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Abstra
t. We produ
e generalized q-Gaussian random variables whi
h have two parameters ofdeformation. One of them is, of 
ourse, q as for the usual q-deformation. We also investigate the
orresponding Wi
k formulas, whi
h will be des
ribed by some joint statisti
s on pair partitions.1. Introdu
tion. Bo»ejko and Spei
her studied the q-analogues of Brownian motions in[BS1℄, [BS2℄ and investigated q-Gaussian pro
esses with Kümmerer in [BKS℄, whi
h aregoverned by usual independen
e for q = 1 and free independen
e for q = 0. Their 
onstru
-tions were based on the q-Fo
k spa
e over a Hibert spa
e H. Let a+(f) be the q-
reationoperator and a−(f) be the q-annihilation operator asso
iated with f ∈ H, respe
tively.They satisfy the q-
ommutation relation a−(f)a+(f) − qa+(f)a−(f) = ‖f‖2 ·1, whi
hinterpolates between the bosoni
, 
anoni
al 
ommutation relation (CCR), at q = 1,and the fermioni
, 
anoni
al anti-
ommutation relation (CAR), at q = −1. Then the
q-deformed 
entered Gaussian random variables are given by the position operators
a+(f) + a−(f) (f ∈ H).A 
ertain general method for the 
onstru
tion of deformed Fo
k spa
es was developedin [BS3℄, whi
h is based on self-adjoint 
ontra
tions on the tensor produ
t spa
e H⊗H,2000 Mathemati
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128 M. BOŻEJKO AND H. YOSHIDAand the braid relations play an important role. Their 
onstru
tion in
ludes the q-Fo
kspa
e as a spe
ial 
ase whi
h suggested to make it more general.We shall here present the generalized q-deformed Fo
k spa
e a

ording to their 
on-stru
tion together with an auxiliary positive sequen
e and give the asso
iated generalized
q-deformed Gaussian random variables. The spe
ial 
hoi
es of the positive sequen
e willyield interesting two-parameter, (q, s) and (q, t)-deformed, Gaussian random variableswhi
h in
lude the known examples, the t-free, the t-
lassi
al (see [BW2℄), and the s-freeGaussian random variables.We also investigate the 
orresponding Wi
k formulas. One of the deformation param-eters is, of 
ourse, q ∈ (−1, 1) as for the usual q-deformation. On the q-deformed Wi
kformula, the set partition statisti
 of pair partitions cr, the number of 
rossings, is usedfor q-
ounting (see, for instan
e, [An℄, [EP℄). The other parameters of our deformationswill require statisti
s other than cr in order to des
ribe the Wi
k formulas in 
ombina-torial terms. Namely, the number of inner points, ip, and the number of outer 
onne
ted
omponents, oc, will be used for the (q, s) and the (q, t)-deformations, respe
tively. Thenon one-mode intera
ting Fo
k spa
e will be also presented as spe
ial 
ase.Although the partition statisti
 cr is strongly multipli
ative on pair partitions, thejoint statisti
s (cr, ip) and (cr, oc) are not strongly multipli
ative fun
tions any more. Wegive an example of the model of the strongly multipli
ative fun
tion by the joint statisti
sof cr, the number of 
rossings, and cc, the number of 
onne
ted 
omponents. This modelwill be given by the free 
ompression in [NS℄. At the end of paper, we will propose someproblems for future work.
2. Deformed Fo
k spa
es. In this se
tion, we shall re
all the general method for
onstru
tion of deformed Fo
k spa
es based on a self-adjoint 
ontra
tion in [BS3℄.Let H be a real Hilbert spa
e. Consider a self-adjoint 
ontra
tion T in B(H⊗H) su
hthat

(1⊗ T )(T ⊗ 1)(1⊗ T ) = (T ⊗ 1)(1⊗ T )(T ⊗ 1),where T ⊗ 1 and 1 ⊗ T are the natural ampli�
ations of T to H ⊗ H ⊗ H. We de�ne
Ti = 1⊗ · · · ⊗ 1︸ ︷︷ ︸

i−1 times ⊗T on H
⊗(i+1)

and by ampli�
ation also on all H
⊗n with n > i + 1. Then the operators {Ti} areself-adjoint 
ontra
tions and satisfy the braids relations:

{
TiTi+1Ti = Ti+1TiTi+1,

TiTj = TjTi with |i − j| ≥ 2.The authors of [BS3℄ de�ned, for a ve
tor f ∈ H, a 
reation operator d∗(f) andan annihilation operator d(f) on a dense subset F of the full Fo
k spa
e F0(H) =⊕∞
n=0 H

⊗n, where H
⊗0 = CΩ (‖Ω‖ = 1), F being the set of �nite linear 
ombinationsof the elementary ve
tors. On the full Fo
k spa
e, we have the 
anoni
al free 
reation



DEFORMED GAUSSIAN RANDOM VARIABLES 129operator ℓ∗(f) given by
ℓ∗(f) Ω = f,

ℓ∗(f) x1 ⊗ · · · ⊗ xn = f ⊗ x1 ⊗ · · · ⊗ xnand the free annihilation operator ℓ(f) by
ℓ(f) Ω = 0,

ℓ(f) x1 ⊗ · · · ⊗ xn = 〈x1|f〉x2 ⊗ · · · ⊗ xn.They put
d∗(f) = ℓ∗(f)and

d(f) = ℓ(f)(1 + T1 + T1T2 + · · · + T1T2 · · ·Tn−1) on H
⊗n.Of 
ourse, d∗(f) and d(f) are not adjoint to ea
h other with respe
t to the original s
alarprodu
t (· | ·)0 on the full Fo
k spa
e. Hen
e, they have introdu
ed a new s
alar produ
t

(· | ·)T whi
h makes d∗(f) and d(f) adjoint to ea
h other.The new s
alar produ
t is de�ned by
(ξ | η)T = δm,n(ξ |P (n)η)0 for ξ ∈ H

⊗m, η ∈ H
⊗n,where the operator

P (n) =
∑

σ∈Sn

ϕ(σ)on H
⊗n is the operator 
orresponding to the fun
tion ϕ : Sn → B(H⊗n) given by ϕ(e) = 1and ϕ(πi) = Ti (i = 1, 2, . . . , n − 1). Here {π1, π2, . . . , πn−1} is, of 
ourse, the set ofgenerators for the permutation group of n elements Sn, where πi : (i, i + 1) 7→ (i + 1, i).Remark 1. It 
an be 
he
ked without mu
h di�
ulty that if we put

R(n) = 1 + T1 + T1T2 + · · · + T1T2 · · ·Tn−2Tn−1then {P (n)} satisfy the re
urren
e relation
P (n+1) = (1⊗ P (n))R(n+1)with P (1) = 1.In the above situation, the following was shown (see [BS3℄):Theorem 2. (i) If ‖T‖ < 1 then the operators P (n) are stri
tly positive for all n and we
an take the 
ompletion of F with respe
t to the new s
alar produ
t ( · | · )T as FT , the

T -deformed Fo
k spa
e.(ii) For a ve
tor f ∈ H, d∗(f) and d(f) are adjoint to ea
h other on FT , that is, forall k ∈ N and ξ, η ∈
⊕n

k=0 H
⊗k we have
(d∗(f)ξ | η )T = (ξ | d(f)η )T .3. Generalized q-deformed Fo
k spa
e. The q-deformed Fo
k spa
e introdu
ed in[BKS℄ 
an be obtained in the above manner by de�ning the 
ontra
tion operator T as

T : x ⊗ y 7→ q(y ⊗ x) on H ⊗ H, for q ∈ (−1, 1).



130 M. BOŻEJKO AND H. YOSHIDAIn this 
ase, the operator R(n) for the re
urren
e relation in Remark 1 
an be redu
ed to
Q(n) = 1 + qΠ1 + q2Π1Π2 + · · · + qn−1Π1 · · ·Πn−2Πn−1,where Πi is the natural �ip operator for the ith and the (i + 1)st fa
tors on a tensorprodu
t spa
e.Now we generalize these operators {Q(n)} and introdu
e generalized q-deformed Fo
kspa
es. Given a sequen
e of positive numbers {τn}n≥1, we put

R̂(n) = τnQ(n) for n ≥ 1,and de�ne the operators {P̂ (n)} by the same re
urren
e relation for {P (n)} as in Remark 1.Namely, we de�ne the operators {P̂ (n)} by the re
urren
e relation
P̂ (n+1) = (1⊗ P̂ (n))R̂(n+1),with P̂ (1) = 1.If we de�ne the operator P̃ (n) by the re
urren
e relation
P̃ (n+1) = (1⊗ P̃ (n))Q(n+1),then the operator P̂ (n) is given in the form

P̂ (n) =
( n∏

i=1

τi

)
P̃ (n).We know that P̃ (n) is positive by Theorem 2 and τi, i = 1, 2, . . . , n are positive. Hen
ethe operator P̂ (n) remains positive.Now we shall introdu
e the new s
alar produ
t ( · | · )(q,{τn}) in the same manner asabove, that is,

(ξ | η)(q,{τn}) = δm,n(ξ | P̂ (n)η)0 for ξ ∈ H
⊗m, η ∈ H

⊗n.It 
an be seen that this new s
alar produ
t behaves on the elementary ve
tors asfollows:
(x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ ym)(q,{τn}) = δn,m

( n∏

i=1

τi

) ∑

π∈Sn

qinv(π)〈x1|yπ(1)〉 · · · 〈xn|yπ(n)〉,where inv(π) is the number of inversions of permutation π ∈ Sn de�ned by
inv(π) = #{(i, j) : 1 ≤ i < j ≤ n, π(i) > π(j)}.Proposition 3. Given q ∈ (−1, 1) and a positive sequen
e {τn}, we de�ne, for a ve
tor

f ∈ H, the operator a−
(q,{τn})(f) (simply denoted by a−(f)) by

a−(f)Ω = 0,

a−(f)x1 = τ1〈x1|f〉Ω,

a−(f)x1 ⊗ · · · ⊗ xn = τn

n∑

k=1

qk−1〈xk|f〉x1 ⊗ · · ·⊗
∨
xk ⊗ · · · ⊗ xn (n ≥ 2),where the symbol ∨

xk means that xk has to be deleted in the tensor produ
t.Then the operator a−(f) is adjoint to the 
anoni
al 
reation operator a+(f) on thefull Fo
k spa
e with respe
t to the new s
alar produ
t ( · | · )(q,{τn}).
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e this proposition 
an be proved a similar way to [BW2℄ we omit the details.By analogy with the Boson and the q-
ases, for a ve
tor f ∈ H, we refer to the positionoperator
ω(f) = a+(f) + a−(f)as the generalized q-deformed 
entered Gaussian random variable of varian
e ‖f‖2.4. The (q, s)-deformation. We shall 
onsider a spe
ial 
hoi
e of the sequen
e {τn},namely τn = s2(n−1) (n ≥ 1). We shall 
all su
h a deformation the (q, s)-deformation.It 
an be easily seen that the s
alar produ
t for the (q, s)-deformed Fo
k spa
e willbe given by

(x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ ym)(q,s) = δn,m sn(n−1)
∑

π∈Sn

qinv(π)〈x1|yπ(1)〉 · · · 〈xn|yπ(n)〉,and the (q, s)-deformed annihilation operator by
a−(f)Ω = 0,

a−(f)x1 = 〈x1|f〉Ω,

a−(f)x1 ⊗ · · · ⊗ xn = s2(n−1)
n∑

k=1

qk−1〈xk|f〉x1 ⊗ · · · ⊗
∨
xk ⊗ · · · ⊗ xn (n ≥ 2).For a unit ve
tor f ∈ H, we shall evaluate the moments of the (q, s)-Gaussian randomvariable ω(f) = a+(f) + a−(f) with respe
t to the va
uum expe
tation (· | ·)(q,s). Weexpand the nth power of the Gaussian random variable ω(f)n = (a+(f) + a−(f))n as

(a+(f) + a−(f))n =
∑

ε1=±1,··· ,εn=±1

aεn(f)aεn−1(f) · · · aε1(f),where we regard a+1(f) and a−1(f) as a+(f) and a−(f), respe
tively.It 
an be obtained by the routine argument (see, for instan
e, [EP℄) that the summand
aεn(f)aεn−1(f) · · ·aε1(f)has non-zero va
uum expe
tation if and only if {εi}n

i=1 is a Catalan sequen
e. In parti
-ular, n is even, say n = 2m. For the Catalan sequen
e {εi}2m
i=1, we put

ℓ1 = 0,

ℓ2 = ε1 = 1,

ℓi = ε1 + · · · εi−1 ≥ 0 (2 ≤ i ≤ 2m − 1),

ℓ2m = ε1 + ε2 + · · · + ε2m−1 = 1,and we shall 
all {ℓi}2m
i=1 the asso
iated level sequen
e.In order to evaluate the va
uum expe
tation, we shall use the 
ards arrangement,whi
h is a similar te
hnique as in [ER℄ for juggling patterns but we have to preparedi�erent kinds of 
ards and we should introdu
e weights for the 
ards.Creation 
ards. We make the 
ards Ci (i = 0, 1, 2, . . .) for the 
reation operator. The
ard Ci has i in�ow lines from the left and (i + 1) out�ow lines to the right, where onenew line starts from the middle point on the ground level. For ea
h j ≥ 1, the in�ow lineof the jth level goes to the (j + 1)st level without any 
rossing. We 
all the 
ard Ci the
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reation 
ard of level i. Ea
h 
reation 
ard has weight 1. We will illustrate the 
ards of�rst few levels:Level 0 :
1

C0

�

r

Level 1 :
1

C1

�

r

Level 2 :
1

C2

�

r

Level 3 :
1

C3

�

rThe weight of ea
h 
ard is indi
ated over the upper edge of the 
ard.Annihilation 
ards. Next we shall make the 
ards for the annihilation operator. For i ≥ 1,we 
onsider the 
ards A
(j)
i (j = 1, 2, . . . , i) whi
h have i in�ow lines from the left and

i−1 out�ow lines to the right. On the 
ard A
(j)
i , only the in�ow line of the jth level goesdown to the middle point on the ground level and will be annihilated. The lines �owinginto levels lower than the jth go on horizontally parallel and keep their levels. Hen
e j−1
rossings will o

ur. Moreover if the line �ows into the k(> j)th level, it will �ow out tothe (k − 1)st level without any 
rossing. We 
all the 
ards A

(j)
i the annihilation 
ards oflevel i. The weight of the 
ard will be q to the number of 
rossings on the 
ard times sto twi
e the number of passes through lines, that is,

wt(A
(j)
i ) = s2(i−1)qj−1.We illustrate the annihilation 
ards of the �rst few levels:

Level 1 :

1

A
(1)
1

�

r

Level 2 :

s2

A
(1)
2

�

r

s2q

A
(2)
2

�

r

Level 3 :

s4

A
(1)
3

�

r

s4q

A
(2)
3

�

r

s4q2

A
(3)
3

�

r

Level 4 :

s6

A
(1)
4

�

r

s6q

A
(2)
4

�

r

s6q2

A
(3)
4

�

r

s6q3

A
(4)
4

�

r



DEFORMED GAUSSIAN RANDOM VARIABLES 133Remark 4. The 
reation 
ards represent the relations a+(f)f⊗i = f⊗f⊗i (i ≥ 0), wherethe number of lines 
orresponds to the number of tensor fa
tors. The annihilation 
ardsre�e
t the relations
a−(f) f⊗i =

i∑

j=1

si−1qj−1(f ⊗ · · · ⊗
∨
f ⊗ · · · ⊗ f︸ ︷︷ ︸The jth fa
tor is deleted ),

where the annihilated line indi
ates the position of the fa
tor in the tensor produ
t whi
hshould be deleted.Given a Catalan sequen
e {εi}2m
i=1, we shall arrange the 
ards depending both on {εi}and on the asso
iated level sequen
e {ℓi}2m

i=1 in the following manner: If εi = +1 then weput the 
reation 
ard of level ℓi, Cℓi
at the ith position. If εi = −1 then we put one of theannihilation 
ards of level ℓi, A

(j)
ℓi
. There are ℓi possibilities of the 
hoi
e of annihilation
ards. We 
all su
h arrangements of 
ards the admissible arrangements.By our 
onstru
tion, for a given Catalan sequen
e {εi}2m

i=1, the sum of the produ
tsof the weight for the 
ards in all the admissible arrangements is equal to the va
uumexpe
tation of the monomial
aεn(f)aεn−1(f) · · ·aε1(f).Furthermore, there is one-to-one 
orresponden
e between all the admissible arrangementsfor all the Catalan sequen
es of length 2m and P2(2m), the set of pair partitions of 2melements.We shall now introdu
e the set partition statisti
s on pair partitions, whi
h will enableus to des
ribe the moments in 
ombinatorial terms.Let π be a pair partition of the set {1, 2, . . . , 2m} of 2m elements. For a blo
k (i, j) ∈ π,we de�ne inpt(i, j) to be the number of k with i < k < j (inner points) and we 
all

ip(π) =
∑

(i,j)∈π inpt(i, j) the sum of the inner points of the pair partition π (see [Yo℄).Namely, if π = {(i1, j1), (i2, j2), . . . , (im, jm)}, where ik < jk, then we have
ip(π) =

m∑

k=1

(jk − ik − 1).Note that the same statisti
 ip 
an be found in [EP℄ as the sum of gaps.We also adopt the well-known statisti
 cr, the number of 
rossings (see, for instan
e,[Bi℄, [EP℄), whi
h is given by the number of pairs of blo
ks whi
h will 
ross, that is,
cr(π) = #{((a, b), (c, d)) : (a, b), (c, d) ∈ π with a < c < b < d}.Example. For the Catalan sequen
e {εi}8

i=1 = {+1, +1, −1, +1, +1, −1, −1, −1}, we
an have, for instan
e, the following admissible arrangement:
1

1

�

r

1

2

�

r

s2

3

�

r

1

4

�

r

1

5

�

r

s4q2

6

�

r

s2q

7

�

r

1

8

�

r



134 M. BOŻEJKO AND H. YOSHIDAThe produ
t of the weights of the 
ards is s8q3 and the 
orresponding pair partition is
π = {{1, 6}, {2, 3}, {4, 7}, {5, 8}}.For the statisti
s we have ip(π) = 8 and cr(π) = 3.Now we shall illustrate how the statisti
 ip will appear in the produ
t of the weightsof the 
ards in an admissible arrangement. We note �rst that ea
h pass through line onthe annihilation 
ard is the segment of some 
onne
ted line whi
h will make a pair, andit is obvious that this site of annihilation is an inner point of the pair. Se
ondly, in anadmissible arrangement, the annihilation 
ards of level k + 1 and the 
reation 
ards oflevel k are 
ompletely parenthesized, and both the annihilation 
ard of level k + 1 andthe 
reation 
ard of level k have k passes through lines. Hen
e, the sum of the number ofpasses through lines on the annihilation 
ards in an admissible arrangement is just halfthe sum of the inner points of the 
orresponding pair partition. Furthermore, it is 
learthat the 
rossings of blo
ks of pair partitions will be 
ounted only on the annihilation
ards. Consequently, we 
an have the following evaluation:Theorem 5. For a ve
tor f ∈ H with ‖f‖ = 1, the moments of the (q, s)-Gaussianrandom variable ω(f) = a+(f) + a−(f) is given by

(ω(f)n Ω |Ω)(q,s) =





0, if n is odd,
∑

π∈P2(2m)

sip(π)qcr(π), if n = 2m.With help of the 
ombinatorial arguments in [Fl℄, it is not so di�
ult to see that theStieltjes transform of the standardized (q, s)-Gaussian measure ν(q,s) 
an be expandedinto the following 
ontinued fra
tion:
∫

d ν(q,s)(t)

z − t
=

1

z −
[1]q

z −
s2[2]q

z −
s4[3]q

z −
s6[4]q. . .

,

where [n]q stands for the q-integer that is [n]q = 1−qn

1−q
.We 
an apply the 
ards arrangements to a more general situation and obtain thefollowing (q, s)-Wi
k formula:Theorem 6. Let ω(fj) = a+(fj)+a−(fj) be the (q, s)-Gaussian random variables. Then

(ω(f2m) · · ·ω(f2)ω(f1) Ω |Ω)(q,s) =
∑

π∈P2(2m)

( ∏

(i,j)∈π

〈fi|fj〉
)

sip(π)qcr(π).

5. Other spe
ial 
ases. We shall 
onsider another spe
ial 
hoi
e of the sequen
e {τn}by putting, for t > 0, τ1 = 1 and τn = t if n ≥ 2. We shall 
all su
h a deformation the
(q, t)-deformation. In this 
ase, the s
alar produ
t and the annihilation operator will be
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ed as follows: The s
alar produ
t for the (q, t)-deformed Fo
k spa
e will be given by
(x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ ym )(q,t) = δn,mtn−1

∑

π∈Sn

qinv(π)〈x1|yπ(1)〉 · · · 〈xn|yπ(n)〉,and the (q, t)-deformed annihilation operator by
a−(f)Ω = 0,

a−(f)x1 = 〈x1|f〉Ω,

a−(f)x1 ⊗ · · · ⊗ xn = t

n∑

k=1

qk−1〈xk|f〉x1 ⊗ · · · ⊗
∨
xk ⊗ · · · ⊗ xn (n ≥ 2).Remark 7. In the 
ase of q = 0, the (0, t)-deformed Fo
k spa
e is nothing else but the

t-free Fo
k spa
e investigated in [BW2℄ (see also [BW1℄). If we take the limit q → 1then we 
an also obtain the t-
lassi
al Fo
k spa
e. Another example of a Fo
k spa
erepresentation of (q, t)-Gaussian random variables was given by Wojakowski in [Wo℄.In order to obtain the (q, t)-Wi
k formula we shall arrange the 
ards again. The�gures of 
ards are the same as before and the weights of the 
reation 
ards will not be
hanged. But we have to give di�erent weights to the annihilation 
ards to indi
ate the
(q, t)-annihilation, that is,

wt(A
(j)
i ) =

{
1 if i = 1,

tqj−1 if i ≥ 2.We shall adopt the set partition statisti
 oc, the number of outer 
onne
ted 
omponents,introdu
ed in [BW2℄. We will regard, of 
ourse, that pairs whi
h 
ross ea
h other are
ontained in the same 
onne
ted 
omponents and the outerness 
an be de�ned as innon-
rossing 
ase (see [BLS℄).It is an obvious 
ombinatorial fa
t that outer 
onne
ted 
omponents should be 
losedby the annihilation 
ard of level 1. Furthermore, only the annihilation 
ard of level 1 hasweight 1 and the annihilation 
ards other than of level 1 have the fa
tor t in their weights.Of 
ourse, there are m annihilation 
ards in the admissible 
ards arrangement of length
2m.Example. If the pair partition is

π = {{1, 5}, {2, 3}, {4, 6}, {7, 8}}then the 
orresponding admissible 
ard arrangement is given as follows:
1

1

�

r

1

2

�

r

t

3

�

r

1

4

�

r

tq
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�

r

1

6

�

r

1

7

�

r

1

8

�

rThere are two outer 
onne
ted 
omponents {1, 5} ∪ {4, 6} and {7, 8}, whi
h are 
losedby the annihilation of level 1 at the sites 6 and 8, respe
tively. On the other hand, the
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onne
ted 
omponent {2, 3} is inner, whi
h is 
losed at the site 3 by the annihilation
ard of level 2. The produ
t of the weights of the 
ards is t2q, whi
h, of 
ourse, equals
t4−oc(π)qcr(π).Combining the above arguments, we have the following (q, t)-Wi
k formula:Theorem 8. Let ω(fj) = a+(fj)+a−(fj) be the (q, t)-Gaussian random variables. Then

(ω(f2m) · · ·ω(f2)ω(f1) Ω |Ω)(q,t) =
∑

π∈P2(2m)

( ∏

(i,j)∈π

〈fi|fj〉
)

tm−oc(π)qcr(π).In the generalized q-deformation introdu
ed in se
tion 3, if we 
onsider the 
ase of
q = 0 then it yields the intera
ting Fo
k spa
e whi
h is, however, not one mode but moregeneral. The s
alar produ
t for this 
ase will be redu
ed to

(x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ ym)(0,{τn}) = δn,m

( n∏

i=1

τi

)
〈x1|y1〉〈x2|y2〉 · · · 〈xn|yn〉,and the annihilation operator will be

a−(f)Ω = 0,

a−(f)x1 = τ1〈x1|f〉Ω,

a−(f)x1 ⊗ · · · ⊗ xn = τn〈x1|f〉x2 ⊗ x3 ⊗ · · · ⊗ xn (n ≥ 2).In this 
ase we 
an also obtain the Wi
k formula by the same argument for non-
rossing 
ase in [AB℄.Theorem 9. Let ω(fj) = a+(fj) + a−(fj) be the Gaussian random variables. Then
(ω(f2m) · · ·ω(f2)ω(f1) Ω |Ω)(0,{τn}) =

∑

π∈NCP2(2m)

( ∏

(i,j)∈π

〈fi|fj〉
)
t(π),where NCP2(2m) denotes the set of non-
rossing pair partitions of 2m elements. Herethe fun
tion t(π) is de�ned as follows:

t(π) =
∏

Bi∈π

τ d(Bi),where d(Bi) denotes the depth of the blo
k Bj in the non-
rossing pair partition π givenby
d(Bi) = #{k : Bi ⊂ Bk}.6. The strongly multipli
ative fun
tion on pair partitions. We denote the set ofpair partitions on {1, 2, . . . , 2n} by P2(1, 2, . . . , 2n) and put

P2(∞) =

∞⋃

n=1

P2(1, 2, . . . , 2n).Definition. (i) A fun
tion t on P2(∞) is 
alled weakly multipli
ative, if we have for all
k, m ∈ N with k < m and all π1 ∈ P2(1, . . . , k) and π2 ∈ P2(k + 1, . . . , m)

t(π1 ∪ π2) = t(π1) · t(π2).
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tion t on P2(∞) is 
alled strongly multipli
ative, if we have for all k, ℓ, m ∈ Nwith k < ℓ < m and all π1 ∈ P2(1, . . . , k, ℓ + 1, . . . , m) and π2 ∈ P2(k + 1, . . . , ℓ)

t(π1 ∪ π2) = t(π1) · t(π2).Remark 10. The fun
tion tq(π) = qcr(π) on P2(∞) is strongly multipli
ative. The fun
-tions ts(π) = sip(π) and tt(π) = t|π|−oc(π), where |π| stands for the number of blo
ks(pairs) in π, are not strongly multipli
ative although they are weakly multipli
ative.Hen
e, the joint statisti
s sip(π)qcr(π) and t|π|−oc(π)qcr(π) would not be strongly multi-pli
ative any more.Here we 
onsider the partition statisti
 cc, the number of 
onne
ted 
omponents. Itis obvious that the statisti
 cc will yield the strongly multipli
ative fun
tion by tα(π) =

α−cc(π).Sin
e the produ
t of strongly multipli
ative fun
tions is again strongly multipli
ative,for instan
e, the fun
tion
t(q,α)(π) = tα(π) tq(π) = α−cc(π)qcr(π)is strongly multipli
ative.Now we shall give an example of a 
onstru
tion of deformed Gaussian random vari-ables for whi
h the tra
ial and strongly multipli
ative positive de�nite fun
tion su
h asabove will appear in a moment formula. The model for this example is given by the free
ompression investigated in [NS℄. We shall start with a tra
ial and strongly multipli
ativeexample, like the q-
ase.Let (A, ϕ) be a non-
ommutative probability spa
e, where ϕ is a tra
e. Let p ∈ A isa proje
tion su
h that ϕ(p) = α ( 6= 0). We 
onsider deformed Gaussian random variable

ω(f) in A, where f is in a real Hilbert spa
e H and p is free from ω(f). We make free
ompression by p, that is, we have the system of non-
ommutative probability spa
e
(pA p, ϕ̃) where ϕ̃ = 1

α
ϕ|pA p, and the random variable ω̃(f) = 1

α
p ω(f) p in (pA p, ϕ̃).This is our desired deformed Gaussian random variable. Indeed we have the followingevaluation:Theorem 11. For a ve
tor f ∈ H with ‖f‖ = 1, we 
onsider deformed Gaussian randomvariable ω(f). Let t be the 
orresponding positive de�nite fun
tion on P2(∞) for ω(f)and we assume that it is tra
ial and strongly multipli
ative. Then the moments of theindu
ed deformed Gaussian random variable ω̃(f) are given by

ϕ̃
(
ω̃(f)n

)
=





0, if n is odd,
∑

π∈P2(2m)

α−cc(π)
t(π), if n = 2m.Proof. By the assumption, the 2mth moment of the deformed Gaussian random vari-able ω(f) is written in the form

m2m =
∑

π∈P2(2m)

t(π).Con
erning the moments of odd orders, they should vanish and, hen
e, the free 
umulantsof odd orders of ω(f) also vanish.
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rossing partition has no blo
k of odd size, that is, all blo
ks are even, then we
all su
h a non-
rossing partition even. We denote the set of even non-
rossing partitionsof 2m elements by NCe(2m).Given a pair partition π ∈ P2(2m), the 
onne
ted 
omponents of π will indu
e theeven non-
rossing partitions ν ∈ NCe(2m) 
anoni
ally. We write this 
orresponden
e by
Φ(π) = ν. For example, if the pair partition is π = {{1, 5}, {2, 3}, {4, 6}} then π has two
onne
ted 
omponents {1, 5}∪{4, 6} and {2, 3}, thus the 
orresponding even non-
rossingpartition be
omes Φ(π) = {{1, 4, 5, 6}, {2, 3}}. Pair partitions π1 and π2 in P2(2m) aresaid to be equivalent in 
onne
ted 
omponents if Φ(π1) = Φ(π2). By this equivalen
e, we
an rewrite the above formula on the 2mth moment as

m2m =
∑

ν∈NCe(2m)

∑

π∈P2(2m)
Φ(π)=ν

t(π).

Here we put
r2k =

∑

ρ∈P2(2k),
cc(ρ)=1

t(ρ),

that is, r2k is the sum of t-values for the pair partitions in P2(2k) whi
h are 
onstitutedfrom only one 
onne
ted 
omponent. We illustrate the 
ase of r6 below:
r6 = t

(
q

1
q

2
q

3
q

4
q

5
q
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+ t

(
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q
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q
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(
q

1
q

2
q

3
q

4
q

5
q

6

)
+ t

(
q

1
q

2
q

3
q

4
q

5
q

6

)
.Then the strong multipli
ativity of t guarantees that, for a given non-
rossing partition

ν ∈ NCe(2m),
∑

Φ(π)=ν

t(π) =
∏

V ∈ν

r|V |,where |V | denotes the size of the blo
k V in the even non-
rossing partition ν ∈ NCe(2m).Hen
e we have the equality
m2m =

∑

ν∈NCe(2m)

∏

V ∈ν

r|V |,whi
h means that r2k is nothing else than the 2kth free 
umulant of deformed Gaussianrandom variable ω(f).By the formula (1.15) in [NS℄, it follows that the 2kth free 
umulant r̃2k of the indu
eddeformed Gaussian random variable ω̃(f) is given by r̃2k = 1
α

r2k. Using the free moment-
umulant formula again, we obtain
m̃2m =

∑

ν∈NCe(2m)

∏

V ∈ν

r̃|V | =
∑

ν∈NCe(2m)

α−|ν|
∏

V ∈ν

r|V |,where |ν| stands for the number of blo
ks in the even non-
rossing partition ν ∈NCe(2m).Under the map Φ, it is 
lear that the number of 
onne
ted 
omponents of a pair parti-tion π, cc(π), equals the number of blo
ks of the 
orresponding even non-
rossing par-



DEFORMED GAUSSIAN RANDOM VARIABLES 139tition ν(= Φ(π)). Consequently we have for the 2mth moment of the indu
ed deformedGaussian random variable ω̃(f)

m̃2m =
∑

ν∈NCe(2m)

α−|ν|
∑

Φ(π)=ν

t(π) =
∑

π∈P2(2m)

α−cc(π)
t(π).

Hen
e the 
orresponding positive de�nite fun
tion t̃ on P2(∞) for the indu
ed Gaussianrandom variable ω̃(f) is given by
t̃(π) = α−cc(π)

t(π)and it is again tra
ial and strongly multipli
ative.Starting with t(π) = qcr(π) we have the (q, α)-deformed Gaussian random variablesand the following remarks naturally arise:Remark 12. (i) The fun
tion t(q,α)(π) = α−cc(π)qcr(π) is strongly multipli
ative and theva
uum state is tra
e so we 
an think about the se
ond quantization and ultra
ontra
-tivity or hyper
ontra
tivity of 
orresponding Ornstein-Uhlenbe
k semigroups, like in the
q-
ase (see [Bo1℄, [Bo2℄).(ii) There is an open problem about fa
toriality of the von Neumann algebra generatedby the (q, α)-Gaussian random variables (see [Hi℄, [No℄, [Ri℄, and [Si℄).(iii) How about 
onne
tions with the 
lassi
al Markov pro
esses like in [BKS℄?(iv) How about the orthogonal (q, α)-Hermite polynomials?
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