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Abstract. We show that for the t-deformed semicircle measure, where % < t <1, the expansions
of L, functions with respect to the associated orthonormal polynomials converge in norm when
% < p < 3 and do not converge when 1 < p < % or 3 < p. From this we conclude that natural
expansions in the non-commutative L, spaces of free group factors and of free commutation
relations do not converge for 1 < p < % or 3 <p.

1. Introduction. In a recent publication [7] Junge, Nielsen, Ruan and Xu develop a
theory of a certain class of operator L, spaces. They are interested in operator spaces
which can be paved out by complemented copies of finite dimensional non-commutative
L, spaces in such a way that the completely bounded distance (of the copies, to the
finite dimensional L, spaces) and the completely bounded norms of the projections are
uniformly bounded. Spaces of this class they call COL,, spaces.

Among other results they prove that for a von Neumann algebra N with separable
predual and QWEDP, the non-commutative L, space L,(N), where 1 < p < 00, isa COL,,
space iff it has the completely bounded approximation property. They prove that in this
case the space L,(V) has a Schauder basis with uniformly controlled completely bounded
norm of the basis projections.

The regular von Neumann algebra VN(F,) of the free group on r € {1,2,...,00}
generators admits a canonical trace tr(T) = (T'd¢, 0.) (here, and in the sequel, e denotes
the identity of the group and for « € F,., 0, the point mass one at x). It, together with this
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functional, is a standard example of a non-commutative probability space. It fulfils the
above conditions and for 1 < p < oo the spaces L,(VN(F,)) = L,(tr) possess a cb-basis.
The completely bounded approximation property of L,(V N(F,)) is a consequence of the
weak amenability of F,. and to establish this, use is made of the natural length function
with respect to the generating set. Let F, be generated by S = {z1,...,2,}, then the
length function 1is defined as: l(w) = inf{n : w = 27 ---i" ,2;; € S,¢; € {1,-1}}.

Since acting on I2(F,) the von Neumann algebra VN(F,) is in its standard rep-
resentation l3(F,) = Lo(VN(F,)) and we may represent T € Lo(VN(F,)) as T ~
> wer, (T'0c,04)0, as an Ly norm convergent sum. When 7 < oo we clearly can arrange
to sum according to the length, i.e.

Twi > (T6e,64)s

n=0{z:1(z)=n}

Moreover, when r = 1 then F,, = Z and it is a rather basic fact of Fourier analysis that
an element T' € L,(VN(F,)) = L,(T), 1 < p < oo can be represented by an L,-norm
convergent Fourier sequence

o0
T~ Z(aneme + a_npe ™)
n=0
(in fact much more is known about these representations). Phrasing this in another way,
the point masses in the order according to the length of the group elements are a bounded
Schauder basis of L,(VN(F1)), 1 <p < o0.

A question pointed out to us by Xu! is if for finite » the point masses, arranged
according to the length of the group elements, still constitute a (completely) bounded
basis of L,(VN(F,)), 1 <p < oc.

In this note we show that for > 1, and p > 3 or p < % the partial sum operators

Sn(T) = > (T6e,02)0,
{z€F, : l(z)<N}
are not uniformly bounded on L,(VN(F,)), which answers the question in the negative
for this range of p.
THEOREM 1. Assumer > 2 and 1 < p < 3 or p > 3. Then there exists T € L,(VN(F,))
such that

sup [|Sn (T)|l, = oo,
NeN
accordingly Sy (T) does not converge in norm as N — oo.

The proof of this will be given after considering radial functions on [F,. and properties
of expansions with respect to certain orthogonal polynomials in section 3.

In section 4 we show that this phenomenon also appears for the L, spaces associated
to von Neumann algebras of free commutation relations.

We thank Professor Quanhua Xu for pointing out the problem to us.
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2. Radial functions. A function f : F, — C is called radial if its values f(w) depend
only on the length 1(w) of the group elements w. Accordingly we call an operator T €
VN(F,) radial if T'é, is a radial I function. VN (F,.),.q denotes the radial operators in
VN(F,), and moreover for a space of functions E on F, we denote E,.4 the subspace of
its radial functions.

For n € N let x,, be the characteristic function of the set E, = {w € F, : l(w) = n}
of elements of length n.

For this section we shall assume r < co. Then, as is well known, the summable radial
functions l; (F,);qq are, under convolution, a commutative x-algebra generated by xi.
This is seen from recursion relations:

X1%X1 = X2 + 2rXo,
X1*¥Xn = Xn+1+(2’r_]-)X’nv ’I’L:2,3,....
The operator norm closure Cv,.qq of A(I1(F;),qq) is a commutative C*-algebra isomorphic
to C(I), where the interval I = [—2/2r — 1],2y/2r — 1] is the spectrum of A(x1).
Let P,,n € N denote the sequence of polynomials defined by the recurrence
Py(z) =1, Pi(z)==x
xPi(z) = Py(z) + (2r)Py(z),
2P (z) = Poya1(z)+ (2r —1)Py_1(z), n=2,3,....

Then the *-homomorphism ": y,, — P, extends to the Gelfand transform of Cv,,q. The

w/4(2r 1)—z2

~¥— == dx represents the trace in the sense that for f € [1(F,),qa

tA(f) = / Fla) dpu(x). (1)
Using || fl13 = f = f*(e) = trA(f = f*) = [;(f* f*) = [ 1f(2)]? du(z) we see

that the Gelfand transform extends to an 1sometr1(: 1somorphlsm still denoted ~ from
ZQ (Fr)rad onto L2 (I, /J)

For our purposes it is suitable to renormalise, first with respect to the ls norm, and

measure du(z) =

further to the interval [—1,1] to obtain a sequence of orthonormal polynomials with
respect to the transferred measure. We choose t = 1 — % as a parameter and have for

€ [~1,1] that Q¢.n(s) = [[xnlly ' Pa(2v/2r = Ts) and
1r(2r—1)\/1—32d 1 4tv/1 — s2

dvy(s) = — _ 1 _Avi=st
wls) = T T s T i e

These polynomials then satisfy

Qt70(8) = 17 Qt,l(s) - 2\/1_‘53, Qt,Q(S) = 4\/‘252 — (2)

1
\/%7
1 1
$Qtn(s) = B Qtmr1(s) + B Qin-1(s), n=2,3,.... (3)
The measures v; are examples of t-transformed measures in the sense of Bozejko and

Wysoczanski. Here we are interested only in the parameter range [ , 1] and we refer for
further discussion to [5].
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LEMMA 1. If r < oo then the Banach spaces L,(VN(F,))rqa and L,([—1, 1},1/1_%) are
isometrically isomorphic.

Proof. The operator € : f — > ﬁ > wer, f(¥)xn initially defined on finitely sup-
ported functions f : F, — C extends to a conditional expectation from VN (F,.) onto
VN (F;)raqa and to an orthogonal projection from I5(F,) onto l3(F,)rqq. Hence for the
complex interpolation method we have [VN(F,),ad, l2(Fr)radlo = (VN(F,), 2(Fr)]o)rad
for any 6 € [0,1]. When 2 < p then by [8], for 0 = % the right hand side equals
L,(VN(F,))rqa- On the other hand (1), with our normalisation, shows that VN(F,),qq =
Loo([-1, 1],1/1_%) and lo(Fr)raa = L2([~1,1],7,_ 1). This proves the assertion when
2 <p<o0. For 1 <p<2it now follows by duality. =

3. Orthogonal polynomials. In this section we shall discuss L,-boundedness of par-
tial sums of expansions with respect to the orthonormal polynomials associated to the
measures V.

For t = % the measure v; has the density %\/11_? with respect to Lebesgue measure

on the interval [—1,1], and for ¢ = 1 the density is %\/1 — x2. In the first case the
Tchebyscheff polynomials of first kind

T,.(x) = cosnf, where cosf = z.
are orthogonal with respect to the measure V1. In the second case we find the Tchebyscheff
polynomials of second kind:
sin(n + 1)0
sin 0

Un(z) =

, where cosf = x.

In both cases they satisfy the recursion
22Y,(z) = Yopi(2) +Y_1(x), n=123... (4)
and are then determined by the respective values
To(x) =1, Ti(z) =z; Up(z) =1, Ui(x) = 2z. (5)

When ¢ € (%, 1) the orthonormal polynomials @y, see (3), satisfy this recursion
relation except for the first step n = 1. If we redefine Qt,o(s) = 1/4/t and Qt,n =
Qtn,n = 1,2,... then these polynomials satisfy the recursion (4) for all n = 1,2,...
and they are still orthogonal with respect to 1. With the exception of Qt,o they are still
normalised. From the values (3) and (5) we conclude

- 922t 2t — 1
Qt,n - \/E Tn + \/E

For t € [£,1] and v-integrable f : [-1,1] — C define

U,, n=0,1,2....

1 -~
anlf) = [ HOQuals) (s
and, for N € N let

N
Sen(f) =D atn(f)Qtn.
n=0
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We are interested in the range of p, 1 < p < oo, for which the partial sum operators
are uniformly L,-bounded, that is there exists a constant C;, such that for all f €
LP([_L 1]7 Vt):

s ([ 11 |st,N<f><s>|pdut<s>)% <cu(f 11 P (o)) g (6)

Ift = % this range is the open interval (1, 00). This may be seen from the classical theorem
of M. Riesz on Fourier series, because, by the substitution x = cosf we are led to the
Fourier expansions of even functions on the circle.

For the case that ¢t = 1 Pollard [9] proved that the range of validity of (6) includes
(%, 3) and that the partial sum operators are not uniformly bounded for p < § or p > 3.
The negative assertion on the convergence of the partial sums at the points p =z and

= 3 is due to Askey and Hirschman [1, Theorem 4c]

Evidently, for any polynomial ¢, ¢(z) = Zie_g 1.0 (q)Qsn(x), z € [~1,1]. Hence for
elements of a dense subspace in L,([—1,1],14), 1 < p < oo, the partial sums converge in
L,. If 1 < p < oo, by the uniform boundedness principle the uniform boundedness of the
partial sums is equivalent to the L, convergence:

THEOREM 2. Assume t € (%, 1]. Then for p in the range % <p<3

i ([ 176) = SrD@P da(o) =0, VI € L1

N—oo 1
whereas for p < % or p > 3 the L, convergence fails.

Proof. The proof of this theorem relies on the above cited work of Pollard and that of
Askey and Hirschman.
For the positive part we cite Pollard’s theorem 5.1 and have to verify its hypotheqeg

(H1)—(H(7) for the weight function w(z) = 217r T 411(11 t;”;Q = #t( )(1— 30) (1+9€)2 where

t(x) = 1_4(14% is positive and two times continuously differentiable on [—1,1]. Hence
w belongs to the class B of weights considered already by Bernstein [2]. (H1) (H6) are
verified in section 6 of [9].

To verify (H7) we consider the kernels

k:l:(xvy) =

LEMMA 2. Assume % <p<3. For f € L,([-1,1],dz) let

1
Kaf(@) = [ helo)f)dy
-1
Then the operators K1 are bounded on L,([—1,1],dx).

Proof of the Lemma. As in the proof of lemma 7.1 of [9] it suffices to show the uniform
boundedness, with respect to y, of the integrals

/1 (i) (dzamyy — (A=

r—y

dx,
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where a =4(1—#)t,0<a<1,0<b<1,and v = £(3 — %) This can be done, but it is
a little easier to argue as follows: Write

(?%ﬂ@@@—w

k =
:I:(xvy) ‘ T —y
where ¢z = £1 + 1(3 — 1) and @(,y) = ($5225)2 7 = LU with o, = 4(1 —t) and

flz)=(01- ath)%fi. Notice, that for ¢ € (3,1) we have 0 < a; < 1 and 0 < inf{f(z) :
x € [-1,1]} < 1, furthermore f is infinitely differentiable with bounded derivatives. Now

Gib%ﬂ%w—¢@ww+F@w%4

be(ey) < e B0 ) + o)
First
1 1 (17y2 )Ci -1
k = - <
o) = fl0) [ 1)
and, by [9, Lemma 7.1], the integral operator
1
hie / kL y)h(y) dy
-1
is bounded on L,([—1,1],dz), whenever 3 < p < 3.
Second
k3 (z,y) = f(x)™! —f(y) — /@) < const
=y

since f is bounded away from zero and has a bounded derivative. Hence the integral
operator with this kernel is bounded on L,([—1,1],dz) for any 1 <p < oco. m

The negative assertion of the theorem is based on the following lemmata. We will
continue the proof of the theorem first and postpone the proof of the lemmata.

LEMMA 3. There exists ¢ > 0 such that for all N € N:
/|C~2t’N(x)|dz/t(x) > ¢4
LEMMA 4. Assume1 >t > . If1 < p < 3 then f(z) = (1—z) " (1-4(1—t)tx?) € Ly(1y)
and impy_. a; n(f) > 0.
For1 <p< % and this function f we have

P

1Sn () = Sevs (Dl = (/cmNﬁﬂQLNoapdwcw)

\%

at,N(f)/th,N(m)ldut(x) > ¢ > 0.

That the L, convergence fails in the range p > 3 now follows by duality. =
Proof of Lemma 3. The trigonometric relation: 2 cosnfsin§ = sin(n + 1)6 — sin(n — 1)6
implies that

Gun(cost) — t sin(n+1)§ 1—tsin(n—1)¢

_t —1,2,....
Vi osind NG smg "
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For t > % on the n + 1 intervals

(2k+ 1)m ™ (1 1\ 2k+1Drw ™ (1 1
Iy = - S S k=0,...
b (2(n—|—1) n+i\2 @) 2+ Tnxilz @) 0,--oom,

in [0, 7] we have |sin(n + 1)0| > % Set E = J,, Ix. Then,

1
/ |Qtn(x)‘ dvi(x)
—1

- /7T tsin(n+1)§ 1—tsin(n—1)¢0 1 4t sin” 0 40
“ Jo |Vt sind Vi sin 6 2 1 —4(1 — t)tcos?(h)
t sin(n+1)0 1—tsin(n—1)0| 1 4t sin? @

v

/E Vi osinf i sin 6 271 1 — 4(1 — t)t cos2(0) d

i/ 11—t 4tsin 0 a0
2 Jp\VE2t Vi )1 —4(1 —t)tcos?(6)
l(21571)\/2/ sinfdf > 0.
™ E

v

The integral fE sin # df may be estimated from below by a positive constant, independent

"Jrl of the intervals I, are in [7, 2?“] "

Proof of Lemma 4. It is clear that f € L,([-1,1],1), when 1 <p < % Let

/ F(@)Un (@) diy(a).

Then it follows from (9.3.11) and (4.3.3) in [10] that b ,, converges to a limit b; > 0, as
n — 00. Hence,

of n, since roughly

Gpn = / V@)U () — 2t @)U () dia(z)

Vit
2t —1
_\fbn— bn — Z—"b > 0.
t ﬁt 2 \/E t L]

Now the proof of theorem 1 is evident: By lemma 1 we identified a subspace of
Ly(VN(Fy)) as the Ly space Ly([—1,1],v;_ 1 ) and showed in the corresponding section
that an expansion of radial L, operators amounts to an expansion of L, functions in the
latter space with respect to the orthonormal polynomials Q)¢ . For those the negative
assertion of theorem 2 disproves the norm convergence for 1 < p < % or p > 3.

4. Von Neumann algebras of free commutation relations. Let H be an N-dimen-
sional Hilbert space. The free (or full) Fock space is F(H) = @ff OH®”, where H®0 =
CQ for some vacuum vector €. On it the commutation relations a;a; = §;; may be
represented, by taking (left) annihilation and creation operators with reqpect to an or-
thonormal basis €1, ..., en of H.

The von Neumann algebra generated by G; = a1 + CLT, ....,Gy =an + a} we shall
denote 2. The vacuum expectation

E(T) - <TQ,Q>7 T e B(]:(H))v
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is a faithful normal trace on 2. Moreover, 2 acting on F(H) is in its standard represen-
tation and identifying Lo (2, ) with F(H) any T € Lo(2, €) is of the form

T= Zaiw(i), where i = (i1,...,4,), 1 <i; <N,

and w(i) € 2A acts by w( l=¢€;, ®...®e;,. One can show (see [6, 4, 3]) that

w(i) = ai, ...a;, +a; @iy, A+ af ..aj;
k1 ko kn
It follows (see [4, proposition 2.9]) that for i = (1,...,%1,02,. . 02, ., ln,. ., in)

w(i) = Uk, (@(01)) Uk, (w(i2)) - - - Uk, (w(in)),

where Uy, are the Tchebyscheff polynomials of second kind.

In this case it is natural to define the length of a tensor e = ¢;, ® ... ®¢;,, and of the
multi-index ¢ = (i1,...,4,), 1 <i; <N, as 1(e) = n respectively as 1(i) = n.

We can also ask when for T'= )" ajw; € L,(2, €) we have convergence of the partial

sums in L, (2, ¢):
Z oyw; — T
1()<N
THEOREM 3. If for all T € L,(,¢)

[SN(T) =T, e — 0,

3

Proof. We consider the radial elements of :

Xo=w(®) =id, x1= Y w@) xa= ) w(@)n=23,...

1(2)=1 1(2)=n

then

It is easy to see that
X1Xn = Xn+1 + NXn-1, n=1,2,....

w=(7) ()
n \/N n \/N M
The distribution of x; with respect to ¢ is known to be the measure

,uN— \/ N — 22dx.

Hence convergence of Sy (7)), for radlal T, implies the convergence of expansions with
respect to the orthogonal polynomials in Lp([f\/N, VN, ix). But by a theorem of Pol-
lard [9] this is false for p not in the range 3/2 < p < 3. If p = % or p = 3, then Askey
and Hirschman [1, Theorem 4c| show that the partial sum operators are not bounded

Then it follows that

uniformly in n. =
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