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Abstract. We produce generalized ¢g-Gaussian random variables which have two parameters of
deformation. One of them is, of course, q as for the usual g-deformation. We also investigate the
corresponding Wick formulas, which will be described by some joint statistics on pair partitions.

1. Introduction. Bozejko and Speicher studied the g-analogues of Brownian motions in
[BS1], [BS2] and investigated g-Gaussian processes with Kiimmerer in [BKS], which are
governed by usual independence for ¢ = 1 and free independence for ¢ = 0. Their construc-
tions were based on the g-Fock space over a Hibert space H. Let a*(f) be the g-creation
operator and a~(f) be the g-annihilation operator associated with f € H, respectively.
They satisfy the g-commutation relation o~ (f)at(f) — qat(f)a=(f) = ||f]|>-1, which
interpolates between the bosonic, canonical commutation relation (CCR), at ¢ = 1,
and the fermionic, canonical anti-commutation relation (CAR), at ¢ = —1. Then the
q-deformed centered Gaussian random variables are given by the position operators
ot () +am (f) (f € 50).

A certain general method for the construction of deformed Fock spaces was developed
in [BS3], which is based on self-adjoint contractions on the tensor product space H & X,
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and the braid relations play an important role. Their construction includes the g-Fock
space as a special case which suggested to make it more general.

We shall here present the generalized g-deformed Fock space according to their con-
struction together with an auxiliary positive sequence and give the associated generalized
g-deformed Gaussian random variables. The special choices of the positive sequence will
yield interesting two-parameter, (q,s) and (g, t)-deformed, Gaussian random variables
which include the known examples, the t-free, the t-classical (see [BW2]), and the s-free
Gaussian random variables.

We also investigate the corresponding Wick formulas. One of the deformation param-
eters is, of course, ¢ € (—1,1) as for the usual g-deformation. On the g-deformed Wick
formula, the set partition statistic of pair partitions cr, the number of crossings, is used
for g-counting (see, for instance, [An|, [EP]). The other parameters of our deformations
will require statistics other than c¢r in order to describe the Wick formulas in combina-
torial terms. Namely, the number of inner points, ip, and the number of outer connected
components, oc, will be used for the (g, s) and the (g, t)-deformations, respectively. The
non one-mode interacting Fock space will be also presented as special case.

Although the partition statistic cr is strongly multiplicative on pair partitions, the
joint statistics (cr, ip) and (cr, oc) are not strongly multiplicative functions any more. We
give an example of the model of the strongly multiplicative function by the joint statistics
of c¢r, the number of crossings, and cc, the number of connected components. This model
will be given by the free compression in [NS|. At the end of paper, we will propose some
problems for future work.

2. Deformed Fock spaces. In this section, we shall recall the general method for
construction of deformed Fock spaces based on a self-adjoint contraction in [BS3].

Let H be a real Hilbert space. Consider a self-adjoint contraction 7" in B(H ® H) such
that

A7) (Te1)1eT)=(Te1)1eT)(T®1),
where T'® 1 and 1 ® T are the natural amplifications of T to H ® H ® H. We define
T.=1® - ® 1T on HOED
—_———
i—1 times
and by amplification also on all H®" with n > 4 + 1. Then the operators {T;} are
self-adjoint contractions and satisfy the braids relations:
LT T = Tipa Ti T,

The authors of [BS3] defined, for a vector f € H, a creation operator d*(f) and

an annihilation operator d(f) on a dense subset F of the full Fock space Fo(H) =

D, HE™, where H®? = CQ (||2]| = 1), F being the set of finite linear combinations
of the elementary vectors. On the full Fock space, we have the canonical free creation
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operator £*(f) given by
(=71,
C(le1® Qe =fRx1Q - Ry,
and the free annihilation operator £(f) by
(=0,
U(flz1 @ Qap = (T1|f) 22 @ - @ Xp.
They put
d*(f) =£(f)
and
dif) =0 A +Ty+TWTo+ - +TyTy---Tp_1) on HE™.

Of course, d*(f) and d(f) are not adjoint to each other with respect to the original scalar
product (-|+)o on the full Fock space. Hence, they have introduced a new scalar product
(-] )7 which makes d*(f) and d(f) adjoint to each other.
The new scalar product is defined by
& m1 = dmn(&] P™n)o for & € HE™,n € HE™,

where the operator

P = %" (o)

g€Sy

on H®" is the operator corresponding to the function ¢ : S,, — B(H®™) given by p(e) =1
and o(m;) =T; (i = 1,2,...,n —1). Here {m,m,...,mh—1} is, of course, the set of
generators for the permutation group of n elements S, where 7; : (i,i+ 1) — (i 4+ 1,4).

REMARK 1. It can be checked without much difficulty that if we put
RM™ =14 T+ T T+ +TTe Ty oTh 1
then {P(™} satisfy the recurrence relation
p+l) — 1 p(n))R(nJrl)
with P = 1.
In the above situation, the following was shown (see [BS3]):

THEOREM 2. (i) If ||T|| < 1 then the operators P\"™) are strictly positive for all n and we
can take the completion of F with respect to the new scalar product (-|-)r as Fr, the
T-deformed Fock space.

(ii) For a vector f € H, d*(f) and d(f) are adjoint to each other on Fr, that is, for
all k € N and &,m € @) _y H®" we have

(@ (f)Eln)r = Eld(f)n)r.
3. Generalized ¢-deformed Fock space. The g-deformed Fock space introduced in

[BKS] can be obtained in the above manner by defining the contraction operator T" as

T:zy+—qly®x) on HRH, for g € (—1,1).



130 M. BOZEJKO AND H. YOSHIDA

In this case, the operator R(™ for the recurrence relation in Remark 1 can be reduced to
QU = 1+4qly + ¢TIy + -+ 4 ¢" 'Ly -+ Ty o0,

where II; is the natural flip operator for the ith and the (i 4+ 1)st factors on a tensor
product space.

Now we generalize these operators {Q(™} and introduce generalized g-deformed Fock
spaces. Given a sequence of positive numbers {7, },>1, we put

RM™ — TnQ(") for n > 1,
and define the operators { P} by the same recurrence relation for { P(™} as in Remark 1.
Namely, we define the operators { P(™} by the recurrence relation
POt — (1 PR,
with P() = 1.
If we define the operator P("™) by the recurrence relation
ﬁ(nJrl) (1 ® P )Q(nJrl)

then the operator P is given in the form
pn) — (Hﬂ.)ﬁ( )
i=1

We know that P(™ is positive by Theorem 2 and 7;, ¢ = 1,2,...,n are positive. Hence
the operator P(™ remains positive.

Now we shall introduce the new scalar product (- |- )(q,{'rn}) in the same manner as
above, that is,

) (g.frny) = Omon (€] PMn)g for € € O™, 7 € HE™,

It can be seen that this new scalar product behaves on the elementary vectors as
follows:

(xl Q- Qxy ‘yl ® - ®ym)(q {m}) nm(HTz) Z qzm}(ﬂ') $1|y7r > e <xn‘yﬂ-(n)>a
TESy

where inv(w) is the number of inversions of permutation m € S, defined by
ino(m) = #{(i,4) - 1< i < j <, 7(i) > 7(j)}.
PROPOSITION 3. Given g € (—1,1) and a positive sequence {1}, we define, for a vector
f € H, the operator Ay })(f) (simply denoted by a=(f)) by
a” (f)Q2=0,
a” (f)z1 = (1| f) Q

n
_ _ v
a (1@ @r,=7) "ol )T ® @@ @3, (0> 2),
k=1
where the symbol ag/k means that xi has to be deleted in the tensor product.
Then the operator a=(f) is adjoint to the canonical creation operator a™(f) on the
full Fock space with respect to the new scalar product (- |- ). {r.})-
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Since this proposition can be proved a similar way to [BW2] we omit the details.
By analogy with the Boson and the g-cases, for a vector f € H, we refer to the position
operator

w(f) =a"(f)+a"(f)

as the generalized g-deformed centered Gaussian random variable of variance || f||?.

4. The (q, s)-deformation. We shall consider a special choice of the sequence {7,},
namely 7, = s>("~1) (n > 1). We shall call such a deformation the (g, s)-deformation.
It can be easily seen that the scalar product for the (g, s)-deformed Fock space will
be given by
(1‘1 Q- Qxy | Y1 Q ym)(q,s) = n,m sn(n=h) Z q”w ™ 371|y7r(1)> <xn|y7r(n)>7
TESR

and the (g, s)-deformed annihilation operator by

nHe
f)a <’£1\f>

ez ® - @z, = s° (n— Iqu Yeplflzi @ - ®xk® ‘Rz, (n>2).
k=1

a

a

(
~(
~(
a”(

For a unit vector f € H, we shall evaluate the moments of the (g, s)-Gaussian random
variable w(f) = at(f) + a~(f) with respect to the vacuum expectation (-|-)(, ). We
expand the nth power of the Gaussian random variable w(f)" = (at(f) +a~ (f))" as

(@ (N+a (D)= > @ (e (f)a (),
e1==%1,-- ,ep,==%1
where we regard at1(f) and a='(f) as a*(f) and a~(f), respectively.
It can be obtained by the routine argument (see, for instance, [EP]) that the summand

@ (Fa (1) -0 (f)

has non-zero vacuum expectation if and only if {¢;}? , is a Catalan sequence. In partic-
ular, n is even, say n = 2m. For the Catalan sequence {e;}?™,, we put

{1 =0,
lp=¢e1=1,
bi=e1+- 120 (2<i<2m-—1),
loy =1+ e+ -+ eamar = 1,
and we shall call {£;}?™ the associated level sequence.

In order to evaluate the vacuum expectation, we shall use the cards arrangement,
which is a similar technique as in [ER] for juggling patterns but we have to prepare
different kinds of cards and we should introduce weights for the cards.

Creation cards. We make the cards C; (i = 0,1,2,...) for the creation operator. The
card C; has i inflow lines from the left and (i + 1) outflow lines to the right, where one
new line starts from the middle point on the ground level. For each j > 1, the inflow line
of the jth level goes to the (j + 1)st level without any crossing. We call the card C; the
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creation card of level i. Each creation card has weight 1. We will illustrate the cards of
first few levels:

Level O : Level 1 : Level 2 : Level 3 :
1 1

AT

CO Cl CQ 03
The weight of each card is indicated over the upper edge of the card.

AW -

SN

Annihilation cards. Next we shall make the cards for the annihilation operator. For ¢ > 1,
we consider the cards Agj) (j = 1,2,...,4) which have ¢ inflow lines from the left and
i — 1 outflow lines to the right. On the card Agj), only the inflow line of the jth level goes
down to the middle point on the ground level and will be annihilated. The lines flowing
into levels lower than the jth go on horizontally parallel and keep their levels. Hence j —1
crossings will occur. Moreover if the line flows into the k(> j)th level, it will flow out to
the (k — 1)st level without any crossing. We call the cards Agj) the annihilation cards of
level i. The weight of the card will be ¢ to the number of crossings on the card times s
to twice the number of passes through lines, that is,

wt(AEj)) _ S2(i—1)qj—1.

We illustrate the annihilation cards of the first few levels:
1 s2 s2q

Level 1 : Level 2 : \ \

1) Agl) Ag2)

=/

! stq st
Level 3 : § '\\
Az(),l) Ag(),Q) A:())S)
<6 s%q 62 $8¢3
Level 4 : § \\
AP

b
=N
[
—

AE,LS) A4(14)
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REMARK 4. The creation cards represent the relations a™*(f)f®* = f® f® (i > 0), where
the number of lines corresponds to the number of tensor factors. The annihilation cards
reflect the relations

1= ZS’ (g0 f@ 8 )

The jth factor is deleted

where the annihilated line indicates the position of the factor in the tensor product which
should be deleted.

Given a Catalan sequence {e;}? 27 we shall arrange the cards depending both on {¢;}
and on the associated level sequence {£;}?™ in the following manner: If &; = +1 then we
put the creation card of level ¢;, Cy, at the ith position. If ¢; = —1 then we put one of the
annihilation cards of level ¢;, A; J) . There are ¢; possibilities of the choice of annihilation
cards. We call such arrangements of cards the admissible arrangements.

By our construction, for a given Catalan sequence {g;}7™, the sum of the products
of the weight for the cards in all the admissible arrangements is equal to the vacuum
expectation of the monomial

@ (£)a = (f) 0™ (£).

Furthermore, there is one-to-one correspondence between all the admissible arrangements
for all the Catalan sequences of length 2m and P2 (2m), the set of pair partitions of 2m
elements.

We shall now introduce the set partition statistics on pair partitions, which will enable
us to describe the moments in combinatorial terms.

Let 7 be a pair partition of the set {1,2,...,2m} of 2m elements. For a block (¢, j) € ,
we define inpt(i,j) to be the number of k& with ¢ < k < j (inner points) and we call
ip(m) = Z(i,j)ew inpt(i, j) the sum of the inner points of the pair partition 7 (see [Yo]).

Namely, if 7 = {(i1,71), (i2,J2), - -, (im, Jm) }, where ix < ji, then we have
ip(m) =k — ix — 1).
k=1

Note that the same statistic ip can be found in [EP] as the sum of gaps.
We also adopt the well-known statistic cr, the number of crossings (see, for instance,
[Bi], [EP]), which is given by the number of pairs of blocks which will cross, that is,

er(n) = #{((a,b), (¢,d)) : (a,b), (¢c,d) € 7 with a < ¢ < b < d}.

EXAMPLE. For the Catalan sequence {g;}5_; = {+1, +1, —1, +1, +1, —1, -1, —1}, we
can have, for instance, the following admissible arrangement:

1 1 52 1 1 s%¢? s%¢ 1

/\// I

(TN T 0 [ N

—
[\
w
N
ot
(@]
-3
%)
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The product of the weights of the cards is s3¢® and the corresponding pair partition is

m={{1,6},{2,3}, {4, 7}, {5,8}}.
For the statistics we have ip(7) = 8 and cr(m) = 3.

Now we shall illustrate how the statistic ip will appear in the product of the weights
of the cards in an admissible arrangement. We note first that each pass through line on
the annihilation card is the segment of some connected line which will make a pair, and
it is obvious that this site of annihilation is an inner point of the pair. Secondly, in an
admissible arrangement, the annihilation cards of level k£ + 1 and the creation cards of
level k are completely parenthesized, and both the annihilation card of level k + 1 and
the creation card of level k have k passes through lines. Hence, the sum of the number of
passes through lines on the annihilation cards in an admissible arrangement is just half
the sum of the inner points of the corresponding pair partition. Furthermore, it is clear
that the crossings of blocks of pair partitions will be counted only on the annihilation
cards. Consequently, we can have the following evaluation:

THEOREM 5. For a vector f € H with ||f|| = 1, the moments of the (g, s)-Gaussian
random variable w(f) = a™(f) +a~ (f) is given by

0, if n is odd,
(w(f)" Q ‘ Q)(q’s) = Z Sip(ﬂ)qcr(ﬂ)7 if n=2m.
TEP2(2m)

With help of the combinatorial arguments in [F1], it is not so difficult to see that the
Stieltjes transform of the standardized (g, s)-Gaussian measure v, ;) can be expanded
into the following continued fraction:

/dV(q)s)(t) B 1
z—t [1] ’

L q
s[2]q
T s3],
- s°[4]q
5
where [n], stands for the g-integer that is [n], = %.

We can apply the cards arrangements to a more general situation and obtain the
following (g, s)-Wick formula:

THEOREM 6. Let w(f;) = a™(f;)+a~(f;) be the (¢, s)-Gaussian random variables. Then

@Uam) -l (1) 2Dy = > ( TT (515)) 7.

TE€P2(2m) (i,j)Em

5. Other special cases. We shall consider another special choice of the sequence {7, }
by putting, for t > 0, 77 = 1 and 7,, = ¢ if n > 2. We shall call such a deformation the
(g, t)-deformation. In this case, the scalar product and the annihilation operator will be
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reduced as follows: The scalar product for the (g, t)-deformed Fock space will be given by

($1 Q- Qxy | Y1 Q- QYm )(q,t) = 5n,mtn_1 Z qinv(Tr) <x1|y7r(1)> to <xn|yﬂ'(n)>7
TESy

and the (g, t)-deformed annihilation operator by
a”(f)2=0,
a” (f)z1 = (z:1]f) &,

n
a (flzi® - ®@xp Zthk_l<$k|f>x1 ®"'®J}/k Q- Qxy, (n>2).
k=1
REMARK 7. In the case of ¢ = 0, the (0,t)-deformed Fock space is nothing else but the
t-free Fock space investigated in [BW2] (see also [BW1]). If we take the limit ¢ — 1
then we can also obtain the t-classical Fock space. Another example of a Fock space
representation of (g, t)-Gaussian random variables was given by Wojakowski in [Wo].

In order to obtain the (g,t)-Wick formula we shall arrange the cards again. The
figures of cards are the same as before and the weights of the creation cards will not be
changed. But we have to give different weights to the annihilation cards to indicate the

(¢, t)-annihilation, that is,
wi(A?) = { S,
tq’ if 1 > 2.
We shall adopt the set partition statistic oc, the number of outer connected components,
introduced in [BW2|. We will regard, of course, that pairs which cross each other are
contained in the same connected components and the outerness can be defined as in
non-crossing case (see [BLS]).

It is an obvious combinatorial fact that outer connected components should be closed
by the annihilation card of level 1. Furthermore, only the annihilation card of level 1 has
weight 1 and the annihilation cards other than of level 1 have the factor ¢ in their weights.
Of course, there are m annihilation cards in the admissible cards arrangement of length
2m.

EXAMPLE. If the pair partition is

™= {{17 5}’ {273}7 {476}7 {778}}

then the corresponding admissible card arrangement is given as follows:

1 1 t 1 iq 1 1 1

N
TRTAMLm

1 2 3 4 ) 6 7 8

There are two outer connected components {1,5} U {4,6} and {7,8}, which are closed
by the annihilation of level 1 at the sites 6 and 8, respectively. On the other hand, the
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connected component {2,3} is inner, which is closed at the site 3 by the annihilation

card of level 2. The product of the weights of the cards is t2¢, which, of course, equals
t4foc(7r)qcr(7r) )

Combining the above arguments, we have the following (g, t)-Wick formula:

THEOREM 8. Let w(f;) = a™(f;)+a(f;) be the (¢,t)-Gaussian random variables. Then
(@(fam) - w(f2)o(F) QD = > (T Gild)) emoemger ™.
meP2(2m) (ij)er

In the generalized g-deformation introduced in section 3, if we consider the case of
q = 0 then it yields the interacting Fock space which is, however, not one mode but more
general. The scalar product for this case will be reduced to

(1@ @ [ Y1 @+ @ Ym) (0, frn}) = 5n,m(HTz‘)<$1|y1><x2|y2> ATnlYn),
=1

and the annihilation operator will be
a”(f)2=0,
a” (f)z1 = m(z1lf)
a (o1 @ Qup =mp(x1]|fH 22 @ 23R - @2y (0 > 2).
In this case we can also obtain the Wick formula by the same argument for non-

crossing case in [AB].

THEOREM 9. Let w(f;) = at(f;) +a™ (f;) be the Gaussian random variables. Then
(@(fom) ()0 2 Dorp = >0 (T ilf)) ),
TeENCP2(2m) (i,j)ET

where NCPo(2m) denotes the set of non-crossing pair partitions of 2m elements. Here
the function t(m) is defined as follows:

t(ﬂ-) = H 7_d(Bi)7
B;enm
where d(B;) denotes the depth of the block Bj in the non-crossing pair partition m given
by
d(B;) = #{k : B; C By}

6. The strongly multiplicative function on pair partitions. We denote the set of
pair partitions on {1,2,...,2n} by P2(1,2,...,2n) and put

Pa(o0) = | P2(1,2,...,2n).
n=1

DEFINITION. (i) A function t on P2(00) is called weakly multiplicative, if we have for all
k,m € N with k <m and all my € Pa(1,...,k) and mo € Po(k+1,...,m)

t(7r1 U 7T2) = t(’/Tl) . t(’/TQ).
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(ii) A function t on Ps(00) is called strongly multiplicative, if we have for all k,¢,m € N
with k < £ <m and all m; € Po(1,...,k, 0+ 1,...,m) and mp € Pa(k+1,...,¢)

t(m Umg) = t(m) - t(ma).

REMARK 10. The function t,(7) = ¢°" (™ on Py(c0) is strongly multiplicative. The func-
tions t4(m) = s(™) and t;(7) = tI"17°°(") where |r| stands for the number of blocks
(pairs) in =, are not strongly multiplicative although they are weakly multiplicative.
Hence, the joint statistics (™) g (™) and ¢I™l=0¢(™) 4er(7) would not be strongly multi-
plicative any more.

Here we consider the partition statistic cc, the number of connected components. Tt
is obvious that the statistic cc will yield the strongly multiplicative function by t,(7) =
a*CC(TK‘).

Since the product of strongly multiplicative functions is again strongly multiplicative,
for instance, the function

t(g0) () = ta(m) ty(m) = o™ ger™)

is strongly multiplicative.

Now we shall give an example of a construction of deformed Gaussian random vari-
ables for which the tracial and strongly multiplicative positive definite function such as
above will appear in a moment formula. The model for this example is given by the free
compression investigated in [NS]. We shall start with a tracial and strongly multiplicative
example, like the g-case.

Let (A, p) be a non-commutative probability space, where ¢ is a trace. Let p € A is
a projection such that ¢(p) = a (# 0). We consider deformed Gaussian random variable
w(f) in A, where f is in a real Hilbert space H and p is free from w(f). We make free
compression by p, that is, we have the system of non-commutative probability space
(p Ap, ) where ¢ = = ¢|, 4,, and the random variable &(f) = L pw(f)p in (pAp, d).
This is our desired deformed Gaussian random variable. Indeed we have the following
evaluation:

THEOREM 11. For a vector f € H with || f|| = 1, we consider deformed Gaussian random,
variable w(f). Let t be the corresponding positive definite function on P2(c0) for w(f)
and we assume that it is tracial and strongly multiplicative. Then the moments of the
induced deformed Gaussian random variable W(f) are given by

0, if n is odd,
‘Z("D(f)n) = Z afcc(”)t(w), if n = 2m.
TEP2(2m)

Proof. By the assumption, the 2mth moment of the deformed Gaussian random vari-

Mom = Y (7).

TEP2(2m)

able w(f) is written in the form

Concerning the moments of odd orders, they should vanish and, hence, the free camulants
of odd orders of w(f) also vanish.
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If a non-crossing partition has no block of odd size, that is, all blocks are even, then we
call such a non-crossing partition even. We denote the set of even non-crossing partitions
of 2m elements by N'C.(2m).

Given a pair partition m € P2(2m), the connected components of 7 will induce the
even non-crossing partitions v € N'C.(2m) canonically. We write this correspondence by
®(7) = v. For example, if the pair partition is 7 = {{1,5}, {2, 3}, {4,6}} then 7 has two
connected components {1,5}U{4, 6} and {2, 3}, thus the corresponding even non-crossing
partition becomes ®(7) = {{1,4,5,6}, {2,3}}. Pair partitions m; and 72 in P2(2m) are
said to be equivalent in connected components if ®(mw1) = ®(m3). By this equivalence, we
can rewrite the above formula on the 2mth moment as

Mom = Y > ().

veNC.(2m) meP2(2m)
P(m)=v

Here we put

T2k = Z t(p)a

pEP2(2k),
ce(p)=1

that is, 7oy is the sum of t-values for the pair partitions in Po(2k) which are constituted
from only one connected component. We illustrate the case of rg below:

= t(75IRY) + (7R + [ Z80N) + (7R

Then the strong multiplicativity of t guarantees that, for a given non-crossing partition

veNC.(2m),
Z t(m) = H T|V]s

P(m)=v Vev

where |V| denotes the size of the block V in the even non-crossing partition v € N'C¢(2m).

mam = >, [ v

veENC.(2m) Ver

Hence we have the equality

which means that 795 is nothing else than the 2kth free cumulant of deformed Gaussian
random variable w(f).

By the formula (1.15) in [NS], it follows that the 2kth free cumulant 75, of the induced
deformed Gaussian random variable @(f) is given by 7o5, = % rok . Using the free moment-
cumulant formula again, we obtain

iom= > J[fwvi= > o™ ][mwm,

veNC.(2m) Verv veNC.(2m) Vev

where |v| stands for the number of blocks in the even non-crossing partition v € NC,(2m).
Under the map @, it is clear that the number of connected components of a pair parti-
tion 7, ce(m), equals the number of blocks of the corresponding even non-crossing par-
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tition v(= ®(m)). Consequently we have for the 2mth moment of the induced deformed
Gaussian random variable @(f)
R A ST DI )
veNC.(2m) P (m)=v TEP2(2m)

Hence the corresponding positive definite function t on P2 (00) for the induced Gaussian
random variable @(f) is given by

t(r) = a~Mt(n)
and it is again tracial and strongly multiplicative. m

Starting with t(7) = ¢°"(™) we have the (¢, a)-deformed Gaussian random variables
and the following remarks naturally arise:

REMARK 12. (i) The function t(, ) (m) = =M g (™) is strongly multiplicative and the
vacuum state is trace so we can think about the second quantization and ultracontrac-
tivity or hypercontractivity of corresponding Ornstein-Uhlenbeck semigroups, like in the
g-case (see [Bol], [Bo2]).

(ii) There is an open problem about factoriality of the von Neumann algebra generated
by the (g, @)-Gaussian random variables (see [Hi|, [No|, [Ri], and [Si]).

(iii) How about connections with the classical Markov processes like in [BKS]?

(iv) How about the orthogonal (g, &)-Hermite polynomials?
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