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Abstract. Given a Lie algebra with a chosen basis, the change of coordinates relating coor-

dinates of the first and second kinds near the identity of the corresponding local group yields

some remarkable vector fields and dual vector fields. One family of vector fields is dual to a

representation of the Lie algebra acting on a Fock-type space. To this representation an abelian

family of dual vector fields is associated. The exponential of these commuting operators acting

on an appropriate vacuum yields the same result as does the local group element generated by

the nonabelian Lie algebra. Another family of dual vector fields gives a representation of the Lie

algebra, yet acting on an appropriate vacuum, yields the same result as an abelian Lie algebra.

An essential component of these constructions is the Jacobian of the change of coordinates. Here

we present a formula for this Jacobian using the pi-matrices that play a fundamental rôle in our

approach to representations of Lie algebras.

1. Introduction. We continue the study of dual vector fields [2]. The main features of

our approach to the representations of Lie algebras may be summarized as follows. For a

given Lie algebra with a chosen basis, we find two families of vector fields corresponding

to left and right multiplication respectively of the Lie algebra on the local Lie group near

the identity. The left action is dual to a representation of the Lie algebra and leads to

the double dual representation. The coefficients of these vector fields form matrix-valued
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functions on the group, these are the fundamental pi-matrices. In [2], a basic rôle is played

by the Jacobian of the change of coordinates on the local group from first to second kind.

In this article, we present a method for finding the Jacobian directly in terms of the

pi-matrices evaluated along a path in the local group.

In [2], we outlined a nine-step program for finding, for any given Lie algebra in a chosen

basis, an associated family of polynomials, and corresponding commuting operators—

dual vector fields—which yield the coordinates of the second kind when acting on an

appropriate vacuum, and, as well, a realization of the Lie algebra as dual vector fields

that when acting on an appropriate vacuum state yield a pure exponential, the same as

an abelian Lie algebra.

The basic steps are these (to be explained in detail in the next section):

1. Given a Lie algebra with a chosen basis.

2. Find the pi-matrices. From π‡, form the double dual.

3. Solve the equations Ȧ = απ‡ and find the mapping from coordinates of the first kind

to coordinates of the second kind.

4. Identify canonical variables for associating an abelian family of dual vector fields.

5. Calculate the Jacobians ∂A/∂α and ∂α/∂A. ∂A/∂α is used to find the raising operators

Ŷ , whereas ∂α/∂A yields recurrence relations for the canonical polynomials.

6. Specifically, Ŷ = xA′(α(A)), x = Ŷ A′(α)−1.

7. Canonical polynomials are ηn(x) = Ŷ n1. The Ŷ variables act as raising operators via

Ŷ = xA′(α(∂)). Corresponding lowering operators are Vi. Recursion formulas are given

via x = Ŷ A′(V)−1.

8. Performing a local analytic change of variables yields dual vector fields ξ̂i.

9. Specifically, using A as a change of variables yields a realization of the Lie algebra as

dual vector fields

ξ̂ = xνA′(∂)−1
νλ π‡

iλ(A(∂))

satisfying

eαµξ̂µ1 = eαµxµ .

In the following section, we will discuss the above steps so that this article may be

read independently, referring the reader to [2] for proofs. Then we present our main

theorem, giving a (new) formula for the Jacobian of the coordinates. We will illustrate

with two fundamental Lie algebras whose detailed study illuminates the theory: the two-

dimensional affine Lie algebra and the finite difference algebra. (Note: details for the

Heisenberg algebra have been given in [2].)

Notation. We use a summation convention somewhat more general than that of the

Einstein convention, namely, Greek indices are always summed, regardless of position.

Latin indices are summed only if the summation is indicated explicitly.

2. Lie algebras, vector fields, and dual vector fields. In this section, we present

the background and basic constructions of interest.

First, the definition of a dual vector field.
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Remark. Note that throughout we are working with analytic vector fields, i.e., the

coefficients are analytic in some neighborhood of 0 in CN .

Definition. A dual vector field, dvf for short, is an operator dual to a vector field. I.e.,

an operator of the form

X̂ = xµFµ(∂)

where F : CN → CN is holomorphic in a neighborhood of the origin in CN .

2.1. Lie algebras and dual representations. Start with a finite-dimensional Lie algebra

with basis {ξ1, . . . , ξN}. Define (local) group elements

g(A, ξ) = eA1ξ1 · · · eAN ξN .

The fundamental theorems of Lie imply that there is a group law

g(A, ξ)g(B, ξ) = g(A ⊙ B, ξ)

where A⊙B is analytic in the variables A = (A1, . . . , AN ), B = (B1, . . . , BN ). Note that

g(0, ξ) is the identity.

Further, Lie’s fundamental theorems (Frobenius integrability theory) imply that there

is a realization of the ξi acting on the group elements g(A, ξ) by multiplication on the

left as vector fields ξ‡i . Namely,

ξi g(A, ξ) = ξ‡i g(A, ξ) = (π‡
iµ(A)∂µ) g(A, ξ).

[Throughout this section, ∂ will denote partial differentiation with respect to the A-

variables: ∂i = ∂/∂Ai.]

There is a similar action on the right:

g(A, ξ) ξi = ξ∗i g(A, ξ) = (π∗
iµ(A)∂µ) g(A, ξ).

These vector fields thus define the pi-matrices: π‡ and π∗ as the corresponding coefficients.

One way to see what is going on is to expand g in powers of the A variables, showing

g as the generating function of the Poincaré-Birkhoff-Witt (PBW) basis of the universal

enveloping algebra:

g(A, ξ) =
∑

n≥0

An

n!
ξn1

1 · · · ξnN

N

so that left-multiplication by ξi is dual to the action of the vector field ξ‡i in the sense

that the action of ξ on the PBW basis is transferred via the generating function g to

a differential operator acting on functions of the A-variables. And similarly for right-

multiplication.

Another way to interpret this action leads to the double dual. Introduce canonical

bosons acting on the PBW basis thus:

Ri ξn1

1 · · · ξni

i · · · ξnN

N = ξn1

1 · · · ξni+1
i · · · ξnN

N ,

Vi ξn1

1 · · · ξni

i · · · ξnN

N = ni ξn1

1 · · · ξni−1
i · · · ξnN

N .

These are raising and lowering operators for the PBW-basis. Then the action of a vector

field ξ‡i = π‡
iµ(A)∂µ dualizes to the dual vector field ξ̂i = Rµπ‡

iµ(V). This is the double

dual representation. It is a boson realization of the action of left multiplication of the
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basis elements ξi on the PBW basis. The important feature is that since the left action

is an anti-homomorphism, the double dual gives a homomorphism of the Lie algebra.

Remark. For more details see [2, pp. 28–30 (Chapter 2)]. The double dual is found in

[2, pp. 35-36/40].

Now let X = αµξµ be a typical element of the Lie algebra. The α-variables are

coordinates of the first kind. Define the coordinate mapping α → A, the coordinates of

the second kind, by

exp(X) = exp(αµξµ) = eA1(α)ξ1 · · · eAN (α)ξN = g(A(α), ξ).

If we consider the one-parameter subgroup generated by X, we have

exp(tX) = g(A(t), ξ)

where A(t) is implicitly a function of α. It is important to note that the t-dependence

comes from scaling α → tα. In particular, if the mapping A(α) is known, then A(t) =

A(tα) and conversely, given A(t) we recover A(α) = A(t)|t=1.

Differentiating with respect to t provides two choices: we can multiply by X on the left

or on the right. In each case, the action of the ξi can be converted to the corresponding

vector fields. Notice that, on g(A, ξ), the operator ∂i brings down the corresponding ξi

in place, i.e., to bring it to the front or back would require using the adjoint action of

the (partial products) group elements. The left/right vector fields do this automatically.

E.g., bringing down X on the left yields

XetX = αµξ‡µ g(A, ξ) = Ȧµ∂µ g(A, ξ).

We read off the characteristic equations for the flow:

Ȧi = αλπ‡
λi(A).

However, we can just as well bring down X on the right, yielding

Ȧi = αλπ∗
λi(A).

Solving these equations with zero initial conditions, Ai(0) = 0, 1 ≤ i ≤ N , corresponding

to the identity of the group, will yield A(t), functions of t and α. Setting t = 1 then gives

the coordinate map α → A.

To conclude this part, recall the adjoint representation of the Lie algebra, acting on

itself by Lie bracket (commutation): (ad ξ)(ζ) = [ξ, ζ]. With the basis {ξi}, we denote

the matrices of the adjoint representation of the basis elements by ξ̌i. The corresponding

group element, exponential of the adjoint representation, is

π̌(A) = exp(A1ξ̌1) · · · exp(AN ξ̌N ).

Notation. We use ˆ ’s to denote the transposed pi-matrices. Namely (dropping the

dagger for convenience), π̂ is the transpose of π‡, and π̂∗ is the transpose of π∗.

We have the relation ([2, pp. 36-37]):

π̌ = π̂−1 π̂∗. (1)

We have the first three basic steps in hand. The next part will discuss the remaining

aspects.
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2.2. Associated abelian variables. Given

V : CN → CN , V (z) = (V1(z1, . . . , zN ), . . . , VN (z1, . . . , zN ))

holomorphic in a neighborhood of the origin, satisfying V (0) = 0, we construct a corre-

sponding abelian family of dual vector fields. We interpret the variables zi, as lowering

operators (by partial differentiation) acting on functions of variables xj , raising oper-

ators. The sets of variables {zj}, {xi} are canonical conjugates, i.e., they satisfy the

canonical commutation relations, CCR, [zi, xj ] = δij , [zi, zj ] = [xi, xj ] = 0. We think

of zi as the partial derivative operator ∂/∂xi acting on germs of holomorphic functions

of (x1, . . . , xN ). Another terminology is that they are standard boson operators: cre-

ation/raising (modelled as multiplication by xi) and annihilation/lowering (modelled as

partial differentiation zi) operators. In this context, a function of x = (x1, . . . , xN ), f(x),

is identified with f(x)1, the operator of multiplication by f(x) acting on the vacuum state

1, with zi1 = 0, for all 1 ≤ i ≤ N .

Denoting the Jacobian V ′(z), let W (z) = (V ′(z))−1, be the inverse (matrix inverse)

Jacobian. Then the CCR extend to [V (z), xi] = ∂V /∂zi and thus, setting the operators

Ŷi = xµWµi(z)

yields the system of raising and lowering operators {Ŷj}, {Vi}, 1 ≤ i, j ≤ N , with

[Vi, Ŷj ] = δij . The essential feature, which one checks, is that, [Ŷi, Ŷj ] = [Vi, Vj ] = 0.

Notice that exchanging z with x is a Fourier transformation and turns the variables Ŷi

into the vector fields Yi = W (x)µi∂/∂xµ. Thus, the Ŷi are dual vector fields. Here, the ˆ

notation for dual vector fields refers to the formal Fourier transformation.

Notation. We complement the standard notations used along with V and W , letting

U denote the inverse function to V . I.e., U ◦ V = V ◦ U = id. Explicitly: U(V (z)) = z.

Observe that since W = V ′−1, we have W (z) = U ′(V (z)). In other words, converting

from z to V acting on functions of the canonical variables Ŷi, we have x = Ŷ U ′(V )−1.

The formula we want ([1, p. 185, eq. (1)]) is

exp(αµŶµ) 1 = exp(xµUµ(α)) =
∑

n≥0

αn

n!
ηn(x),

the n denoting a multi-index (n1, . . . , nN ). This expansion defines the canonical polyno-

mials : ηn(x) = Ŷ n 1.

In our context, A corresponds to U and α to V . That is, α(A), the map A → α, as V

with A instead of z. Form the canonical variables Ŷi = xµWµi(∂/∂x), where W = α′(A)−1

is the inverse Jacobian matrix of the map. Alternatively, we can express this using the

Jacobian A′(α), re-expressed in terms of the A-variables, then replacing every Ai by the

partial differentiation operator ∂/∂xi.

Now, write the double dual ξ̂i = Rµπ‡
iµ(V) in variables R ↔ x and V ↔ ∂/∂x,

ξ̂i = xµπ‡
iµ(∂/∂x). Then we have

exp(αµξ̂µ)1 = exp(xµAµ(α)) = exp(αµŶµ)1,

in other words, the commuting dual vector fields {Ŷi} yield the same result on the vacuum

state as does the group element in the double dual representation. In both cases, we have
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the coordinate map α → A, which contains the basic information on the structure of the

Lie algebra (e.g., we can recover the adjoint representation).

Introduce canonical conjugates to {Ŷi}: {Vj}. Then we have, with x as a row vector,

Ŷ = xA′(α(∂)), x = Ŷ A′(V)−1,

partials here denoting differentiation with respect to x. The variables Ŷi are raising

operators, generating canonical polynomials ηn(x) = Ŷ n1. Thus the Lie algebra has

an associated family of polynomials. The Vi act as formal differentiation operators:

Viηn = ni ηn−ei
. Thus, the action of the variables xi yields recurrence formulas for the

polynomials ηn, by expansion in powers of the Vi.

One can do a change of variables in the left and right representations of the Lie

algebras as well. For example, we can form the vector fields

ξ‡i = π‡
iλ(V (x)) Wνλ(x) ∂/∂xν

corresponding to dual vector fields

ξ̂i = xνWνλ(∂)π‡
iλ(V (∂)).

And with X̂ = αµξ̂µ,

eX̂1 = exU(A(α)).

Now choose U and A to be inverse maps. Then

ξ̂i = xνA′(∂)−1
νλ π‡

iλ(A(∂)).

Then we have the nonabelian Lie algebra yielding the same result on the vacuum

state, 1, as the abelian one, namely

exp(αµξ̂µ)1 = exp(αµxµ).

That completes our summary of the basic features involved.

3. Jacobian of the coordinate map. To get the canonical variables requires the Ja-

cobian of the map α → A. Since one has the differential equations for A, namely the

characteristic equations Ȧ = απ(A), one would think it possible to find A′(α) = ∂A/∂α

directly in terms of the π-matrices. This turns out to be the case and is the subject of

our main theorem. Namely

Theorem 1. Let J = ∂A/∂α denote the Jacobian of the coordinate map α → A. Then

J(α) = π̂(A(α))

∫ 1

0

π̌(A(s)) ds.

Alternatively, we have

J(α) = π̂∗(A(α))

∫ 1

0

π̌−1(A(s)) ds.

We will give the proof in several steps.

Note that in our application to dual vector fields, we really want J as a function of

A. The factor outside the integral is naturally given in terms of the Ai, but the integral

is evaluated by expressing A(s) in terms of the αi scaled by s. On the other hand, J−1
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immediately gives us what we need for the corresponding x-variables (see examples in

the next section).

Definition. 1. Since Ȧ = απ∗(A) = απ‡(A), we will use π̃ when either the left or right

pi-matrix will serve.

2. In the rest of this section, ∂ and ∂i are with respect to the A-variables.

3. The Jacobian matrix ∂Ȧ/∂A arises as follows. Starting with Ȧi = αµπ̃µi, apply ∂j

to both sides. Then
(

∂Ȧ

∂A

)

ij

= αµ

∂π̃µi

∂Aj

.

To specify left or right, we will use
(

∂Ȧ‡

∂A

)

ij

= αµ

∂π‡
µi

∂Aj

and

(

∂Ȧ∗

∂A

)

ij

= αµ

∂π∗
µi

∂Aj

Define J(t) = ∂A(tα)/∂α. Then we obtain J as J(t)|t=1.

Lemma 1. J(t) satisfies the differential equations

dJ

dt
=

∂Ȧ‡

∂A
J + π̂

and
dJ

dt
=

∂Ȧ∗

∂A
J + π̂∗

with initial conditions J(0) = 0.

We remark that existence and uniqueness are guaranteed due to analyticity of the

system.

Proof. We have J(t) as the Jacobian ∂A(t)/∂α. Now, for A(t) = A(t, α), as a function

of the variables t and the αi, differentiation with respect to t commutes with the partial

derivative operators ∂/∂αi. Start with Ȧi = αµπ̃µi(A), where we will specialize π̃ when

needed. Then we have

d

dt

∂Ai(t)

∂αj

=
∂

∂αj

dAi(t)

dt
= π̃ji(A(t)) + αλ

∂π̃λi

∂Aµ

∂Aµ

∂αj

.

Specializing π̃ = π‡, we have, using the definition of ∂Ȧ‡

∂A
,

J̇ = π̂ +

(

∂Ȧ‡

∂A

)

iµ

∂Aµ

∂αj

Similarly, π̃ = π∗ gives the second formulation.

Next, we observe that the “variation of constants” approach to solving an inhomo-

geneous linear equation works even in the noncommutative case. That is, suppose we

wish to solve J̇ = MJ + F . Writing J = PQ, where P is a solution of the homogeneous

system, Ṗ = MP , we get J̇ = MJ + PQ̇. In other words, solving the systems Ṗ = MP

and Q̇ = P−1F gives us the solution in the form J = PQ.

To solve the homogeneous system Ṗ = ∂Ȧ
∂A

P , we need a preparatory lemma.
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Lemma 2. The following identities hold:

ξ‡i π
∗
jk = ξ∗j π‡

ik

Proof. All of the vector fields ξ‡i commute with every vector field ξ∗j since ξ‡i comes from

multiplying g(A, ξ) by ξi on the left and ξ∗j by multiplying by ξj on the right. We get

0 = [ξ‡i , ξ
∗
j ] = [π‡

iλ∂λ, π∗
jµ∂µ]

or

π‡
iλ

∂π∗
jµ

∂Aλ

∂µ = π∗
jµ

∂π‡
iλ

∂Aµ

∂λ.

Comparing coefficients of ∂k yields

π‡
iλ

∂π∗
jk

∂Aλ

= π∗
jµ

∂π‡
ik

∂Aµ

and, recombining terms, the result follows.

Now we can solve the homogeneous systems. Namely,

Lemma 3. Along the path A(t), using the equations Ȧ = απ‡(A), we have

dπ̂∗

dt
=

∂Ȧ‡

∂A
π̂∗

with initial condition π̂∗(0) = I, the identity matrix. Along the path A(t), using the

equations Ȧ = απ∗(A), we have

dπ̂

dt
=

∂Ȧ∗

∂A
π̂

with initial condition π̂(0) = I.

First, some notation. Corresponding to basis vector fields ξ̃i = π̃(A)iµ∂µ, we have a

typical vector field

X̃ = αλξ̃λ = αλπ̃(A)λµ∂µ

appropriately specialized for π‡ and π∗.

Proof. According to the characteristic equations Ȧ = απ̃(A), for any smooth function f ,

u(t) = f(A(t)) satisfies
du

dt
= αλπ̃λµ(A(t))

∂f

∂Aµ

= X̃u.

In particular, u = π̂(A(t)) satisfies
du

dt
= X∗u. This reads

dπ̂ik

dt
= αλξ∗λ π̂ik.

Using Lemma 2,

dπ̂ik

dt
= αλξ∗λ π‡

ki = αλξ‡kπ∗
λi = αλπ‡

kµ∂µπ∗
λi =

(

∂Ȧ∗

∂A

)

iµ

π̂µk.

The proof for π̂∗ follows exactly the same lines.
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Now consider the equation

dJ

dt
=

∂Ȧ∗

∂A
J + π̂∗ .

The homogeneous system is solved by π̂. We are left with solving

Q̇ = π̂−1π̂∗

with zero initial conditions. Recalling equation (1), we have Q̇ = π̌, which integrates up

to Q(t) =
∫ t

0
π̌(A(s)) ds. We thus get

J(t) = π̂(A(t))

∫ t

0

π̌(A(s)) ds

and the Theorem follows setting t = 1. The other pair of equations, starting with π̂∗ for

the homogeneous system, gives the second form of the solution.

Remark. It is natural to wonder what is the effect of a change-of-basis of the Lie algebra

on the Jacobian. At this point it is not clear, as in general it appears to involve possibly

the entire group law. E.g., if ξi =
∑

j bijηj for some basis {ηj}, then each exponential

factor exp(Aiξi) splits according to coordinates of the second kind corresponding to the

η-basis, which would involve the group law expressed in those coordinates. Another way

to look at this is to note that the structure constants transform like a quadratic form

under change-of-basis. So how do the A-coordinates depend on the structure constants?

We (with U. Franz) had developed a diagrammatic approach to this problem based on

ideas of J. Kocik, but this work has not been completed. In Chapter 2, Theorem 1.1 of

[3, p. 29], we showed that the structure constants appear in the second-order terms of the

expansion of A in terms of α. Higher-order terms are nonlinear in the structure constants

so it is not clear how they transform. A simple example, that of permuting the basis, is

illustrated in [1, pp. 209–212], for the Schrödinger algebra.

4. Examples. Now let us look at details for some Lie algebras of particular interest.

Note. In these examples ∂ and ∂i refer to partial derivatives with respect to the x-

variables.

4.1. Affine Lie algebra. Consider the two-dimensional affine algebra with basis satisfying

the commutation relations [ξ1, ξ2] = ξ2. For a matrix realization we take

ξ1 =

(

1 0

0 0

)

, ξ2 =

(

0 1

0 0

)

.

Exponentiating, we have group elements

g(A, ξ) =

(

eA1 eA1 A2

0 1

)

.

With X = α1ξ1 + α2ξ2, we have, with g = exp(tX),

Xg =

(

α1e
A1 α1e

A1 A2 + α2

0 0

)

= ġ =

(

Ȧ1e
A1 Ȧ1e

A1A2 + eA1Ȧ2

0 0

)

.
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We read off the equations Ȧ1 = α1, Ȧ2 = α2e
−A1 . Comparing with Ȧ = απ‡(A) yields

π‡. Multiplying by X on the right, one similarly finds π∗. The pi-matrices are thus

π‡ =

(

1 0

0 e−A1

)

, π∗ =

(

1 −A2

0 1

)

and the double dual representation is ξ̂1 = R1, ξ̂2 = R2 e−V1 . From equation (1), the

adjoint group element is

π̌ =

(

1 0

−A2 eA1 eA1

)

.

The coordinate map α → A is

A1(α) = α1, A2(α) =
α2

α1
(1 − e−α1).

One can use Theorem 1 to find the Jacobian, or one can differentiate directly. We have
∫ 1

0

π̌(A(s)) ds =

(

1 0

(α2/α2
1) (1 + α1 − eα1) (eα1 − 1)/α1

)

.

We can write this in terms of the A-variables as

π̂−1 J =

(

1 0

−(A2/A1)e
A1 + A2e

A1/(eA1 − 1) (eA1 − 1)/A1

)

.

In other words, multiplying by π̂:

J =

(

1 0

−A2/A1 + A2/(eA1 − 1) (1 − e−A1)/A1

)

. (2)

Expressing J in terms of α-variables, one finds

J−1 =

(

1 0

α2/α1 + α2/(1 − eα1) α1/(1 − e−α1)

)

. (3)

Contracting with x and replacing A by ∂ in equation (2) yields the canonical raising

operators

Ŷ1 = x1 + x2∂2

(

1

e∂1 − 1
−

1

∂1

)

, Ŷ2 = x2

(

1 − e−∂1

∂1

)

.

These are commuting variables satisfying

exp(α1Ŷ1 + α2Ŷ2) 1 = exp(x1A1(α) + x2A2(α))

Contracting with Ŷ and replacing α by V in equation (3) yields the x-variables in terms

of raising and lowering operators

x1 = Ŷ1 + Ŷ2 V2

(

1

1 − eV1

+
1

V1

)

, x2 = Ŷ2

(

V1

1 − e−V1

)

. (4)

Finally, in equations (4), replace Ŷ by x, V by ∂ and contract with the transpose of

π‡(A(∂)) to yield dual vector fields which satisfy the affine algebra commutation relations

yet their exponential when applied to the vacuum is exp(α1x1 + α2x2):

ξ̂1 = x1 + x2∂2

(

1

1 − e∂1

+
1

∂1

)

, ξ̂2 = x2
∂1

e∂1 − 1
.
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4.2. Finite-difference algebra. The FD algebra is essentially the upper corner of 2 × 2

matrices including the diagonal. In other words, we have as a generic element

X = α1ξ1 + α2ξ2 + α3ξ3 =

(

α3 α2

0 α1

)

.

The group element is

g(A, ξ) =

(

eA3 A2

0 eA1

)

.

One finds the pi-matrices

π‡ =





1 0 0

0 eA1 0

0 A2 1



 , π∗ =





1 A2 0

0 eA3 0

0 0 1



 .

Using π‡, we find the coordinate map

A1 = α1, A2 =
α2

α1 − α3
(eα1 − eα3), A3 = α3.

The adjoint group element is

π̌ =





1 0 0

A2e
−A1 eA3−A1 −A2 e−A1

0 0 1



 .

The Jacobians take the form

∂A

∂α
(A) =











1 0 0

−A2
A1 − A3

+ eA1 A2

eA1 − eA3

eA1 − eA3

A1 − A3

A2
A1 − A3

− eA3 A2

eA1 − eA3

0 0 1











.

and

∂α

∂A
(α) =











1 0 0

α2
α1 − α3

− eα1 α2
eα1 − eα3

α1 − α3
eα1 − eα3

−α2
α1 − α3

+ eα3 α2
eα1 − eα3

0 0 1











.

From this data one can construct canonical raising operators, express x-variables in terms

of canonical variables, and construct a representation of the Lie algebra whose exponential

acts on the vacuum the same as an abelian algebra.

5. Conclusion. There are many points for continued study. By specializing the coordi-

nates one can find certain elements of the Lie algebra that generate classically interesting

polynomials, such as Hermite polynomials via the Heisenberg algebra. In any case, the

polynomials found in the approach indicated here have particular structure depending on

their associated Lie algebra. Exactly how the polynomials and the structure of the Lie

algebra are related in some deeper way has not been clarified.

Another source of interest is, of course, the Jacobians. One can look at Jacobians of the

form ∂A(t)/∂A(s), for s < t. As the Jacobians form a multiplicative family along paths,
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there are some possibilities for interesting dynamical systems, or perhaps, matrix-valued

stochastic processes.

Generally speaking, it looks challenging and interesting to get some detailed informa-

tion for classes of higher-dimensional Lie algebras. Certain classes of Lie algebras, such

as symmetric Lie algebras, may allow for general structural results.
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