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Abstra
t. We present quantum sto
hasti
 
al
ulus in terms of diagrams taking weights in thealgebra of observables of some quantum system. In parti
ular, we note the absen
e of non-time-
onse
utive Goldstone diagrams. We review re
ent results in Markovian limits in these terms.1. Introdu
tion. Quantum sto
hasti
 
al
ulus (QSC) involves an analysis of the funda-mental quantum pro
esses of 
reation/annihilation/
onservation [1℄ and intuitively thisis somehow related to emission/absorption/s
attering of physi
al quanta as des
ribed byquantum �eld theory (QFT). Quantum sto
hasti
 theory has the advantages, as well asthe limitations, of having a mathemati
ally rigorous setting. It also has the theory of
lassi
al probability to fall ba
k on for mu
h of its inspiration. So mu
h so that the re-lationship with QFT, whi
h was originally a major motivating fa
tor, is now frequentlyoverlooked. E�e
tively, the fundamental quantum pro
esses should be idealizations ofquantum �elds for some suitable �Markovian� regime. They were introdu
ed to des
ribeopen systems dynami
s: here the quantum noise 
ouples to some quantum system and so,in some sense, we are dealing not just with traditional quantum �elds, but with quantum�elds taking values in the algebra of observables of some quantum system.When presenting his famous list of problems, Hilbert is supposed to have quoted anunnamed 
olleague as saying that �a mathemati
al theory should not be 
onsidered 
om-plete until one 
an walk out into the street and explain it to the �rst person you meet�.Let us suppose we did this and, as lu
k would have it, the �rst person we meet is a physi-
ist. Would we su

eed in explaining quantum sto
hasti
 
al
ulus? My 
ontention is thatwe should, though we might have to make do with some formal mathemati
s (presumablyHilbert wouldn't have obje
ted?). There are many fundamental ideas, familiar to physi-2000 Mathemati
s Subje
t Classi�
ation: Primary 81S25; Se
ondary 81T18.Key words and phrases: diagrammati
 te
hniques, quantum Markov limits.The paper is in �nal form and no version of it will be published elsewhere.
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188 J. GOUGH
ists, hidden (sometimes too well-hidden!) in the mathemati
al formalism of quantumsto
hasti
 
al
ulus. In this arti
le, I've tried to present some basi
 results from quantumsto
hasti
 
al
ulus in the language of QFT and, in parti
ular, in terms of Feynman-typediagrams: the hope being that mathemati
ians and physi
ists will learn something fromthe 
ross-over. Diagrammati
 te
hniques are 
entral to QFT [2℄, [3℄, yet also of indepen-dent interest from it; they still remain an essential tool for investigating mathemati
alaspe
ts of quantum theory and 
ontinue to yield some of the most illuminating insights(see, for instan
e, the papers [4℄, [5℄, [6℄). I also want to present an a

ount of a re
entpaper [7℄ whi
h deals with the QSC approximation and whi
h was originally formulatedin diagrammati
 language.1.1. Expansions of evolutions. A free-parti
le (Bosoni
) quantum �eld Φt living on aHilbert (Fo
k) spa
e H 
an be de
omposed into positive and negative frequen
y termsas Φt = Φ
(+)
t + Φ

(−)
t : here we suppress all dependen
e other than time and understandthe time label to refer to Heisenberg pi
ture of the free dynami
s. We take Φ

(+)
t to be anannihilation �eld and Φ

(−)
t to be a 
reation �eld. If Ω is the Fo
k va
uum ve
tor, thenwe have the identity(1) Φ

(+)
t Ω = 0,along with the 
anoni
al 
ommutation relations(2) [Φ

(+)
t , Φ(−)

s ] = G(t, s).Here G(t, s) ≡ 〈Ω|ΦtΦs Ω〉. Related to this is the propagator K de�ned as
K(t, s) = 〈Ω|~TΦtΦs Ω〉 = G(t, s)θ(t− s) + G(s, t)θ(s− t),where θ(·) is the Heaviside step fun
tion. As usual ~T is Dyson's 
hronologi
al operationpla
ing Heisenberg pi
ture operators in in
reasing time-order from right to left.Let {Υt : t ≥ 0} be a family of self-adjoint operators on H with Υt being some fun
tionof Φ

(±)
t We are then interested in the evolution operator(3) Ut = ~T

{

exp−i

∫ t

0

Υsds

}

,by whi
h we mean the solution to the S
hrödinger equation i∂tUt = ΥtUt, U0 = 1.Suppose that we have a polynomial intera
tion
Υt =

∑

ν

1

ν!
λν(Φt)

ν .The standard devi
e of quantum �eld theory is to expand Ut in terms of diagrams, see,e.g. [2℄ or [8℄. A Wi
k diagram D is 
onstru
ted as follows: 
hoose n = n(D) labelledpoints (verti
es), ea
h vertex will have some labelled legs atta
hed (we let mν = mν(D)denote the number of verti
es having ν legs so that n =
∑

ν mν), we join several pairs oflegs to form (undire
ted) edges, the result is a graph having several external lines and wenow ignore the labelling. A Wi
k diagram is then the 
lass of all topologi
al equivalent
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ould have originally 
onne
tedthe various legs to get the same graph. Now denote by DW the set of all Wi
k diagramsand de�ne, for ea
h D ∈ DW , the operator(4) D̂(t) = (−i)n c

n!

∏

ν

(

λν

ν!

)mν

~N

∫

[0,t]n

∏

D

K
∏

D

(Φ(+) + Φ(−))where ~N is normal ordering (pla
ing all 
reation �elds Φ(−) to the left of all annihilation�elds Φ(−)) and under the integral we have a fa
tor K(ti, tj) for ea
h edge (i, j) o

urringand a fa
tor Φtk
for ea
h external line at vertex (k). It is then a basi
 result of QFT that

Ut admits the expansion
Ut =

∑

D∈DW

D̂(t).Next let PW denote the subset of 
onne
ted Wi
k diagrams then we may list the elementsas P1, P2, · · · and ea
h D ∈ DW 
an be de
omposed as D ≡ Pn1

1 × Pn2

2 × · · · . Now onereadily 
he
ks that D̂(t) = ~N
P̂1(t)

n1

n1!

P̂2(t)
n2

n2!
· · · and so(5) Ut = ~N

∑

n1,n2,···

∞
∏

j=0

P̂j(t)
nj

nj !
= ~N

∞
∏

j=0

∞
∑

n=0

P̂j(t)
nj

nj !
= ~N exp

∑

P∈PW

P̂ (t).What we have managed to do is to express the evolution operator Ut as a normal orderedexponential of a sum over 
onne
ted Wi
k diagrams. The 
onne
ted Wi
k diagrams playthe role of the `primes' amongst the set of all Wi
k diagrams�indeed the tri
k of re-pla
ing a sum of produ
ts by a produ
t of sums is just the one that goes on when wedevelop a prime number expansion of the Diri
hlet series of a multipli
ative fun
tion,the Riemann zeta fun
tion being perhaps the best known example; it is also the tri
kused to 
ompute the grand 
anoni
al partition fun
tion for the free Bose gas. The resultshould be understood as an operator theoreti
 version of the usual 
umulant momentexpansion.Now let hS be a �xed Hilbert spa
e. We move the a
tion up to the Hilbert spa
e h⊗Hand set(6) Υt =
∑

α,β

Eαβ ⊗ (Φ
(−)
t )α(Φ

(+)
t )β

where we take E†
αβ = Eβα. We now introdu
e a 
lass of diagrams known as Goldstonediagrams�they di�er from the previous ones in that the verti
es are pla
ed in time order[2℄. Consider times tn > · · · > t2 > t1 in the interval [0, t] and draw these as verti
es asshown below:
u u u u u u u u u

tn t2 t1tjSuppose that at vertex j we have βj legs 
oming in from the right, representingannihilators, and αj legs going out to the left, representing 
reators. For example, the



190 J. GOUGHvertex for E23 ⊗ [Φ
(−)
tj

]2[Φ
(+)
tj

]3 where we have αj = 2 
reators and βj = 3 annihilators issket
hed as
u

'

'

'
$

$

tj

αj 
reators βj annihilators
We 
onstru
t a Goldstone diagram D as follows. We take an arbitrary number n =

n(D) verti
es and draw in an ordered line as above. We then draw 
reation / annihi-lation lines at ea
h vertex 
orresponding to one of the terms appearing in Υ. We then
onne
t sele
ted 
reation legs to (ne
essarily later time) annihilation legs: the remain-ing un
ontra
ted legs are then dire
ted external lines. We 
onsider the family DG of all(topologi
ally distin
t) diagrams obtained in this way. To ea
h Goldstone diagram D weasso
iate the operator(7) D̂(t) = (−i)nEαnβn
· · ·Eα1β1

⊗

∫

∆n(t)

∏

D

Φ(−)
∏

D

G
∏

D

Φ(+)where ∆n(t) is the simpli
ial region {(tn, · · · , t1) : t > tn > · · · > t2 > t1 > 0} and wehave a fa
tor G(ti − tj) for ea
h edge (i, j), note ti > tj , a fa
tor Φ
(+)
tk

for ea
h in
omingexternal line to a vertex k and a fa
tor Φ
(−)
tk

for ea
h outgoing external line. We then �ndthe expansion(8) Ut =
∑

D∈DG

D̂(t).In QFT one is used to swit
hing between an expansion in terms of Goldstone diagrams
(8) and one in terms of Wi
k diagrams (5). In the present 
ase however we have anobstru
tion: the Eαβ's do not ne
essarily 
ommute! This 
ompli
ation means that theGoldstone diagrams are more fundamental in the present 
ase. The problem, of 
ourse,is that the Dyson operator ~T is reordering the Heisenberg �elds only, while the Eαβ'sremain in their original order.1.2. Zero dimensional QFT. Let a and a† be annihilation operators for a single modeharmoni
 os
illator, We have the 
ommutation relations [

a, a†
]

= 1 and aΩ = 0. Let us
onsider the observable q = za†+z∗a where z is a 
omplex number. The Baker-Campbell-Hausdor� theorem says that exp {itq} = exp
{

itza†
}

exp
{

−1
2 |z|

2t2
}

exp {itz∗a} whi
hhere has the same 
ontent as the expansion (5). We 
an use a diagrammati
 presentationbased on two types of vertex: the 
reation type r

�whi
h has weight z, and theannihilation type r

�whi
h has weight z∗. If we take a va
uum expe
tation of
exp {itq} then we need only 
onsider 
onne
ted diagrams having no external lines�andthere is only the one! The 
umulant expansion is then

〈Ω| exp {itq}Ω〉 = exp

{

(it)2

2!
r r

��}

≡ exp
{

−1
2 t2|z|2

},



FEYNMAN DIAGRAMS AND THE QUANTUM STOCHASTIC CALCULUS 191and we see that q is Gaussian in the va
uum state. As is well known, the odd momentsvanish while the even moments are 〈

Ω|q2nΩ
〉

= |z|2n (2n)!
2nn! where the 
ombinatorial fa
tor
ounts the number of ways to partition the 2n (time-ordered) verti
es into n (
ontra
-tion) pairs. For instan
e, the fourth moment involves three dis
onne
ted diagrams (our
onvention is that we only 
onsider the 
ontra
tions as edges; the thin horizontal baseline does not a�e
t 
onne
tivity!)

〈

q4
〉

= r r r r
� �� �+ r r r r

� �
��+ r r r r

� �� �
= 3|z|4.

We may also 
onsider the variable N = (a+z)†(a+z) = a†a+za†+z∗a+|z|2. We nowintrodu
e two extra verti
es: a s
attering vertex r

��with weight unity and a 
onstantvertex r with weight |z|2. To determine the va
uum expe
tation of exp {itN}, weon
e again sum over all 
onne
ted diagrams with no external lines. This gives
〈Ω| exp {itN}Ω〉 = exp

{

(it)

1!
r + (it)2

2!
r r
� �+ (it)3

3!
r r
� �

r
� �

+ · · ·

}

The nth term in the exponential will look like · · ·r r r r r r
� �� �� �� �� �and ea
h su
hterm has weight |z|2�sin
e the s
attering verti
es all have weight unity. All 
umulantsare equal and we therefore have

〈Ω| exp {itN}Ω〉 = exp

{

∑

n≥1

(it)n

n!
|z|2

}

= exp
{

|z|2(eit − 1)
}

and we re
ognize N as having a Poisson distribution of intensity |z|2. The moments ofthe variable N are given as a polynomial of degree n in |z|2, vis.
〈Ω|NnΩ〉 =

n
∑

m=1

S(n, m)|z|2m

and, as is well-known in 
ombinatorial analysis [9℄, the 
oe�
ients S(n, m) are the Stir-ling numbers of the se
ond kind: they 
ount the number of ways to partition n itemsinto m non-empty subsets. To see why they arise here, 
onsider the following diagram
ontributing to 〈N7〉:
t7 t6 t5 t4 t3 t2 t1

u u u u u u u

����� �

' $

This diagram partitions the 7 verti
es into 3 subsets, namely {t7, t6, t5, t3}, {t4, t1}and {t2}, with ea
h subset forming a 
onne
ted sub-diagram. This 
ontributes (|z|2)3 to
〈N7〉. Consulting a textbook on 
ombinatori
s to get the Stirling numbers, we �nd
〈N7〉 =

7
∑

m=1

S(7, m)(|z|2)m = |z|2 + 63|z|4 + 301|z|6 + 350|z|8 + 140|z|10 + 21|z|12 + |z|14.



192 J. GOUGHAlternatively, we 
ould draw all B7 = 877 diagrams out! The numbers Bn =
∑n

m=1 S(n, m)
ounting the total number of ways to partition the n verti
es into non-empty subsets (of
onne
ted Goldstone diagrams) are known as the Bell numbers.2. Quantum sto
hasti
 
al
ulus. Remarkably, the equivalen
e between expansions
(8) and (5) is restored in the non-
ommutative 
ase in one very important situation. Thisis when we 
onsider the 
ases α and β taking only the values 0, 1 in (6) and when thetwo-point fun
tion G is repla
ed by a delta-fun
tion. E�e
tively the �eld is some form ofquantum white noise in time. As α, β is restri
ted to either 0 or 1, we shall have only fourtypes of vertex: a 
onstant vertex E00 ⊗ 1, an emission vertex E10 ⊗Φ(−), an absorptionvertex E01 ⊗ Φ(+) and a s
attering vertex E11 ⊗ Φ(−)Φ(+).The reason for the algebrai
 equivalen
e, despite the fa
t that the Eαβ need not
ommute, is that many of the Goldstone diagrams vanish identi
ally. This is due to thesingular nature of the two-point fun
tion with respe
t to the simpli
ial integration in (7).We note that absen
e of 
ertain diagrams des
ribing moments of quantum noises haso

urred elsewhere, in parti
ular, there is an elegant des
ription of the various forms ofindependent quantum pro
esses in these terms [11℄.Let us introdu
e some formal symboli
 notations [10℄. We make the repla
ements

Φ
(+)
t →֒ at, Φ

(−)
t →֒ a

†
t , G(t, s) →֒ g(t − s),where g(t − s) = κd+(t − s) + κ∗

−d(t − s). Here κ is a 
omplex damping 
onstant with
γ = 2Re {κ} > 0. The obje
ts d±(t−s) are one-sided delta fun
tions de�ned (for fun
tions
f possessing left and right hand limits) by(9) ∫ ∞

−∞

f(s)d±(s − t)ds =

∫ ∞

−∞

f(t + u)d±(u)du = f(t±).Let us brie�y indi
ate how to 
onvert Ut = ~T exp{−i
∫ t

0
Υsds} to normal order [10℄ where

Υt = Eαβ ⊗ (a†t)
α(at)

β (we use a 
onvention from now on that repeated Greek indi
es aresummed over values 0 and 1). When evaluating Goldstone diagrams, we �nd that if the
ontra
tions are not time-
onse
utive, that is, if we en
ounter g(ti−tj) with i > j+1, thenwe for
e the multiple equalities ti = ti−1 = · · · = tj+1 = tj due to the time ordering, andso the 
ontribution vanishes. Only Goldstone diagrams with time-
onse
utive 
ontra
tionsare non-zero.Starting from the integro-di�erential equation Ut = 1 − i
∫ t

0
ΥsUsds, we have

[at, Ut] = −i

∫ t

0

[at, Υs] Usds = −i

∫ t

0

g(t − s)E1β(at)
βUs = −iκE1β(at)

βUtor atUt = (1 + iκE11)
−1[Utat − iκE10Ut] and so(10) ∂tUt = −iEαβ ⊗ (a†t)

α(at)
βUt ≡ (a†t)

αLαβUt(at)
βwhere(11) Lαβ = −iEαβ − κEα1

1

1 + iκE11
E1β.We may interpret the 
onversion of the S
hrödinger equation to normal ordered form as
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hange from a Stratonovi
h to an It� des
ription. This agrees with the interpretationgiven originally by von Waldenfels for emission-absorption intera
tions [12℄.Having normal-ordered the S
hrödinger equation, we now iterate to get
Ut = 1 +

∫ t

0

(a†s)
αLαβUs(as)

βds(12)
=

∑

n≥0

∫

∆n(t)

(a†tn
)αn · · · (a†t1)

α1(Lαnβn
· · ·Lα1β1

)(at1)
β1 · · · (atn

)βn .This is reasonably familiar to quantum �eld theorists and su
h expressions 
an be foundfor instan
e in Berezin's book [13℄. If f is a suitable test fun
tion, we may 
onsider its
oherent (i.e. exponential) ve
tor |ε(f)〉 and take at |ε(f)〉 = f(t) |ε(f)〉 and 〈ε(f)| a†t =

〈ε(f)| f(t)∗. As (12) is normal ordered, we have no di�
ulty in assigning a meaning to
〈ε(f)|Utε(g)〉. At this stage we 
ould just as well take (12) as the de�nition of the pro
ess,this is the starting point of the Maassen kernel 
al
ulus [14℄. As su
h the time-
onse
utive
ontra
tion property is built into QSC, though in a way that is not readily apparent.For the bene�t of quantum probabilists, who may well be a little lost at this stage, we
onvert (10) into more familiar language [1℄. Let Λαβ

t =
∫ t

0
(a†s)

α(as)
βds and we interpretthese as the four fundamental quantum pro
esses: Λ00

t is time, Λ10
t is 
reation, Λ01

t isannihilation and Λ11
t is 
onservation. Loosely speaking, we say {Xt, t ≥ 0} is adapted if

[

a♯
s, Xt

]

= 0 whenever s > t. Setting X
(j)
t =

∫ t

0
(a†s)

αx
(j)
αβ(s)(as)

βds where the x
(j)
αβ(·) areadapted, we see that putting to normal order yields

X
(1)
t X

(2)
t =

∫ t

0

(a†s)
α[X(1)

s x
(2)
αβ(s) + x

(1)
αβ(s)X(2)

s + x
(1)
α1 (s)x

(2)
1β (s)](as)

βds.The basi
 idea goes ba
k to Hudson and Streater [15℄. In QSC, we usually write
dXt = xαβ(t)dΛαβ

tand the above result is presented as the quantum It� formula
d(X(1)X(2)) = X(1)d(X(2)) + d(X(1))X(2) + d(X(1))d(X(2))along with the quantum It� table dΛα1

t dΛ1β
t = dΛαβ

t . The equation (10) is then inter-preted as the It� quantum sto
hasti
 di�erential equation dUt = LαβUtdΛαβ
t with U0 = 1.The 
oe�
ients satisfy the identities Lαβ + L†

βα + γL†
1αL1β = 0 whi
h are ne
essary andsu�
ient for Ut to be an adapted, unitary quantum sto
hasti
 pro
ess. The formula forthe produ
t of several quantum integrals 
omes down to a normal ordering problem whi
h
an ultimately be presented as a sum over diagrams, or equivalently, a sum over partitionsof the time indi
es: for the 
lassi
al 
ase, see [16℄.3. Markov limits. Finally, we wish to 
omment on how regular quantum �elds 
anapproximate the singular �elds 
onsidered above. Let λ 6= 0 be a parameter and 
on-sider �elds Φ

(±)
t (λ) with a regular two-point fun
tion Gλ(·) whi
h be
omes a delta-fun
tion in the limit λ → 0. In parti
ular, we may take G(·) to be a integrable fun
-tion with γ =

∫ ∞

−∞
G and κ =

∫ ∞

0
G and assume that G(−t) = G(t)∗. Then set

Gλ(t, s) = λ−2G((t − s)/λ2). We would then argue that in the limit Gλ 
onverges to



194 J. GOUGHthe singular fun
tion g 
onsider above. We 
onsider the regular unitary evolution opera-tors
Ut(λ) = ~T exp

{

− i

∫ t

0

Eαβ ⊗ (Φ(−)
s (λ))α(Φ(+)

s (λ))

}

and we 
laim that for bounded Eαβ, with ‖κE11‖ < 1, Ut(λ) 
onverges to the singularpro
ess Ut 
onsidered in the last se
tion.The �rst remark that we make is that the λ → 0 limit leads to the vanishing ofea
h non-time-
onse
utive Goldstone diagram 
ontributing to Ut(λ). Moreover, when thesurviving terms are 
omputed and re-summed, we formally get the 
orre
t It� expansion
(12). Note that Lαβ = −iEαβ − i

∑∞
r=1 Eα1(−iκE11)

r−1E1β giving the 
ontribution toa time-
onse
utive blo
k with α outgoing, β in
oming lines and a sum over r su

essives
atterings in between. We see that the 
ondition ‖κE11‖ < 1 is ne
essary to sum thegeometri
 series.The re-summation is rather tedious, though it helps that we know what answer toexpe
t! We also have the issue of 
onvergen
e, however, we settle this below. We remarkthat it is su�
ient to 
onsider only the va
uum 
onvergen
e as the more general situation
an be inferred from this when we look at 
onvergen
e in arbitrary but appropriatelys
aled 
oherent ve
tor states.3.1. Pulé inequalities (Gaussian). Let us start with the 
ase where we have emissionand absorption only in the intera
tion. The va
uum Goldstone diagrams, as we have seenin se
tion 2, 
onsist of n2, say, pair 
ontra
tions only. A typi
al diagram, one of (2n2)!
2n2n2!having 2n2 verti
es, is sket
hed below for n2 = 6:

u u u u u u u u u u u u

��
� �� �� �

� �
' $

t1t2tnThere exists a permutation σ of the n = 2n2 time indi
es whi
h re-orders to thediagram D0(n) shown below
u u u u u u u u u u u u

� � � �� �� �� �� �

tσ(1)tσ(2)tσ(n)The permutation is moreover unique if it has the indu
ed ordering of the emissiontimes. Not all permutations on the n time indi
es will arise this way, but the ones thatdo will be termed admissible. We now 
onsider an estimate of the n-th term in the Dysonseries:
∑

D∈DG

∫

∆n(t)

∏

D

|Gλ| =
∑Admissible permutations ∫∆n(t)

∏

D0(n)

|Gλ ◦ σ|

=

∫

R(t)

n2
∏

k=1

|Gλ(t2k − t2k−1)|where R(t) is the union of simpli
es {

(tn, · · · , t1) : t > tσ−1(n) > · · · > tσ−1(1) > 0
} overall admissible permutations σ. R(t) will be a subset of [0, t]

2n2 and if we introdu
e vari-ables t2k and s2k = t2k − t2k−1 for k = 1, · · · , n2 it is easily seen that the above is
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majorized by |κ|n2 ×

max(t, 1)n2

n2!
. This the Pulé inequality [17℄ and 
learly gives theuniform absolute estimate required to sum the series.3.2. Pulé inequalities (Poissonian). We now 
onsider s
attering, and 
onstant, terms inthe intera
tion [7℄. As we have seen there will be Bn (the n-th Bell number) Goldstonediagrams 
ontributing to the n-th term in the va
uum Dyson series expansion. The Bellnumbers grow rapidly and have a 
ompli
ated asymptoti
 behaviour. The proliferationof diagrams is due mainly to the multiple s
attering that now may take pla
e.Let us 
onsider a typi
al Goldstone diagram. We shall assume that within the diagramthere are n1 singleton verti
es [· · · r · · · ], n2 
ontra
tion pairs [· · · · · ·r r

� �

· · · ], n3
ontra
tion triples [· · · · · · · · ·r r r

� �� �

· · · ], et
. That is the Goldstone diagram has a totalof n =
∑

j jnj verti
es whi
h are partitioned into m =
∑

j nj 
onne
ted subdiagrams.For instan
e, we might have an initial segment of a diagram looking like the following:
r r r

r r r

r r r

u u u u u u u u u u

� �
' $

� �� �
$

$

There will exist a permutation σ of the n verti
es whi
h will reorder the verti
es sothat we have the singletons �rst, then the pair 
ontra
tions, then the triples, et
., so thatwe obtain a pi
ture of the following type
-�

n1 singletons
-�

n2 pairs
-

n3 triples
q q q

q q q

s s s s s s s s s s s s s s

� �� � � �� � � � � �

The permutation is again unique if we retain the indu
ed ordering of the �rst emissiontimes for ea
h 
onne
ted blo
k. We now wish to �nd a uniform estimate for the n-th termin the Dyson series, we have(13) ∑Goldstone diagrams ∫∆n(t)

∏

|Gλ| × �weights�where the weights are the operator norms of various produ
ts of the type Eαnβn
· · ·Eα1β1

.In general, the weight is bounded by
‖E11‖

n1+2n2+3n3+··· × Cn1+n2+n3+···where C = maxαβ ‖Eαβ‖. This is be
ause ea
h 
onne
ted diagram of j verti
es willtypi
ally have one emission and one absorption, but j − 2 s
attering verti
es. The Puléargument of rearranging the sum over diagrams into a single integral over a region R(t)of [0, t]n again applies and by similar reason we arrive at the upper bound for (13) thistime of the type
∑′

n1,n2,n3,···
‖κE11‖

n1+2n2+3n3+···
× Cn1+n2+n3+··· ×

max(t, 1)n1+n2+n3+···

n1!n2!n3! · · ·
.
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ted so that ∑

j jnj = n. A uniform estimate for the entire seriesis then given by removing this restri
tion:
Ξ(A, B) =

∑

n1,n2,n3,···

exp{
∑

j(Aj + B)nj}

n1!n2!n3! · · ·where eA = ‖κE11‖ and eB = C max(t, 1). Again we use the tri
k to 
onvert a sum ofprodu
ts into a produ
t of sums
Ξ(A, B) =

∑

n1,n2,n3,···

∏

j

exp{(Aj + B)nj}

nj!
=

∏

j

∑

n

exp{(Aj + B)n}

n!

=
∏

j

exp{e(Aj+B)} = exp
{

∑

j

eAjeB
}

= exp

{

eA+B

1 − eA

}

.where we need eA < 1 to sum the geometri
 series�this however, is pre
isely our 
onditionthat ‖κE11‖ < 1.4. Con
lusions. We have established a Markov limit in the sense of [18℄ whi
h we maywrite as
~T

{

exp−i

∫ t

0

Eαβ ⊗ (Φ(−)
s )α(Φ(+)

s )βds

}

→֒ ~T

{

exp−i

∫ t

0

Eαβ ⊗ (a†s)
α(as)

βds

}

.On the left hand side we have a unitary whi
h 
an be expanded as a normal orderedexpression of the quantum �elds in terms of Goldstone diagrams. The right hand side
an be developed as an expansion over time-
onse
utive 
an be understood as Hudson�Parthasarathy unitary quantum sto
hasti
 pro
ess. We have shown the non-time-
onse
-utive terms on the left hand side make a negligible 
ontribution in the Markovian limit.Interpreting Weyl order as Stratonovi
h form and Wi
k order as It� form, the aboveresult 
an be 
onsidered as a non-
ommutative version of the Wong�Zakai limit theoremfor 
lassi
al pro
esses.The same holds for Fermi �elds, however, the proof is 
ompli
ated be
ause we haveto take the limit in matrix elements of appropriately s
aled number states [19℄. Thesame basi
 estimates su�
e on
e more and in the limit we end up with the same pro
essex
ept with the Λαβ now being Fermioni
 noises. As one might suspe
t, we have to botherourselves 
olle
ting fa
tors of −1, and one would expe
t to obtain the same result if wedealt with q-
ommutation relations [20℄.We remark that the time-ordered exponentials developed in [21℄ di�er from the notionspresented here, as we are time-ordering quantum white noises and not It� di�erentials,though they do arise in models for Markov limits of dis
rete time systems [22℄.Finally, we mention that we also have the 
onvergen
e of the Heisenberg dynami
s
Ut(λ)†(X ⊗ 1)Ut(λ) to U†

t (X ⊗ 1)Ut[7℄. This requires a slightly deeper analysis, however, the basi
 estimates above are againat the heart of things. We invite the reader to try and imagine the Goldstone diagramexpansion of Ut(λ)†(X ⊗ 1)Ut(λ) to get an idea of what is involved.
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