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Abstra
t. Re
ently, Ber
ovi
i has introdu
ed multipli
ative 
onvolutions based on Muraki'smonotone independen
e and shown that these 
onvolution of probability measures 
orrespond tothe 
omposition of some fun
tion of their Cau
hy transforms. We provide a new proof of this fa
tbased on the 
ombinatori
s of moments. We also give a new 
hara
terisation of the probabilitymeasures that 
an be embedded into 
ontinuous monotone 
onvolution semigroups of probabilitymeasures on the unit 
ir
le and brie�y dis
uss a relation to Galton-Watson pro
esses.
1. Introdu
tion. In quantum probability there exist several natural notions of inde-penden
e, see [Mur03℄ and the referen
es therein. These allow to de�ne new 
onvolutionsfor probability measure, 
f. [VDN92, Voi97, SW97, Mur00℄.Ber
ovi
i [Ber04℄ de�ned multipli
ate monotone 
onvolutions for probability measureson the unit 
ir
le and on the half line. He showed that with an appropriate fun
tion ofthe Cau
hy transform these multipli
ative 
onvolutions 
an be 
al
ulated by 
omposi-tion of those fun
tions, similar to Muraki's result [Mur00, Theorem 3.1℄ for the additivemonotone 
onvolution. In this paper we give a new proof of Ber
ovi
i's result basedon the 
ombinatori
s of moments, see Theorem 4.1. Using Berkson and Porta's [BP78℄
hara
terization of 
omposition semigroups, one 
an dedu
e a 
hara
terization of 
ontin-uous 
onvolution semigroups for the monotone 
onvolution, see [Ber04, Theorem 4.6℄ orTheorem 6.1 for the 
ase of probability measures on the unit 
ir
le.This paper is organized as follows.2000 Mathemati
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154 U. FRANZIn Se
tion 2 we re
all the de�nition of monotone independen
e and the monotoneprodu
t of algebrai
 and quantum probability spa
es. In Se
tion 3 we show that themonotone produ
t is a
tually a spe
ial 
ase of the 
onditionally free produ
t introdu
edin [BS91, BLS96℄.Se
tions 4, 5, and 6 
ontain the main results on the multipli
ative monotone 
onvo-lution. We formulate a slightly modi�ed version of a theorem by Ber
ovi
i that showsthat these 
onvolutions 
an be 
al
ulated by taking the 
omposition of appropriate fun
-tions of the Cau
hy transform of the measures, see Theorem 4.1 and Corollaries 4.2 and4.3. We also state a Lévy-Khint
hine type 
hara
terization of all 
ontinuous 
onvolutionsemigroups for the monotone 
onvolution of probability measures on the unit 
ir
le, seeTheorem 6.1.In Se
tion 7, we show that the problem of embedding a probability measure on the unit
ir
le into a 
ontinuous monotone 
onvolution semigroup is very similar to the problem ofembedding a dis
rete-time Markovian bran
hing pro
ess (or Galton-Watson pro
ess) intoa 
ontinuous-time Markovian bran
hing pro
ess. In Se
tion 8 we adapt a 
hara
terizationof embeddable bran
hing pro
esses due to Gorya��nov [Gor93℄ to our situation.Finally, in the Appendix we dis
uss the multipli
ative monotone 
onvolution of prob-ability measures on the half line and show that there exist two natural, but inequivalentde�nitions. One of them is equivalent to the de�nition due to Ber
ovi
i and 
an be treatedby similar methods as the multipli
ative monotone 
onvolution of measures on the unit
ir
le., 
f. [Ber04℄.2. Monotone independen
e. In this se
tion we present the de�nition of monotoneindependen
e and its main properties.By an algebrai
 probability spa
e we mean a pair (A, ϕ) 
onsisting of a unital algebra Aand a unital fun
tional ϕ : A → C. Assume that we have two algebrai
 probability spa
es
(A1, ϕ1) and (A2, ϕ2), su
h that the �rst algebra has a de
omposition A1 = C1 ⊕ A0

1(dire
t sum as ve
tor spa
es), whereA0
1 is a subalgebra ofA1. Then we de�ne the algebrai
monotone produ
t (A, ϕ) of (A1, ϕ1) and (A2, ϕ2) as follows, see also [Mur01, Mur03℄.The algebra A = A1 ∐A2 is the free produ
t of A1 and A2 with identi�
ation the unitsof A1 and A2. The unital fun
tional ϕ = ϕ1 ⊲ϕ2 : A → C is determined by the 
ondition(1) ϕ(b1a1b2 · · · an−1bn) = ϕ1(a1 · · · an−1)ϕ2(b1) · · ·ϕ2(bn)for n ∈ N and all a1, . . . , an−1 ∈ A0

1, b1, . . . , bn ∈ A2.Let now A1,A2 ⊆ B be two su
h algebras, whi
h are 
ontained in an algebrai
 prob-ability spa
e (B,Φ) and denote by j1 : A1 → B, j2 : A2 → B the in
lusion maps. Thenthe universal property of the free produ
t of algebras implies that there exists a uniquehomomorphism j : A1 ∐A2 → B su
h that the following diagram 
ommutes
B

A1

j1

::uuuuuuuuuu

i1

// A1 ∐A2

j

OO

A2

j2

ddIIIIIIIIII

i2

oowhere are i1 : A1 → A1 ∐A2 and i2 : A2 → A1 ∐A2 are the 
anoni
al in
lusion maps.



MULTIPLICATIVE MONOTONE CONVOLUTIONS 155The subalgebras A1,A2 are 
alled monotoni
ally independent w.r.t. Φ, if
Φ ◦ j = (Φ ◦ j1) ⊲ (Φ ◦ j2)
f. [Fra02℄We will 
all a triple (A,H,Ω) 
onsisting of a Hilbert spa
e H, a unit ve
tor Ω ∈ H,and a subalgebra A ⊆ B(H) a quantum probability spa
e.If we have an algebrai
 probability spa
e (A, ϕ), whose algebra has an involution su
hthat Φ is even a state, and if for all a ∈ A there exists a 
onstant Ca ≥ 0 su
h that theinequality
Φ(x∗a∗ax) ≤ CaΦ(x∗x)holds for all x ∈ A, then the GNS representation (Hϕ, πϕ,Ωϕ) of (A,Φ) yields a quantumprobability spa
e (πϕ(A), Hϕ,Ωϕ). If two subalgebras A1 = C1⊗A0

1,A2 ⊆ A are mono-toni
ally independent in (A, ϕ), then πϕ(A0
1) and πϕ(A2) are monotoni
ally independentin (πϕ(A), Hϕ,Ωϕ) in the sense of the following de�nition.Definition 2.1. Let H be a Hilbert spa
e, Ω ∈ H a unit ve
tor, and de�ne a state

Φ : B(H) → C on the algebra of bounded operators on H by
Φ(X) = 〈Ω, XΩ〉, for X ∈ B(H).Two subalgebras A1,A2 ⊆ B(H) are 
alled monotoni
ally independent w.r.t. Ω, if thefollowing two 
onditions are satis�ed.(a) For all X,Z ∈ A1, Y ∈ A2, we have

XY Z = Φ(Y )XZ.(b) For all Y ∈ A1, X,Z ∈ A2,
Φ(XY Z) = Φ(X)Φ(Y )Φ(Z).Two operators X,Y ∈ B(H) are 
alled monotoni
ally independent w.r.t. Ω, if the subal-gebras A1 = alg(X) = span{Xk|k = 1, 2, . . .} and A2 = alg(Y ) = span{Y k|k = 1, 2, . . .}are monotoni
ally independent.Proposition 2.1. Let (Ai,Hi,Ωi), i = 1, 2, be two quantum probability spa
es, and de-note the states asso
iated to Ω1 and Ω2 by Φ1 and Φ2, respe
tively.Then there exists a quantum probability spa
e (A,H,Ω) and two inje
tive state-preser-ving homomorphisms Ji : Ai → A, i = 1, 2, su
h that the images J1(A1) and J2(A2) aremonotoni
ally independent w.r.t. Ω.Proof. We set H = H1 ⊗H2 and Ω = Ω1 ⊗ Ω2. Denote by P2 the orthogonal proje
tionon CΩ2 ⊆ H2.We de�ne the embeddings Ji : Ai → B(H) by

J1(X) = X ⊗ P2, for X ∈ A1,

J2(X) = 1⊗X, for X ∈ A2.For A we take the subalgebra generated by J1(A1) and J2(A2). It is 
lear that J1 and
J2 are inje
tive, state-preserving homomorphism.



156 U. FRANZA simple 
al
ulation shows that J1(A1) and J2(A2) are monotoni
ally independentw.r.t. Ω. E.g., for produ
ts of the form J1(X1)J2(Y )J1(X2), X1, X2 ∈ A1, Y ∈ A2, weget
J1(X1)J2(Y )J1(X2) = (X1 ⊗ P2)(1⊗ Y )(X1 ⊗ P2) = (X1X2) ⊗ P2Y P2

= Φ
(
J2(Y )

)
J1(X1)J1(X2).On the other hand, for J2(Y1)J1(X)J2(Y2), X ∈ A1, Y1, Y2 ∈ A2, we get

Φ(J2(Y1)J1(X)J2(Y2)) = 〈Ω1 ⊗ Ω2, (1⊗ Y1)(X ⊗ P2)(1⊗ Y2)Ω1 ⊗ Ω2〉
= 〈Ω1 ⊗ Ω2, X ⊗ (Y1PY2)Ω1 ⊗ Ω2〉
= Φ1(X)Φ2(Y1)Φ2(Y2) = Φ(J2(Y1))Φ(J1(X))Φ(J2(Y2)).We will 
all the quantum probability spa
e (A,H,Ω) 
onstru
ted in the previousproposition the monotone produ
t of (A1,H1,Ω1) and (A2,H2,Ω2). When there is nodanger of 
onfusion, we shall identify the algebras A1 and A2 with their images J1(A1)and J2(A2), respe
tively.The monotone produ
t is asso
iative and 
an be extended to more than two fa
tors,see [Fra01℄. But it is not 
ommutative.The embedding J1 : A1 → A is not unital and the produ
t is not tra
e-preserving. If

Φ1|A1
is not identi
ally equal to zero, then the 
al
ulation

Φ1(X)Φ2(Y1Y2) = Φ(XY1Y2) = Φ(Y2XY1) = Φ1(X)Φ2(Y1)Φ2(Y2)for all X ∈ A1, Y1, Y2 ∈ A2 shows that Φ 
an only be a tra
e on A, if Φ2|A2
is ahomomorphism.3. Relation of monotone independen
e and 
onditional free independen
e. Were
all now the de�nition of the 
onditional free produ
t of algebrai
 probability spa
esand show that the monotone produ
t is 
ontained as a spe
ial 
ase.Let (A1, ϕ1, ψ1) and (A2, ϕ2, ψ2) be two unital algebras, equipped with two unitalfun
tionals. Re
all that the 
onditionally free produ
t[BS91, BLS96℄ of (A1, ϕ1, ψ1) and

(A2, ϕ2, ψ2) is de�ned as the triple (A, ϕ, ψ), where A = A1 ∐A2 is the free produ
t of
A1 and A2 with identi�
ation the units of A1 and A2. The unital fun
tionals ϕ and ψon A = A1 ∐A2 
an be de�ned by the 
onditions(2) ϕ(a1a2 · · · an) = ϕǫ(1)(a1) · · ·ϕǫ(n)(an) and ψ(a1a2 · · · an) = 0for all n ∈ N and all ai ∈ Aǫ(i) with ǫ(i) ∈ {1, 2}, ǫ(1) 6= ǫ(2) 6= · · · 6= ǫ(n) and
ψǫ(1)(a1) = · · · = ψǫ(n)(an) = 0. The fun
tional ψ is simply the free produ
t ψ1 ∗ ψ2 of
ψ1 and ψ2, 
f. [VDN92, Voi97℄. We will denote ϕ by

ϕ = ϕ1 ψ1
∗ψ2

ϕ2.The produ
t de�ned in this way for triples (A, ϕ, ψ) 
an be shown to be 
ommutativeand asso
iative, 
f. [BS91, BLS96℄.Taking pairs of the form (A1, ϕ1, ϕ1) and (A2, ϕ2, ϕ2), one obtains the free produ
talso for the �rst fun
tional, i.e.
ϕ1 ϕ1

∗ϕ2
ϕ2 = ϕ1 ∗ ϕ2.



MULTIPLICATIVE MONOTONE CONVOLUTIONS 157Suppose now that the algebras A1 and A2 have de
ompositions Ai = C1 ⊕A0
i , i = 1, 2,as a dire
t sum of ve
tor spa
es, su
h that the A0

i are even subalgebras. If one de�nesfun
tionals δi : Ai → C by(3) δi(λ1 + a0) = λfor λ ∈ C, a0 ∈ A0
i , i = 1, 2, then one obtains the boolean produ
t

ϕ1 δ1∗δ2 ϕ2 = ϕ1 ⋄ ϕ2,
f. [SW97, BLS96℄.Sin
e the 
onditionally free produ
t of triples of the form (A, ϕ, δ) 
an be shown tobe again of the same form, the 
ommutativity and asso
iativity of the boolean produ
tfollow immediately from this 
onstru
tion.One 
an also obtain the monotone produ
t from the 
onditionally free produ
t.Proposition 3.1. Let (A1, ϕ1) and (A2, ϕ2) be two algebrai
 quantum probability spa
esand assume A1 has a de
omposition A1 = C1 ⊕ A0
1, where A0

1 is a subalgebra of A1.De�ne a unital fun
tional δ1 : A1 → C as in Equation (3).Then we have
ϕ1 ⊲ ϕ2 = ϕ1 δ1∗ϕ2

ϕ2Proof. Let n ∈ N , ǫ(1), . . . , ǫ(n) ∈ {1, 2} su
h that ǫ(1) 6= ǫ(2) 6= · · · 6= ǫ(n), and
a1 ∈ Aǫ(1), · · · , an ∈ Aǫ(n) su
h that δ1(ak) = 0 if ǫ(k) = 1 and ϕ2(ak) = 0 if ǫ(k) = 2.This implies ak ∈ A0

1 for ǫ(k) = 1 and therefore by Equation (1)
ϕ1 ⊲ ϕ2(a1a2 · · · an) = ϕ1

( ∏

k:ǫ(k)=1

ak

) ∏

k:ǫ(k)=2

ϕ2(ak) = 0(If the produ
t a1a2 · · · an does not begin or end with an element of A2, add 1 ∈ A2 inorder to apply Equation (1)).Therefore ϕ1 ⊲ ϕ2 satis�es 
ondition (2) that de�nes the 
onditionally free produ
t
ϕ1 δ1∗ϕ2

ϕ2.With this observation, Muraki's formula [Mur00, Theorem 3.1℄ for the additive mono-tone 
onvolution 
an be dedu
ed from the analyti
 theory of the additive 
onditionallyfree 
onvolution developed in [BLS96℄.4. Produ
ts of monotoni
ally independent operators. For a bounded operator Xin a quantum probability spa
e (B(H),H,Ω) we de�ne
ψX(z) =

〈

Ω,
zX

1 − zX
Ω

〉

and
KX(z) =

ψX(z)

1 + ψX(z)for |z| < 1/||X||.The following theorem is similar to [Ber04, Theorem 2.2℄. Below we provide a newproof.



158 U. FRANZTheorem 4.1. Let (B(H),H,Ω) be a quantum probability spa
e and A1,A2 ⊆ B(H) twomonotoni
ally independent subalgebras. Let V1, V2 ∈ C1 + A1, su
h that V2V1 − 1 ∈ A1and W ∈ A2. Then we have
KV1WV2

(z) = KV1V2

(
KW (z)

)for all |z| < min(1/||V1WV2||, 1/||W ||).Proof. Let M = max(||V1WV2||, ||W ||(||V1V2|| + 2)) and |z| < 1/M . Then we have
zV1WV2

1 − zV1WV2
=

∞∑

n=1

(zV1WV2)
n =

∞∑

n=1

znV1W (X + 1)W · · ·W (X + 1)
︸ ︷︷ ︸

n−1 times

WV2

=

∞∑

n=1

zn
n∑

k=1

∑

ν1,...,νk≥1
ν1+···+νk=n

V1W
ν1XW ν2X · · ·XW νkV2,

where X = V2V1 − 1.Using properties (a) and (b) in De�nition 2.1, we get
ψV1WV2

(z) =

〈

Ω,
zV1WV2

1 − zV1WV2
Ω

〉

=

∞∑

n=1

zn
n∑

k=1

∑

ν1,...,νk≥1
ν1+···+νk=n

〈
Ω, V1X

k−1V2Ω
〉
〈Ω,W ν1Ω〉 · · · 〈Ω,W νkΩ〉

=
∞∑

k=1

〈
Ω, V1(V2V1 − 1)k−1V2Ω

〉 (
ψW (z)

)k

=

∞∑

k=1

〈
Ω, V1V2(V2V1 − 1)k−1Ω

〉 (
ψW (z)

)k

=
∞∑

k=1

〈

Ω, ψW (z)V1V2
1

1 − ψW (z)(V2V1 − 1)
Ω

〉

=

∞∑

k=1

〈

Ω,

ψW (z)
1+ψW (z)V1V2

1− ψW (z)
1+ψW (z)V1V2

Ω

〉

= ψV1V2

(
KW (z)

)
.By uniqueness of analyti
 
ontinuation, we get

KV1WV2
(z) = KV1V2

(KW (z))for all |z| < min(1/||V1WV2||, 1/||W ||).Corollary 4.2. Let U, V be two unitary operators su
h that U −1 and V are monoton-i
ally independent with respe
t to Ω. Then we have
KUV (z) = KV U (z) = KU (KV (z))for all |z| ∈ D = {z ∈ C : |z| < 1}.Corollary 4.3. Let X,Y be two positive operators su
h that X − 1 and Y are mono-toni
ally independent with respe
t to Ω. Then we have
K√

XY
√
X(z) = KX(KY (z))for all |z| < min(1/||

√
XY

√
X||, 1/||Y ||).



MULTIPLICATIVE MONOTONE CONVOLUTIONS 1595. Multipli
ative monotone 
onvolution for probability measures on the unit
ir
le. For a probability measure µ on S1 we de�ne
ψµ(z) =

\
S1

zx

1 − zx
dµ(x) and Kµ(z) =

ψµ(z)

1 + ψµ(z)for z ∈ D = {z ∈ C : |z| < 1}.We will 
all Kµ the K-transform of µ, it 
hara
terizes the measure µ 
ompletely.Furthermore, for a holomorphi
 fun
tion K : D → D there exists a probability measure
µ on the unit 
ir
le S1 su
h that K = Kµ if and only if K(0) = 0. This follows from theHerglotz representation theorem, the proof is similar to [Fra04, Proposition 3.3℄.It is 
lear that the 
omposition of two K-transforms is again a K-transform of someprobability measure on the unit 
ir
le. In view of Corollary 4.2 this suggests the followingde�nition.Definition 5.1. Let µ, ν be two probability measures on S1, with tranforms Kµ and
Kν . Then the unique probability measure µ⋗ ν on S1 with

Kµ⋗ν = Kµ ◦Kνis 
alled the monotone 
onvolution of µ and ν.Remark 5.1. 1. The monotone 
onvolution is weakly 
ontinuous.2. The monotone 
onvolution is asso
iative, i.e.
(λ⋗ µ) ⋗ ν = λ⋗ (µ⋗ ν)for all λ, µ, ν, but not 
ommutative, i.e., in general µ⋗ ν 6= ν ⋗ µ.3. The Dira
 measure δ1 at 1 is a two-sided unit, δ1 ⋗ µ = µ ⋗ δ1 = µ for all µ. Right
onvolution by a Dira
 measure δx a
ts as translation, i.e. µ ⋗ δx = Txµ, where

Tx : S1 → S1 is de�ned by Tx(y) = xy for x ∈ S1. But δx ⋗ µ 6= Txµ in general.4. The monotone 
onvolution is a�ne in the �rst argument. Togehter with weak 
onti-nuity this implies the following formula
µ⋗ ν =

\
S1

dµ(x)δx ⋗ ν.

6. Lévy-Khint
hine formula for monotone 
onvolution semigroups. We 
all aweakly 
ontinuous one-parameter family (µt)t≥0 of probability measures on the unit 
ir
lea 
ontinuous monotone 
onvolution semigroup, if
µ0 = δ1 and µs ⋗ µt = µs+tfor all s, t ≥ 0. By de�nition a one-parameter family (µt)t≥ is a 
ontinuous monotone
onvolution semigroup if and only if the K-transforms Kt = Kµt

, t ≥ 0 form a 
ontinuoussemigroup w.r.t. to 
omposition. The 
ontinuity of the K-transforms is uniform in z on
ompa
t sets. Our main tool for 
hara
terizing 
ontinuous monotone 
onvolution semi-groups will be Berkson and Porta's [BP78℄ 
hara
terisation of 
omposition semigroups ofholomorphi
 maps.



160 U. FRANZTheorem 6.1 ([Ber04, Theorem 4.6℄). Let (µt)t≥0 be a weakly 
ontinuous family of prob-ability measures on the unit 
ir
le, with K-transforms (Kt)t≥0. Then the following areequivalent.(a) (µt)t≥0 is a 
ontinuous monotone 
onvolution semigroup.(b) (Kt)t≥0 is a 
ontinuous semigroups w.r.t. to 
omposition.(
) There exists a holomorphi
 fun
tion u : D → C with ℜu(z) ≥ 0 for z ∈ D su
h that
(Kt)t≥0 is the (unique) solution of

dKt(z)

dt
= −Kt(z)u(Kt(z))for z ∈ D and t ≥ 0, with initial 
ondition K0(z) = z.Proof. The equivalen
e between (a) and (b) follows from the de�nition and the 
ontinuityproperties of the monotone 
onvolution.The equivalen
e between (b) and (
) is an immediate 
onsequen
e of [BP78, Theorem(3.3)℄, it su�
es to identify the �xed point at zero as the Denjoy-Wol� point of the Kt.Remark 6.2. 1. The fun
tion u in (
) 
an be 
omputed from the derivative of (Kt)t≥0in t = 0 by

u(z) = −1

z

d

dt

∣
∣
∣
∣
t=0

Kt(z),we will 
all it the generator of (Kt)t≥0.2. Su
h a fun
tion u has a unique Herglotz representation
u(z) = ib+

\
S1

w + z

w − z
dρ(w),where b is a real number and ρ a �nite measure on S1.7. Relation to Galton-Watson pro
esses. A probability measure µ on the unit 
ir
leis 
alled in�nitely divisible w.r.t. to the monotone 
onvolution, if for all n ∈ N there existsa probability measure µn on the unit 
ir
le su
h that

µ = µn ⋗ · · · ⋗ µn
︸ ︷︷ ︸

n times

.Ber
ovi
i has shown in [Ber04, Theorem 4.7℄ that all in�nitely divisible probability mea-sures 
an be embedded into a 
ontinuous monotone 
onvolution semigroup, i.e. if µ isin�nitely divisible w.r.t. to the monotone 
onvolution, then there exists a 
ontinuousmonotone 
onvolution semigroup (µt)t≥0 su
h that µ = µt for some t ≥ 0. And from theprevious se
tion it is 
lear this implies that the K-transform Kµ 
an be embedded into a
ontinuous 
omposition semigroup of K-transforms.A similar problem has been studied in the theory of Galton-Watson pro
esses.LetXn,k, n, k = 1, 2, . . . be independent, identi
ally distributed random variables withvalues in N with generating fun
tion
ϕ(z) = E(zXn,k) =

∞∑

m=0

pmz
m for z ∈ D,



MULTIPLICATIVE MONOTONE CONVOLUTIONS 161where pm = P(Xn,k = m). Then the asso
iated Galton-Watson pro
ess (Yn)n≥0 is de�nedby Y0 = 1, and
Yn+1 =

Yn∑

k=1

Xn,k, for n ≥ 1.This pro
ess des
ribes the evolution of a population where after ea
h step ea
h individualprodu
es a random number of o�spring a

ording to the probabilities (pm)m≥0Its generating fun
tions form a dis
rete 
omposition semigroup,
E(zYn) = ϕn(z), for z ∈ D, n ∈ N.If P(Xn,k = 0) = 0 (i.e. no individual dies without o�spring), then ϕ(0) = 0 and ϕ isthe K-transform of a probability measure µ on S1. If (Yn)n≥0 
an be embedded into a
ontinuous-time Markovian bran
hing pro
ess (or equivalently, if (ϕn)n≥0 
an be embed-ded into a 
ontinuous 
omposition semigroup (ϕt)t≥0 of generating fun
tions), then µ isin�nitely divisible for the monotone 
onvolution and 
an be embedded into a 
ontinuousmonotone 
onvolution semigroup. The problem of embedding Galton-Watson pro
esseshas been studied by Gorya��nov [Gor93, Gor00℄.Example 7.1. Continuous-time Markovian bran
hing pro
esses with extin
tion proba-bility 0 
an be obtained by 
hoosing in�nitesimal o�spring probabilities λj ≥ 0 for j ≥ 2su
h that α =

∑∞
j=2 λj <∞, setting

v(z) =

∞∑

j=2

λjz
j − αz, for |z| ≤ 1,and solving the di�erential equation

d

dt
ϕt(z) = v(ϕt(z))with initial 
ondition ϕ0(z) = z, 
f. [Gor93, Theorem 4℄.A simple example is the Yule pro
ess, where v(z) = α(zk − z) and

ϕt(z) =
ze−αt

k−1

√

1 −
(
1 − e−α(k−1)t

)
zk−1

, t ≥ 0,for some k ∈ N, k ≥ 2. This pro
ess des
ribes a population were the individuals arerepla
ed by k new individuals after an exponentially distributed random time.8. On the embedding of probability measures into 
ontinuous monotone 
on-volution semigroups. [Gor93, Theorem 6℄ and [Gor93, Theorem 6℄ 
hara
terize prob-ability generating fun
tions that 
an be embedded into 
omposition semigroups of prob-ability generating fun
tions. In this se
tion we give a similar 
hara
terization for K-transforms of probability measures on the unit 
ir
le that 
an be embedded into 
ontin-uous monotone 
onvolution semigroups.Let (Kt)t≥0 be a 
ontinuous 
omposition semigroups of K-transforms. By [BP78℄, Ktis di�erentiable w.r.t. t and satis�es the di�erential equation(4) d

dt
Kt(z) = v(Kt(z)) = v(z)K ′

t(z)



162 U. FRANZfor t ≥ 0, z ∈ D, with v given by
v(z) =

d

dt

∣
∣
∣
∣
t=0

Kt(z).This equation follows from the semigroup property Ks+t = Ks ◦ Kt = Kt ◦ Ks bydi�erentiation w.r.t. s at s = 0.By Theorem 6.1, the fun
tion v is of the form v(z) = −zu(z), with a holomorphi
fun
tion u : D → C su
h that ℜu(z) ≥ 0 for z ∈ D.We will need the following lemma.Lemma 8.1. Let u : D → C, u 6≡ 0, be a holomorphi
 fun
tion su
h that ℜu(z) ≥ 0 for
z ∈ D and set β = u(0), v(z) = −zu(z) for z ∈ D.Then, for all t ≥ 0, the equation(5) v(f(z)) = v(z)f ′(z), z ∈ D,has a unique solution f with f ′(0) = e−tβ.Proof. The proof of this lemma is borrowed from [Gor93, Lemma 2℄.Let (Kt)t≥0 be a 
omposition semigroup of K-transforms with generator u. Then all
Kt, t ≥ 0 satisfy Equation (5). Furthermore, the di�erential equation that the Kt satisfy,implies

d

dt
K ′
t(0) = −u(0)K ′

z(0)and therefore K ′
t(0) = e−tβ, sin
e K0(z) = z and K ′

0(0) = 1. This proves existen
e.Let now f be an arbitrary solution of Equation (5) with f ′(0) = e−tβ . Sin
e v has nozeros inside D other than z = 0, we get f(0) = 0 by substituting z = 0 into Equation (5).Di�erentiation Equation (5) k times, we 
an 
al
ulate the higher derivatives of f at zerofrom f ′(0) = e−tβ and the derivatives of v at zero. This proves uniqueness.Remark 8.2. Let (Kt)t≥0 be the K-transforms of a 
ontinuous monotone 
onvolutionsemigroup (µt)t≥0 with generator u. Then K ′
t(0) = e−tu(0) is the �rst moment of µt, i.e.

e−tu(0) =
\
S1

xdµt, for t ≥ 0.We 
ome to the main result of this se
tion.Theorem 8.3. Let µ be a probability measure on the unit 
ir
le S1 that is not 
on
en-trated in one point.Then µ 
an be embedded into a 
ontinuous monotone 
onvolution semigroup if andonly if K ′
µ(z) 6= 0 for all z ∈ D and there exists a lo
ally uniform limit

lim
n→∞

−
Kn
µ (z)

(Kn
µ )′(z)

= v(z),in D that is of the form v(z) = αzu(z) with a non-zero 
onstant α ∈ C and a holomorphi
fun
tion u : D → C su
h that ℜu(z) ≥ 0 for z ∈ D and K ′
µ(0) = e−t0u(0) for some t0 ≥ 0.Proof. The proof of this theorem is similar to that of [Gor93, Theorem 6℄.
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an be embedded into a 
ontinuous monotone 
onvolution semigroup.ThenKµ 
an be embedded into a 
omposition semigroup of K-transforms (Kt)t≥0. There-fore all Kt are inje
tive and K ′
t(z) 6= 0 for all z ∈ D, t ≥ 0, 
f. [BP78℄. Denote by u thegenerator of (Kt)t≥0 and de�ne v by v(z) = −zu(z) for z ∈ D. By the Denjoy-Wol�theorem we get limt→∞Kt(z) = 0 and limt→∞K ′

t(z) = 0 lo
ally uniformly for all z ∈ D.Therefore
lim
t→∞

v(Kt(u))

Kt(z)
= v′(0) = −u(0).With the right-hand-side of Equation (4) this implies

lim
n→∞

− Kn
µ (z)

(Kn
µ )′(z)

= lim
t→∞

−Kt(z)

K ′
t(z)

= lim
t→∞

−Kt(z)v(z)

v(Kt(z))
= − v(z)

v′(0)
= −z u(z)

u(0)
.The limit is of the form required in the theorem with the 
onstant α = 1/u(0).To show the 
onverse, let now Kµ be a K-transform satisfying the 
onditions of thetheorem with v(z) = αzu(z), α and u as des
ribed in the theorem.Let (Kt)t≥0 be the 
omposition semigroup of K-transforms with generator u. Thenthe Kt satisfy

v(Kt(z)) = v(z)K ′
t(z), for t ≥ 0, z ∈ D.The 
onditions of the theorem imply that Kµ is also a solution of the same equation,

v(z) = lim
t→∞

−
Kn+1
µ (z)

(Kn+1
µ )′(z)

= lim
t→∞

−
Kn
µ (Kµ(z))

K ′
µ(z)(K

n
µ )′(z)

=
v(Kµ(z))

K ′
µ(z)

.The uniqueness in Lemma 8.1 now implies Kµ = Kt0 .Remark 8.4. Let µ = δx be 
on
entrated in one point x = eiϕ ∈ S1. Then we get
ψδx

(z) = xz
1−xz and Kµ(z) = eiϕz and µ 
an be embedded into the 
ontinuous 
onvolutionsemigroups (µ

(k)
t )t≥0 given by µ(k)

t = δeit(ϕ+2πk) , k ∈ Z.9. Appendix: Multipli
ative monotone 
onvolution for probability measureson R+. Just as there are many di�erent ways to de�ne multipli
atively a positive op-erator from two given positive operators, there are di�erent de�nitions of multipli
ativemonotone 
onvolutions of two probability measures µ and ν on R+. Two possible 
hoi
esare to take positive self-adjoint operators X and Y , whose distributions are given by µand ν, resp., su
h that X − 1 and Y − 1 are monotoni
ally independent, and to de�nethe 
onvolution of µ and ν as the distributions of √XY√
X or √Y X√

Y .By Corollary 4.3 the K-transform of √XY√
X is equal to the 
omposition of theK-transforms of X and Y . Therefore this de�nition is equivalent to the one 
hosen byBer
ovi
i, 
f. [Ber04℄.We will show below that 
hoosing the distribution of √Y X√

Y as the 
onvolution ofthe distributions of X and Y leads to an inequivalent de�nition.The operators √XY√
X and √

Y X
√
Y have the same spe
trum, ex
ept for 0. Morepre
isely, σ(

√
XY

√
X)\{0} = σ(

√
Y X

√
Y )\{0}, sin
e √XY√

X = AB and √
Y X

√
Y =

BA with A =
√
X
√
Y and B =

√
Y
√
X.But the following example shows that, unlike in the free 
ase where one works withtra
ial states, here the distributions of √XY√

X and √
Y X

√
Y are in general di�erent



164 U. FRANZand therefore we have two di�erent multipli
ative monotone 
onvolutions for probabilitymeasures on R+.Example 9.1. Consider the positive de�nite 2 × 2-matrix
M(a) =

(
1 a

a 1

)

=
1√
2

(
1 1

1 −1

)(
1 + a 0

0 1 − a

)
1√
2

(
1 1

1 −1

)

,with a ∈ (0, 1). Then we have
〈(

0

1

)

, Ak
(

0

1

)〉

=
1

2
((1 − a)k + (1 + a)k)for k ∈ N, i.e. the distribution of A in the ve
tor state given by ω =

(
0
1

) is equal to
1
2 (δ1−a + δ1+a).A simple 
al
ulation yields(6) √

M(a) =
1

2

(√
1 + a+

√
1 − a

√
1 + a−

√
1 − a√

1 + a−
√

1 − a
√

1 + a+
√

1 − a

)

.

Let a, b ∈ (0, 1) and 
onsider the pair of positive de�nite matri
es
X = 1 ⊗ 1 +

(
M(a) − 1

)
⊗ Pω =







1 0 0 0

0 1 0 0

0 0 1 a

0 0 a 1






,

Y = 1 ⊗M(b) =







1 0 b 0

0 1 0 b

b 0 1 0

0 b 0 1






,

in M2(C)⊗M2(C) ∼= M4(C) where Pω denotes the orthogonal proje
tion onto ω =
(

0
1

).With respe
t to the ve
tor state given by ω⊗ω, X−1⊗1 and Y −1⊗1 are monotoni
allyindependent, with distributions given by 1
2 (δ1−a+ δ1+a) and 1

2 (δ1−b+ δ1+b), respe
tively.As in Equation (6), we 
ompute
√
X =








1 0 0 0

0 1 0 0

0 0
√

1+a+
√

1−a
2

√
1+a−

√
1−a

2

0 0
√

1+a−
√

1−a
2

√
1+a+

√
1−a

2







,

√
Y =

1

2








√
1 + b+

√
1 − b 0

√
1 + b−

√
1 − b 0

0
√

1 + b+
√

1 − b 0
√

1 + b−
√

1 − b√
1 + b−

√
1 − b 0

√
1 + b+

√
1 − b 0

0
√

1 + b−
√

1 − b 0
√

1 + b+
√

1 − b







.
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XY

√
X and √

XY
√
X are

λ1 = 1 +
a

2
+

1

2

√

a2 + 4(1 + a)b2,

λ2 = 1 +
a

2
− 1

2

√

a2 + 4(1 + a)b2,

λ3 = 1 − a

2
+

1

2

√

a2 + 4(1 − a)b2,

λ4 = 1 − a

2
− 1

2

√

a2 + 4(1 − a)b2,and therefore their distributions have the same support. But their distributions in theve
tor state ω =

( 0

0

0

1

) are di�erent. For example their se
ond moments di�er,
〈ω,
(√

XY
√
X
)2

ω〉 = 1 + b2 + a2,

〈ω,
(√

Y X
√
Y
)2

ω〉 = 1 + b2 +
a2

2

(

1 +
√

1 − b2
)

,(re
all that we assumed a 6= 0, b 6= 0).A
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