. For any ® € Dr(N) we have Tg € Dg(N) and

(4.14) AP (o (Tw)) (&m) = BL (L) (€),  &neN.
Proof. Let ® € D (N). By definition and the relation (4.9) we have, for any £, € N,
(4.15) a(Te)(&,m) = ((Toee, en))e™ &7 = (B x e, e9))e & = (LO)(€).

Then, using the definitions of A? and Ay, one has

AP (o (Ts)) (6m) = lim Nl N Z Z (Ts)" (€, 1), (en @ fin)®*)
n=1m=1
N1 N2
— //
= hIZrLooNlNg ;mgzl ((LD) en@fm) >
N; Ny
i Il
o Nl,Nz—M)oNlNQ nzlm,zl ﬁ(b >
1 &
_ : _ " ®2
= Jim < Z:jl ((£2)"(©), ™)
= AL (LD)(€).

This proves the statement. m

5. Quadratic quantum white noise and the quantum Lévy-type Laplacian. In
this Section we give, in the frame of white noise calculus, a good connection between
square of quantum white noise and the quantum Lévy-type laplacian A%, and we discuss
the related heat equation.

In the remainder, we assume that E = S (R), H = L?(R,dt), and E' = S'(R).

Following [9], any continuous map ¢ +— T; € H = L*(E’, u,C) defined on an inter-
val can be considered as a usual (classical) stochastic process. Hence, any continuous
function whose domain is an interval of R and a range in Fyp(N')* can be called a (gener-
alized) classic stochastic process. In a similar way, in the frame of white noise analysis, a
(generalized) quantum stochastic process is a continuous mapping of a subset of R onto
L(Fo(N"), Fo(N')").

We now focus on the convolution differential equation with quadratic quantum white
noise as coefficients:
drl 9

t

(5.1) =i+ a)«T, Ty=1I.
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Define a quantum stochastic process {Z;} by

¢
Zy = / (a? + a*?)ds.
0

Since L(Fy(N'), Fo(N')*) is a commutative algebra with respect to the convolution prod-
uct (see (2.9)), the formal solution to (5.1) is given by the convolution exponential:

o0

1

(5.2) Ty = exp™(Ze) = Y — (Z)"
n=0
The symbol of (5.2) is given by
63 @& =3 (0(Z) €)= crplo(Z)En),  EneN.
n=0 "

But, by definition we have

o(Z)(€m) = / (a2 + a*2)eg, eq)) €M ds = / (€(s)? +1(s)?)ds.

0
Hence, (5.3) becomes

(5.4) o)) = e { [ (€F +n(e)as), e

THEOREM 5.1. The quadratic quantum white noise convolution differential equation (5.1)
has a unique solution {T;} in L(Fo(N'),Fo(N')*) given by (5.2) and the map t — T} is
continuous.

Proof. Let p >0 and m > 0. Then, using (5.4) we have the estimates
|o(T2) (€, m)| exp(=0"(ml¢]p) — 0" (mInl,))

= exp{/O (€(s)* +n(s)*)ds — 0" (mle]) — 9*(m|n|p)}

< exp{[¢]§ — 07 (mlg],)} x exp{[n[5 — 0 (mlnl,)}
< exp{[¢]; — 0" (mlg]p)} x exp{|nl; — 0" (mlnl,)}-

We need the following statement:

Fact. (1) For 0 <6 <1, = >0, we have

(5.5) 50*(x) > 6% (o).
(2) For § > 1, © > 0, we have
(5.6) 560™ (x) < 0" (6x).

Indeed, 6* is a Young function, so 6* is convex, then for any 0 < § <1,z >0
0% (6x — (1 —0)0) < §6*(x) + (1 — )07(0) = 06™ ().

Hence 60*(x) > 6*(dz). This proves (5.5). The relation (5.6) follows by changing ¢ to
1. The condition (2.7) says that there exists § > 0 small enough (0 < § < 1) such that
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%9*(|§|p) > ‘§|12> Then, taking (5.6) into account, one has, for any p > 0 and m =1/ > 0
lo(T)llo~ pom < oo
This proves that o(T:) € Go«(N @ N), or equivalently, T3 € L(Fp(N'), Fo(N')*). The

continuity of the map ¢t — T} is straightforward. m

REMARK 5.2. From the proof of the above theorem we see that the range of the solution
{T;} of (5.1) is contained in an algebra which is singular to the original £L(H, H), so that
{T}} is a generalized quantum stochastic process.

We fix two infinite sequences e = (ep)nen and f = (fm)men in N satisfying the
following properties:

(j) for any &,m,€ N

N; N o a 2
5.7 lim en(w)é(u)du + m(wn(uw)du ] =0
(5.7 vaNwooNlNz,;;(/ ewdut [ fulun(o)a)
(5

1 Nl « 1 N2 [e%
5.8 lim — €2 (u)du = lim — 2 (w)du = a.
B8 g [ den= g 30 [

Here « is a fixed positive real number.

THEOREM 5.3. Let {Ts} be the generalized quantum stochastic process solution of the
quadratic quantum white noise convolution differential equation (5.1). Let o > 0. Assume
that the above conditions (j) and (jj) are satisfied. Then T, is an eigenfunction of the
Lévy-type Laplacian Ag such that

(5.9) A9T, = 4aT,.

Moreover, for v € C, L, = e**T,, satisfies the quantum white noise heat equation
oL _ v
ot 2
Proof. From (5.4) we have, for each {,n € N,
t
o)) = can{ [ (60 +ato?) s}
0
Then to prove (5.9) it is sufficient to show that

A9(0(T,)) = 4ao(T,).

Given a pair n > 1 and m > 1, one has, by direct computation

(@ €. (en 1)) = [2( [ s [ r20)

(5.10) ACL,  L(0) = T,.

a e} 2
+4</ §(u)en(u)du+/ n(u)fm(u)du) }U(Ta)(g,n).
0 0
Then taking the conditions (j) and (jj) into account, we obtain

AL(0(To))(E,n) = 4ao(To)(€,m), €&neN

as desired. The verification of the second assertion is straightforward. m
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COROLLARY 5.4. Let S be a compact interval of R equipped with a finite measure v. If
the assumptions in Theorem 5.3 are true for all s € S, then

L, = / et T v(ds), t>0,
s

satisfies the quantum white noise heat equation
oL v
— =19
o 2L
with initial condition

LOZ/STsV(dS)-

Proof. Since s — Ts € L(Fp(N'),Fop(N')*) is continuous, {Ts; s € S} is a compact
subset of L(Fy(N'),Fo(N')*) and s — e25!T, is then integrable, and hence L; €
L(Fy(N'), Fo(N')*). By the Lebesgue dominated convergence theorem we obtain

0 ) X
500 = 3 [[asteiuas) = 7 [ AR@)euids) = § AF(L)
which is what we look for. m

In view of Lemma 3.2 and Corollary 5.4 we obtain the following well-known result,
see e.g. [22], [24].

COROLLARY 5.5. Let {®,} C Fyg(N')* be the classical stochastic process corresponding to
the quantum stochastic process determined by (5.2), i.e., ®5 = Tsep, s € S. Under the
assumptions of Theorem 5.3, the integral

W, :/eVStCI)sds
s

is defined in Fy(N')* and satisfies the Lévy heat equation

9
ot

\IJQZ/(I)st.
S

REMARK 5.6. The Lévy Laplacian [19] has been extensively studied in white noise anal-
ysis, see e.g. [14], [17], [18]. It is noteworthy that in these different developments the Lévy

\I/t = % AL\I/t

with the initial condition

Laplacian is defined depending on an infinite sequence e = (e, )nen of the middle Hilbert
space H of the initial nuclear Gelfand triple £ C H C E’ on which is constructed the
algebra of white noise operators, (L(Fp(N'), Fg(N')*) in our case). A typical example, as
used in the previous Section, is E = S (R) C H = L? (R,dt) C E' = S’ (R). It is usually
assumed that e = (e, )nen satisfies the following three properties:

(i) e = (en)nen is a complete orthonormal basis of L?(S, dt) with S a finite time interval.
(ii) e = (en)nen is equally dense, i.e.,

n@;o% Z/f du—/f du, Y feL>(S,dt).
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(iii) e = (en)nen is uniformly bounded on S, i.e.,

sup |len oo < 00
n>0

where ||.||o is the supremum norm.

Recently, more attention has been paid to the sufficiency of such conditions. Weaker
assumptions on e = (e, )pen are first considered by Obata-Ouerdiane [24], in order to
solve the heat equation with the Lévy Laplacian acting on functions on a real nuclear
space E. More precisely, the Lévy Laplacian is defined depending on an arbitrary infinite
sequence ¢ = (e, )nen. Moreover, it is shown that a class of solutions of the Lévy heat
equation can be obtained in a unified manner without assuming the above traditional
conditions (i), (ii), (iii), but just under the two conditions (j) and (jj) as in Theorem 5.3
for two variables.

Below we delve a little further into the weakness of these new hypotheses. First, note
that the condition (jj) is clearly strictly weaker than (ii). On the other hand, let e; be a
fixed nonzero vector in E with |ei|z2(0,1) = 1, and for any n > 1, put e, = %el. Then
we shall focus on this sequence e = (e, )nen. For £ € FE we have

n

lim 1 (e, €)* = lim 1 Z fes, §)° = 0.

n—oon n—oon k2
k=1 k=1

This means that the condition (j) is satisfied with the just constructed sequence (e),
but this sequence is not an orthogonal coordinate system as in (i). In conclusion, the
conditions pointed out by Obata-Ouerdiane [24] are strictly weaker than the traditional
ones.
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