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Abstract. We consider compactness, weak compactness and complete continuity for multipli-
cation operators on von Neumann algebras and their preduals.

1. Introduction. Our primary interest in this paper is to demonstrate how difficult it
is, even in the noncommutative world, for multiplication operators on analogues of an L,
and L; spaces to be compact, weakly compact or completely continuous. Recall that under
the term (weakly) compact operator one understands a bounded linear operator T' from
one Banach space into another which maps bounded sets onto relatively (weakly) compact
sets. A Banach space operator will be said to be completely continuous if it maps weakly
convergent sequences onto norm convergent sequences. A Banach space X is said to have
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Dunford-Pettis property if every weakly compact operator with domain X is completely
continuous. The function spaces C(K) and L;(u) are among the best-known examples
of such spaces. Now in the noncommutative world the Dunford-Pettis property is known
to fail for almost all types of von Neumann algebras and their preduals [CI, B]. Hence
in our analysis we cannot rely on the convenient connection between weakly compact
and completely continuous operators afforded by this property in the classical setting.
However despite this drawback, at least as far as multiplication operators are concerned,
one still finds a remarkable similarity between the results pertaining to weakly compact
multiplication operators and those pertaining to completely continuous ones.

The results on compactness and weak compactness of multiplication operators have
been proved by Akemann and Wright in [AW] for general C*-algebras. In their arguments
they use the reduced atomic representation of a C*-algebra. Those arguments are very
elegant, but they do not show clearly enough what is happening in the von Neumann
algebra case. In particular, one cannot easily see why there are no nonzero (weakly) com-
pact multiplication operators on von Neumann algebras without minimal projections, like
algebras of type II and I11. Their techniques also make implicit use of the fact that the
operators under consideration behave well with regard to duality. This seriously limits
the application of their techniques to the investigation of complete continuity, which is
not preserved under duality. We decided to give new and very straightforward arguments
in support of the facts. As such these arguments not only provide new information with
regard to completely continuous multiplication operators, but also give additional insight
into the case of (weakly) compact ones. They follow from a couple of lemmas of inde-
pendent interest, which we shall use in our subsequent paper generalizing the results to
noncommutative LP-spaces [GJL]. Note that several other generalizations have already
been obtained by a series of authors, see for example [M, BC]. One should also consult
the very interesting work of Pfitzner on weak compactness in C*-algebras [P].

We use standard notation and terminology for von Neumann algebra theory, as found,
for example, in [T, KR1, KR2|. In particular, we denote by B(H) the algebra of all
bounded operators on a Hilbert space H, and by K(H) the ideal of compact operators
on that space. We call an element of M compact if its image in some (though obviously
not every) faithful normal representation of M on a Hilbert space H belongs to K(H).
We denote by Z(M) the center of the algebra M and by c¢(f) the central support (or
carrier) of f in M. A projection e of M is of finite rank (or finite dimensional) in M if
the algebra eMe is finite dimensional.

We use the same symbol My for left multiplication operators acting on the algebra:
M¢: M — M,a+— fa and on its predual My : M, — M.,y — fi, where f belongs to
M. Similarly, we denote the right multiplication operators by ;M. Note that if f = u|f]
is the polar decomposition of f, then My = M, My and M,;; = M,+Mjy. The ideal
property of compact, weakly compact and completely continuous operators now implies
that M has one of the three properties if and only if M| has the same property. (Hence,
we can always assume that the symbol we use for the multiplication is positive.) Since
f* = |flu*, the same can be said of My and My«. Note that ;M can be obtained by
consecutive application of the involution of the algebra and M. Since the *-operation is
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norm, weak and weak* continuous on M, My is compact, weakly compact or completely
continuous if and only if M has the same property. Analogous statements are true of
multiplication operators on the predual M,.

In a few places, we were able to demonstrate two different kinds of strategies—the
more straightforward ones, based on the properties of von Neumann algebras, and the
more general ones, using tensor products and ‘diagram chasing’.

2. Weak compactness. Note that My : M, — M, is weakly compact if and only if
so is its adjoint (My)* = s M : M — M. We shall use the fact without further notice.

We start with a simple but very useful lemma, which may well belong to the mathe-
matical folklore. Since we were not able to trace it down in the literature, we provide it
here with a proof.

LEMMA 2.1. Let M be a von Neumann algebra with no minimal projections. Then no
mazimal abelian von Neumann subalgebra My of M has minimal projections.

Proof. Let M be a von Neumann algebra with no minimal projections and let Mg be a
commutative von Neumann subalgebra of M. Suppose that ey is a minimal projection
in Mgy. By hypothesis, there must exist a projection fo € M\ Mgy with 0 < fy < ep.
Now given any other projection e in Mg, we have by commutativity that ege € M is a
subprojection of eg. So by minimality

either epe =0 (i.e. ey Le) or epe=-¢y (ie. ey <e).
Thus since fy < eg we also have that
either fy Le or fop<e

for any projection e in M. But this means that f; commutes with all the projections in
M. Since the span of these projections is dense in M, fy commutes with M. Therefore
M, cannot be maximal abelian, since {fy, Mo} generates a commutative subalgebra
which is strictly larger than Mg. m

The next lemma uses standard arguments of the structure theory of von Neumann
algebras.

LEMMA 2.2. Let M be a von Neumann algebra. (1) Assume M is not a finite direct
sum of finite discrete factors (i.e. it is not finite dimensional). Then there is in M an
orthogonal sequence of non-zero projections. (2) Assume M has no minimal projections.
If e € M is a non-zero projection, then there exists in M an orthogonal sequence of
non-zero subprojections of e. (3) Let e € M be a projection which is not of finite rank in
M. Then there exists in M an orthogonal sequence of non-zero subprojections of e. In
all cases, we can choose each of the projections to be o-finite.

Proof. (1) The conditions on M imply that it can be represented as a direct sum M; &
My & M3 @& My, where M is continuous (i.e. type IT or I1I), My is type I (in
particular, properly infinite), M3 is finite discrete with non-atomic center (i.e. a direct
sum of type I,, n < oo algebras with non-atomic centers) and My is a direct sum
of finite discrete factors; with all but one of the four summands possibly zero, but if
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My = My = M3 = {0}, then My is an infinite direct sum of finite discrete factors. We
consider the different cases:

(a) My = My = M3 = {0} and My is an infinite direct sum of finite discrete factors.
Let z, € Z(My) be such that each of Myz, is a different type I,, factor. Then (z,)
constitutes the desired sequence of non-zero projections.

(b) My # {0} and/or Mz # {0}. There exists a projection e € M; (resp. e € Ms)
such that e ~ 1 —e. We can put e; = e and continue the procedure for the algebra
(I1—e)M;1(1—e) (resp. (1—e)Ma(1—e)), which is obviously continuous (resp. type I, ),
to obtain e <1 —e;7. Then e3 < 1 —e7 — es and so on.

(c) M3 # {0}. If M5 is not o-finite, then 1 € M3 can be written as an orthogonal
sum of (central) non-zero o-finite projections. In this case, we can choose any countable
subfamily from the collection. Thus, we may assume that M3 is o-finite. Since M3 is a
direct sum of type I, algebras, it is enough to consider a non-zero direct summand of
type I, that is an algebra of the form F® Z, where F is type I,, factor and Z is a o-finite
non-atomic commutative algebra. Let 7 be a faithful normal tracial state on Z. Since Z is
non-atomic, we can find a projection e; € Z with 0 < 7(e1) < 1, thenes <1—e1,e3 € Z
with 0 < 7(e2) < 7(1 — e1) and so on. By passing to (1 ® e,), this gives an orthogonal
sequence of non-zero projections in F ® Z.

(2) This is a direct consequence of (1) applied to eMe.

(3) Again, eMe cannot be a finite direct sum of finite discrete factors, since then it
would be finite-dimensional in some faithful representation of M. Thus, part (1) of the
lemma applies to eMe.

The validity of the last remark follows from the fact that any non-o-finite projection
is an orthogonal sum of o-finite ones, of which we can use any countable subset. Indeed,
this is an immediate consequence of Zorn’s lemma. A non-o-finite projection e must
have a non-zero o-finite subprojection eg: take any non-zero ¢ € (eMe), + and put

eg = supp(y). =
The following lemma contains the essence of what we are going to prove.

LEMMA 2.3. Let M be a von Neumann algebra and let f € M. If there exists an infinite
sequence of projections e, € M and a number \ > 0 satisfying the following conditions:

|flen =enlf|  for all n,
|flen > Aey for all n,

en — 0 strongly,

en are o-finite and non-zero,

then the operator My : M, — M, is not weakly compact.

Proof. We may assume that f € M. Observe also that e = \/ e, is o-finite, hence
there exists ¢ € (M,)4 such that supp(p) = e. We have ¢(e,) > 0 for all n, so that we
can define a sequence of states (i, ) by

on(x) = p(eqxe,) forall z € M and all n
(z) o) ( )
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(ie. pn = @entpen). The ¢,’s are states since ||¢n| = ¢n(1) = 1. Now,
1
e(en)

(Mypn)(en) = (fon)(en) = pnlenf) = o(fen)

> m)\@(en) =A>0.

Hence, the set {Myp,} is not relatively weakly compact (see [T|, Lemma II1.5.5), which
ends the proof. m

The next two theorems show that weak compactness of the multiplication operators
can happen only for very “discrete” algebras and only if the element f which we use is
compact.

PROPOSITION 2.4. Let M be a von Neumann algebra without minimal projections, f €
M and f #0. Then My : M, — M, is not weakly compact.

Proof. Assume as in the proof of Lemma 2.3 that f is positive (and non-zero). Let A
denote a maximal abelian von Neumann subalgebra of M containing the element f. Let
A > 0 be such that e = x[x oo[(f) # 0. By Lemma 2.1, A has no minimal projections. Now
we can apply Lemma 2.2(2) to e and obtain an orthogonal sequence (e,,) of subprojections
of e satisfying all four conditions of Lemma 2.3. Consequently, the operator My : M, —
M. is not weakly compact. m

THEOREM 2.5. Let M be a von Neumann algebra and f € M. The operator My is
weakly compact on either M or M, if and only if f is compact in M. If this is the
case, the algebra Mc(f) is o-finite and atomic. Moreover, if (z,) is a sequence of central
projections such that c(f) = z1 + 22 + ... and Mz '’s are factors, then (|| fzn||) € co-

Proof. “=7” Assume f is positive and non-zero and that ¢(f) = 1. If, for some X > 0, the
spectral projection ex = x[x,00[(f) i8 not of finite rank in M, then Lemma 2.2(3) gives a
sequence (e,) satisfying the assumptions of Lemma 2.3 and My is not weakly compact.
Hence, for each A > 0, e, is of finite rank. Consequently, there exists a (finite or infinite)
decreasing sequence (\,) of strictly positive real numbers such that the spectrum of f
consists of \,;’s and, possibly, zero. We only need to show that in some representation of
M all the spectral projections e, corresponding to eigenvalues \,, have finite-dimensional
ranges. Now, if for some central projection z € M the algebra M(1 — z) has no minimal
projections, then supp(f) < z, since otherwise, by Proposition 2.4, f(1 — z) would not
be weakly compact. Hence, we can assume that M is a direct sum of discrete factors.
Evidently, M cannot have more than a countable number of non-zero summands, and if it
is an infinite direct sum of such factors, say M = Mz +Mzo+. .. with 21, 25,... € Z(M)
and Mz, Mz, ... discrete, then the norms || fz,| tend to zero when n tends to infinity.
Otherwise, we could easily build a sequence satisfying all the assumptions of Lemma 2.3
as in the proof of Lemma 2.2(1)(a). Our result is obvious for a finite discrete factor,
so assume for a moment that Mc(f) (or simply M) is a factor of type I, (where oo
stands for some cardinal number). Such an algebra can be represented as B(H) for a
suitable Hilbert space H. In such a case, all the spectral projections e,, must have finite-
dimensional ranges, otherwise we would easily get a sequence of projections satisfying
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the assumptions of Lemma 2.3. This means that in a suitable representation each of
fz1, fz2,... is compact. Moreover, as the norms of fz, go to zero, each non-zero spectral
value of f is a spectral value of a finite number of fz,’s only. Hence, in this representation
the spectrum of f is either finite or its non-zero elements can be arranged into a sequence
(M) tending to zero and such that the spectral subspaces corresponding to \,’s are finite
dimensional. Obviously, this is enough to guarantee that f is also compact.

“<” Assume that f is positive and compact.

Suppose first that M = B(H) for some infinite dimensional Hilbert space H. Let
€€ H, ||&]| =1 and let f be a one-dimensional projection onto the subspace generated
by &. Choose now any sequence (e,,) of orthogonal projections in M converging strongly
to zero. Then, for any ¢ in the unit ball of M., there is a trace-class operator h such
that ¢(-) = tr(h-). Let (&;) be an orthonormal basis in H with one of the vectors equal
to £&. Then

(fo)(en) = tr(he, f) = Z(henffiagi) = (hen§, &) = (en§, h*E)
and

[(Fe)(en)l < lleadlllIPll < lleag Pl < fleng]l-

Thus, the convergence (f¢)(e,) — 0 is uniform with respect to ¢ from the unit ball of
the predual. This means that finite-rank f’s and consequently also compact ones are such
that My’s are weakly compact.

Using the well-known fact that a Banach space operator u : X — Y is weakly compact
if and only its second adjoint u** maps X** into Y, we can also argue as follows. If we
use trace duality to identify B(H) and K (H)**, then My : B(H) — B(H) is just the
second adjoint of My as an operator on K(H). So weak compactness is equivalent to My
acting from B(H) to K(H), which is readily seen to be equivalent to compactness of f.
This kind of argument seems to trace back to K. Vala [V]; see also C. A. Akemann and
S. Wright [AS].

Observe now that the algebra Mc(f) must be atomic and o-finite. In fact, if Mz
has no minimal projections for some central projection z, then the spectral projections
of fz corresponding to its strictly positive eigenvalues cannot be of finite rank. Also,
if ||fz|| > O for uncountable number of central projections z such that Mz is a factor,
then, for some € > 0, the number of such projections with || fz|| > € would be infinite,
which is impossible for a compact f. Hence, Mc(f) is o-finite. Let (z,) be a sequence
of central projections such that all Mz,’s are factors and ¢(f) = z1 + 22 + .... Then
all the factors are discrete and || fz,|| — 0. Recall that each infinite discrete factor is
«-isomorphic to B(H) for some infinite dimensional Hilbert space H. Hence, by what
we have just proved, My is weakly compact on each discrete factor, the result for finite
discrete factors being obvious. Now, if we choose kg large enough, we can make the norm
of f(zkot+1 + Zkot2 + - .. ) arbitrarily small. Hence, with e,, and ¢ as before,

[(Fe)(en)l < [(fzr0)(en)l + -+ |(F2ro)(en)] + 1f (Zho41 + 2rot2 + -l
which can be made arbitrarily small uniformly w.r.t. ¢ from the unit ball, by what we
have already proved.

Therefore, if f is compact, then My is weakly compact. m
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3. Complete continuity. In this section we show that a multiplication operator My on
M or M, can be completely continuous only if the algebra Mec(f) is finite and atomic.
Moreover, if M is completely continuous on the algebra, then f must be compact.

THEOREM 3.1. Let M be a von Neumann algebra and f € M. Then My acting on M
is completely continuous if and only if Mc(f) is finite and f is compact.

Proof. Assume that My is completely continuous and that ¢(f) = 1. Consider first the
case when M has no minimal projections. Let M be a maximal abelian von Neumann
subalgebra of M containing f. By Lemma 2.1, M has no minimal projection, either.
Note that My restricts to a completely continuous map from M, to My. Since My is
commutative (and hence to all intents of purposes a C(K) space), the restriction of My
to My is weakly compact [DU, p 160, Corollary 17]. Hence we may apply Proposition
2.4 to conclude that f = 0 in this case.

The next case to consider is that of an arbitrary I, factor. We can assume that
M = B(H) for some Hilbert space H. As above, the restriction of M; to some maximal
abelian von Neumann subalgebra Mg of M is weakly compact. By 2.5, f is compact in
M. Consequently, if f is not zero, there are a non-zero projection e in M and a number
A such that fe = Ae. We can assume that e is one-dimensional as an operator on H. Let
(en) be a sequence of pairwise orthogonal one-dimensional projections on H such that
e; = e. Let v, be partial isometries such that v} v, = e, and v,v), = e. Choose any
@ € M*. The Cauchy-Schwarz inequality gives

lo(vn)] < plen)2p(1)1? — 0.
Hence v,, is weakly null. On the other hand, the norms
[Mpon | = [[Mgevn|| = [Allon ] = Al

do not converge to zero, which yields a contradiction. Hence, f must be zero.

In this case, we could again proceed by means of ‘soft analysis’. If My acts on M
in a completely continuous manner, then it does so on K(H). When we identify, in a
canonical fashion, K (H) and the completed injective tensor product H®H, then My
becomes 1y ® f. Suppose now that f # 0. Pick x € H with f(z) # 0 and identify
the linear span of = as well as of f(x) with C. Recall that H is just a copy of H®C.
Combine all this to see 15 can be considered as being induced by 1y ® f through these
identifications. We conclude that 1g is compact, whence dim H < oo.

Suppose now that M is an infinite direct sum of finite type I factors. Let (z,) be
a sequence of pairwise orthogonal non-zero central projections such that each Mz, is
a factor. Obviously, the sequence (z,) is weakly (i.e. o(M, M*)) null. Hence ||fz,| =
|Myzy,|| — 0, so that, for each €, the set of these nonzero central projections z for which
Mz is a factor and ||fz|| > e, is finite. Hence, the set of all nonzero central projections
z for which fz # 0 and Mz is a factor is at most countable and f is compact (cf. the
proof of Theorem 2.5).

We are left with the case of a finite direct sum of finite type I factors. It is clear that
in this case f must be compact in M.
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For the converse, assume that f is compact. The result is obvious if M is a finite
direct sum of finite type I factors, so let M be an infinite direct sum of such factors.
Let also the z,’s be selected as before. Given € > 0, we can find kg such that || fzx| <€
for any k > ko. Take an arbitrary weakly null sequence (a,,) in M. We can assume that
its elements are taken from the unit ball. Obviously, ||a,zk| — 0 as n — oo, since the
weak and norm topologies coincide on any finite type I factor. Hence ||a,z;| < €/||f|| for
k < ko and n sufficiently large. Consequently, for all such n, || fa,zx|| < € for all k, which
means that || fa,|| < e, so that My is completely continuous. =

THEOREM 3.2. Let M be a von Neumann algebra and f € M. The operator My acting
on M., is completely continuous if and only if Mc(f) is finite atomic.

Proof. Assume that, for some f € M., My is completely continuous and c¢(f) = 1.
Consider first the case when M is properly infinite. Let (e,,) be a sequence of pairwise
orthogonal projections in M, all equivalent to 1, and let (v,) be such that v}v, = e, and
vpvy = 1. Choose any state ¢ on M. As in the proof of Theorem 3.1, v, is o (M, M*)-null,
hence also o(M, M,)-null. This implies that (yv,) is weakly null. Thus My (v,¢) — 0 in
norm. At the same time, || My(pv,)|| > @(vav) f) = ©(f). Hence f = 0.

Assume now that M has no minimal projections. Fix a state ¢ on M. Since, by
Lemma 2.1, maximal abelian subalgebras containing f cannot have minimal projections,
there is in M a Rademacher sequence (r,) consisting of symmetries commuting with
f and such that @(rpr;) = 0 for k # . To see this, recall that each such subalgebra
is *-isomorphic, as a von Neumann algebra, to the ¢, ,-direct sum of L°°-spaces over
some nonatomic finite measure spaces. Note that the mapping = — z¢ from M into
M, factorizes through the Hilbert space H, of the GNS representation of M w.r.t. ¢:
x — x€ — x@, where { € H, is such that ¢ = we. Since (r,&) forms an orthonormal
sequence in H,, it is weakly null there. Consequently, (r,¢) is weakly null in M. Thus,
M¢(rpp) — 0 in norm. At the same time ||M¢(rn)|| > @(rnfrn) = ¢(f). Hence f = 0.

Assume finally that M is finite atomic. Then M, has Schur’s property. In fact, by
Proposition I11.5.10 in [T], it is enough to show that if (¢,,) is weakly null, then the sets
{l¢n|} and {|¢k|} are both relatively weakly compact. To this end, note that since M
is finite, the #-operation is o-strongly continuous on bounded parts of M (see for exam-
ple [S], Theorem 2.5.6), so that by Theorem II1.5.7 in [T], the Arens-Mackey topology
7(M, M,) coincides with the o-strong topology on bounded parts of M. This yields rel-
ative weak compactness of the set of absolute values of any relatively compact subset of
M., as explained in detail in Exercise V.2.5(d) from [T]. Hence, every bounded operator
on M, is completely continuous, which ends the proof. m

4. Compactness. The criteria for compactness of a multiplication operator are easy to
read off from our results on completely continuous operators. In particular, we obtain
that a multiplication operator on the algebra is compact if and only if it is completely
continuous.

THEOREM 4.1. Let M be a von Neumann algebra and f € M. Then My acting on M
or M, is compact if and only if Mc(f) is finite and f is compact.
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Proof. It is enough to prove the result for M, since the other one follows from Schauder’s
theorem the operator on M is compact if and only if its preadjoint operator on M, is
compact. If M is compact, then it is also completely continuous. Thus, by Theorem 3.1,
Mc(f) is finite and f is compact. For the converse, assume that the two conditions are
satisfied. Let (a,) be a bounded sequence in M and let (zx) be the sequence of central
projections from the proof of Theorem 3.1. Obviously, the sequence (a,) has a subse-
quence which converges in norm on Mz, then a subsequence of this subsequence which
converges in norm on Mzy and so on. Thus, we can construct a diagonal subsequence of
(an) which is norm convergent on each finite factor Mz, k = 1,2,.... The same type of
reasoning as in the proof of Theorem 3.1 shows that the image of this subsequence under
My is in fact norm convergent on M. m
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