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Abstra
t. We 
onsider 
ompa
tness, weak 
ompa
tness and 
omplete 
ontinuity for multipli-
ation operators on von Neumann algebras and their preduals.1. Introdu
tion. Our primary interest in this paper is to demonstrate how di�
ult itis, even in the non
ommutative world, for multipli
ation operators on analogues of an L∞and L1 spa
es to be 
ompa
t, weakly 
ompa
t or 
ompletely 
ontinuous. Re
all that underthe term (weakly) 
ompa
t operator one understands a bounded linear operator T fromone Bana
h spa
e into another whi
h maps bounded sets onto relatively (weakly) 
ompa
tsets. A Bana
h spa
e operator will be said to be 
ompletely 
ontinuous if it maps weakly
onvergent sequen
es onto norm 
onvergent sequen
es. A Bana
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178 S. GOLDSTEIN ET AL.Dunford-Pettis property if every weakly 
ompa
t operator with domain X is 
ompletely
ontinuous. The fun
tion spa
es C(K) and L1(µ) are among the best-known examplesof su
h spa
es. Now in the non
ommutative world the Dunford-Pettis property is knownto fail for almost all types of von Neumann algebras and their preduals [CI, B℄. Hen
ein our analysis we 
annot rely on the 
onvenient 
onne
tion between weakly 
ompa
tand 
ompletely 
ontinuous operators a�orded by this property in the 
lassi
al setting.However despite this drawba
k, at least as far as multipli
ation operators are 
on
erned,one still �nds a remarkable similarity between the results pertaining to weakly 
ompa
tmultipli
ation operators and those pertaining to 
ompletely 
ontinuous ones.The results on 
ompa
tness and weak 
ompa
tness of multipli
ation operators havebeen proved by Akemann and Wright in [AW℄ for general C∗-algebras. In their argumentsthey use the redu
ed atomi
 representation of a C∗-algebra. Those arguments are veryelegant, but they do not show 
learly enough what is happening in the von Neumannalgebra 
ase. In parti
ular, one 
annot easily see why there are no nonzero (weakly) 
om-pa
t multipli
ation operators on von Neumann algebras without minimal proje
tions, likealgebras of type II and III. Their te
hniques also make impli
it use of the fa
t that theoperators under 
onsideration behave well with regard to duality. This seriously limitsthe appli
ation of their te
hniques to the investigation of 
omplete 
ontinuity, whi
h isnot preserved under duality. We de
ided to give new and very straightforward argumentsin support of the fa
ts. As su
h these arguments not only provide new information withregard to 
ompletely 
ontinuous multipli
ation operators, but also give additional insightinto the 
ase of (weakly) 
ompa
t ones. They follow from a 
ouple of lemmas of inde-pendent interest, whi
h we shall use in our subsequent paper generalizing the results tonon
ommutative Lp-spa
es [GJL℄. Note that several other generalizations have alreadybeen obtained by a series of authors, see for example [M, BC℄. One should also 
onsultthe very interesting work of P�tzner on weak 
ompa
tness in C∗-algebras [P℄.We use standard notation and terminology for von Neumann algebra theory, as found,for example, in [T, KR1, KR2℄. In parti
ular, we denote by B(H) the algebra of allbounded operators on a Hilbert spa
e H, and by K(H) the ideal of 
ompa
t operatorson that spa
e. We 
all an element of M 
ompa
t if its image in some (though obviouslynot every) faithful normal representation of M on a Hilbert spa
e H belongs to K(H).We denote by Z(M) the 
enter of the algebra M and by c(f) the 
entral support (or
arrier) of f in M. A proje
tion e of M is of �nite rank (or �nite dimensional) in M ifthe algebra eMe is �nite dimensional.We use the same symbol Mf for left multipli
ation operators a
ting on the algebra:
Mf : M → M, a 7→ fa and on its predual Mf : M∗ → M∗, ψ 7→ fψ, where f belongs to
M. Similarly, we denote the right multipli
ation operators by fM . Note that if f = u|f |is the polar de
omposition of f , then Mf = MuM|f | and M|f | = Mu∗Mf . The idealproperty of 
ompa
t, weakly 
ompa
t and 
ompletely 
ontinuous operators now impliesthatMf has one of the three properties if and only ifM|f | has the same property. (Hen
e,we 
an always assume that the symbol we use for the multipli
ation is positive.) Sin
e
f∗ = |f |u∗, the same 
an be said of Mf and Mf∗ . Note that fM 
an be obtained by
onse
utive appli
ation of the involution of the algebra andMf∗ . Sin
e the ∗-operation is
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ontinuous on M, Mf is 
ompa
t, weakly 
ompa
t or 
ompletely
ontinuous if and only if fM has the same property. Analogous statements are true ofmultipli
ation operators on the predual M∗.In a few pla
es, we were able to demonstrate two di�erent kinds of strategies�themore straightforward ones, based on the properties of von Neumann algebras, and themore general ones, using tensor produ
ts and `diagram 
hasing'.2. Weak 
ompa
tness. Note that Mf : M∗ → M∗ is weakly 
ompa
t if and only ifso is its adjoint (Mf )∗ = fM : M → M. We shall use the fa
t without further noti
e.We start with a simple but very useful lemma, whi
h may well belong to the mathe-mati
al folklore. Sin
e we were not able to tra
e it down in the literature, we provide ithere with a proof.Lemma 2.1. Let M be a von Neumann algebra with no minimal proje
tions. Then nomaximal abelian von Neumann subalgebra M0 of M has minimal proje
tions.Proof. Let M be a von Neumann algebra with no minimal proje
tions and let M0 be a
ommutative von Neumann subalgebra of M. Suppose that e0 is a minimal proje
tionin M0. By hypothesis, there must exist a proje
tion f0 ∈ M \ M0 with 0 < f0 < e0.Now given any other proje
tion e in M0, we have by 
ommutativity that e0e ∈ M0 is asubproje
tion of e0. So by minimalityeither e0e = 0 (i.e. e0 ⊥ e) or e0e = e0 (i.e. e0 ≤ e).Thus sin
e f0 < e0 we also have thateither f0 ⊥ e or f0 < efor any proje
tion e in M0. But this means that f0 
ommutes with all the proje
tions in
M0. Sin
e the span of these proje
tions is dense inM0, f0 
ommutes withM0. Therefore
M0 
annot be maximal abelian, sin
e {f0,M0} generates a 
ommutative subalgebrawhi
h is stri
tly larger than M0.The next lemma uses standard arguments of the stru
ture theory of von Neumannalgebras.Lemma 2.2. Let M be a von Neumann algebra. (1) Assume M is not a �nite dire
tsum of �nite dis
rete fa
tors (i.e. it is not �nite dimensional). Then there is in M anorthogonal sequen
e of non-zero proje
tions. (2) Assume M has no minimal proje
tions.If e ∈ M is a non-zero proje
tion, then there exists in M an orthogonal sequen
e ofnon-zero subproje
tions of e. (3) Let e ∈ M be a proje
tion whi
h is not of �nite rank in
M. Then there exists in M an orthogonal sequen
e of non-zero subproje
tions of e. Inall 
ases, we 
an 
hoose ea
h of the proje
tions to be σ-�nite.Proof. (1) The 
onditions on M imply that it 
an be represented as a dire
t sum M1 ⊕

M2 ⊕ M3 ⊕ M4, where M1 is 
ontinuous (i.e. type II or III), M2 is type I∞ (inparti
ular, properly in�nite), M3 is �nite dis
rete with non-atomi
 
enter (i.e. a dire
tsum of type In, n < ∞ algebras with non-atomi
 
enters) and M4 is a dire
t sumof �nite dis
rete fa
tors; with all but one of the four summands possibly zero, but if
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M1 = M2 = M3 = {0}, then M4 is an in�nite dire
t sum of �nite dis
rete fa
tors. We
onsider the di�erent 
ases:(a) M1 = M2 = M3 = {0} and M4 is an in�nite dire
t sum of �nite dis
rete fa
tors.Let zn ∈ Z(M4) be su
h that ea
h of M4zn is a di�erent type In fa
tor. Then (zn)
onstitutes the desired sequen
e of non-zero proje
tions.(b) M1 6= {0} and/or M2 6= {0}. There exists a proje
tion e ∈ M1 (resp. e ∈ M2)su
h that e ∼ 1 − e. We 
an put e1 = e and 
ontinue the pro
edure for the algebra
(1−e)M1(1−e) (resp. (1−e)M2(1−e)), whi
h is obviously 
ontinuous (resp. type I∞),to obtain e2 ≤ 1 − e1. Then e3 ≤ 1 − e1 − e2 and so on.(
) M3 6= {0}. If M3 is not σ-�nite, then 1 ∈ M3 
an be written as an orthogonalsum of (
entral) non-zero σ-�nite proje
tions. In this 
ase, we 
an 
hoose any 
ountablesubfamily from the 
olle
tion. Thus, we may assume that M3 is σ-�nite. Sin
e M3 is adire
t sum of type In algebras, it is enough to 
onsider a non-zero dire
t summand oftype In, that is an algebra of the form F⊗Z, where F is type In fa
tor and Z is a σ-�nitenon-atomi
 
ommutative algebra. Let τ be a faithful normal tra
ial state on Z. Sin
e Z isnon-atomi
, we 
an �nd a proje
tion e1 ∈ Z with 0 < τ (e1) < 1, then e2 ≤ 1−e1, e2 ∈ Zwith 0 < τ (e2) < τ (1 − e1) and so on. By passing to (1 ⊗ en), this gives an orthogonalsequen
e of non-zero proje
tions in F ⊗Z.(2) This is a dire
t 
onsequen
e of (1) applied to eMe.(3) Again, eMe 
annot be a �nite dire
t sum of �nite dis
rete fa
tors, sin
e then itwould be �nite-dimensional in some faithful representation of M. Thus, part (1) of thelemma applies to eMe.The validity of the last remark follows from the fa
t that any non-σ-�nite proje
tionis an orthogonal sum of σ-�nite ones, of whi
h we 
an use any 
ountable subset. Indeed,this is an immediate 
onsequen
e of Zorn's lemma. A non-σ-�nite proje
tion e musthave a non-zero σ-�nite subproje
tion e0: take any non-zero ϕ ∈ (eMe)∗,+ and put
e0 = supp(ϕ).The following lemma 
ontains the essen
e of what we are going to prove.Lemma 2.3. Let M be a von Neumann algebra and let f ∈ M. If there exists an in�nitesequen
e of proje
tions en ∈ M and a number λ > 0 satisfying the following 
onditions:

|f |en = en|f | for all n,
|f |en ≥ λen for all n,

en → 0 strongly,
en are σ-�nite and non-zero,then the operator Mf : M∗ → M∗ is not weakly 
ompa
t.Proof. We may assume that f ∈ M+. Observe also that e =

∨
n en is σ-�nite, hen
ethere exists ϕ ∈ (M∗)+ su
h that supp(ϕ) = e. We have ϕ(en) > 0 for all n, so that we
an de�ne a sequen
e of states (ϕn) by

ϕn(x) =
1

ϕ(en)
ϕ(enxen) for all x ∈ M and all n
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ϕ(en)enϕen). The ϕn's are states sin
e ‖ϕn‖ = ϕn(1) = 1. Now,

(Mfϕn)(en) = (fϕn)(en) = ϕn(enf) =
1

ϕ(en)
ϕ(fen)

≥
1

ϕ(en)
λϕ(en) = λ > 0.Hen
e, the set {Mfϕn} is not relatively weakly 
ompa
t (see [T℄, Lemma III.5.5), whi
hends the proof.The next two theorems show that weak 
ompa
tness of the multipli
ation operators
an happen only for very �dis
rete� algebras and only if the element f whi
h we use is
ompa
t.Proposition 2.4. Let M be a von Neumann algebra without minimal proje
tions, f ∈

M and f 6= 0. Then Mf : M∗ → M∗ is not weakly 
ompa
t.Proof. Assume as in the proof of Lemma 2.3 that f is positive (and non-zero). Let Adenote a maximal abelian von Neumann subalgebra of M 
ontaining the element f . Let
λ > 0 be su
h that e = χ[λ,∞[(f) 6= 0. By Lemma 2.1, A has no minimal proje
tions. Nowwe 
an apply Lemma 2.2(2) to e and obtain an orthogonal sequen
e (en) of subproje
tionsof e satisfying all four 
onditions of Lemma 2.3. Consequently, the operator Mf : M∗ →

M∗ is not weakly 
ompa
t.Theorem 2.5. Let M be a von Neumann algebra and f ∈ M. The operator Mf isweakly 
ompa
t on either M or M∗ if and only if f is 
ompa
t in M. If this is the
ase, the algebra Mc(f) is σ-�nite and atomi
. Moreover, if (zn) is a sequen
e of 
entralproje
tions su
h that c(f) = z1 + z2 + . . . and Mzk's are fa
tors, then (‖fzn‖) ∈ c0.Proof. �⇒� Assume f is positive and non-zero and that c(f) = 1. If, for some λ > 0, thespe
tral proje
tion eλ = χ[λ,∞[(f) is not of �nite rank in M, then Lemma 2.2(3) gives asequen
e (en) satisfying the assumptions of Lemma 2.3 and Mf is not weakly 
ompa
t.Hen
e, for ea
h λ > 0, eλ is of �nite rank. Consequently, there exists a (�nite or in�nite)de
reasing sequen
e (λn) of stri
tly positive real numbers su
h that the spe
trum of f
onsists of λn's and, possibly, zero. We only need to show that in some representation of
M all the spe
tral proje
tions en 
orresponding to eigenvalues λn have �nite-dimensionalranges. Now, if for some 
entral proje
tion z ∈ M the algebra M(1− z) has no minimalproje
tions, then supp(f) ≤ z, sin
e otherwise, by Proposition 2.4, f(1 − z) would notbe weakly 
ompa
t. Hen
e, we 
an assume that M is a dire
t sum of dis
rete fa
tors.Evidently,M 
annot have more than a 
ountable number of non-zero summands, and if itis an in�nite dire
t sum of su
h fa
tors, sayM = Mz1+Mz2+. . . with z1, z2, . . . ∈ Z(M)and Mz1,Mz2, . . . dis
rete, then the norms ‖fzn‖ tend to zero when n tends to in�nity.Otherwise, we 
ould easily build a sequen
e satisfying all the assumptions of Lemma 2.3as in the proof of Lemma 2.2(1)(a). Our result is obvious for a �nite dis
rete fa
tor,so assume for a moment that Mc(f) (or simply M) is a fa
tor of type I∞ (where ∞stands for some 
ardinal number). Su
h an algebra 
an be represented as B(H) for asuitable Hilbert spa
e H. In su
h a 
ase, all the spe
tral proje
tions en must have �nite-dimensional ranges, otherwise we would easily get a sequen
e of proje
tions satisfying



182 S. GOLDSTEIN ET AL.the assumptions of Lemma 2.3. This means that in a suitable representation ea
h of
fz1, fz2, . . . is 
ompa
t. Moreover, as the norms of fzn go to zero, ea
h non-zero spe
tralvalue of f is a spe
tral value of a �nite number of fzn's only. Hen
e, in this representationthe spe
trum of f is either �nite or its non-zero elements 
an be arranged into a sequen
e
(λn) tending to zero and su
h that the spe
tral subspa
es 
orresponding to λn's are �nitedimensional. Obviously, this is enough to guarantee that f is also 
ompa
t.�⇐� Assume that f is positive and 
ompa
t.Suppose �rst that M = B(H) for some in�nite dimensional Hilbert spa
e H. Let
ξ ∈ H, ‖ξ‖ = 1 and let f be a one-dimensional proje
tion onto the subspa
e generatedby ξ. Choose now any sequen
e (en) of orthogonal proje
tions in M 
onverging stronglyto zero. Then, for any ϕ in the unit ball of M∗, there is a tra
e-
lass operator h su
hthat ϕ(·) = tr(h·). Let (ξi) be an orthonormal basis in H with one of the ve
tors equalto ξ. Then

(fϕ)(en) = tr(henf) =
∑

(henfξi, ξi) = (henξ, ξ) = (enξ, h
∗ξ)and

|(fϕ)(en)| ≤ ‖enξ‖‖h‖ ≤ ‖enξ‖‖h‖1 ≤ ‖enξ‖.Thus, the 
onvergen
e (fϕ)(en) → 0 is uniform with respe
t to ϕ from the unit ball ofthe predual. This means that �nite-rank f 's and 
onsequently also 
ompa
t ones are su
hthat Mf 's are weakly 
ompa
t.Using the well-known fa
t that a Bana
h spa
e operator u : X → Y is weakly 
ompa
tif and only its se
ond adjoint u∗∗ maps X∗∗ into Y , we 
an also argue as follows. If weuse tra
e duality to identify B(H) and K(H)∗∗, then Mf : B(H) → B(H) is just these
ond adjoint of Mf as an operator on K(H). So weak 
ompa
tness is equivalent to Mfa
ting from B(H) to K(H), whi
h is readily seen to be equivalent to 
ompa
tness of f .This kind of argument seems to tra
e ba
k to K. Vala [V℄; see also C. A. Akemann andS. Wright [AS℄.Observe now that the algebra Mc(f) must be atomi
 and σ-�nite. In fa
t, if Mzhas no minimal proje
tions for some 
entral proje
tion z, then the spe
tral proje
tionsof fz 
orresponding to its stri
tly positive eigenvalues 
annot be of �nite rank. Also,if ‖fz‖ > 0 for un
ountable number of 
entral proje
tions z su
h that Mz is a fa
tor,then, for some ǫ > 0, the number of su
h proje
tions with ‖fz‖ > ǫ would be in�nite,whi
h is impossible for a 
ompa
t f . Hen
e, Mc(f) is σ-�nite. Let (zn) be a sequen
eof 
entral proje
tions su
h that all Mzn's are fa
tors and c(f) = z1 + z2 + . . . . Thenall the fa
tors are dis
rete and ‖fzn‖ → 0. Re
all that ea
h in�nite dis
rete fa
tor is
∗-isomorphi
 to B(H) for some in�nite dimensional Hilbert spa
e H. Hen
e, by whatwe have just proved, Mf is weakly 
ompa
t on ea
h dis
rete fa
tor, the result for �nitedis
rete fa
tors being obvious. Now, if we 
hoose k0 large enough, we 
an make the normof f(zk0+1 + zk0+2 + . . . ) arbitrarily small. Hen
e, with en and ϕ as before,

|(fϕ)(en)| ≤ |(fz1ϕ)(en)| + · · · + |(fzk0
ϕ)(en)| + ‖f(zk0+1 + zk0+2 + . . . )‖,whi
h 
an be made arbitrarily small uniformly w.r.t. ϕ from the unit ball, by what wehave already proved.Therefore, if f is 
ompa
t, then Mf is weakly 
ompa
t.
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ontinuity. In this se
tion we show that a multipli
ation operatorMf on
M or M∗ 
an be 
ompletely 
ontinuous only if the algebra Mc(f) is �nite and atomi
.Moreover, if Mf is 
ompletely 
ontinuous on the algebra, then f must be 
ompa
t.Theorem 3.1. Let M be a von Neumann algebra and f ∈ M. Then Mf a
ting on Mis 
ompletely 
ontinuous if and only if Mc(f) is �nite and f is 
ompa
t.Proof. Assume that Mf is 
ompletely 
ontinuous and that c(f) = 1. Consider �rst the
ase when M has no minimal proje
tions. Let M0 be a maximal abelian von Neumannsubalgebra of M 
ontaining f . By Lemma 2.1, M0 has no minimal proje
tion, either.Note that Mf restri
ts to a 
ompletely 
ontinuous map from M0 to M0. Sin
e M0 is
ommutative (and hen
e to all intents of purposes a C(K) spa
e), the restri
tion of Mfto M0 is weakly 
ompa
t [DU, p 160, Corollary 17℄. Hen
e we may apply Proposition2.4 to 
on
lude that f = 0 in this 
ase.The next 
ase to 
onsider is that of an arbitrary I∞ fa
tor. We 
an assume that
M = B(H) for some Hilbert spa
e H. As above, the restri
tion of Mf to some maximalabelian von Neumann subalgebra M0 of M is weakly 
ompa
t. By 2.5, f is 
ompa
t in
M0. Consequently, if f is not zero, there are a non-zero proje
tion e in M and a number
λ su
h that fe = λe. We 
an assume that e is one-dimensional as an operator on H. Let
(en) be a sequen
e of pairwise orthogonal one-dimensional proje
tions on H su
h that
e1 = e. Let vn be partial isometries su
h that v∗nvn = en and vnv

∗
n = e. Choose any

ϕ ∈ M∗. The Cau
hy-S
hwarz inequality gives
|ϕ(vn)| ≤ ϕ(en)1/2ϕ(1)1/2 → 0.Hen
e vn is weakly null. On the other hand, the norms

‖Mfvn‖ = ‖Mfevn‖ = |λ|‖vn‖ = |λ|do not 
onverge to zero, whi
h yields a 
ontradi
tion. Hen
e, f must be zero.In this 
ase, we 
ould again pro
eed by means of `soft analysis'. If Mf a
ts on Min a 
ompletely 
ontinuous manner, then it does so on K(H). When we identify, in a
anoni
al fashion, K(H) and the 
ompleted inje
tive tensor produ
t H⊗̌H, then Mfbe
omes 1H ⊗ f . Suppose now that f 6= 0. Pi
k x ∈ H with f(x) 6= 0 and identifythe linear span of x as well as of f(x) with C. Re
all that H is just a 
opy of H⊗̌C.Combine all this to see 1H 
an be 
onsidered as being indu
ed by 1H ⊗ f through theseidenti�
ations. We 
on
lude that 1H is 
ompa
t, when
e dim H <∞.Suppose now that M is an in�nite dire
t sum of �nite type I fa
tors. Let (zn) bea sequen
e of pairwise orthogonal non-zero 
entral proje
tions su
h that ea
h Mzn isa fa
tor. Obviously, the sequen
e (zn) is weakly (i.e. σ(M,M∗)) null. Hen
e ‖fzn‖ =

‖Mfzn‖ → 0, so that, for ea
h ǫ, the set of these nonzero 
entral proje
tions z for whi
h
Mz is a fa
tor and ‖fz‖ ≥ ǫ, is �nite. Hen
e, the set of all nonzero 
entral proje
tions
z for whi
h fz 6= 0 and Mz is a fa
tor is at most 
ountable and f is 
ompa
t (
f. theproof of Theorem 2.5).We are left with the 
ase of a �nite dire
t sum of �nite type I fa
tors. It is 
lear thatin this 
ase f must be 
ompa
t in M.
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onverse, assume that f is 
ompa
t. The result is obvious if M is a �nitedire
t sum of �nite type I fa
tors, so let M be an in�nite dire
t sum of su
h fa
tors.Let also the zn's be sele
ted as before. Given ǫ > 0, we 
an �nd k0 su
h that ‖fzk‖ < ǫfor any k > k0. Take an arbitrary weakly null sequen
e (an) in M. We 
an assume thatits elements are taken from the unit ball. Obviously, ‖anzk‖ → 0 as n → ∞, sin
e theweak and norm topologies 
oin
ide on any �nite type I fa
tor. Hen
e ‖anzk‖ < ǫ/‖f‖ for
k ≤ k0 and n su�
iently large. Consequently, for all su
h n, ‖fanzk‖ < ǫ for all k, whi
hmeans that ‖fan‖ ≤ ǫ, so that Mf is 
ompletely 
ontinuous.Theorem 3.2. Let M be a von Neumann algebra and f ∈ M. The operator Mf a
tingon M∗ is 
ompletely 
ontinuous if and only if Mc(f) is �nite atomi
.Proof. Assume that, for some f ∈ M+, Mf is 
ompletely 
ontinuous and c(f) = 1.Consider �rst the 
ase when M is properly in�nite. Let (en) be a sequen
e of pairwiseorthogonal proje
tions in M, all equivalent to 1, and let (vn) be su
h that v∗nvn = en and
vnv

∗
n = 1. Choose any state ϕ onM. As in the proof of Theorem 3.1, vn is σ(M,M∗)-null,hen
e also σ(M,M∗)-null. This implies that (ϕvn) is weakly null. Thus Mf (vnϕ) → 0 innorm. At the same time, ‖Mf (ϕvn)‖ ≥ ϕ(vnv

∗
nf) = ϕ(f). Hen
e f = 0.Assume now that M has no minimal proje
tions. Fix a state ϕ on M. Sin
e, byLemma 2.1, maximal abelian subalgebras 
ontaining f 
annot have minimal proje
tions,there is in M a Radema
her sequen
e (rn) 
onsisting of symmetries 
ommuting with

f and su
h that ϕ(rkrl) = 0 for k 6= l. To see this, re
all that ea
h su
h subalgebrais ∗-isomorphi
, as a von Neumann algebra, to the ℓ∞-dire
t sum of L∞-spa
es oversome nonatomi
 �nite measure spa
es. Note that the mapping x 7→ xϕ from M into
M∗ fa
torizes through the Hilbert spa
e Hϕ of the GNS representation of M w.r.t. ϕ:
x 7→ xξ 7→ xϕ, where ξ ∈ Hϕ is su
h that ϕ = ωξ. Sin
e (rnξ) forms an orthonormalsequen
e in Hϕ, it is weakly null there. Consequently, (rnϕ) is weakly null in M∗. Thus,
Mf (rnϕ) → 0 in norm. At the same time ‖Mf (rnϕ)‖ ≥ ϕ(rnfrn) = ϕ(f). Hen
e f = 0.Assume �nally that M is �nite atomi
. Then M∗ has S
hur's property. In fa
t, byProposition III.5.10 in [T℄, it is enough to show that if (ϕn) is weakly null, then the sets
{|ϕn|} and {|ϕ∗

n|} are both relatively weakly 
ompa
t. To this end, note that sin
e Mis �nite, the ∗-operation is σ-strongly 
ontinuous on bounded parts of M (see for exam-ple [S℄, Theorem 2.5.6), so that by Theorem III.5.7 in [T℄, the Arens-Ma
key topology
τ (M,M∗) 
oin
ides with the σ-strong topology on bounded parts of M. This yields rel-ative weak 
ompa
tness of the set of absolute values of any relatively 
ompa
t subset of
M∗, as explained in detail in Exer
ise V.2.5(d) from [T℄. Hen
e, every bounded operatoron M∗ is 
ompletely 
ontinuous, whi
h ends the proof.4. Compa
tness. The 
riteria for 
ompa
tness of a multipli
ation operator are easy toread o� from our results on 
ompletely 
ontinuous operators. In parti
ular, we obtainthat a multipli
ation operator on the algebra is 
ompa
t if and only if it is 
ompletely
ontinuous.Theorem 4.1. Let M be a von Neumann algebra and f ∈ M. Then Mf a
ting on Mor M∗ is 
ompa
t if and only if Mc(f) is �nite and f is 
ompa
t.
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e the other one follows from S
hauder'stheorem�the operator on M is 
ompa
t if and only if its preadjoint operator on M∗ is
ompa
t. If Mf is 
ompa
t, then it is also 
ompletely 
ontinuous. Thus, by Theorem 3.1,
Mc(f) is �nite and f is 
ompa
t. For the 
onverse, assume that the two 
onditions aresatis�ed. Let (an) be a bounded sequen
e in M and let (zk) be the sequen
e of 
entralproje
tions from the proof of Theorem 3.1. Obviously, the sequen
e (an) has a subse-quen
e whi
h 
onverges in norm on Mz1, then a subsequen
e of this subsequen
e whi
h
onverges in norm on Mz2 and so on. Thus, we 
an 
onstru
t a diagonal subsequen
e of
(an) whi
h is norm 
onvergent on ea
h �nite fa
tor Mzk, k = 1, 2, . . . . The same type ofreasoning as in the proof of Theorem 3.1 shows that the image of this subsequen
e under
Mf is in fa
t norm 
onvergent on M.
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