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Abstract. We present quantum stochastic calculus in terms of diagrams taking weights in the
algebra of observables of some quantum system. In particular, we note the absence of non-time-
consecutive Goldstone diagrams. We review recent results in Markovian limits in these terms.

1. Introduction. Quantum stochastic calculus (QSC) involves an analysis of the funda-
mental quantum processes of creation/annihilation/conservation [1] and intuitively this
is somehow related to emission/absorption/scattering of physical quanta as described by
quantum field theory (QFT). Quantum stochastic theory has the advantages, as well as
the limitations, of having a mathematically rigorous setting. It also has the theory of
classical probability to fall back on for much of its inspiration. So much so that the re-
lationship with QFT, which was originally a major motivating factor, is now frequently
overlooked. Effectively, the fundamental quantum processes should be idealizations of
quantum fields for some suitable “Markovian” regime. They were introduced to describe
open systems dynamics: here the quantum noise couples to some quantum system and so,
in some sense, we are dealing not just with traditional quantum fields, but with quantum
fields taking values in the algebra of observables of some quantum system.

When presenting his famous list of problems, Hilbert is supposed to have quoted an
unnamed colleague as saying that “a mathematical theory should not be considered com-
plete until one can walk out into the street and explain it to the first person you meet”.
Let us suppose we did this and, as luck would have it, the first person we meet is a physi-
cist. Would we succeed in explaining quantum stochastic calculus? My contention is that
we should, though we might have to make do with some formal mathematics (presumably
Hilbert wouldn’t have objected?). There are many fundamental ideas, familiar to physi-
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cists, hidden (sometimes too well-hidden!) in the mathematical formalism of quantum
stochastic calculus. In this article, I've tried to present some basic results from quantum
stochastic calculus in the language of QFT and, in particular, in terms of Feynman-type
diagrams: the hope being that mathematicians and physicists will learn something from
the cross-over. Diagrammatic techniques are central to QFT [2], [3], yet also of indepen-
dent interest from it; they still remain an essential tool for investigating mathematical
aspects of quantum theory and continue to yield some of the most illuminating insights
(see, for instance, the papers [4], [5], [6]). I also want to present an account of a recent
paper [7] which deals with the QSC approximation and which was originally formulated
in diagrammatic language.

1.1. Ezpansions of evolutions. A free-particle (Bosonic) quantum field ®; living on a
Hilbert (Fock) space $) can be decomposed into positive and negative frequency terms
as ¢, = <I>§+) + (I),gf): here we suppress all dependence other than time and understand
the time label to refer to Heisenberg picture of the free dynamics. We take <I>§+) to be an
annihilation field and @Ef) to be a creation field. If 2 is the Fock vacuum vector, then
we have the identity

(1) a7 a=o,

along with the canonical commutation relations

(2) (@17, (7] = G(t, 5).

Here G(t, s) = (Q|P: P, ). Related to this is the propagator K defined as
K(t,s) = (QT®,®, Q) = G(t,5)0(t — s) + G(s,1)0(s — 1),

where 6(-) is the Heaviside step function. As usual T is Dyson’s chronological operation
placing Heisenberg picture operators in increasing time-order from right to left.

Let {Y; : t > 0} be a family of self-adjoint operators on $ with Y; being some function
of (I)gi) We are then interested in the evolution operator

t
(3) U; = f{exp —i/ Tsds} )
0

by which we mean the solution to the Schrédinger equation i0;U; = Y.Ui, Uy = 1.
Suppose that we have a polynomial interaction

Tt = Z %Au(@t)u'
14
The standard device of quantum field theory is to expand U; in terms of diagrams, see,
e.g. [2] or [8]. A Wick diagram D is counstructed as follows: choose n = n(D) labelled
points (vertices), each vertex will have some labelled legs attached (we let m, = m, (D)
denote the number of vertices having v legs so that n =) m, ), we join several pairs of
legs to form (undirected) edges, the result is a graph having several external lines and we
now ignore the labelling. A Wick diagram is then the class of all topological equivalent
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graphs. We let ¢ = ¢(D) denote the number of ways we could have originally connected
the various legs to get the same graph. Now denote by Dy, the set of all Wick diagrams
and define, for each D € Dy, the operator

(4) D(t) = n'H<w> N/[Ot HKHcI)(+ + o))

where N is normal ordering (placing all creation fields <I>(7) to the left of all annihilation
fields (7)) and under the integral we have a factor K (t;,t;) for each edge (i, j) occurring
and a factor ®;, for each external line at vertex (k). It is then a basic result of QFT that

U; admits the expansion
U= > D).

DeDw
Next let Py, denote the subset of connected Wick diagrams then we may list the elements
as Py, Pa,--- and each D € Dy can be decomposed as D = P"* x PJ? x ---. Now one
s ()" Po(t)"

readily checks that D(t) = N and so
nl' na!
(5) DY H NI P = e 3 P
ny,M2, 7=0n=0 PePw

What we have managed to do is to express the evolution operator U; as a normal ordered
exponential of a sum over connected Wick diagrams. The connected Wick diagrams play
the role of the ‘primes’ amongst the set of all Wick diagrams indeed the trick of re-
placing a sum of products by a product of sums is just the one that goes on when we
develop a prime number expansion of the Dirichlet series of a multiplicative function,
the Riemann zeta function being perhaps the best known example; it is also the trick
used to compute the grand canonical partition function for the free Bose gas. The result
should be understood as an operator theoretic version of the usual cumulant moment
expansion.

Now let hs be a fixed Hilbert space. We move the action up to the Hilbert space h ® $H
and set

(6) Te =Y Eas® (@) (@)

where we take Elﬁ = E3o. We now introduce a class of diagrams known as Goldstone
diagrams—they differ from the previous ones in that the vertices are placed in time order
[2]. Consider times ¢, > --- > t3 > t; in the interval [0,¢] and draw these as vertices as
shown below:

Suppose that at vertex j we have (3; legs coming in from the right, representing
annihilators, and «a; legs going out to the left, representing creators. For example, the
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vertex for Foz ® [@g;)]Q[@S—)P where we have o; = 2 creators and 3; = 3 annihilators is
sketched as

o creators B; annihilators

tj

We construct a Goldstone diagram D as follows. We take an arbitrary number n =
n(D) vertices and draw in an ordered line as above. We then draw creation / annihi-
lation lines at each vertex corresponding to one of the terms appearing in Y. We then
connect selected creation legs to (necessarily later time) annihilation legs: the remain-
ing uncontracted legs are then directed external lines. We consider the family Dg of all
(topologically distinct) diagrams obtained in this way. To each Goldstone diagram D we
associate the operator

(7) D(t) = (=)"Ea, 3, - Eayp, ®/ e TIeIe™
A D D

() p
where A, (t) is the simplicial region {(tn, -« ,t1):t>t, > -+ > 19 >t; > 0} and we
have a factor G(t; —t;) for each edge (i, ), note t; > t;, a factor (I),g:) for each incoming

(-)

external line to a vertex k and a factor ®;,

for each outgoing external line. We then find
the expansion
(8) U= Y D).
DeDe

In QFT one is used to switching between an expansion in terms of Goldstone diagrams
(8) and one in terms of Wick diagrams (5). In the present case however we have an
obstruction: the E,g’s do not necessarily commute! This complication means that the
Goldstone diagrams are more fundamental in the present case. The problem, of course,
is that the Dyson operator T is reordering the Heisenberg fields only, while the E,g’s
remain in their original order.

1.2. Zero dimensional QFT. Let a and a' be annihilation operators for a single mode
harmonic oscillator, We have the commutation relations [a, aT] =1 and af2 = 0. Let us
consider the observable ¢ = za' 4 2*a where z is a complex number. The Baker-Campbell-
Hausdorff theorem says that exp {itq} = exp {itza'} exp {—%|z|*t*} exp {itz*a} which
here has the same content as the expansion (5). We can use a diagrammatic presentation

based on two types of vertex: the creation type ....}..... which has weight 2, and the

annihilation type ,.__.{___. which has weight z*. If we take a vacuum expectation of
exp {itq} then we need only consider connected diagrams having no external lines and
there is only the one! The cumulant expansion is then

(Q exp {itq} Q) :exp{(it)2 ..... m ----- } = exp { —5t°|2*},

2!
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and we see that ¢ is Gaussian in the vacuum state. As is well known, the odd moments
on (2

|2 Sy

counts the number of ways to partition the 2n (time-ordered) vertices into n (contrac-

vanish while the even moments are <Q|q2”Q> where the combinatorial factor

tion) pairs. For instance, the fourth moment involves three disconnected diagrams (our
convention is that we only consider the contractions as edges; the thin horizontal base
line does not affect connectivity!)

(q") = N4+ f\+ (0. = 3|z~

We may also consider the variable N = (a+2)f(a+2) = afa+za +2*a+|z|2. We now
introduce two extra vertices: a scattering vertex , Y ___, with weight unity and a constant

vertex ... o.... with weight |2|?. To determine the vacuum expectation of exp {itN}, we
once again sum over all connected diagrams with no external lines. This gives

- ).. and each such

term has weight |z|2—since the scattering vertices all have Welght unity. All cumulants

(2] exp {itIV} ) = exp {(”) ........... R N &

1 2!

The n'”" term in the exponential will look like .. ¢

are equal and we therefore have
(Qlexp {itN} Q) = exp{ Z T'Z‘Q =exp {[z*(¢" = 1)}
n>1

and we recognize N as having a Poisson distribution of intensity |z|2. The moments of
the variable N are given as a polynomial of degree n in |z|?, vis.

(QIN"Q) = Z S(n,m)|z|*™

and, as is well-known in combinatorial analysis [9], the coefficients S(n,m) are the Stir-
ling numbers of the second kind: they count the number of ways to partition n items
into m non-empty subsets. To see why they arise here, consider the following diagram
contributing to (N7):

tr tg ts ty t3 to ty

This diagram partitions the 7 vertices into 3 subsets, namely {t7,ts,5,t3}, {ts,1}
and {t5}, with each subset forming a connected sub-diagram. This contributes (|z]?)? to
(NT). Consulting a textbook on combinatorics to get the Stirling numbers, we find

= > S(T,m)(|z)™ = [2]* + 63|2|* + 301|2|° + 350|2[* + 140|2["* + 21| 2[* + |2
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Alternatively, we could draw all B; = 877 diagrams out! The numbers B, =>"" _, S(n,m)
counting the total number of ways to partition the n vertices into non-empty subsets (of
connected Goldstone diagrams) are known as the Bell numbers.

2. Quantum stochastic calculus. Remarkably, the equivalence between expansions
(8) and (5) is restored in the non-commutative case in one very important situation. This
is when we consider the cases « and 8 taking only the values 0,1 in (6) and when the
two-point function G is replaced by a delta-function. Effectively the field is some form of
quantum white noise in time. As «, (3 is restricted to either 0 or 1, we shall have only four
types of vertex: a constant vertex Egg ® 1, an emission vertex E1g ® ®(), an absorption
vertex Fp; ® &) and a scattering vertex F11 ® (P,

The reason for the algebraic equivalence, despite the fact that the E,3 need not
commute, is that many of the Goldstone diagrams vanish identically. This is due to the
singular nature of the two-point function with respect to the simplicial integration in (7).
We note that absence of certain diagrams describing moments of quantum noises has
occurred elsewhere, in particular, there is an elegant description of the various forms of
independent quantum processes in these terms [11].

Let us introduce some formal symbolic notations [10]. We make the replacements
<I>§+) — ay, <I>§7) — a;r, G(t,s) — g(t — s),
where g(t — s) = kK04 (t — s) + k*0(t — s). Here k is a complex damping constant with

v =2Re{k} > 0. The objects 01 (t—s) are one-sided delta functions defined (for functions
f possessing left and right hand limits) by

9) /jo Jf(s)0L(s —t)ds = /jo f(t+w)os(u)du = f(tF).

Let us briefly indicate how to convert Uy = T exp{—i fot Ysds} to normal order [10] where
YT =FE\3® (al)*(a;)? (we use a convention from now on that repeated Greek indices are
summed over values 0 and 1). When evaluating Goldstone diagrams, we find that if the
contractions are not time-consecutive, that is, if we encounter g(¢; —¢;) with ¢ > j+1, then
we force the multiple equalities ¢; = t;_y = --- = t;41 = t; due to the time ordering, and
so the contribution vanishes. Only Goldstone diagrams with time-consecutive contractions
are NoON-zero.
Starting from the integro-differential equation U; = 1 — zfg T Usds, we have

t t
[a,, U] = —i/ [a,, Y] Usds = —i/ a(t — 8)F15(a,) U, = —ikE15(a,)Us
0 0

or a,Uy = (1 +ikEy1) " HUsa, — ik E1oU;] and so

(10) 0,U; = =iBap ® (a))*(a:)"U; = (a])*LagUs(ar)”
where

. 1
(11) Laﬁ = _ZEaﬁ - K,Eal T[{_EHELB

We may interpret the conversion of the Schrédinger equation to normal ordered form as
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a change from a Stratonovich to an Ité description. This agrees with the interpretation
given originally by von Waldenfels for emission-absorption interactions [12].

Having normal-ordered the Schrédinger equation, we now iterate to get

t
(12) Uy =1 +/ (al)*LagUs(as)Pds
0

J @ @) (L, Lo o) e, )
n>0Y An(t)
This is reasonably familiar to quantum field theorists and such expressions can be found
for instance in Berezin’s book [13]. If f is a suitable test function, we may consider its
coherent (i.e. exponential) vector |e(f)) and take a; |e(f)) = f(t) |e(f)) and (e(f)|af =
(e(f)] f(&)*. As (12) is normal ordered, we have no difficulty in assigning a meaning to
(e(f)|Ute(g)). At this stage we could just as well take (12) as the definition of the process,
this is the starting point of the Maassen kernel calculus [14]. As such the time-consecutive
contraction property is built into QSC, though in a way that is not readily apparent.
For the benefit of quantum probabilists, who may well be a little lost at this stage, we
convert (10) into more familiar language [1]. Let A = fo (al)*(as)Pds and we 1nterpret
these as the four fundamental quantum processes: A is time, A}° is creation, AJ! i
annihilation and A;! is conservation. Loosely speakmg we say {X;,t > 0} is adapted 1f
[a%, X;] = 0 whenever s > t. Setting X(]) fo (al)ox (]) s)(as)?ds where the xaﬂ)() are
adapted, we see that putting to normal order yields

S

t
xMx® = / (aD)* (X2 () + 2 () XP + 2 ()22 (5)] () Yds.

The basic idea goes back to Hudson and Streater [15]. In QSC, we usually write
dXy = zop(t)dAS”
and the above result is presented as the quantum It6 formula
d(X(l)X(Q)) - X(l)d(X(Q)) + d(X(l))X(Z) + d(X(l))d(X(Z))

along with the quantum It6 table d/\jf‘ldA,}’6 = dA?ﬁ. The equation (10) is then inter-
preted as the [t6 quantum stochastic differential equation dU; = LagUtdAtaﬁ with Uy = 1.
The coefficients satisfy the identities Loz + L,Ea + ’YL];aLlﬁ = 0 which are necessary and
sufficient for Uy to be an adapted, unitary quantum stochastic process. The formula for
the product of several quantum integrals comes down to a normal ordering problem which
can ultimately be presented as a sum over diagrams, or equivalently, a sum over partitions
of the time indices: for the classical case, see [16].

3. Markov limits. Finally, we wish to comment on how regular quantum fields can
approximate the singular fields considered above. Let A\ # 0 be a parameter and con-
sider fields <I>§i)()\) with a regular two-point function Gx(-) which becomes a delta-
function in the limit A\ — 0. In particular, we may take G(-) to be a integrable func-
tion with v = [ G and k = [;°G and assume that G(—t) = G(t)*. Then set
Ga(t,5) = A2G((t — 5)/A\?). We would then argue that in the limit G converges to
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the singular function g consider above. We consider the regular unitary evolution opera-
tors

Up(A) =T exp { - i/ot Eop ® (@E)(A))"‘(@?)()\))}

and we claim that for bounded E,g, with |xE11] < 1, Uy(\) converges to the singular
process U; considered in the last section.

The first remark that we make is that the A — 0 limit leads to the vanishing of
each non-time-consecutive Goldstone diagram contributing to U;(A). Moreover, when the
surviving terms are computed and re-summed, we formally get the correct It6 expansion
(12). Note that Log = —iEas — i Y oo Ea1(—ikE11)" ' E1 giving the contribution to
a time-consecutive block with « outgoing, 8 incoming lines and a sum over r successive
scatterings in between. We see that the condition ||[kE11] < 1 is necessary to sum the
geometric series.

The re-summation is rather tedious, though it helps that we know what answer to
expect! We also have the issue of convergence, however, we settle this below. We remark
that it is sufficient to consider only the vacuum convergence as the more general situation
can be inferred from this when we look at convergence in arbitrary but appropriately
scaled coherent vector states.

3.1. Pulé inequalities (Gaussian). Let us start with the case where we have emission

and absorption only in the interaction. The vacuum Goldstone diagrams, as we have seen
(2n2)!
2m2n,5!

in section 2, consist of no, say, pair contractions only. A typical diagram, one of
having 2n4 vertices, is sketched below for ny = 6:

tn ta 11

There exists a permutation o of the n = 2ns time indices which re-orders to the
diagram Dg(n) shown below

ta(n) to(2)to()
The permutation is moreover unique if it has the induced ordering of the emission
times. Not all permutations on the n time indices will arise this way, but the ones that
do will be termed admissible. We now consider an estimate of the n-th term in the Dyson

series:
> [ o= [, M icserl
DeDg Adm1351ble permutations Dg(n
= / H |GA(tar — tor—1)|
R(t) =1
where R(t) is the union of simplices { tnyooest1) 1>ty > > g1y > 0} over

2’1’7,2

all admissible permutations o. R(t) will be a subset of [0,¢]""* and if we introduce vari-

ables tor and sop = top — tor_1 for K = 1,--- ,ng it is easily seen that the above is
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max(t, 1)

TLQ!
uniform absolute estimate required to sum the series.

majorized by |k|™2 X . This the Pulé inequality [17] and clearly gives the

3.2. Pulé inequalities (Poissonian). We now consider scattering, and constant, terms in
the interaction [7]. As we have seen there will be B,, (the n-th Bell number) Goldstone
diagrams contributing to the n-th term in the vacuum Dyson series expansion. The Bell
numbers grow rapidly and have a complicated asymptotic behaviour. The proliferation
of diagrams is due mainly to the multiple scattering that now may take place.

Let us consider a typical Goldstone diagram. We shall assume that within the diagram

there are ny singleton vertices [ -+ ..__4.....- - - |, ny contraction pairs [- - - [—\ -], ns
contraction triples [--- .{ - ¥ -+ ...+ -], etc. That is the Goldstone diagram has a total
of n = Zj jnj vertices which are partitioned into m = Zj n; connected subdiagrams.
For instance, we might have an initial segment of a diagram looking like the following:

There will exist a permutation o of the n vertices which will reorder the vertices so
that we have the singletons first, then the pair contractions, then the triples, etc., so that
we obtain a picture of the following type

ng triples Ny pairs ny singletons

The permutation is again unique if we retain the induced ordering of the first emission
times for each connected block. We now wish to find a uniform estimate for the n-th term
in the Dyson series, we have

(13) Z / H |G| X “weights”
An(t)

Goldstone diagrams
where the weights are the operator norms of various products of the type E 3, - - Ea, 5 -
In general, the weight is bounded by

(| By || F2retsnst o gritnetnat-

where C' = maxag ||Eqapl|. This is because each connected diagram of j vertices will
typically have one emission and one absorption, but j — 2 scattering vertices. The Pulé
argument of rearranging the sum over diagrams into a single integral over a region R(¢)
of [0,]" again applies and by similar reason we arrive at the upper bound for (13) this
time of the type

max(t, 1)n1+n2+n3+-~

77,1!77,2!’[7,3! s

Z/ ||HE11||n1+2n2+3n3+~.. % Cn1+n2+n3+__, %
ni,n2,n3, -
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Here the sum is restricted so that Zj jnj = n. A uniform estimate for the entire series
is then given by removing this restriction:

- exp{)_;(Aj + B)n;}

E(A,B)= > J

’I’L1!’I’L2!TL3! R

n1,Mn2,Mn3, "

where e = ||kEy1|| and e = C'max(t,1). Again we use the trick to convert a sum of
products into a product of sums

4B = Y Hexp{<Ai:B>"j}:HZW+BW

ni,n2,ng, J
. ) cA+B
- leXp{e(“‘ﬁB)} — exp { ;MJ@B} = exp {m}

where we need e < 1 to sum the geometric series  this however, is precisely our condition
that ||/€E11 || < 1.

4. Conclusions. We have established a Markov limit in the sense of [18] which we may
write as

t t
f{ exp —i/ Eus® ((I)g_))“((l)g"‘))ﬁds} — f{ exp —i/ Eop ® (al)a(as)’gds}.
0 0

On the left hand side we have a unitary which can be expanded as a normal ordered
expression of the quantum fields in terms of Goldstone diagrams. The right hand side
can be developed as an expansion over time-consecutive can be understood as Hudson—
Parthasarathy unitary quantum stochastic process. We have shown the non-time-consec-
utive terms on the left hand side make a negligible contribution in the Markovian limit.
Interpreting Weyl order as Stratonovich form and Wick order as It6 form, the above
result can be considered as a non-commutative version of the Wong—Zakai limit theorem
for classical processes.

The same holds for Fermi fields, however, the proof is complicated because we have
to take the limit in matrix elements of appropriately scaled number states [19]. The
same basic estimates suffice once more and in the limit we end up with the same process
except with the A®? now being Fermionic noises. As one might suspect, we have to bother
ourselves collecting factors of —1, and one would expect to obtain the same result if we
dealt with g-commutation relations [20].

We remark that the time-ordered exponentials developed in [21] differ from the notions
presented here, as we are time-ordering quantum white noises and not Itd differentials,
though they do arise in models for Markov limits of discrete time systems [22].

Finally, we mention that we also have the convergence of the Heisenberg dynamics
UMH(X @ DU\ to U/ (X®1)U,

[7]. This requires a slightly deeper analysis, however, the basic estimates above are again
at the heart of things. We invite the reader to try and imagine the Goldstone diagram
expansion of U;(A\)T(X ® 1)U;(\) to get an idea of what is involved.
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