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The relative entropy

S(µ, ν) :=





∫
log

dµ

dν
dµ if µ ≪ ν,

+∞ otherwise,

and the Wasserstein distance are useful distances between measures. For probability

measures µ and ν on the Euclidean space R
n, the latter is defined as

W (µ, ν) := inf
π∈Π(µ,ν)

√∫∫
1

2
d(x, y)2 dπ(x, y),

where d(x, y) = ‖x − y‖2 and Π(µ, ν) denotes the set of all probability measures on

R
n × R

n with marginals µ and ν, i.e., π( · × R
n) = µ and π(Rn × · ) = ν.

The transportation cost inequality (TCI) obtained by M. Talagrand [15] is

W (µ, ν) ≤
√

S(µ, ν) ,
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where ν is the standard Gaussian measure and µ is any probability measure on R
n.

Recently Talagrand’s inequality and its counterpart, the logarithmic Sobolev inequality

(LSI) have received a lot of attention and they have been extended from the Euclidean

spaces to Riemannian manifolds. (Unlike Talagrand’s inequality, the LSI gives an upper

bound for the relative entropy.) It was shown by F. Otto and C. Villani [12] that in

the Riemannian manifold setting the TCI follows from the LSI due to D. Bakry and

M. Emery [1].

On the other hand, Ph. Biane and D. Voiculescu [3] proved the free analogue of Ta-

lagrand’s TCI for compactly supported measures on the real line. They replaced the

relative entropy with the relative free entropy and the Gaussian measure with the semi-

circular law. Based on the method of random matrix approximation, Biane [2] proved

the free LSI for measures on the real line, and we made a slight generalization of Biane

and Voiculescu’s free TCI [8]. We also obtained the free TCI and LSI for measures on the

unit circle using large deviation results for special unitary matrices and the differential

geometry of SU(n) [8, 9].

Recently M. Ledoux [10] used the random matrix method to obtain the free analogue

of the Prékopa-Leindler inequality on the real line. From this together with the Hamilton-

Jacobi approach, he also gave different proofs of the free LSI and TCI for measures on

R. The aim of the present note is to give a new proof of the free TCI for measures on the

circle following Ledoux’s idea. In this way we do not need the large deviation technique

but we establish a kind of free analogue of Prékopa-Leindler inequality on the circle.

1. The Prékopa-Leindler inequality on a Riemannian manifold. Let M be a

complete, connected, n-dimensional Riemannian manifold with the volume measure dx

and the geodesic distance d(x, y) for x, y ∈ M . For 0 < θ < 1 define

Zθ(x, y) := {z ∈ M : d(x, z) = θd(x, y), d(z, y) = (1 − θ)d(x, y)},

which is the locus of points playing the role of (1−θ)x+θy. In this section we first present

a result of Cordero-Erausquin, McCann and Schmuckenschläger, which is an extension of

the Prékopa-Leindler inequality to the Riemannian manifold setting. Then we show that

this results implies the TCI on a Riemannian manifold under some conditions (slightly

stronger than the Bakry-Emery criterion).

Theorem 1.1 ([5, Corollary 1.2]). Assume that Ric(M) ≥ (n−1)k holds for some k ∈ R

where Ric(M) is the Ricci curvature of M . Let f, g, h : M → [0,∞) be Borel measurable

functions and fix 0 < θ < 1. Assume that

h(z) ≥
(

Sk(d)

Sk((1 − θ)d)1−θSk(θd)θ

)n−1

f(x)1−θg(y)θ

holds for every x, y ∈ M , z ∈ Zθ(x, y) and d := d(x, y), where

Sk(d) :=





sin(
√

kd)/
√

kd if k > 0,

1 if k = 0,

sinh(
√
−kd)/

√
−kd if k < 0.
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Then ∫

M

h(x) dx ≥
(∫

M

f(x) dx

)θ(∫

M

g(x) dx

)1−θ

.

Here it is worth noting a known result: If Ric(M) ≥ (n − 1)k with k > 0, then the

diameter of M is at most π/
√

k (see [4, 1.26]).

Write
Φθ(d) := (n − 1)(log Sk(d) − (1 − θ) log Sk((1 − θ)d) − θ log Sk(θd)).

Let M(M) denote the set of probability Borel measures on M . Let ν ∈ M(M) be given

by dν := 1
Z

e−Q(x) dx with a Borel function Q : M → R and a normalization constant Z.

Write
Rθ(z; x, y) := Q(z) − (1 − θ)Q(x) − θQ(y).

Then, the above theorem is rephrased as follows:

If u, v, w : M → R are Borel functions and

w(z) ≥ (1 − θ)u(x) + θv(y) + Rθ(z; x, y) + Φθ(d)

holds for every x, y ∈ M , z ∈ Zθ(x, y) and d := d(x, y), then

(1.1) log

∫

M

ew(x) dν(x) ≥ (1 − θ) log

∫

M

eu(x) dν(x) + θ log

∫

M

ev(x) dν(x).

The following transportation cost inequality in the Riemannian setting was shown in

[12] based on [1].

Theorem 1.2 ([1] and [12]). Let ν ∈ M(M) be given by dν(x) := 1
Z

e−Q(x) dx with a C2

function Q : M → R. If the Bakry and Emery criterion

(1.2) Ric(M) + Hess(Q) ≥ ρIn

is satisfied with a constant ρ > 0, then

W (µ, ν) ≤
√

1

ρ
S(µ, ν), µ ∈ M(M).

Now, we assume the following condition slightly stronger than (1.2):

(1.3) Ric(M) ≥ αIn and Hess(Q) ≥ βIn

for some constants α ≥ 0, β ∈ R with α + β = ρ > 0. Here, we assume α = 0 in case of

n = 1. Our goal in this section is to prove that Theorem 1.1 implies Theorem 1.2 under

the assumption (1.3).

We use the celebrated variational formula (or the Monge-Kantorovich duality) for the

Wasserstein distance (see [16]):

ρW (µ, ν)2 = sup

{∫

M

f(x) dµ(x) −
∫

M

g(x) dν(x) :(1.4)

f, g ∈ Cb(M), f(x) ≤ g(y) +
ρ

2
d(x, y)2, x, y ∈ M

}

where ρ > 0. The variational expression for the relative entropy is also useful:

(1.5) S(µ, ν) = sup

{∫

M

f(x) dµ(x) − log

∫

M

ef(x) dν(x) : f ∈ Cb(M)

}
.

Furthermore, we need the Taylor expansion of log Sk(d):
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Lemma 1.3. For k ≥ 0,

log Sk(d) = −
∞∑

j=1

cj(kd2)j

with c1 = 1
6 and cj > 0 for all j ≥ 1.

Proof. Set f(x) := log sin x
x

; then we have

f ′(x) = cotx − 1

x
=

∞∑

m=1

2x

x2 − (mπ)2

because of the well-known expansion of cotx. Since

f(x) = −
∞∑

m=1

1

mπ

(
1

1 − x
mπ

− 1

1 + x
mπ

)
= −

∞∑

m=1

∞∑

j=1

2

(mπ)2j
x2j−1,

we get

f (2j)(0) = −2(2j − 1)!

π2j

∞∑

m=1

1

m2j

so that

cj = −f (2j)(0)

(2j)!
=

1

jπ2j

∞∑

m=1

1

m2j
> 0.

Since Ric(M) ≥ (n−1)k with k = α
n−1 due to the assumption Ric(M) ≥ αIn in (1.3),

we get by Lemma 1.3

Φθ(d) = −(n − 1)
∞∑

j=1

(1 − (1 − θ)2j+1 − θ2j+1)cj(kd2)j(1.6)

≤ −(n − 1)(1 − θ3 − (1 − θ)3)
α

6(n − 1)
d2

= −αθ(1 − θ)

2
d2.

For each x, y ∈ M let z(t) (0 ≤ t ≤ 1) be a geodesic curve joining x, y with d(x, z(t)) =

td(x, y). Since the assumption Hess(Q) ≥ βIn in (1.3) gives

d2

dt2
Q(z(t)) ≥ βd(x, y)2, 0 ≤ t ≤ 1,

we get

Rθ(z(θ); x, y) = Q(z(θ)) − θQ(z(0)) − (1 − θ)Q(z(1))

≤ −βθ(1 − θ)

2
d(x, y)2.(1.7)

Hence, by (1.6) and (1.7) we have

Rθ(z; x, y) + Φθ(d(x, y)) ≤ −ρθ(1 − θ)

2
d(x, y)2

for every x, y ∈ M and z ∈ Zθ(x, y).

Now, let f, g ∈ Cb(M) be such that

f(x) ≤ g(y) +
ρ

2
d(x, y)2, x, y ∈ M.
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Set u := θf , v := −(1 − θ)g and w := 0. Then

(1 − θ)u(x) + θv(y) + Rθ(z; x, y) + Φθ(d(x, y))

≤ θ(1 − θ)

{
f(x) − g(y) − ρ

2
d(x, y)2

}
≤ 0 = w(z)

for every x, y ∈ M and z ∈ Zθ(x, y). Hence Theorem 1.1 (the rephrased version (1.1))

yields

log

∫

M

eθf(x) dν(x) +
θ

1 − θ
log

∫

M

e−(1−θ)g(x) dν(x) ≤ 0.

Letting θ ր 1 gives

log

∫

M

ef(x) dν(x) −
∫

M

g(x) dν(x) ≤ 0

so that∫

M

f(x) dµ(x) −
∫

M

g(x) dν(x) ≤
∫

M

f(x) dµ(x) − log

∫

M

ef(x) dν(x) ≤ S(µ, ν)

thanks to (1.5). Finally, we apply (1.4) to obtain

ρW (µ, ν)2 ≤ S(µ, ν).

2. Free TCI on the circle. Let Q : T → R be a continuous function. The weighted

energy integral associated with Q is defined by

EQ(µ) := −Σ(µ) +

∫

T

Q(ζ) dµ(ζ) for µ ∈ M(T),

which admits a unique minimizer νQ ∈ M(T) (see [14]). Set B(Q) := −EQ(νQ) and

define the relative free entropy with respect to Q by

Σ̃Q(µ) := −Σ(µ) +

∫

T

Q(ζ) dµ(ζ) + B(Q) for µ ∈ M(T).

It is known ([9, Theorem 2.1], also [7, Chap. 5]) that Σ̃Q(µ) is the rate function of the

large deviation principle (in the scale 1/N2) for the empirical eigenvalue distribution of

the special unitary random matrix

dλSU
N (Q)(U) :=

1

ZSU
N (Q)

exp(−NTrN (Q(U))) dU,

where dU is the Haar probability measure on the special unitary group SU(N) of order

N , Q(U) for U ∈ SU(N) is defined via functional calculus and TrN is the usual trace on

the N × N matrices.

The Wasserstein distance W (µ, ν) between µ, ν ∈ M(T) is defined with respect to the

angular distance (i.e., the geodesic distance). The following is the free TCI for measures

on T proven in [8]. The aim of this section is to re-prove this by using the method of

Ledoux [10].

Theorem 2.1 ([8, Theorem 2.7]). Let Q : T → R be a continuous function. If there

exists a constant ρ > − 1
2 such that Q(eit) − ρ

2 t2 is convex on R, then

W (µ, νQ) ≤
√

2

1 + 2ρ
Σ̃Q(µ), µ ∈ M(T).
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We introduce the relative free pressure with respect to Q by

jQ(f) := sup

{∫

T

f dµ − Σ̃Q(µ) : µ ∈ M(T)

}
for f ∈ CR(T).

It is known ([10] and [6]) that

jQ(f) = EQ(νA) − EQ−f (νQ−f )

= lim
N→∞

1

N2
log

∫

SU(N)

exp(NTrN (f(U))) dλSU
N (Q)(U).(2.1)

For N ∈ N and U, V, W ∈ SU(N) write

Rθ,N (W ; U, V ) := TrN (Q(W )) − (1 − θ)TrN (Q(U)) − θTrN (Q(V )).

The next lemma is a sort of free analogue of Prékopa-Leindler-Ledoux inequality on the

circle.

Lemma 2.2. Let f, g, h : T → R be Borel functions and fix 0 < θ < 1. Assume that

TrN (h(W )) ≥ (1 − θ)TrN (f(U)) + θTrN (g(V ))

+Rθ,N (W ; U, V ) − θ(1 − θ)

4
d(U, V )2

holds for every N ∈ N, U, V ∈ SU(N) and W ∈ Zθ(U, V ). Then

(2.2) jQ(h) ≥ (1 − θ)jQ(f) + θjQ(g).

Proof. Since dim(SU(N)) = N2 − 1 and Ric(SU(N)) = N
2 , Φθ defined for M = SU(N)

satisfies

Φθ(d) ≤ −Nθ(1 − θ)

4
d2

thanks to (1.6). Hence, for each N ∈ N, the assumption of the lemma gives

NTrN (h(W )) ≥ (1 − θ)NTrN (f(U)) + θNTrN (g(V ))

+NRθ,N (W ; U, V ) + Φθ(d(U, V ))

for every U, V ∈ SU(N) and W ∈ Zθ(U, V ). Theorem 1.1 (the rephrased version (1.1))

can be applied to ν := λSU
N (Q), u := NTrN (f(·)), v := NTrN (g(·)) and w := NTrN (h(·));

hence we have

log

∫

SU(N)

exp(NTrN (h(U))) dλSU
N (Q)(U)

≥ (1 − θ) log

∫

SU(N)

exp(NTrN (f(U))) dλSU
N (Q)(U)

+θ log

∫

SU(N)

exp(NTrN (g(U))) dλSU
N (Q)(U),

implying the inequality (2.2) thanks to (2.1).

The assumption of the lemma is apparently too much; so the above must not be the

optimal form of the free Brunn-Minkowski inequality on T. Nevertheless, it is enough to

prove Theorem 2.1.
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For each N ∈ N and U ∈ SU(N) set Ψ(U) := TrN (Q(U)). Using a certain regulariza-

tion technique as in [8], we may assume that Q is a harmonic function in a neighborhood

of the unit disk. Then, it was shown in [8, Lemma 1.3 (ii)] that the convexity assumption

of Q implies Hess(Ψ) ≥ ρIN2−1. This gives as in (1.7)

(2.3) Rθ,N (W ; U, V ) ≤ −ρθ(1 − θ)

2
d(U, V )2

for every U, V ∈ SU(N) and W ∈ Zθ(U, V ). Now, let f, g ∈ C(T) be such that

(2.4) f(ζ) ≤ g(η) +
1 + 2ρ

4
d(ζ, η)2, ζ, η ∈ T.

Define the optimal matching distance on T
N by

δ(ζ, η) := min
σ∈SN

√√√√
N∑

i=1

d(ζi, ησ(i))2

for ζ =(ζ1, . . . , ζN ), η=(η1, . . . , ηN )∈T
N . For U ∈SU(N) let λ(U) :=(λ1(U), . . . , λN (U))

denote the element of T
N consisting of the eigenvalues of U with multiplicities and in

counter-clockwise order. It immediately follows from (2.4) that

TrN (f(U)) ≤ TrN (g(V )) +
1 + 2ρ

4
δ(λ(U), λ(V ))2, U, V ∈ SU(N).

Since δ(λ(U), λ(V )) ≤ d(U, V ) as shown in [8, (2.11)]), this gives

(2.5) TrN (f(U)) ≤ TrN (g(V )) +
1 + 2ρ

4
d(U, V )2, U, V ∈ SU(N).

Set f̃ := θf , g̃ := −(1 − θ)g and h̃ := 0. Then, for U, V ∈ SU(N) and W ∈ Zθ(U, V ), by

(2.3) and (2.5) we get

(1 − θ)TrN (f̃(U)) + θTrN (g̃(V )) + Rθ,N (W ; U, V ) − θ(1 − θ)

4
d(U, V )2

≤ θ(1 − θ)

(
TrN (f(U)) − TrN (g(V )) − 1 + 2ρ

4
d(U, V )2

)

≤ 0 = TrN (h̃(W )).

Hence, the assumption of Lemma 2.2 is satisfied so that we have

(1 − θ)jQ(θf) + θjQ(−(1 − θ)g) ≤ jQ(0) = 0.

For every µ ∈ M(T), by definition of jQ, this implies

(1 − θ)

(∫

T

θf dµ − Σ̃Q(µ)

)
+ θ

(∫

T

(−(1 − θ)g) dνQ − Σ̃Q(νQ)

)
≤ 0

so that, thanks to Σ̃Q(νQ) = 0,

θ

(∫

T

f dµ −
∫

T

f dνQ

)
≤ Σ̃Q(µ).

Letting θ ր 1 gives ∫

T

f dµ −
∫

T

f dνQ ≤ Σ̃Q(µ).
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Using (1.4) we obtain
1 + 2ρ

2
W (µ, νQ)2 ≤ Σ̃Q(µ).

It turns out that the bound 2/(1 + 2ρ) of our free TCI on T cannot be improved even

if we use the Riemannian Prékopa-Leindler inequality from [5]. This suggests the best

possibility of the bound.
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