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Abstra
t. Two new examples are given for illustrating the method of quantum de
omposition inthe asymptoti
 spe
tral analysis for a growing family of graphs. The odd graphs form a growingfamily of distan
e-regular graphs and the two-sided Rayleigh distribution appears in the limit ofva
uum spe
tral distribution of the adja
en
y matrix. For a spidernet as well as for a growingfamily of spidernets the va
uum distribution of the adja
en
y matrix is the free Meixner law.These distributions are 
al
ulated through the Ja
obi parameters obtained from stru
tural dataof graphs.1. Introdu
tion. Let G = (V, E) be a graph, where V is a non-empty set and E asubset of {{x, y} ; x, y ∈ V, x 6= y}. An element of V is 
alled a vertex and an elementof E is 
alled an edge. Two verti
es x, y ∈ V are 
alled adja
ent if {x, y} ∈ E, and inthat 
ase we write x ∼ y. Throughout this paper a graph is always assumed to be lo
ally�nite and 
onne
ted. The adja
en
y matrix A = (Axy)x,y∈V is de�ned by

Axy =

{

1, if x ∼ y,

0, otherwise.2000 Mathemati
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246 D. IGARASHI AND N. OBATAThen A a
ts in the Hilbert spa
e ℓ2(V ) in a natural manner as
Aδx =

∑

y∼x

δy, x ∈ V,where {δx ; x ∈ V } is the 
anoni
al orthonormal basis of ℓ2(V ). We are interested in aBorel probability measure µ on R = (−∞, +∞) su
h that(1.1) 〈Am〉 ≡ 〈δo, A
mδo〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . ,where o ∈ V is a �xed origin of the graph. Note that 〈δo, A
mδo〉 is nothing but the numberof m-step walks from o to itself. We are also interested in the 
ase where (1.1) holds inan �asymptoti
� sense. This question arises from analysis of a large graph or of a growingfamily of graphs Gν = (V (ν), E(ν)). The problem is to �nd a Borel probability measure µon R su
h that(1.2) lim

ν→∞

〈(
Aν

Zν

)m〉

=

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . ,where Zν > 0 is a normalizing 
onstant.The theory of intera
ting Fo
k spa
e (see e.g., A

ardi�Bo»ejko [2℄ and referen
es 
itedtherein) and the quantum probabilisti
 formulation of asymptoti
 spe
tral analysis on alarge graph due to Hora [13, 14℄ motivated us to propose a new approa
h based on thequantum de
omposition and quantum 
entral limit theorem. The idea was �rst appliedto dis
rete groups by Hashimoto [9℄ and to Hamming graphs by Hashimoto�Obata�Tabei [11℄. During the re
ent years this new method has been systematized (see e.g.,Hashimoto�Hora�Obata [10℄, Hora�Obata [17℄) and applied to Johnson graphs, Cayleygraphs of Coxeter groups, and another regular graphs, see Hora [15, 16℄ and Hora�Obata[18℄, where deformed va
uum states are also studied. More re
ently various 
on
epts ofindependen
e in quantum probability theory are found to be related to 
ertain stru
tureof graphs, as 
omb graphs (A

ardi�Ben Ghorbal�Obata [1℄) and star graphs (Obata [22℄)illustrate our viewpoint.The main purpose of this paper is to provide two new examples. The odd graphs Okform a growing family of distan
e-regular graphs and the probability distribution µ inquestion (1.2) is 
omputed expli
itly, whi
h may be 
alled the two-sided Rayleigh dis-tribution (Theorems 5.3 and 6.1). This limit measure has not been dis
ussed so far inquantum probability theory, though the odd graphs have attra
ted attention for some
ombinatorial interests in algebrai
 graph theory (Biggs [3, 4℄) and for their spe
tral prop-erties (Huang�Liu [20℄). The se
ond example is a spidernet whi
h is, stri
tly speaking, notregular but is highly symmetri
. The probability distribution µ in question (1.1) as wellas in (1.2) is shown to be a free Meixner law (Theorems 7.3 and 8.2). The free Meixnerlaws form a natural family of one-parameter deformations of the Kesten measures andare related with harmoni
 analysis on free groups (Cohen�Trenholme [8℄), in�nite divis-ible laws with respe
t to the free 
onvolution (Saitoh�Yoshida [24℄), and the free Lévypro
esses (Bo»ejko�Bry
 [5℄).The method of quantum de
omposition only requires simple stru
tural data of a graphand allows us to avoid a heavy 
ombinatorial argument often ne
essary to obtain full
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ription of spe
trum of the adja
en
y matrix. We hope that our approa
h is justi�edwith expli
it eviden
e illustrated by the two examples in this paper together with severalones dis
ussed in the previous papers mentioned above. A self-
ontained introdu
tion tothe method of quantum de
omposition will be available in the forth
oming monographby Hora�Obata [19℄.A
knowledgements. The authors are grateful to Professors M. Bo»ejko, A. Hora andH. Yoshida for helpful 
omments and referen
es.2. Quantum de
omposition of the adja
en
y matrix. Let G = (V, E) be a graphand A the adja
en
y matrix. We always �x an origin o ∈ V . Then the strati�
ation(distan
e partition) of the graph is introdu
ed:(2.1) V =

∞⋃

n=0

Vn, Vn = {x ∈ V ; ∂(o, x) = n},where ∂ stands for the natural distan
e fun
tion. For ǫ ∈ {+,−, ◦} we de�ne Aǫ by
(Aǫ)xy =

{

1, if x ∼ y and ∂(o, x) − ∂(o, y) = ǫ,

0, otherwise,where ǫ is assigned the numbers +1,−1, 0 a

ording as ǫ = +,−, ◦. Then the adja
en
ymatrix A is de
omposed into three parts:(2.2) A = A+ + A− + A◦.We 
all (2.2) the quantum de
omposition of A and Aǫ the quantum 
omponents. It isshown that A+ and A− are mutually adjoint and A◦ is selfadjoint (equipped with naturaldomains in ℓ2(V )).For ea
h n = 0, 1, . . . we de�ne a unit ve
tor in ℓ2(V ) by
Φn = |Vn|−1/2

∑

x∈Vn

δx,whi
h is 
alled the n-th number ve
tor. In parti
ular, Φ0 = δo is 
alled the va
uumve
tor. Let Γ(G) denote the 
losed subspa
e spanned by {Φ0, Φ1, . . . }. Note that Γ(G)is not ne
essarily invariant under the quantum 
omponents Aǫ. In this paper we shall
on
entrate on the 
ase where Γ(G) is invariant under the quantum 
omponents Aǫ,
ǫ ∈ {+,−, ◦}. The 
ase where Γ(G) is �asymptoti
ally� invariant is also interesting, seee.g., Hashimoto�Hora�Obata [10℄, Hora�Obata [17, 18℄. Here we re
all the followingProposition 2.1. Notations and assumptions being as above, assume that Γ(G) is in-variant under the quantum 
omponents Aǫ, ǫ ∈ {+,−, ◦}. Then there exists a pair ofsequen
es ({ωn}, {αn}) su
h that

A+Φn =
√

ωn+1 Φn+1, n = 0, 1, 2, . . . ,

A−Φ0 = 0, A−Φn =
√

ωn Φn−1, n = 1, 2, . . . ,

A◦Φn = αn+1Φn, n = 0, 1, 2, . . . .In parti
ular, (Γ(G), A+, A−) is an intera
ting Fo
k spa
e asso
iated with a Ja
obi pa-rameter {ωn}.



248 D. IGARASHI AND N. OBATARemark 2.2. If G is a �nite graph, the strati�
ation (2.1) terminates at a �nite n, theHilbert spa
e Γ(G) is of �nite dimension, and both {ωn} and {αn} are �nite sequen
eswith ωn > 0. If G is an in�nite graph, then Vn 6= ∅ for all n, the Hilbert spa
e Γ(G) is ofin�nite dimension, and both {ωn} and {αn} are in�nite sequen
es with ωn > 0.The question (1.1) is equivalent to �nding a Borel probability measure µ on R su
hthat
∫ +∞

−∞

xmµ(dx) = 〈Φ0, (A
+ + A− + A◦)mΦ0〉, m = 1, 2, . . . .The intera
ting Fo
k spa
e stru
ture allows us to use non-
ommutativity of the quantum
omponents. Although not expli
itly written in the literature, a homogeneous tree is theprototype of our 
onsideration, see Remarks 7.4 and 8.3.3. Quantum 
entral limit theorem for distan
e-regular graphs. A graph G =

(V, E) is 
alled distan
e-regular if given i, j, k = 0, 1, 2, . . . the interse
tion number
pk

ij = |{z ∈ V ; ∂(x, z) = i, ∂(y, z) = j}|is determined independently of the 
hoi
e of x, y ∈ V satisfying ∂(x, y) = k.Theorem 3.1. Let G = (V, E) be a distan
e-regular graph with interse
tion numbers
{pk

ij}. Then Γ(G) is invariant under the a
tion of the quantum 
omponents Aǫ, ǫ ∈
{+,−, ◦}, of the adja
en
y matrix A and

A+Φn =
√

pn+1
1,n pn

1,n+1 Φn+1, n = 0, 1, 2, . . . ,

A−Φ0 = 0, A−Φn =
√

pn
1,n−1p

n−1
1,n Φn−1, n = 1, 2, . . . ,

A◦Φn = pn−1
1,n−1Φn, n = 0, 1, 2, . . . .In parti
ular, (Γ(G), A+, A−) is an intera
ting Fo
k spa
e asso
iated with the Ja
obi se-quen
e {pn

1,n−1p
n−1
1,n ; n = 1, 2, . . . }.The proof is straightforward from de�nition. In general,

〈A〉 = 〈δo, Aδo〉 = 0, 〈A2〉 = 〈δo, A
2δo〉 = κ(o),where κ(o) is the degree of o, i.e., the number of verti
es adja
ent to o. For a distan
e-regular graph we have κ(o) = p0

11 so that A/
√

p0
11 is a proper normalization of theadja
en
y matrix A.Theorem 3.2. Let {G(ν) = (V (ν), E(ν))} be a growing family of distan
e-regular graphs.Let Aν and {pk

ij(ν)} be the adjan
en
y matrix and the interse
tion numbers of Gν , re-spe
tively. Assume that the limits(3.1) ωn = lim
ν

pn
1,n−1(ν)pn−1

1,n (ν)

p0
11(ν)

, αn = lim
ν

pn−1
1,n−1(ν)
√

p0
11(ν)exist for all n = 1, 2, . . . . Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the intera
ting Fo
k spa
easso
iated with {ωn} and de�ne a diagonal operator B◦ by B◦Ψn = αn+1Ψn. Then for
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omponents Aǫ
ν , ǫ ∈ {+,−, ◦}, of the adja
en
y matrix Aν ,(3.2) lim

ν

Aǫ
ν

√

p0
11(ν)

= Bǫ, ǫ ∈ {+,−, ◦},in the sto
hasti
 sense.The sto
hasti
 
onvergen
e (3.2) means that for any 
hoi
e of a �nite number ofsymbols ǫ1, . . . , ǫm, ǫi ∈ {+,−, ◦}, we have
lim

ν

〈

Φ0,
Aǫm

ν
√

p0
11(ν)

. . .
Aǫ1

ν
√

p0
11(ν)

Φ0

〉

= 〈Ψ0, B
ǫm . . . Bǫ1Ψ0〉.Theorem 3.2 does not appear expli
itly in the literature, however, the proof is essentiallya 
ombination of the arguments in Hora�Obata [17, 18℄.On
e we grasp an intera
ting Fo
k spa
e stru
ture, the 
omputation of µ in the mainquestion falls into a 
lassi
al 
al
ulus. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the intera
tingFo
k spa
e asso
iated with a Ja
obi sequen
e {ωn} and B◦ a diagonal operator de�nedby B◦Ψn = αn+1Ψn, where {αn} is a real sequen
e. It is easily 
he
ked with the help ofthe Hamburger theorem (see e.g., Chihara [7, Chapter II℄, Shohat�Tamarkin [25, Theo-rem 1.2℄) that there exists a Borel probability measure µ on R su
h that(3.3) 〈Ψ0, (B

+ + B− + B◦)mΨ0〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .In general, µ is not uniquely determined due to the famous determinate moment problem.Proposition 3.3. If ωn = O((n logn)2) and αn = O(n log n), there exists a unique Borelprobability measure µ satisfying (3.3).Proof. By the A

ardi�Bo»ejko formula [2℄ we know that
Mm ≡ 〈Ψ0, (B

+ + B− + B◦)mΨ0〉 =
∑

ϑ∈PNCPS(m)

∏

v∈ϑ
|v|=1

α(dϑ(v))
∏

v∈ϑ
|v|=2

ω(dϑ(v)),

where PNCPS(m) stands for the set of non-
rossing pair partitions with singletons of
{1, 2, . . . , m} and dϑ(v) ≥ 1 the depth of a blo
k v in the partition ϑ. Choose C > 0 su
hthat

ωn ≤ C2(n log n + 1)2, αn ≤ C(n log n + 1), n = 1, 2, . . . .Combining the simple estimate |PNCPS(m)| ≤ 3m, we obtain
Mm ≤ (3C)m

(
m + 1

2
log

m + 1

2
+ 1

)m

.Then the 
ondition of Carleman's moment test (see e.g., Shohat�Tamarkin [25, Theo-rem 1.10℄) is satis�ed:
∞∑

m=1

M
− 1

2m

2m = +∞,so that µ is uniquely determined by its moment sequen
e {Mm}.



250 D. IGARASHI AND N. OBATA4. The odd graph. Let k ≥ 2 be a �xed integer and put Ω = {1, 2, . . . , 2k − 1}. Let Vbe the set of subsets x of Ω having 
ardinality k − 1, i.e.,
V = {x ⊂ Ω ; |x| = k − 1},and put

E = {{x, y} ; x, y ∈ V, x ∩ y = ∅}.The graph (V, E) is 
alled the odd graph of degree k and is denoted by Ok. Obviously,
Ok is a regular graph of degree k.The odd graphs have been studied in algebrai
 graph theory, as a natural series
ontaining the Petersen graph as O3, and some of their properties are found in Biggs[3, 4℄. For being self-
ontained we shall derive ne
essary properties from the followinguseful des
ription of the distan
e fun
tion. The proof is deferred to Se
tion A.Proposition 4.1. Let Ok be an odd graph of degree k ≥ 2. For n = 0, 1, 2, . . . , k − 1 wede�ne In by
(4.1) In =







k − 1 − n

2
, if n is even,

n − 1

2
, if n is odd.For a pair of verti
es x, y ∈ V we have

|x ∩ y| = In ⇔ ∂(x, y) = n.Corollary 4.2. diam (Ok) = k − 1.Proof. As is easily seen from the de�nition (4.1), I is a bije
tion from {0, 1, . . . , k − 1}onto itself. Then, the maximal distan
e between two verti
es is k − 1.Corollary 4.3. The odd graph Ok is distan
e-transitive, therefore distan
e-regular.Proof. Any bije
tion π : Ω → Ω indu
es a bije
tion π̃ : V → V in a natural manner. Then
π̃ be
omes an automorphism of the graph Ok, sin
e |x∩y| is kept invariant under π̃. Nowlet x, y, x′, y′ ∈ V su
h that ∂(x, y) = ∂(x′, y′) = n. By Proposition 4.1 we may set

x = {α1, . . . , αI , β1, . . . , βJ}, y = {α1, . . . , αI , γ1, . . . , γJ},where I = In, I + J = k − 1, {β1, . . . , βJ} ∩ {γ1, . . . , γJ} = ∅. Similarly,
x′ = {α′

1, . . . , α
′
I , β

′
1, . . . , β

′
J}, y′ = {α′

1, . . . , α
′
I , γ

′
1, . . . , γ

′
J}.Take a bije
tion π : Ω → Ω satisfying

π(αi) = α′
i, π(βi) = β′

i, π(γi) = γ′
i.Then the automorphism π̃ satis�es π̃(x) = x′ and π̃(y) = y′, whi
h means that Ok isdistan
e-transitive.5. Quantum 
entral limit theorem for odd graphs. Having observed the oddgraphs {Ok} form a growing family of distan
e-regular graphs, we shall in this se
tioninvestigate an asymptoti
 spe
tral distribution of the adja
en
y matrix Ak as k → ∞ by
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 te
hniques (Theorem 3.2). Our �rst task is to 
omputethe interse
tion numbers of Ok whi
h are required in Theorem 3.2.Proposition 5.1. Let {ph
ij} be the interse
tion numbers of the odd graph Ok, k ≥ 2. For

1 ≤ n ≤ k − 1,
pn
1,n−1 =







n

2
, if n is even,

n + 1

2
, if n is odd.For 0 ≤ n ≤ k − 2,

pn
1,n+1 =







k − n

2
, if n is even,

k − n + 1

2
, if n is odd.For 0 ≤ n ≤ k − 1,

pn
1,n =







0, if 1 ≤ n ≤ k − 2,

k + 1

2
, if n = k − 1 and k is odd,

k

2
, if n = k − 1 and k is even.Proof. Just a routine appli
ation of Proposition 4.1. We shall prove the �rst identity only.Let n be an even number su
h that 1 ≤ n ≤ k − 1. Without loss of generality we set

o = {1, 2, . . . , k − 1}, x = {1, 2, . . . , In, k, k + 1, . . . , 2k − In − 2}.Then |o∩x| = In so that ∂(o, x) = n. Let us �nd a general form of y su
h that ∂(x, y) = 1and ∂(o, y) = n − 1. In order that ∂(x, y) = 1 we have by de�nition(5.1) y ⊂ {In + 1, . . . , k − 1} ∪ {2k − In − 1, . . . , 2k − 1}.Sin
e |y| = k − 1 and |{In + 1, . . . , k − 1} ∪ {2k − In − 1, . . . , 2k − 1}| = k, the vertex yis obtained by eliminating one element from the right hand side of (5.1). There are two
ases: (i) If y is obtained by eliminating one element in {In + 1, . . . , k − 1}, we have
|o ∩ y| = k − In − 2 =

n

2
− 1 =

(n − 1) − 1

2
= In−1,where we used (4.1) with n being even. Hen
e ∂(o, y) = n − 1. (ii) If y is obtained byeliminating one element in {2k − In − 1, . . . , 2k − 1}, we have

|o ∩ y| = k − In − 1 =
n

2
6= In−1,whi
h means that ∂(o, y) 6= n − 1. Consequently, a vertex y satisfying ∂(x, y) = 1 and

∂(o, y) = n − 1 is obtained only in the 
ase (i) and the number of su
h y's is
(k − 1) − (In + 1) + 1 = k − In − 1 =

n

2
.This proves that pn

1,n−1 = n/2 for an even n.We are now in a position to state the quantum 
entral limit theorem for the oddgraphs {Ok}.



252 D. IGARASHI AND N. OBATATheorem 5.2. Let Ak be the adja
en
y matrix of the odd graph Ok and Aǫ
k its quantum
omponents, ǫ ∈ {+,−, ◦}. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the intera
ting Fo
k spa
easso
iated with a Ja
obi sequen
e de�ned by

{ωn}∞n=1 = {1, 1, 2, 2, 3, 3, 4, 4, . . . }.Then(5.2) lim
k→∞

A±
k√
k

= B±, lim
k→∞

A◦
k√
k

= 0,in the sto
hasti
 sense.Proof. Let {ph
ij(k)} denote the interse
tion numbers of Ok, k ≥ 2. In view of Theorem 3.2we only need to �nd the limits:

ωn = lim
k→∞

pn
1,n−1(k)pn−1

1,n (k)

p0
11(k)

, αn = lim
k→∞

pn−1
1,n−1(k)
√

p0
11(k)

,whi
h are 
omputed with the help of Proposition 5.1. In fa
t, if n is odd, we have
ωn = lim

k→∞

1

k
· n + 1

2

(

k − n − 1

2

)

=
n + 1

2
.If n is even,

ωn = lim
k→∞

1

k
· n

2

(

k − n

2

)

=
n

2
.Thus, {ωn} = {1, 1, 2, 2, 3, 3, . . . } as desired. Similarly, we obtain {αn ≡ 0}.We now give an intermediate answer to our main question for the odd graphs. (The
omplete answer will be given in Theorem 6.1.)Theorem 5.3. Let Ak be the adja
en
y matrix of the odd graph Ok, k ≥ 2. Then thereexists a unique Borel probability measure µ on R su
h that(5.3) lim

k→∞

〈(
Ak√

k

)m〉

=

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .The Ja
obi parameter of µ is given by
{ωn}∞n=1 = {1, 1, 2, 2, 3, 3, 4, 4, . . . }, {αn ≡ 0}.In parti
ular, µ is symmetri
.Proof. We maintain the notation in Theorem 5.2. Taking Ak = A+

k + A−
k + A◦

k intoa

ount, we see from Theorem 5.2 that
lim

k→∞

〈(
Ak√

k

)m〉

= 〈Ψ0, (B
+ + B−)mΨ0〉, m = 1, 2, . . . .On the other hand, sin
e {ωn} and {αn} satisfy the 
ondition in Proposition 3.3, thereexists a unique Borel probability measure µ on R su
h that

〈Ψ0, (B
+ + B−)mΨ0〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .Thus, µ in (5.3) is uniquely determined. That µ is symmetri
 follows from {αn ≡ 0} andthe uniqueness.
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e Ok = (V, E) is a �nite distan
e-regular graph, the va
uum state
oin
ides with the tra
e. Thus,
〈(

Ak√
k

)m〉

=
1

|V | Tr

[(
Ak√

k

)m ]

=
(k − 1)!k!

(2k − 1)!km/2
Tr (Am

k ).

6. Cal
ulating the limit measure µ. We shall obtain an expli
it des
ription of theBorel probability measure µ in Theorem 5.3, where the Ja
obi parameter ({ωn}, {αn})is already obtained. Sin
e µ is uniquely determined by its moment sequen
e, by generaltheory (see e.g., Shohat�Tamarkin [25, Chapter II℄) the Stieltjes transform of µ admits a(
onvergent) 
ontinued fra
tion expansion:(6.1) G(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z −
1

z −
1

z −
2

z −
2

z −
3

z −
3

z −
4

z −
4

z − · · · ,where z ∈ {Im z 6= 0}.Let us 
ompute the 
ontinued fra
tion (6.1). For n = 1, 2, . . . we de�ne a linearfra
tional transformation:
σn(w) =

n

z − w
.Then the 2n-th approximant is obtained by

(6.2) G2n(z) =
1

z −

2n terms
︷ ︸︸ ︷

1

z −
1

z −
2

z −
2

z − · · · −
n

z −
n

z
= σ1σ

2
1 . . . σ2

n(0).On the other hand, using(6.3) σ2
n(w) =

n

z − σn(w)
=

n

z
+

n2/z

z2 − n − zw
,we obtain

σ2
1 . . . σ2

n(0) =
1

z

{

1 +
12

z2 − 3 −
22

z2 − 5 −
32

z2 − 7 − · · ·−
(n − 1)2

z2 − (2n − 1) −
n2

z2 − n

}

.Then (6.2) be
omes
G2n(z) =

z

z2 − 1 −
12

z2 − 3 −
22

z2 − 5 −
32

z2 − 7 − · · ·−
(n − 1)2

z2 − (2n − 1) −
n2

z2 − n
.Sin
e the 
ontinued fra
tion in (6.1) 
onverges, we have

G(z) = lim
n→∞

G2n(z)(6.4)
=

z

z2 − 1 −
12

z2 − 3 −
22

z2 − 5 −
32

z2 − 7 − · · ·−
(n − 1)2

z2 − (2n − 1) − · · · ,for z ∈ {Im z 6= 0}.Here we re
all the Stieltjes transform of the exponential distribution:(6.5) ∫ +∞

0

e−x

z − x
dx =

1

z − 1 −
12

z − 3 −
22

z − 5 −
32

z − 7 − · · · , z 6∈ [0, +∞).This is veri�ed as a parti
ular 
ase of the 
ontinued fra
tion expansion for the quotient ofhypergeometri
 fun
tions (see Wall [29, Chap. XVIII (92.7)℄), or indire
tly through the
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obi parameter of the exponential distribution. Comparing (6.4) and (6.5), we obtain
G(z) =

∫ +∞

0

ze−x

z2 − x
dx.Then, repla
ing x with x2 and applying partial fra
tion, we have

G(z) =

∫ +∞

0

2xze−x2

z2 − x2
dx =

∫ +∞

0

xe−x2

z − x
dx +

∫ 0

−∞

−xe−x2

z − x
dx =

∫ +∞

−∞

|x|e−x2

z − x
dx.Consequently, the probability measure µ in (6.1) is given by(6.6) µ(dx) = |x|e−x2

dx,whi
h may be 
alled the two-sided Rayleigh distribution following Papoulis [23, p. 78℄,see Figure 2 for the shape. Using the above expli
it form, we may rephrase Theorem 5.3.Theorem 6.1. For the adja
en
y matrix Ak of the odd graph Ok we have(6.7) lim
k→∞

〈(
Ak√

k

)m〉

=

∫ +∞

−∞

xm|x|e−x2

dx, m = 1, 2, . . . .Cal
ulation of the right hand side of (6.7) is elementary.Proposition 6.2. For the two-sided Rayleigh distribution (6.6) the moments of odd or-ders vanish and those of even orders are given by
∫ +∞

−∞

x2m|x|e−x2

dx = m!, m = 0, 1, 2, . . . .

Remark 6.3. For the two-sided Rayleigh distribution (6.6) we have obtained expli
-itly the Ja
obi parameter ({ωn}, {αn}) and the moment sequen
e {Mm}. Applying theA

ardi�Bo»ejko formula [2℄ (see also the proof of Proposition 3.3), we 
ome to the 
om-binatorial identity:(6.8) ∑

ϑ∈PNCP(2m)

∏

v∈ϑ

ω(dϑ(v)) = m!, m = 1, 2, . . . ,where {ωn} = {1, 1, 2, 2, 3, 3, . . . }. A dire
t proof of (6.8) is not known to the authors. Ifthe left hand side of (6.8) were 
omputed in a smart manner, we 
ould avoid 
ontinuedfra
tions to obtain the moment sequen
e. The expli
it form of µ in Theorem 5.3 thenfollows from the generating fun
tion.Remark 6.4. The orthogonal polynomials asso
iated with the two-sided Rayleigh dis-tribution are 
alled the generalized Hermite polynomials with parameter 1/2 by Chihara[7, p. 157℄, see also Szegö [26, p. 380℄.7. Spidernet. We start with some notation. Given a graph G = (V, E) with an origin
o ∈ V , 
onsider the strati�
ation as in (2.1). For x ∈ V we set

ωǫ(x) = |{y ∈ V ; y ∼ x, ∂(o, y) − ∂(o, x) = ǫ}|, ǫ ∈ {+,−, ◦}.



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 255Let κ(x) denote the degree of x ∈ V as usual. Then we have(7.1) κ(x) = ω+(x) + ω−(x) + ω◦(x), x ∈ V.Let a, b, c be integers su
h that a ≥ 1, b ≥ 2 and 1 ≤ c ≤ b− 1. A spidernet is a graphwhi
h satis�es the 
onditions:
(7.2) 





ω+(o) = a,

ω−(o) = 0,

ω◦(o) = 0,







ω+(x) = c,

ω−(x) = 1,

ω◦(x) = b − 1 − c,

for x 6= o.

Su
h a spidernet is denoted by S(a, b, c) though not uniquely determined by (a, b, c) ingeneral. Examples are shown in Figure 1. We note that
κ(x) =

{

a, x = o,

b, x 6= o,whi
h follows from (7.1) and (7.2). Hen
e a spidernet is not ne
essarily a regular graphbut may possess high symmetry. Note also that a spidernet S(a, b, c) with c = b − 1 is atree. The spidernets have been studied for their interesting spe
tral geometri
 properties,see e.g., Urakawa [27℄, where a spidernet is 
alled a semi-regular graph.

Fig. 1. Spidernets S(4, 6, 3) and S(5, 4, 3)

Proposition 7.1. Let A be the adja
en
y matrix of a spidernet S = S(a, b, c). Then Γ(S)is invariant under the a
tion of the quantum 
omponents Aǫ, ǫ ∈ {+,−, ◦}. Moreover,we have
A+Φ0 =

√
aΦ1, A+Φn =

√
cΦn+1, n = 1, 2, . . . ,(7.3)

A−Φ0 = 0, A−Φ1 =
√

a Φ0, A−Φn =
√

c Φn−1, n = 2, 3, . . . ,(7.4)
A◦Φ0 = 0, A◦Φn = (b − 1 − c)Φn, n = 1, 2, . . . .(7.5)Proof. It is easily derived from (7.2) that

|V0| = 1, |Vn| = acn−1, n = 1, 2, . . . .



256 D. IGARASHI AND N. OBATAFor n = 0, 1, 2, . . . we have
√

|Vn|A+Φn =
∑

x∈Vn

A+δx =
∑

y∈Vn+1

δy =
√

|Vn+1|Φn+1.This proves (7.3). The rest is similarly proved.Proposition 7.1 says that (Γ(S), {Φn}, A+, A−) is an intera
ting Fo
k spa
e with Ja-
obi parameter(7.6) ω1 = a, ω2 = ω3 = · · · = cand A◦ is a diagonal operator de�ned by A◦Φn = αn+1Φn with(7.7) α1 = 0, α2 = α3 = · · · = b − 1 − c.With the help of Proposition 3.3 we see that there exists a unique Borel probabilitymeasure µ on R su
h that(7.8) 〈Am〉 = 〈Φ0, (A
+ + A− + A◦)mΦ0〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .To be slightly more general, with three real numbers p > 0, q ≥ 0, a ∈ R, we mayasso
iate a Borel probability measure µp,q,a uniquely spe
i�ed by(7.9) ∫ +∞

−∞

µp,q,a(dx)

z − x
=

1

z −
p

z − a −
q

z − a −
q

z − a −
q

z − a − · · · .In other words, µp,q,a is 
hara
terized by a Ja
obi parameter ({p, q, q, . . . }, {0, a, a, . . . }).Note that µp,q,a has mean zero and varian
e p. We 
all the probability measure µp,q,a thefree Meixner law with parameter (p, q, a) after Bo»ejko�Bry
 [5℄. The density fun
tion isknown, see Se
tion B. In parti
ular, the density fun
tion of µ4,3,2 shown in Figure 2 isobtained from the spidernet S(4, 6, 3).Remark 7.2. The free Meixner laws of Bo»ejko�Bry
 [5℄ are parametrized by a ∈ R and
b ≥ −1. Their free Meixner law with parameter (a, b) is normalized to have varian
eone and 
oin
ides with µ1,b+1,a in our de�nition, see also Bo»ejko�Wyso
za«ski [6℄ for aparti
ular sub
lass of free Meixner laws.With this notation we 
laim the followingTheorem 7.3. Let A = Aa,b,c be the adja
en
y matrix of a spidernet S(a, b, c). Then

〈Am〉 =

∫ +∞

−∞

xmµa,c,b−1−c(dx), m = 1, 2, . . . ,where µa,c,b−1−c is the free Meixner law with parameter (a, c, b − 1 − c).Proof. The Ja
obi parameter of µ in (7.8) is given by (7.6) and (7.7). Hen
e µ is the freeMeixner law with parameter (a, c, b− 1 − c).Remark 7.4. For κ ≥ 2 the spidernet S(κ, κ, κ − 1) is a homogeneous tree of degree κ.Let Aκ be its adja
en
y matrix. As a dire
t 
onsequen
e of Theorem 7.3 we have
〈Am

κ 〉 =

∫ +∞

−∞

xmµκ,κ−1,0(dx), m = 1, 2, . . . .



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 257The probability measure µκ,κ−1,0 appearing in the right hand side was �rst obtained byKesten [21℄ with a di�erent method. A free Meixner law µp,q,0 
oin
ides with the Kestenmeasure with parameter (p, q), where p > 0 and q ≥ 0.8. Quantum 
entral limit theorem for spidernets. We next 
onsider a growingfamily of spidernets S(a, b, c) as a → ∞. Sin
e 〈A〉 = 0 and 〈A2〉 = a, the propernormalization of the adja
en
y matrix is A/
√

a. In view of Proposition 7.1 we obtain
A+

√
a

Φ0 = Φ1,
A+

√
a

Φn =

√
c

a
Φn+1, n = 1, 2, . . . ,

A−

√
a

Φ0 = 0,
A−

√
a

Φ1 = Φ0,
A−

√
a

Φn =

√
c

a
Φn−1, n = 2, 3, . . . ,

A◦

√
a

Φ0 = 0,
A◦

√
a

Φn =
b − 1 − c√

a
Φn, n = 1, 2, . . . .Then, with no di�
ulty we 
ome to the followingTheorem 8.1. Let A = Aa,b,c be the adja
en
y matrix of a spidernet S(a, b, c). Let q ≥ 0and r ≥ 0 be real numbers. Let (Γ, {Ψn}, B+, B−) be an intera
ting Fo
k spa
e with Ja
obisequen
e

ω1 = 1, ω2 = ω3 = · · · = q,and B◦ a diagonal operator de�ned by B◦Ψn = αn+1Ψn with
α1 = 0, α2 = α3 = · · · = r.Then in the limit as a → ∞ with(8.1) c

a
→ q,

b − c√
a

→ r,we have
lim

Aǫ
a,b,c√
a

= Bǫ, ǫ ∈ {+,−, ◦},in the sto
hasti
 sense.The next statement is an answer to our main question for the spidernets.Theorem 8.2. Let A = Aa,b,c be the adja
en
y matrix of a spidernet S(a, b, c). Let q ≥ 0and r ≥ 0 be real numbers. Then in the limit as a → ∞ with (8.1) we have
lim

〈(
Aa,b,c√

a

)m〉

=

∫ +∞

−∞

xmµ1,q,r(dx), m = 1, 2, . . . ,where µ1,q,r is the free Meixner law with parameter (1, q, r).Remark 8.3. This is a 
ontinuation of Remark 7.4. Consider a growing family of ho-mogeneous trees {S(κ, κ, κ − 1)} as κ → ∞. It then follows dire
tly from Theorem 8.2that(8.2) lim
κ→∞

〈(
Aκ√

κ

)m〉

=

∫ +∞

−∞

xmµ1,1,0(dx), m = 1, 2, . . . .



258 D. IGARASHI AND N. OBATAAs is well known, the probability measure µ1,1,0 is the Wigner semi
ir
le law:
µ1,1,0(dx) = ρ(x)dx, ρ(x) =







1

2π

√

4 − x2, |x| ≤ 2,

0, otherwise.In fa
t, (8.2) is viewed as a prototype of the free 
entral limit theorem of Voi
ules
u(see [28℄ and referen
es 
ited therein) be
ause the adja
en
y matrix is de
omposed intoa sum of free independent random variables. Use of various 
on
epts of independen
e inquantum probability theory is a new promising dire
tion in asymptoti
 spe
tral analysis,see A

ardi�Ben Ghorbal�Obata [1℄, Obata [22℄.9. Approximation by trees. The argument in Se
tion 7 suggests a dire
tion of gen-eralizing the free Meixner laws from the viewpoint of spe
tral analysis on graphs.Theorem 9.1. Let µ be a Borel probability measure on R and ({ωn}, {αn}) its Ja
obiparameter. Assume that ωn is an integer for all n and αn ≡ 0. Then there exists a tree
G = (V, E) with an origin o ∈ V su
h that(9.1) 〈Am〉 =

∫ +∞

−∞

xmµ(dx), m = 1, 2, . . . .Proof. We shall 
onstru
t a tree having the desired property. Let V0, V1, V2, . . . be disjointsets su
h that(9.2) |V0| = 1, |Vn| = ωn . . . ω2ω1, n = 1, 2, . . . .When ωn > 0 for all n, we obtain an in�nite sequen
e of non-empty sets. When ωn = 0o

urs for some n (then, by de�nition ωn+1 = 0), we just obtain a �nite sequen
e ofnon-empty sets. In any 
ase we set(9.3) V =

∞⋃

n=0

Vn,whi
h is the set of verti
es. We introdu
e a graph stru
ture in V as follows. First thevertex o ∈ V0 is 
ombined with ea
h vertex in V1 by an edge. Suppose n ≥ 1 and edgesin V0 ∪ V1 ∪ · · · ∪ Vn are de�ned. If Vn+1 = ∅, no more edges are de�ned. We assumethat Vn+1 6= ∅. Sin
e |Vn+1| = ωn+1|Vn|, the set Vn+1 is partitioned into a |Vn| disjointsubsets 
onsisting of ωn+1 verti
es:
Vn+1 =

|Vn|
⋃

i=1

Si, |Si| = ωn+1.We 
onne
t ea
h vertex in Si with the i-th vertex in Vn by an edge. The graph G obtainedin this way is a tree of whi
h the strati�
ation is given by (9.3). The a
tion of A on Γ(G)is easily obtained: First we note that(9.4) AΦ0 =
∑

x∈V1

δx =
√

ω1Φ1.
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√

|Vn|AΦn =
∑

x∈Vn

Aδx =
∑

y∈Vn+1

δy +
∑

z∈Vn−1

ωnδz

=
√

|Vn+1|Φn+1 + ωn

√

|Vn−1|Φn−1.Hen
e in view of (9.2) we 
ome to(9.5) AΦn =
√

ωn+1 Φn+1 +
√

ωn Φn−1, n = 1, 2, . . . .We then see from (9.4) and (9.5) that
A+Φn =

√

ωn+1 Φn+1, n = 0, 1, 2, . . . ,

A−Φ0 = 0, A−Φn =
√

ωn Φn−1, n = 1, 2, . . . .Namely, (Γ(G), A+, A−) is an intera
ting Fo
k spa
e with Ja
obi parameter {ωn} andhen
e (9.1) holds.Theorem 9.1 suggests that from the viewpoint of spe
tral analysis a large graph withfew edges lying in a stratum is approximated by trees. For example, a large odd graph
Ok is approximated by a tree with {ωn} = {k, k, 2k, 2k, 3k, 3k, . . . } being the parameterin Theorem 9.1. We expe
t that a spidernet plays a similar role for a more general µ withnon-vanishing {αn}.A. Proof of Proposition 4.1. As is easily veri�ed from the de�nition (4.1), we have
{I0, I1, . . . , Ik−1} = {0, 1, . . . , k − 1}. In other words, regarded as a map I is a bije
tionfrom {0, 1, . . . , k − 1} onto itself. We set

En = {(x, y) ∈ V × V ; |x ∩ y| = In},
Fn = {(x, y) ∈ V × V ; ∂(x, y) = n}.It is su�
ient to prove that En = Fn for all n. For n = 0 we have I0 = k − 1 so that

E0 = {(x, y) ∈ V × V ; |x ∩ y| = k − 1}
= {(x, y) ∈ V × V ; x = y}
= {(x, y) ∈ V × V ; ∂(x, y) = 0} = F0.For n = 1 we have I1 = 0 so that

E1 = {(x, y) ∈ V × V ; |x ∩ y| = 0}
= {(x, y) ∈ V × V ; x ∼ y}
= {(x, y) ∈ V × V ; ∂(x, y) = 1} = F1.Thus the assertion is true for n = 0, 1. Assuming that the assertion is true up to n,

1 ≤ n ≤ k − 2, we only need to prove that En+1 = Fn+1.We shall �rst prove that En+1⊂Fn+1. Take (x, y)∈En+1, whi
h satis�es |x∩y|= In+1.For simpli
ity we put I = In+1. Note that I 6= I0, I1, i.e., 1 ≤ I ≤ k − 2. We set
x = {α1, . . . , αI , β1, . . . , βJ}, y = {α1, . . . , αI , γ1, . . . , γJ},

{β1, . . . , βJ} ∩ {γ1, . . . , γJ} = ∅,



260 D. IGARASHI AND N. OBATAwhere I +J = k−1, I ≥ 1 and J ≥ 1. In view of |Ω−(x∪y)| = (2k−1)−(I +2J) = I +1we set
Ω − (x ∪ y) = {ω1, . . . , ωI+1}.Suppose �rst that n is even. Then I = In+1 = n/2. Consider
z = {ω1, . . . , ωI , β1, . . . , βJ}.Sin
e z ∩ y = ∅ we have ∂(z, y) = 1. On the other hand, |x ∩ z| = J = k − 1 − n/2 = Inso that ∂(x, z) = n by assumption of indu
tion. Hen
e(A.1) ∂(x, y) ≤ ∂(x, z) + ∂(z, y) = n + 1.Suppose next that n is odd. Then I = In+1 = k − 1 − (n + 1)/2 and J = (n + 1)/2.Consider

w = {ω1, . . . , ωI , ωI+1, β1, . . . , βJ−1}.Obviously, w ∩ y = ∅ and hen
e ∂(w, y) = 1. On the other hand, sin
e |x ∩ w| = J − 1 =

(n − 1)/2 = In, we have ∂(x, z) = n by assumption of indu
tion and(A.2) ∂(x, y) ≤ ∂(x, w) + ∂(w, y) = n + 1.Combining (A.1) and (A.2), we 
ome to ∂(x, y) ≤ n + 1 independent of the parity of n.However, ∂(x, y) ≤ n does not happen. In fa
t, if it happens, by assumption of indu
-tion we have (x, y) ∈ F∂(x,y) = E∂(x,y) whi
h 
ontradi
ts (x, y) ∈ En+1. Consequently,
∂(x, y) = n + 1 and En+1 ⊂ Fn+1.We prove the 
onverse in
lusion. Let (x, y) ∈ Fn+1, i.e., ∂(x, y) = n + 1. Then thereexists z ∈ V su
h that ∂(x, z) = n and ∂(z, y) = 1. By assumption of indu
tion we mayset

x = {α1, . . . , αI′ , β1, . . . , βJ′}, z = {α1, . . . , αI′ , γ1, . . . , γJ′},
{β1, . . . , βJ′} ∩ {γ1, . . . , γJ′} = ∅,where I ′ = In, I ′ + J ′ = k − 1, I ′ ≥ 0 and J ′ ≥ 1. Set

Ω − z = {β1, . . . , βJ′ , ω1, . . . , ωI′+1}.Sin
e y is adja
ent to z, it is obtained from Ω− z by eliminating one element. Namely, yis one of the following types:
y1 = {β1, . . . , βJ′ , ω1, . . . , ωI′+1} − {βi},
y2 = {β1, . . . , βJ′ , ω1, . . . , ωI′+1} − {ωi}.As for y1, by simple 
al
ulation based on de�nition we have

|x ∩ y1| = J ′ − 1 = k − 2 − In =

{

In−1 if n is even,

In+1 if n is odd.Similarly,
|x ∩ y2| = J ′ = k − 1 − In =

{

In+1 if n is even,

In−1 if n is odd.



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 261In any 
ase |x ∩ y| = In±1. But by assumption of indu
tion we see that |x ∩ y| = In−1 isequivalent to ∂(x, y) = n − 1, whi
h 
ontradi
ts ∂(x, y) = n + 1. Hen
e |x ∩ y| = In+1,whi
h implies that Fn+1 ⊂ En+1.Proposition A.1. The distan
e on the odd graph Ok is given by(A.3) ∂(x, y) = min{2(k − 1 − |x ∩ y|), 2|x ∩ y| + 1}, x, y ∈ V.In other words,
(A.4) ∂(x, y) =







2|x ∩ y| + 1, if 0 ≤ |x ∩ y| ≤ k − 2

2
,

2(k − 1 − |x ∩ y|), if k − 1

2
≤ |x ∩ y| ≤ k − 1.Proof. We regard In de�ned in (4.1) as a bije
tive map from {0, 1, . . . , k − 1} onto itself.To �nd the inverse fun
tion, we 
onsider the equation i = In. By de�nition we obtain(A.5) n =

{

2(k − 1 − i), if n is even,
2i + 1, if n is odd,By an elementary observation we see that 2(k − 1 − i) ≤ k − 1 < k ≤ 2i + 1 or 2i + 1 ≤

k − 1 < k ≤ 2(k − 1 − i) happens. In order that 0 ≤ n ≤ k − 1 is ful�lled, we need to
hoose the smaller one in (A.5). Thus, the inverse map of I is given by(A.6) I−1(i) = min{2(k − 1 − i), 2i + 1}.Sin
e |x ∩ y| = I∂(x,y) by Proposition 4.1, applying the inverse map (A.6) we ob-tain (A.3).B. Density fun
tions of the free meixner laws. The density fun
tion of the freeMeixner law µp,q,a (p > 0, q ≥ 0, a ∈ R) was 
omputed in Cohen�Trenholme [8℄ andSaitoh�Yoshida [24℄. Re
all that their parametrization is di�erent from ours (and theirpapers 
ontain small misprints).The free Meixner law µp,q,a is uniquely spe
i�ed by its Stieltjes transform given bythe 
onvergent 
ontinued fra
tion:
G(z) =

1

z −
p

z − a −
q

z − a −
q

z − a −
q

z − a − · · · , Im z 6= 0.The right hand side is easily 
omputed:(B.1) G(z) =
(2q − p)z + pa − p

√

(z − a)2 − 4q

2(q − p)z2 + 2paz + 2p2
,where the analyti
 square root is a holomorphi
 fun
tion on C− [a− 2

√

q, a + 2
√

q ] andthe bran
h is 
hosen in su
h a way that √

(z − a)2 − 4q > 0 for z ∈ R with z > a+ 2
√

q.The absolutely 
ontinuous part of µp,q,a(dx), denoted by ρp,q,a(x), is obtained by theStieltjes inversion formula:(B.2) ρp,q,a(x) =
p

2π

√

4q − (x − a)2

(q − p)x2 + pax + p2
, |x − a| ≤ 2

√

q.We note that ρp,q,−a(x) = ρp,q,a(−x). For simpli
ity, we set
g(z) = (q − p)z2 + paz + p2,
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h appears in the denominator of (B.2). Note that the possible real zeroes of g(z) liesoutside the open interval (−2
√

q, +2
√

q ). We 
onsider the following �ve 
ases.(Case 1) q = p > 0 and a = 0. Then the density fun
tion be
omes
ρp,p,0(x) =

1

2πp

√

4p − x2, |x| ≤ 2
√

p,whi
h is the Wigner semi
ir
le law with varian
e p. There is no atom and
µp,p,0(dx) = ρp,p,0(x)dx.(Case 2) q = p > 0 and a 6= 0. The density fun
tion be
omes

ρp,p,a(x) =
1

2π

√

4p − (x − a)2

ax + p
, |x − a| ≤ 2

√

p.Moreover, µp,p,a may possess one atom at the zero of g(z), i.e., at x = λ0 = −p/a. Theweight is obtained from the residue of G(z). For example, if a > 0, noting the signatureof √

(z − a)2 − 4q for z = λ0 ≤ a − 2
√

p, we have
lim

z→λ0

(z − λ0)G(z) =
1

2a

(

a − p

a
+

∣
∣
∣
∣
a − p

a

∣
∣
∣
∣

)

,whi
h is 1 − p/a2 for a2 > p, and 0 for a2 ≤ p. After similar 
omputation for a < 0 weobtain
µp,p,a(dx) =







ρp,p,a(x)dx for a2 ≤ p,

ρp,p,a(x)dx +

(

1 − p

a2

)

δ−p/a for a2 > p.In fa
t, the above result 
overs (Case 1). We see that µp,p,a is an a�ne transformation ofthe free Poisson law with parameter p/a2 (see e.g., Hiai-Petz [12, Se
tion 3.3℄).We now 
ome to the 
ase where q 6= p, that is g(z) is a quadrati
 fun
tion. Set
D = a2 − 4(q − p)and 
onsider the following three 
ases a

ording to the signature of D.(Case 3) D < 0, that is, 0 ≤ a2 < 4(q − p). Then g(z) has no real zeroes so that(B.3) µp,q,a(dx) = ρp,q,a(x)dx.(Case 4) D = 0, that is, 0 < a2 = 4(q− p). Then g(z) has a real multiple zero outside

[a − 2
√

q, a + 2
√

q ], nevertheless µp,q,a has no atom and (B.3) holds.(Case 5) D > 0, that is, 4(q − p) < a2. Then g(z) has two real zeroes:
λ± =

p

2(q − p)
(−a ±

√
D)and µp,q,a is of the form:(B.4) µp,q,a(dx) = ρp,q,a(x)dx + w+δλ+

+ w−δλ−
.To des
ribe w± we de�ne(B.5) ν+ =

1√
D

(
qλ+

p
− p

λ+

)

, ν− =
1√
D

(
qλ−

p
− p

λ−

)

.



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 263(Case 5-1) 0 < 4(q − p) < a2. Then λ− < λ+ and both lie in the same half line
(−∞, a − 2

√
q ] or [a + 2

√
q, +∞). The weights are given as follows:

w+ =

{

0, a ≤ −2
√

q − p, 2
√

q − p < a ≤ (2q − p)/
√

q,

ν+, a ≥ (2q − p)/
√

q,

w− =

{

−ν−, a ≤ −(2q − p)/
√

q,

0, −(2q − p)/
√

q ≤ a < −2
√

q − p, 2
√

q − p < a.(Case 5-2) 0 ≤ q < 2q < p. Note that λ+ < a− 2
√

p and λ− > a + 2
√

p. The weights
w± are given as follows:

w+ =

{

0, a ≤ −(p − 2q)/
√

q,

ν+, a ≥ −(p − 2q)/
√

q,
w− =

{

−ν−, a ≤ (p − 2q)/
√

q,

0, a ≥ (p − 2q)/
√

q.(Case 5-3) 0 ≤ q < p < 2q. The situation is similar to (Case 5-2) and the weights aregiven as follows:
w+ =

{

0, a ≤ (2q − p)/
√

q,

ν+, a ≥ (2q − p)/
√

q,
w− =

{

−ν−, a ≤ −(2q − p)/
√

q,

0, a ≥ −(2q − p)/
√

q.In fa
t, (Case 5-2) and (Case 5-3) 
an be uni�ed:
w+ =

1

2
(|ν+| + ν+), w− =

1

2
(|ν−| − ν−).

Fig. 2. Two-sided Rayleigh distribution and free Meixner distribution µ4,3,aNote added in proof. Another Carleman's moment test [25, Se
t. 2.17℄ veri�es that Proposi-tion 3.3 remains valid without assuming any 
ondition on {αn}.
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