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Abstract. Let G = G.(T) be the wreath product of a compact group T with the infinite
symmetric group G.. We study the characters of factor representations of finite type of G, and
give a formula which expresses all the characters explicitly.

1. Characters of factor representations of finite type

1.1. Characters. Let G be a Hausdorff topological group, P(G) the set of continuous
positive definite functions on G, K(G) the set of f € P(G) which are invariant under
inner automorphisms, K;(G) the set of f € K(G) normalized as f(e) = 1 at the identity
element e € G, and E(G) the set of extremal points in the convex set K (G). Let 7 and
72 be two continuous unitary representations (= URs) of G, and {; = m;(G)” (i = 1,2)
the von Neumann algebra generated by m;(G). We say that m, and 7o are quasi-equivalent
if there exists an isomorphism ® from 4; onto iy as x-algebras such that ®(m(g)) = m2(g)
for g € G.

THEOREM 1.1 ([HH3, Theorems 1.5.4 and 1.6.1]). Let w be a continuous unitary repre-
sentation (= UR) of G such that the von Neumann algebra U = 7(Q)" has a faithful
normal finite trace t on the set Ut of positive elements in Y. Normalize t as t(I) = 1
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at the identity operator I and put f = ¢ o with the unique linear extension ¢ of t onto
M. Then f € K1(G), and 7 is quasi-equivalent to the UR my associated to f in [GR]. An
isomorphism @ from U to Uy = 7;(G)" can be given explicitly.

A UR 7 is called factorial if 4 is a factor. If the factor is of finite type, there exists a
unique faithful finite normal trace ¢ on 4 normalized as t(I) = 1. Then, with the unique
extension ¢ of t to a linear form on i, the function

(1) flg) =o(n(g)) (9€q)

belongs to K1(G) and is called a character of .

THEOREM 1.2 ([HH3, Theorem 1.6.2]). For a Hausdorff topological group G, let URM(G)
be the set of all quasi-equivalence classes of URs of G, factorial of finite type. Then there
exists a canonical bijective correspondence between URHH(G) and E(G) through (1) above.

In this connection, every element f in E(G) is called a character of G of finite type. In
[Dix, 17.3], the above canonical bijection is asserted under the condition that G is locally
compact and unimodular.

1.2. Case of a limit of LCG inductive system. Now let K<1(G) D K;1(G) be the set
of f € K(G) such that f(e) < 1. Then the set of extremal points of K<i(G) is the
union of E(G) and {0}. In the case where G is locally compact, it is known that the
convex set K<i(G) is compact in the weak topology o(L>(G), L*(G)) (cf. [Dix, 17.3]).
We extend this result to the case where G = lim,,_,o, G, is the inductive limit of a
countable inductive system G; — G2 — --- — G, — --- of locally compact groups,
where each homomorphism from G,, into G,,+1 is assumed to be homeomorphic. In [TSH],
this kind of inductive system is called a countable LCG inductive system and it is proved
that G with the inductive limit topology 7;,4 becomes a topological group and that G
has sufficiently many continuous positive definite functions and accordingly sufficiently
many URs.
In the following we treat a certain case where all G,,’s are compact.

For a topological group G, let §(G) be the space of functions ¥ on G such that
¥(g) = 0 except for a finite number of g € G, with the convolution 1t x 1s(g) =

Yneq ¥1(gh™)2(h) and the conjugation ¥*(g) := 9 (g~"). Put f(¥) = 30 cq f(9)1(9)
for f € K(G). For two elements f1, fo € K(G), we introduce a partial order f; > fs by

Fi(@* %) > fo(* %) (¥ € §(G)), and put
(2) K(G; f):={f € K<1(G); f' < [}.

Then we see that functions f’ € K(G; f) are uniformly equicontinuous.

LEMMA 1.3. For an f € K1(G), take an ' € K(G; f). Then f' is extremal in K(G) or
'€ E(G) if and only if f' € ,,en Extr(K(G;mf)), where Extr(A) denotes the set of
extremal points of a convex set A. This means that

E(G)NK(G; f)= () Extr(K(G;mf)).

meN
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THEOREM 1.4. Assume that G is a union of countable compact subsets C,, /* G and that
the topology on G is the inductive limit of topologies T on C,,. Then, for an f € K,(G),
the convex subset K(G; f) of the space C(G) of continuous functions on G is compact in
the topology of uniform convergence on every C,,.

In the situation of Theorem 1.4, take ' € E(G) N K(G; f). Then f’ is extremal in
the compact convex subset K(G;mf) for each m € N, and it has an expression as an
integral on the set of extremal points Extr(K(G;mf)), which is due to Choquet and
Bishop-K. de Leeuw [BL]. We apply this fact to prove Theorem 11.1, where we can take
Cn =Gy

2. Wreath products of compact groups with the infinite symmetric group.
For a set I, we denote by & the group of all finite permutations on A. A permutation
o on I is called finite if its support supp(c) := {i € I ; o(i) # 4 } is finite. We call the
infinite symmetric group the permutation group & on the set of natural numbers INV.
The index N is frequently replaced by co. The symmetric group &,, is naturally imbedded
in 6., as the permutation group of the set I,, := {1,2,...,n} C N.

Let T be a compact group. We consider a wreath product group &;(T) of T with a
permutation group &; as follows:

(3) &/(T)=Dy(T)x&;, DI(T)=[[ T, Ti=T (i 1),
el

where the symbol []" means the restricted direct product, and o € & acts on D;(T) as
(4) D)5 d= (t)ier - o(d) = (E)ies € Di(T), th=ty1s) (i € ).

Identifying groups D;(T) and & with their images in the semidirect product &;(T), we
have 0 do~! = o(d). The groups Dy, (T) and &, (T) are denoted by D,,(T) and &,,(T)
respectively, then G := G (T) is an inductive limit of G,, := &,(T) = D,(T) x &,,.
Since T is compact, G, is also compact, and the inductive system (G,)n>1 is an example
of countable LCG inductive systems in [TSH]. We introduce in G its inductive limit
topology Tin4. Then G with 7,4 becomes a topological groups (cf. 2.7 in [TSH]). By
definition, a subset B C G is Tjpgq-open if and only if B N G, is open in G,, for any
n > 1. A general theory of unitary representations of the inductive limit group G of a
countable LCG inductive system is carried out in [TSH, §5] using continuous positive
definite functions on the group.

Denote by 7, the inductive limit topology on D (T') of the topologies on D,,(T),
then the topology Ting on G (1) = Doo(T') X G is given as the product of Tz%d and the
discrete topology Tﬁsc on S,. When T is a finite group, the topology 7inq in G = S5 (T')
is discrete. When T is infinite, 7;,4 is neither discrete nor locally compact, and a subset
{(d,1) ; d € Doo(T)} = Do (T) is an open neighbourhood of the identity element e of
G, where 1 denotes the trivial permutation on IN. In the case where T is abelian, we put
Pr(d) = [];c ti for d = (ts)ier € Di(T), and define a subgroup of &;(T') as

(5) &%(T) = DY(T) x &; with DS(T):={d=(t;)icr ; Pr(d) = er }.
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This kind of groups 6 (T') and &¢_(T') with T abelian, contain the infinite Weyl groups of
classical types, Wa_ = G of type Ao, WB__ = 6(Z2) of type Boo /Coo, and Wp_, =
6. (Z2) of type Dy, and moreover the inductive limits S (Z,) = lim, .o G(r,1,n) of
complex reflexion groups G(r,1,n) = 6,(Z,) (cf. [Sho]).

In general, by Theorem 1.2, for a topological group G, the set E(G) of all extremal
elements in the convex set K1(G) is equal to the set of all characters of factor represeta-
tions of G of finite type, type I,, (n < 00) or II;. When G is discrete, K;(G) is compact
in the weak topology and E(G) is closed in it. This is the case of G = & (T) with T
finite, and this case has been treated in [HH1]-[HH2], and the case of &, itself in [Hir3].

3. Structure of wreath product groups 6. (7T) = Do (T) % G

3.1. Standard decomposition of elements. Introduce the following notation: for d =
(ti)icr € Di(T), I C N, we put supp;(d) := {i € T ; t; # er} and we omit the
suffix I if I = IN or [ is specified from the context.

An element g = (d,0) € G = 6(T) is called basic in the following two cases:

CASE 1: o is cyclic and supp(d) C supp(o);
CASE 2: ¢ =1 and for d = (¢;);en, tq # er only for one ¢ € N.

The element (d, 1) in Case 2 is denoted by &, = (t4, (q)), where (¢) denotes superfluously
a trivial cyclic permutation of length 1 indicating the place ¢ € IN of ¢, € T, and put
supp(&y) = supp(d) = { ¢ }. For a cyclic permutation o = (i; iz --- i) of £ integers,
we define its length as {(c) = £ > 2, and for the identity permutation 1, put ¢(1) =1 for
convenience. In Cases 1 and 2, put ¢(g) = ¢(o) for g = (d,0), and £(§,) = 1.

An arbitrary element g = (d,0) € G is expressed as a product of basic elements as

(6) g:&hng "'é-qrglg2"'gm
with g; = (d;,0;) in Case 1, in such a way that the supports of these components,
1,42, -, gr, and supp(g;) = supp(o;) (1 < j < m), are mutually disjoint. This expres-

sion of g is unique up to the orders of &;, ’s and g;’s, and is called standard decomposition
of g. Note that, for S,-components, ¢ = o105 - - - 0y, gives the cycle decomposition of o.

To write down the conjugacy class of g = (d, o), there appear products of components
t; of d = (t;), where the orders of taking products are crucial when T is not abelian.
We denote by [t] the conjugacy class of ¢t € T, and by T/~ the set of all conjugacy
classes of T, and ¢ ~ t' denotes that ¢,#’ € T are mutually conjugate in T. For a basic

component g; = (dj,0;) of g, let o5 = (i1 ij2 ... ij¢,) and put K := supp(o;) =
{ij,la i]‘72, ceey ij,[j } with éj = é(O'j). For dj = (ti)iEKja we put
(7) Py (dg) = [ty by, 1 - toty] € T/~ with ¢, =t;,, (1 <k <)

Note that the product Py, (d;) is well-defined, because, for t1,ts,...,t, € T, we have
tite -ty ~ titrq1 - - - Loty - - - tx—1 for any k, that is, the conjugacy class does not depend
on any cyclic permutation of (t1,ta,...,t).

LEMMA 3.1. (i) Let 0 € S be a cycle, and put K = supp(c). Then, an element
g=(d,o) € 6Gg(T) (=: Gg) is conjugate in it to g’ = (d',0) € G withd = (t})ick,t; =
er (i # o), [t;,] = Ps(d) for someig € K.
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(il) Identify 7 € Soo with its image in G = G (T). Then we have, for g = (d, o),

rgr ' = (r(d), oY) (=:(d,0")), and P, (d') = P,(d).

THEOREM 3.2. Let T be a compact group. Take an element g € G = G (T) and let its

standard decomposition into basic elements be g = £4,€q, -+ £4.9192 -+ - gm0 (6) , with

€ = (g, (qr)), and g; = (dj,05), o cyclic, supp(d;) C supp(o;). Then the conjugacy

class of g is determined by the set

(®) tu] €T/~ (LSk<r) and (Py(d),0o;)) (1<) <m),

where Py (d;) € T/~ and {(0;) > 2.

3.2. The case where T is abelian. In the case where T is abelian, the set T/~ of conjugacy

classes is equal to T itself. Take g € G, and take its standard decomposition (6). For

g; = (dj,05), put g; = (d;,aj), where d; = (t})ien with t; = P(d;) := Hz‘eKj t; for

some ig € K; = supp(o;), and t; = er elsewhere.

LEMMA 3.3. Let T' be abelian. For a g = (d,0) € &uo(T), define g; (1 < j <m) as above

and put ¢ = €4,€q, - €4, 9195 -+ 9. Then, g and ¢’ are mutually conjugate in S (T).

A complete set of parameters of the conjugacy classes of non-trivial elements g € Goo(T)

is given by the set

(9) {tllvtév"'at;'} and {(ujagj); 1§]§m}7

where tj, =t € T* =T \{er}, uj=P(d;) €T, {; >2, andr+m > 0.

3.3. Finite-dimensional representations. Among factor representations of finite type of
G = 6, (T), those of type I are one-dimensional characters given below.

LEMMA 3.4. A finite-dimensional continuous irreducible unitary representation (= IUR)
m of G is a one-dimensional character, and is given in the form m = m¢ . with

m¢e(9) = C(P(d)) (sgng)” (0)  for g=(d,0) € Goo(T) = Doo(T) % G,

where  is a one-dimensional continuous character of T', P(d) is a product of components
t; of d = (t;), and sgng (o) denotes the usual sign of o and e =0, 1.

4. Characters of G,,(T) with T any compact group

4.1. Character formula for factor representations of finite type. Let T be the dual of T

consisting of all equivalence classes of continuous irreducible unitary representations (=

IURs). We identify every equivalence class with one of its representatives. Thus ¢ € T is

an IUR and denote by x¢ its character: x¢(t) = tr(¢(¢)) (t € T'), then dim{ = x¢(er).
For one-dimensional characters of &, we introduce simple notation as

(10) Xe(0) :=sgng(0)® (0 € 6x; e=0,1).
As a parameter for characters of G = &, (T'), we consider a set
(11) ace ((€T,e€{0,1}) and p= (1¢) e

of decreasing sequences of non-negative real numbers

ace = (Qei)ieN; OCel 2 Qe > Qeeg > o0 203
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and a set of non-negative e > 0 (¢ € T), which altogether satisfy the condition

(12) Yo > llacell+lull =

ceT €€{0,1}
with
=D acess lul =" ne-
€N ceT

Note that, under the condition (12), there exists a countable subset fo C T such that
ace = 0 and pe = 0 except for ¢ € Tp.
The following is our main theorem in this paper.

THEOREM 4.1. Let G = & (T) be a wreath product group of a compact group T with
G- Then, for a parameter

(13) A= ((aC,E)(C,E)GTX{OJ} B ,u)a
n (11)—(12), the following formula determines a character f4 of G: for an element g € G,
let (6) be its standard decomposition, then

a) o= T{E( 2 T 5+ 25 )}

1<k<r *¢eT “e€{0,1} ieN

< {Z( > Z(fﬁ—g’g)wx5<aj>)x<(Paj<dj>>},

1<js<m ¢ “e€{0,1} i€N

where x:(0;) = sgng(0;)° = (=1)=@)=1) " Conwersely any character of factor represen-
tation of finite type of G is given in the form of fa.

REMARK 4.1. Let g = £;,&,, - - - &, without the components g; = (d;, 0;) with ¢(o;) > 2,
then the formula gives

Al ei e
= t
o= TS (5 S5+ 2wt
1<k<r *ceT “e€{0,1}ieN
Put t,, = er in the right hand side, then we get >° .7 >° | = 1, by
the condition (12), and the character formula in Theorem 4.1 is valid even for g = e with

fa(e) = 1. In the case where T is not discrete or equivalently not finite, the continuity
at g = e is thus guaranteed by (12).

4.2. Case where T is finite. The case of G, itself is a special case of G, (T) with the
trivial ' = { er }. In this case, in the parameter A = ((0@75)(C eTx {01} i), the u part
does not appear, and so the equality condition (12): def Zee{m} |
should be replaced by the inequality ||| + ||8]] < 1 for o = (@p)pen, 8 = (Bp)pen In
[Tho]. This inconsistency can be explained as follows.

Assume T is finite. Let 17 be the trivial representation of T, and put T* := T\ {17 },
T* =T\ {er}. Then, } . 7(dim() x¢ as functions on T', we have

(15) 0:Z(dimC)X4, 1=x1, =— Z(dimg‘)xg, on T*.

ceT ceT™
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Because of this linear dependence, we can accept the parameter A for f4 not neces-
sarily under the equality condition (12) but under the weaker inequality condition

(16) Yo > el +lul <1,

¢ceT €€{0,1}

losing the validity of the formula of f4 for ¢{;, = er and accordingly for ¢ = e. We
understand that this is the case of G itself (without the p part). Under this condition

16), the uniqueness of the part yu = ~, e € R, is lost.
=l ) ey K¢

REMARK 4.2. The character formula (14) in Theorem 4.1 is valid for Thoma’s case of the
infinite symmetric group G, itself. We consider it as an extreme case of wreath product
groups 6. (T') with a trivial group T' = {er}. For the parameter A of character fa, we
consider in addition to &g 1,,1,1,, a fake parameter p = (u1,.) for the trivial T'= {er }
by putting p11, := 1 — (||o,1,]| + [|e1,1,]]). Then the condition (12) holds. The relation
between the parameter A and the Thoma parameter ({ay},{8n},7) in [Tho] is given by

(17) {an} = Q17> {/Bn} =011, V= Hip-

REMARK 4.3. In the case where yi¢c = 1 for some ( € f, we have

(18) falg) = H djrlrlC X¢(tgy) for g =88+~ &,
1<k<r

and fa(g) = 0 if g has components g; = (d;,0;) with £(o;) > 2. This case is related to

a kind of ‘¢-twisted’ regular representation of the group &, = G/D, D = Dy (T'). This

means that, taking an IUR p; of D given above, we obtain the induced representation

R; = Indg pc¢- In the case where ¢ = 17 the trivial representation of T', R is essentially

the regular representation of &, = GG/D. Taking appropriately a positive definite matrix

element F' of R¢, and an increasing sequence G, we get fa as a limit of centralizations
FO~ of I,

5. Characters of wreath product group 6., (7) with T abelian. When T is
abelian, the general character formula (14) for G = G4 (T) with a compact group T
has a simplified form. In this case, T is nothing but the dual group consisting of all
one-dimensional continuous characters of 7', and for each ( € f, its character x¢ is
identified with ( itself. For a ¢ € G, let its standard decomposition be as in (6). Put
K = supp(o;), and for dj = (t;)ick, € Dk, (T) — Doo(T), put

(19) Pr(dy) = ] tiv <(dy) = ¢(Px,(dy)) = [ ¢ti)-
icK; i€K;
As a parameter for characters of G = & (T'), we consider a set a¢’s and g in (11)
satisfying the condition (12).

THEOREM 5.1. Let G = 6,(T) be a wreath product group of a compact abelian group
T with &. Then, for a parameter A = ((0@75)(C SeTx {01} w) in (11)—(12), the fol-
lowing formula determines a character f4 of G: for an element g € G, let its standard
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decomposition be as in (6), then

@ = T {S(E S acatue)otta)

1<k<r N cep “e€{0,1} iEN

<M AZ( Z S xulop e}
1<j<m S cep “e€{0,1} ieN
where xe(0j) = sgng (o) = (=1)7)=V "and ((d;) as in (19).
Conversely any character of G is given in the form of fa.
REMARK 5.1. For the natural subgroup G¢ = 6% (T) = D% (T) x 6 of G = 6(T),
it is proved that a general character formula can be deduced from the one for G, by
restriction from G to G°.

6. Method of proving Theorem 4.1. Our proof of Theorem 4.1 can be carried out
just as in the case of finite groups T in [HH2]. It consists of two parts. The first part is to
prepare seemingly sufficiently big family of factorizable (hence extremal by the criterion
in the second part) continuous positive definite class functions on G = S (T"). The
second part is to guarantee that actually all extremal continuous positive definite class
functions or characters have been already obtained in the first part.

6.1. The first part of the proof. The first part has two important ingredients. One is a
method of taking limits of centralizations of positive definite functions. This method has
been applied in [Hir3] to the case of G and reestablished the results in [Tho].

The other is inducing up positive definite functions from subgroups. After choosing
appropriate subgroups H and their representations m, we use their matrix elements f
as positive definite functions on H to be induced up to G, and then to be centralized.
We have constructed in [Hirl] a huge family of IURs of a wreath product group G =
S o(T) = Do (T) ¥ G with any finite group T, by taking so-called wreath product type
subgroups H in a ‘saturated fashion’, and their IURs 7 of a certain form to get IURs of
G as induced representations p = Indgw. For our present purpose, actually it is sufficient
to choose simpler subgroups of degenerate wreath product type and their IURs 7.

6.2. The second part of the proof. The second part contains also two ingredients. The
first one is to establish the criterion that a positive definite class function on G = G (T')
is extremal or indecomposable if and only if it is factorizable (Theorem 11.1).

The second one is to determine the range of parameters for extremal positive definite
class functions f. Since f is factorizable, f(g) is written as

fo) =11 1) I fe)
1<k<r 1<j<m

for g = &g, &g 91 gm- Then, we take a kind of ‘Fourier transform’ of f on G =
Doo(T) ¥ G4 with respect to the subgroup D (T'), and get a positive definite class
function on &. Then for this we can appeal to Korollar 1 to Satz 2 in [Tho].

7. Subgroups and their representations for &, (7). In place of the purpose in
[Hirl]-[Hir2] of getting IURs, our present purpose is to get all the characters of G =
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Soo(T). In the papers [Hir3], [HH1] and [HH2] respectively in the case of Go, of Goo(T)
with T finite abelian, and of & (7T') with T finite in general, we have applied the method
of taking limits of centralizations of the trivial inducing up F = Indg fr of a matrix
element f; of a UR 7 of H. The limits turn out to be characters. Here, by definition,
Ind$ fr = fr on H and is equal to zero outside H, and f,(h) := (r(h)wo,wo) for a unit
vector wg € V (), the representation space of . Now take a partition of N as

1) N U (U s)e(Ur)

(C,e)eTox{0,1} PEPc. ceTy

where fo is a countable subset of ﬁ and each P . is an infinite index set, and the subsets
Ip,, I are all infinite. Corresponding to this partition, we define a subgroup

22) m=( I (I m)) (1 )

(Ce)eTox{0,1} PEFPc.e ceTo

!

with

Hp = GIP(T), HC = DIC(T) C GIC(T) s
where H/ denotes the restricted direct product. Note that, for the original case of G,
we take the trivial group T' = {er}, and for {( = 17 € T' we take H¢ = {17, } C &, with
the identity element 17, of &7.. As a UR 7 of H, we take

_ b be,e b’
(23) = ( ® (¢,e)eTox{0,1} ( ® pepc,ﬁp» ® ( ® CeTy WC)'
Here b, b¢ ., b’ are reference vectors. Furthermore be . = (by)pep,. With b, € V(mp), [|by|| =
1(p€ Pe), and m, for H, = &, (T) is given as

(24) Wp((d,a)):(®?é’[pci(ti)>l(o)sgn6(a)g for d=(t;)icr,, 0 € &y,

where a, = (a;)icr, is a reference vector with a; € V((;),|las]| = 1, and ¢; = ¢ as a
representation of T; = T' (i € Ip), and I (o) is defined as

I(0): v=Qicr,vi — ®ie],,“£a v; = Vo1 (v €V(G),i € 1)
Moreover b’ = (b¢) .z, with be € V/(C), [|b¢|| = 1, and for ¢ € To, me of He is given as
(25) Fc(d) = ®?é[<@(ti) for d = (ti)iej( S HC = DIC (T)7
where a¢ = (a;)icr, with a; € V(G), [las|| = 1, and ¢; = ¢ for T; =T (i € I¢).

~

We put b := ®(§,a)€f’0x{0,1}b<75’ bee = ®pep<15bp, and b = ®€\€TOE)\C, be = Ricr, @i,
and further take a matrix element f,(h) := (w(h)wp, we) for wy :=bR b € V(x).

8. Increasing sequences of subgroups Gy /" G = & (T). Depending on the choice
of increasing series Gy ' G of subgroups, we get various positive definite class func-
tions of G as limits of centralizations FGV for the trivial inducing up F = Ind% f,
of a matrix element f,, which turn out to be characters. We choose a series G as
Gy =6,,(T),Jy /" N, and demand an asymptotic condition as

|IpﬂJN| |I<ﬁJN‘ - ~

(26) ] — A, (peP), Tnl ue (CeT),
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where P = | ez, (01,4%.z is the union of index sets. We have
(27) D+ Do <1
peP ceT

where the inequality may happen since |P| = oc.
For each ({,e) € Tx{0,1}, let reorder the numbers { A, ; p € P . } in the decreasing
order and put it as a¢ o 1= (Q¢ci)ieN: Qce1 > Qe > -+, and also put p = (/‘C)gef“'

Then,
> o

(C,e)eTx{0,1}

|+ el < 1,

which is nothing but the condition (16) if it is in the case of a finite group 7. In the
case of infinite T, if the inequality < 1 holds, the continuity at ¢ = e of f'(g) =
limy oo F¢¥(g) is not guaranteed since f’(e) = 1 (cf. Remark 4.1). So we only pick
up the case where the equality holds in (27) or the equality (12) holds (cf. Remark 4.2).
As a pointwise limit of the series of centralizations F&~ | we obtain the character fa with
A= ((O‘Caf)(g,s)efx{o,l} ; p) in Theorem 4.1 under the asymptotic condition (26).

9. Partial centralization with respect to D, (T"). As an increasing sequence G
G = 64 (T) of subgroups, we have chosen Gy = &5, (T) = Dj,(T) x &, with Jy
N. Put Dy = Dy (T) and Sy = &, for simplicity, then Gy = Dy x Sy, and
we identify d’ € Dy and ¢’ € Sy with their images in Gy respectively. Our task is
to calculate centralizations FCN of a positive definite function F = Indg fr, and to
determine their limits. We see that for h € H

-1 1 —~ _1
(28)  FON() = [ falg'hg'™ ) dpcy(9) = 5 > frl(o'ha' ™),
GN |SN| 'eSN :o’h r—1
o N :0'ho €H
where }; is a partial centralization of fr with respect to Dy = T’V defined as

(29) (W)= | fo(dWd ) dupy(d) (W € H),

Dy
with the normalized Haar measure dup, on Dy.
Put K ={1,2,...,0},and let 0 = (1 2 ... £) be a cycle with supp(c) = K and
g = (d,0) a basic element in G (T) with d = (¢;);ex. Then, for d' = (8;)icx € Dr(T),

(30)  dgd " =(d",0) with d’=dd-o(d") = (sitis; T )ick (50 =s0).

On the other hand, for a decomposable vector v = ®;exv; € V(®iekx(;) with v; €
V(Gi), ¢ = ¢, the restriction II of m, onto Sk (T') C &y, (T') is given as
(g)v = ®iex (((ti)vo-1(:)) = Rier (C(t:)vi—1) (vo = vp).

LEMMA 9.1. Let ®;cx (i be a tensor product representation of Dy (T) = TX of ¢; = ¢
of T; =T (i € K), and take decomposable vectors v = ®;cxv; from V(R;ck(;) with
v; € V(G), ||vil] = 1. Then, as an integration with respect to the normalized Haar measure
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dpper)(8) = [iex dir(si), s = (si)iex € TH =2 Dg(T),
_ oxe(tete—y---tath)  xc(Po(d))
/DK@) Mg ) diosn ) = e = @)y

Let H be a subgroup of G given in (21)—(22), and = its UR given in (23)—(25). Taking
a unit vector wy € V() as in the last part of §7, we put fr(h) = (w(h)wo, wo) (h € H).

PROPOSITION 9.2. Take a g = (d,0) from H and let g =E§4,6q, - £q.9192 " Gm, &g =
(tq,(q)), g; = (dj,05), be its standard decomposition. Then, the partial centralization
fr(g) of matriz element f is given as follows. Let K(() be the set of k(1 <k <7r) such
that &, € H, with p € |_|€€{071} Peoooréy, € He, and J((,¢€) be the set of j(1 < j <m)
such that g; = (d;,05) € Hy, with p € Pr .. Then,

TN XC(tqk) X((PU,- (dj)) e
(31)  fx(9) = (H H ) TIHC)( H H ) ngn(aj> )

ceT keK(¢ (¢,e)eTx{0,1} JEJ(C,e

10. Limits of centralizations of matrix elements. For any element in G, there
exists an element in H conjugate to it. Therefore, from (28), it is enough for us to
determine the value of F¢~¥ on H. Take g = (d,0) € H and take its its standard
decomposition as in Proposition 9.2. Since H = (H;:)EP H,) x (H/Cefo H¢), the condition
g € H means that each £, belongs to one of H, and H¢, and each g; belongs to one of
H,,. Furthermore, the latter condition can be expressed by means of supports as

(32) supp(§g.) ={qx} C I, or CI., and K;=supp(g;)=supp(o;) C I,.
Hence, using Proposition 9.2, we can calculate as in [Hir3] and [HH1], and get the first

half of Theorem 4.1:

THEOREM 10.1. Let fa be the class function on G = S (T) given in (15) with pa-
rameter A in (13) satisfying the conditions (11)—(12). Then f4 is obtained as a limit of
centralizations FEN of a positive definite function F = Indgfw with (H, ) given above.
The limit is taken according to an increasing sequence of subgroups Gy = &, (T) with
Jn /' N obeying the asymptotic condition (26).

11. Factorizability for extremal positive definite class functions

THEOREM 11.1. Let T be a compact group, and f a continuous positive definite class
function on G = S(T) normalized as f(e) = 1. Then f is extremal or f € E(G), if
and only if it has one of the following properties which are mutually equivelent:

(FTP) [ Factorizability Property | For any g = (d, o) € G, let
9="6aéa 091927 Gm, &= (g, (@), g5 = (dj,05),

be its standard decomposition. Then,

(33) for=TI r&) < [ £

1<k<r 1<j<m

(FTP’) For any two elements g, g’ with disjoint supports, f(gq’) = f(g)f(g’)-
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We rewrite these conditions in another form. As in Theorem 3.2, conjugacy classes of
basic elements in G is given by the set 2 of the following objects w:

(34) w=([t],€) € (T/~) x N,

and the conjugacy class of g € G, # e, with the above standard decomposition is deter-
mined by the collection { ([ty,],£=1) (1 <k <7), (Py;(d)),€(05)) (1 <j<m)}, and
the conjugate class of g = e by wg = ([er],£ = 1). For g # e, denote by n,,(g) the multi-
plicity of w € € in this collection for g. We put ny,(e) =1 and ny,(g) =0 (g € G,# ¢)
by definition.

Put Zso:={n € Z; n >0} and denote by (Z>0)? the set of all n = (ny)ucq,
Ny € Z>0, with n, = 0 for almost all w, and n,, =1 if n, =0 (Vw # wy) and ny,, =0
otherwise. Then, n(g) := (nu(g))wea is an element of (Z>0)Y, and the correspondence

(35) ®: [g] — nlg) € (Z30)

gives a bijective map from the set G/~ of all conjugacy classes of g € G onto (ZZO)(Q).
We introduce in the latter the topology in G/~ through the map ®.

For w = ([t],¢) € Q, put w™! := ([t71],¢). Then, if w is the conjugacy class of
& = (tg:(q)) or of gj = (dj,05), then w™! is that of fq’l or of gj*1 respectively. Hence,
nw(971) = ny-1(g), and the transformation [g] — [¢~!] in the set G/~ of conjugacy
classes of elements in G induces an involutive transformation ¢ on (Zx()“? given as

(36) L (Z50) 5 n = (ny)weq — 1 = (0)weq with n/, =ng, 1 (we Q).
Weput Q. :={weQ;wl=w} Qi ={weQwt#w}, then Q =, UQ..
Furthermore put D, :=D ={z€ C;|z| <1} C C forw € Q, and I, := [-1,1] C R for

w € Qpe, and S = Hweﬂ D,,. With the product topology S is compact, and on it we
have two commuting involutions as j(s) := (s),)weq With s, := s -1, and 3 := (53)ueq
(conjugate numbers), for s = (s,,)wecq. Then we put

(37) S'i={s€ 8 =]l,eqDuw;ils) =53},
then for s € S’, s,-1 =3, and so s, € I, for w € Q..

For a continuous positive definite class function f on G, put s(f) = (Su)weq with
Sw = f(gu), where g, denotes a basic element in the class w (put g,, = e and s, =
f(gwo) = f(e)). Since f € K<1(G) has the symmetry

(SYM1) g™ = flo)  (9€a),
and since w™! is represented by g1, there holds a symmetry condition for s = s(f)
(SYM2) 1(s) =3 (orseS’).

Define a positive definite class function f by f(g) = f(g9) (9 € G), then s(f) = s(f).
On the product space S’ x (ZZO)(Q), we define a function
(38) P(n,s) = [[ s, with 5.0 =1,
weN
for n = (nw)wen, s = (Sw)weq. Then, P(i(n),s) = P(n,j(s)) = P(n,s). Fixing an
s = (s,) € 8, we get a function ¥y(n) := P(n,s) on (Z5¢)*) = G/~. Similarly, fixing
an n, we get a function on S’ by P,(s) := P(n,s) (s € 5").
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For every s € S/, we get a factorizable class function on G as
(39) fs="Us0® or fi(g) = ¥s(n(g)) = P(n(g),s) = Png)(s).

Then P, 4)(s) satisfies the next symmetry condition, equivalent to (SYM1), for f = f:

(SYM3) Pyny(s) = Py(s) for m=mn(g) € (Z>0)“.

Thus the condition (FTP) above is rewritten as follows:

ere exists an s = (S )wen N such that f = fs in .
FTP") Th ) m S’ h that f = fs in (39

12. Final step of the proof of Theorem 4.1. The functions f4 in Theorem 4.1
are given as limits of centralizations FEN of positive definite function F = Indg fr
with a matrix element f; of a UR m of a subgroup H of G = & (T). We see that
f = fa is factorizable and the corresponding s(f) = s = (s, )weq is easily given from the
formula (14).

Conversely here we prove that any extremal positive definite class function (or a
character) f on G, normalized as f(e) = 1, is given in the form of fa in (15) with
parameter A = ((a<75)(475)€fx{071} ;) in (11)—(12).

By Theorem 11.1, we should examine when a factorizable class function f = f; =
U, 0P with s = (Su)wen is positive definite. For w = ([t],£) € Q, £ = 1, we have a class
function X on T as X(t) := s(y,1) (t € T). Then, X is a continuous positive definite
class function on T'. So X is expressed as a linear combination of x¢,( € T, as X (t) =
Yoceracxe(t) (t € T) with ac = [, X(t) x¢(t) dur(t) > 0, 3. c5(dim¢)ac = 1. The
sum for X is absolutely convergent. For ¢ > 2, we have also a continuous class function
Yi(t) on T by Yy(t) := s(j4,0), Where sy.0) = 8, for w = ([t],£) € Q. Then, similarly as
for X, it is expressed as Yy(t) = 3_ 7 bee xc(t) (t € T') with be,e = S Ye(t) Xe(t) dur(t).

For g =&§4,6q, - -+ £q,.9192 - - - gm, We have from (33) and (39)

(40) 1) =TI (X acxeta)) x TT (D2 beeton) xe(Po, ().

i<k<r cel 1<j<m e

The following function F, . for (¢o,e) € T x {0,1} is a special kind of functions
fa in Theorem 4.1, which has been proved to be positive definite and invariant: for

9= 60,9192 Gm, &g = (g, (@) 95 = (dj, 05),

Foelg) = J] Xolla) o 1 Xellfeld)

dim Gy (dimn Go)ie) )"

1<k<r 1<j<m

Then the product f'(g) := (f F¢,.c)(9) = f(9) Feyc(g) is positive definite. Take a sub-
group D,, := Dy, (T) with n sufficiently large so that supp(g) C I,. A partial Fourier
transform Fe, oin(f) of f with respect to Fy, . is by definition the integral of f’ with
respect to D,,:

Feoem(F)0) = /D 1(d9) Fare(d'g) dup. (d).
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Considering it on &,,, we get a positive definite class function on &,,, for any n. For
o€ 6, let c =010 0, be its decomposition into mutually disjoint cycles, then

n—|supp(o)] b
_( ag, _bate)
Feo.0m(f)(0) = (dim Co) % 1<1j1m (dim (o))

Here we can apply Korollar 1 of Satz 2 in [Tho], and obtain the desired expression of f,
through detailed calculations.
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