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Abstract. Two new examples are given for illustrating the method of quantum decomposition in
the asymptotic spectral analysis for a growing family of graphs. The odd graphs form a growing
family of distance-regular graphs and the two-sided Rayleigh distribution appears in the limit of
vacuum spectral distribution of the adjacency matrix. For a spidernet as well as for a growing
family of spidernets the vacuum distribution of the adjacency matrix is the free Meixner law.
These distributions are calculated through the Jacobi parameters obtained from structural data
of graphs.

1. Introduction. Let G = (V| E) be a graph, where V is a non-empty set and E a
subset of {{z,y}; x,y € V,  # y}. An element of V is called a vertex and an element
of E is called an edge. Two vertices x,y € V are called adjacent if {z,y} € E, and in
that case we write x ~ y. Throughout this paper a graph is always assumed to be locally
finite and connected. The adjacency matriz A = (Azy)qyecv is defined by

, ifax~y,
Agy = .
0, otherwise.

2000 Mathematics Subject Classification: Primary 461.53; Secondary 05C50, 60F05, 81S25.

Key words and phrases: adjacency matrix, spectral distribution, quantum decomposition,
Rayleigh distribution, free Meixner law, odd graph, spidernet, tree.

Research supported by Grant-in-Aid for Scientific Research from JSPS No. 15340039.

The paper is in final form and no version of it will be published elsewhere.

[245]



246 D. IGARASHI AND N. OBATA

Then A acts in the Hilbert space £2(V) in a natural manner as

Aby =06, xEV,
y~T
where {5, ; z € V} is the canonical orthonormal basis of ¢2(V). We are interested in a
Borel probability measure p on R = (—00, +00) such that
+o0

(1.1) (A™) = (05, A™60) = / 2" p(dx), m=12,...,

—00
where 0 € V is a fixed origin of the graph. Note that (d,, A™,) is nothing but the number
of m-step walks from o to itself. We are also interested in the case where (1.1) holds in
an “asymptotic” sense. This question arises from analysis of a large graph or of a growing
family of graphs G, = (V(l’), E®™)). The problem is to find a Borel probability measure p
on R such that

AN oo
(1.2) lim <<—”) > :/ ™ p(dx), m=1,2,...,
oo \ \ Z, .

where Z,, > 0 is a normalizing constant.

The theory of interacting Fock space (see e.g., Accardi-Bozejko [2] and references cited
therein) and the quantum probabilistic formulation of asymptotic spectral analysis on a
large graph due to Hora [13, 14] motivated us to propose a new approach based on the
quantum decomposition and quantum central limit theorem. The idea was first applied
to discrete groups by Hashimoto [9] and to Hamming graphs by Hashimoto Obata
Tabei [11]. During the recent years this new method has been systematized (see e.g.,
Hashimoto Hora Obata [10], Hora Obata [17]) and applied to Johnson graphs, Cayley
graphs of Coxeter groups, and another regular graphs, see Hora [15, 16] and Hora Obata
[18], where deformed vacuum states are also studied. More recently various concepts of
independence in quantum probability theory are found to be related to certain structure
of graphs, as comb graphs (Accardi-Ben Ghorbal-Obata [1]) and star graphs (Obata [22])
illustrate our viewpoint.

The main purpose of this paper is to provide two new examples. The odd graphs Oy,
form a growing family of distance-regular graphs and the probability distribution p in
question (1.2) is computed explicitly, which may be called the two-sided Rayleigh dis-
tribution (Theorems 5.3 and 6.1). This limit measure has not been discussed so far in
quantum probability theory, though the odd graphs have attracted attention for some
combinatorial interests in algebraic graph theory (Biggs [3, 4]) and for their spectral prop-
erties (Huang—Liu [20]). The second example is a spidernet which is, strictly speaking, not
regular but is highly symmetric. The probability distribution g in question (1.1) as well
as in (1.2) is shown to be a free Meizner law (Theorems 7.3 and 8.2). The free Meixner
laws form a natural family of one-parameter deformations of the Kesten measures and
are related with harmonic analysis on free groups (Cohen Trenholme [8]), infinite divis-
ible laws with respect to the free convolution (Saitoh Yoshida [24]), and the free Lévy
processes (Bozejko Bryc [5]).

The method of quantum decomposition only requires simple structural data of a graph
and allows us to avoid a heavy combinatorial argument often necessary to obtain full
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description of spectrum of the adjacency matrix. We hope that our approach is justified
with explicit evidence illustrated by the two examples in this paper together with several
ones discussed in the previous papers mentioned above. A self-contained introduction to
the method of quantum decomposition will be available in the forthcoming monograph
by Hora—Obata [19].

Acknowledgements. The authors are grateful to Professors M. Bozejko, A. Hora and
H. Yoshida for helpful comments and references.

2. Quantum decomposition of the adjacency matrix. Let G = (V| E) be a graph
and A the adjacency matrix. We always fix an origin o € V. Then the stratification
(distance partition) of the graph is introduced:

(2.1) V= U V., Vo ={x€V;0(o,z) =n},
n=0

where J stands for the natural distance function. For € € {+, —, o} we define A by
. 1, ifz~yand d(o,2) — 9(o,y) =,
(A)ey = {

0, otherwise,

where € is assigned the numbers +1,—1,0 according as e = 4+, —, 0. Then the adjacency
matrix A is decomposed into three parts:

(2.2) A=At 4 A" 1 A°.

We call (2.2) the quantum decomposition of A and A€ the quantum components. It is
shown that AT and A~ are mutually adjoint and A° is selfadjoint (equipped with natural
domains in ¢3(V)).
For each n = 0,1,... we define a unit vector in ¢2(V) by
®, = |Vn|_1/2 Z 6.’,87
zeV,

which is called the n-th number vector. In particular, &g = §, is called the vacuum
vector. Let T'(G) denote the closed subspace spanned by {®¢, ®1,...}. Note that I'(G)
is not necessarily invariant under the quantum components A€. In this paper we shall
concentrate on the case where I'(G) is invariant under the quantum components A€,
€ € {+,—,0}. The case where T'(G) is “asymptotically” invariant is also interesting, see
e.g., Hashimoto—Hora—Obata [10], Hora—Obata [17, 18]. Here we recall the following

PROPOSITION 2.1. Notations and assumptions being as above, assume that I'(G) is in-
variant under the quantum components A€, € € {+,—,0}. Then there exists a pair of
sequences ({wn}, {an}) such that

A+‘I)n = Vwpt1 Ppy1, n=0,1,2,...,
Ai@ozo, Ai@?’L:\/wn@n—l, n:1’2’_."
Aoq)n:anJrlq)n, n:0,1,27....

In particular, (T'(G), AT, A7) is an interacting Fock space associated with a Jacobi pa-
rameter {wy, }.
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REMARK 2.2. If G is a finite graph, the stratification (2.1) terminates at a finite n, the
Hilbert space I'(G) is of finite dimension, and both {w,} and {a,} are finite sequences
with w, > 0. If G is an infinite graph, then V,, # ) for all n, the Hilbert space I'(G) is of
infinite dimension, and both {w,} and {a,,} are infinite sequences with w, > 0.

The question (1.1) is equivalent to finding a Borel probability measure p on R such
that

+oo
/ 2™ p(dr) = (@, (AT + A~ + A°)™ D), m=1,2,....

The interacting Fock space structure allows us to use non-commutativity of the quantum
components. Although not explicitly written in the literature, a homogeneous tree is the
prototype of our consideration, see Remarks 7.4 and 8.3.

3. Quantum central limit theorem for distance-regular graphs. A graph G =
(V, E) is called distance-regular if given i, j, k = 0,1,2,... the intersection number

pfj =|{zeV;0(x,z2) =1, O(y,z) =3}
is determined independently of the choice of x,y € V satisfying d(z,y) = k.
THEOREM 3.1. Let G = (V,E) be a distance-reqular graph with intersection numbers

{pfj}. Then T'(G) is invariant under the action of the quantum components AS, € €
{+, —, 0}, of the adjacency matrix A and

Ato, = pﬁ;lp’f’nﬂ ®,41, n=0,1,2,...,

APy =0, AP, = \/pinflp?;f D, 1, n=1,2,...,

A°®, =p L@, n=0,1,2,....

In particular, (T'(G), AT, A7) is an interacting Fock space associated with the Jacobi se-

—1
quence {py , 1Py, ;n=12,...}.

The proof is straightforward from definition. In general,
(A) = (00, A05) =0, (A?) = (do, A0,) = (o),

where £(0) is the degree of o, i.e., the number of vertices adjacent to o. For a distance-
regular graph we have k(o) = p{; so that A/\/p{, is a proper normalization of the
adjacency matrix A.

THEOREM 3.2. Let {G®) = (V) EW)Y be a growing family of distance-regular graphs.
Let A, and {pfj(y)} be the adjancency matriz and the intersection numbers of G, re-
spectively. Assume that the limits
PP (v) )

o , oy = lim ——=
1 (v) v P11 (v)
exist for alln = 1,2,.... Let 'y, y = (I',{¥,}, BY,B™) be the interacting Fock space
associated with {w,} and define a diagonal operator B° by B°V¥,, = a,,+1V,. Then for

(3.1) wy = lim
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the quantum components AS, € € {+, —, 0}, of the adjacency matriz A,,

A€
(3.2) lim ——-— = B, € € {+,—,0},
v /P (v)

in the stochastic sense.

The stochastic convergence (3.2) means that for any choice of a finite number of

symbols €1,..., €y, € € {+,—, 0}, we have
Am A&
lim <(I)07 OV OV (I)0> = <\I/07B€m ...B€1‘110>.
v \/pn(’/) \/pn(V)

Theorem 3.2 does not appear explicitly in the literature, however, the proof is essentially
a combination of the arguments in Hora—Obata [17, 18].

Once we grasp an interacting Fock space structure, the computation of y in the main
question falls into a classical calculus. Let I'y,, y = (I', {¥,}, BT, B~) be the interacting
Fock space associated with a Jacobi sequence {w,} and B° a diagonal operator defined
by B°¥,, = a, 41V, where {«,,} is a real sequence. It is easily checked with the help of
the Hamburger theorem (see e.g., Chihara [7, Chapter 11|, Shohat—Tamarkin [25, Theo-
rem 1.2]) that there exists a Borel probability measure p on R such that

+oo
(3.3) <¢0,(B++B*+B°)m\po>:/ a™u(dz),  m=1,2,....

— 00

In general, p is not uniquely determined due to the famous determinate moment problem.

PROPOSITION 3.3. Ifw, = O((nlogn)?) and o, = O(nlogn), there exists a unique Borel
probability measure p satisfying (3.3).

Proof. By the Accardi-Bozejko formula [2] we know that

My = (Wo, (BY + B~ +B°)"¥o) = Y ][] alds(v)) [] w(ds(v)),

Y€PNcps(m) vED ved
|[v]=1 |v|=2

where Pncps(m) stands for the set of non-crossing pair partitions with singletons of
{1,2,...,m} and dy(v) > 1 the depth of a block v in the partition ¥. Choose C' > 0 such
that

wy < C%(nlogn +1)2, an, < C(nlogn+1), n=12....
Combining the simple estimate |Pnxcps(m)| < 3™, we obtain

| o™
Mm§(30)m<m+ log ™ +1> :

2 2

Then the condition of Carleman’s moment test (see e.g., Shohat Tamarkin |25, Theo-
rem 1.10]) is satisfied:

oo

Z ]\427mﬁ = to0,

m=1

so that p is uniquely determined by its moment sequence {M,,,}. =
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4. The odd graph. Let k > 2 be a fixed integer and put Q = {1,2,...,2k —1}. Let V
be the set of subsets x of () having cardinality k£ — 1, i.e.,

V={xCQ;|z|=k-1},
and put
E={zy}iz,yeV, zny=0}

The graph (V| E) is called the odd graph of degree k and is denoted by Oj. Obviously,
Oy, is a regular graph of degree k.

The odd graphs have been studied in algebraic graph theory, as a natural series
containing the Petersen graph as Os, and some of their properties are found in Biggs
[3, 4]. For being self-contained we shall derive necessary properties from the following
useful description of the distance function. The proof is deferred to Section A.

PROPOSITION 4.1. Let Oy be an odd graph of degree k > 2. Forn=10,1,2,...,k—1 we

define I,, by

k—1-— 37 if n is even,

(4.1) I, = n—1
2 )

For a pair of vertices x,y € V we have

if n is odd.

leny|l=1, < J(z,y)=n.
COROLLARY 4.2. diam (Oy) =k — 1.

Proof. As is easily seen from the definition (4.1), I is a bijection from {0,1,...,k — 1}
onto itself. Then, the maximal distance between two vertices is k — 1. m

COROLLARY 4.3. The odd graph Oy, is distance-transitive, therefore distance-regular.

Proof. Any bijection 7 : Q — €2 induces a bijection 7 : V' — V in a natural manner. Then
7 becomes an automorphism of the graph Oy, since |z Ny| is kept invariant under 7. Now
let z,y,2',y’ € V such that d(z,y) = d(2’,y’) = n. By Proposition 4.1 we may set

T = {al,“-;al,ﬂla"'aﬂJ}, Y= {0417~'~70¢I,71,~-~7’YJ}7
where I =1, I+J=k—1,{01,...,8:} N {7,...,vs} = 0. Similarly,

={a,....a, 68,85 v ={d, .. a0 )
Take a bijection 7 : Q —  satisfying

7T(O‘i) = a;v 77—(/87,) = ﬁ;a 7[-(71) = 77{

Then the automorphism 7 satisfies 7(z) = 2’ and 7(y) = 3/, which means that Oy is
distance-transitive. m

5. Quantum central limit theorem for odd graphs. Having observed the odd
graphs {Oy} form a growing family of distance-regular graphs, we shall in this section
investigate an asymptotic spectral distribution of the adjacency matrix Ay as k — oo by



ASYMPTOTIC SPECTRAL ANALYSIS OF GROWING GRAPHS 251

applying quantum probabilistic techniques (Theorem 3.2). Our first task is to compute
the intersection numbers of Oy which are required in Theorem 3.2.

PROPOSITION 5.1. Let {pZ} be the intersection numbers of the odd graph Oy, k > 2. For
1<n<k-1,

. g, if n is even,
o™ ";1, if n is odd.
For0<n<k-2,
k— g, if n is even,
Pt = —";rl, if n is odd.
For0<n<k-1,
0, ifl<n<k-2,
P, = k—;l ifn="k—1 and k is odd,
g, ifn=k—1 and k is even.

Proof. Just a routine application of Proposition 4.1. We shall prove the first identity only.

Let n be an even number such that 1 < n < k — 1. Without loss of generality we set
o=1{1,2,....k—1}, w={12... Lo kk+1,...,2k—1I, —2}.

Then |oNz| = I, so that d(o, ) = n. Let us find a general form of y such that d(z,y) =1

and 0(o,y) =n — 1. In order that d(z,y) = 1 we have by definition

(5.1) yC{l+1,.. k=1 U{2k—1,—1,...,2k—1}.

Since |yl =k —1and [{I,+1,...,k—1}U{2k -1, —1,...,2k — 1}| = k, the vertex y

is obtained by eliminating one element from the right hand side of (5.1). There are two

cases: (i) If y is obtained by eliminating one element in {I,, + 1,...,k — 1}, we have
(n—1)—1

n
Nyl=k-1,-2==-—-1=-—"— =1, 4,
loNyl B 5 1

where we used (4.1) with n being even. Hence d(o,y) = n — 1. (ii) If y is obtained by
eliminating one element in {2k — I,, — 1,...,2k — 1}, we have

‘Omy|:k7]n71:%7éjn—la

which means that 0(o,y) # n — 1. Consequently, a vertex y satisfying d(z,y) = 1 and
0(0,y) = n — 1 is obtained only in the case (i) and the number of such y’s is

(k—l)—([n+1)+1:k—In—1:g.
This proves that py,, ; =n/2 for an even n. m

We are now in a position to state the quantum central limit theorem for the odd

graphs {Oy}.
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THEOREM 5.2. Let Ay, be the adjacency matriz of the odd graph Oy, and Af, its quantum
components, € € {+,—,0}. Let I'y,, y = (I',{¥,}, BY, B™) be the interacting Fock space
associated with a Jacobi sequence defined by

{wn}se, =11,1,2,2,3,3,4,4,... }.

Then
A+ A°
(5.2) lim ~£ = B+, lim —£ =0,
k—o0 \/E k—oo k

in the stochastic sense.

Proof. Let {pf;(k)} denote the intersection numbers of Oy, k > 2. In view of Theorem 3.2
we only need to find the limits:

T o Y ) N | ()
= P (k) ’ T koo \/27(1J1(k)7

which are computed with the help of Proposition 5.1. In fact, if n is odd, we have
1 n+1<k n—l) n+1

_kggok' 2 -

If n is even,

Thus, {w,} ={1,1,2,2,3,3,...} as desired. Similarly, we obtain {«,, = 0}. =

We now give an intermediate answer to our main question for the odd graphs. (The
complete answer will be given in Theorem 6.1.)

THEOREM 5.3. Let Ay be the adjacency matriz of the odd graph Oy, k > 2. Then there
erists a unique Borel probability measure p on R such that

(5.3) k11n30<(%)m> - /_:O Puldz),  m=1,2,....

The Jacobi parameter of u is given by
{wnty =11,1,2,2,3,3,4,4,... }, {a, =0}.
In particular, p is symmetric.

Proof. We maintain the notation in Theorem 5.2. Taking A, = Az + A + A7 into
account, we see from Theorem 5.2 that

klir&<(%>m> = (Vg, (BT + B7)™¥y), m=1,2....

On the other hand, since {w,} and {«,} satisfy the condition in Proposition 3.3, there
exists a unique Borel probability measure g on R such that
+oo
(Vo, (BT + B7)™¥) :/ 2" p(dr), m=12,....

— 00
Thus, p in (5.3) is uniquely determined. That p is symmetric follows from {c,, = 0} and
the uniqueness. =
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REMARK 5.4. Since Oy = (V,E) is a finite distance-regular graph, the vacuum state
coincides with the trace. Thus,

A\ 1 A\ (k—1)k!
—_ = — T‘[‘ — = Q5 T Am .
(&) ) -mml(R) |- @)
6. Calculating the limit measure pu. We shall obtain an explicit description of the
Borel probability measure p in Theorem 5.3, where the Jacobi parameter ({w,}, {an})
is already obtained. Since p is uniquely determined by its moment sequence, by general

theory (see e.g., Shohat-Tamarkin [25, Chapter II]) the Stieltjes transform of 1 admits a
(convergent) continued fraction expansion:

+oo
G(Z):/ pdr) 1 1 1 2 2 3 3 4 4

2= Z—2Z—2—Z—2Z—2—Z—Z—2—-"

(6.1)

)
— 00

where z € {Im z # 0}.

Let us compute the continued fraction (6.1). For n = 1,2,... we define a linear
fractional transformation:
ou(w) = —
" z—w
Then the 2n-th approximant is obtained by
2n terms
1 1 1 2 2 n
6.2 Gop(2) == = = = = [ 2 200
(62) TNt NO1()
On the other hand, using
n n n?/z
6.3 2 S —
(6:3) n(w) z—op(w) 2 +z2fnfzw
we obtain
2 2 2 2 2
o2 02(0):1 14 1 2 3 (n—1) n '
" z 22-3—-22-5—-22—-7T—-—=22—(2n—-1)—22—n
Then (6.2) becomes
z 12 22 32 n—1)>2 n?
Gon(2) = — 2 2 2 2 ( ) 2 ‘
22—-1—-22-3-22-5—-22—-7T—-.—=22—-(2n—-1)—22—n

Since the continued fraction in (6.1) converges, we have
(6.4) G(z) = lim Gan(2)
z 12 22 32 (n—1)?
22—-1-22-3-22-5—-22—-T—---—22—-(2n—1)—--’
for z € {Im = # 0}.
Here we recall the Stieltjes transform of the exponential distribution:
/+OO e~ 1 12 22 32
0

zfmdgc:zflf,zf?>fzf5fzf7f-~-7 2 & [0, +0).

(6.5)

This is verified as a particular case of the continued fraction expansion for the quotient of
hypergeometric functions (see Wall [29, Chap. XVIII (92.7)]), or indirectly through the
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Jacobi parameter of the exponential distribution. Comparing (6.4) and (6.5), we obtain
“+oo —x
ze
G(z) = / ———dz.
0 z° =X

Then, replacing  with 22 and applying partial fraction, we have

2 2

+00 90 oo . —x 0 — +o0 —a?
xze xe —xe xle
G(z) = — 5 dr = dx + dx = i dx.
0 -z 0 2z o Z—X o Z—X

Consequently, the probability measure 4 in (6.1) is given by
(6.6) u(dx) = |x|e_x2dx,

which may be called the two-sided Rayleigh distribution following Papoulis [23, p. 78],
see Figure 2 for the shape. Using the above explicit form, we may rephrase Theorem 5.3.

THEOREM 6.1. For the adjacency matriz Ay of the odd graph Oy we have

(6.7) lim <<ﬁ)m> = /+OO :Cm|ﬂc\e*””2d:c m=1,2
. RIS 7 . : 2,

Calculation of the right hand side of (6.7) is elementary.

PROPOSITION 6.2. For the two-sided Rayleigh distribution (6.6) the moments of odd or-
ders vanish and those of even orders are given by

o0 2
/ 2™ xle™™ dx = m, m=0,1,2,....

— 00

REMARK 6.3. For the two-sided Rayleigh distribution (6.6) we have obtained explic-
itly the Jacobi parameter ({wy}, {a,}) and the moment sequence {M,,}. Applying the
Accardi-Bozejko formula [2] (see also the proof of Proposition 3.3), we come to the com-
binatorial identity:

(6.8) > JIwtds@)=m!,  m=12,...,
JEPNcp (2m) vED

where {w,} ={1,1,2,2,3,3,...}. A direct proof of (6.8) is not known to the authors. If
the left hand side of (6.8) were computed in a smart manner, we could avoid continued
fractions to obtain the moment sequence. The explicit form of p in Theorem 5.3 then
follows from the generating function.

REMARK 6.4. The orthogonal polynomials associated with the two-sided Rayleigh dis-
tribution are called the generalized Hermite polynomials with parameter 1/2 by Chihara
[7, p. 157], see also Szegd [26, p. 380].

7. Spidernet. We start with some notation. Given a graph G = (V, E') with an origin
0 € V, consider the stratification as in (2.1). For z € V we set

we(z) =y eViy~w, doy) —do,x) =¢}|,  ee{+ — 0}
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Let k(z) denote the degree of x € V' as usual. Then we have
(7.1) k) =wi(z) +w_(z) +wo(z), zeV.

Let a, b, ¢ be integers such that a > 1, 6> 2 and 1 < ¢ < b—1. A spidernet is a graph
which satisfies the conditions:

w(0) = a, wi(z) =c,
(7.2) w_(0) =0, w_(z) =1, for x # o.
wo(0) = 0, wo(z)=b—1-—¢,

Such a spidernet is denoted by S(a,b,c) though not uniquely determined by (a,b,¢) in
general. Examples are shown in Figure 1. We note that

a, T=o0,
r(x) =
b, x#o,
which follows from (7.1) and (7.2). Hence a spidernet is not necessarily a regular graph
but may possess high symmetry. Note also that a spidernet S(a,b,¢) withc=b—11is a

tree. The spidernets have been studied for their interesting spectral geometric properties,
see e.g., Urakawa [27], where a spidernet is called a semi-regular graph.

Fig. 1. Spidernets S(4,6,3) and S(5,4, 3)

PROPOSITION 7.1. Let A be the adjacency matriz of a spidernet S = S(a, b, c). Then T'(S)
is invariant under the action of the quantum components A€, € € {+,—,0}. Moreover,

we have

(73) A+‘I)0 = \/E(I)l, A+‘I)n = \/E(I)n+1, n = 1,2,...,

(74) Ai(I)():O, A7@1 :\/a(b(), A7<I>n:\/E<I>n,1, TL:2,3,...,
(7.5) APy =0, AP, =0b-1-¢),, n=12,....

Proof. 1t is easily derived from (7.2) that
‘V0|:1a |Vn|:acn71, 77,:1,2,...,
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For n =0,1,2,... we have
VIVal AT®, = Y AT6, = > 6y =V Vaia ®na.
z€Vy YEVni1
This proves (7.3). The rest is similarly proved. m
Proposition 7.1 says that (I'(S),{®,}, AT, A7) is an interacting Fock space with Ja-
cobi parameter
(7.6) wi=a, wy=wz=--=c¢
and A° is a diagonal operator defined by A°®,, = a,,41P,, with
(7.7) a1 =0, ag=az=---=b—1—c.

With the help of Proposition 3.3 we see that there exists a unique Borel probability
measure 4 on R such that

+oo
(7.8) (A™) = (B, (At + A~ + A°)"Dg) = / amu(dz),  m=12....

— 00
To be slightly more general, with three real numbers p > 0, ¢ > 0, a € R, we may
associate a Borel probability measure p, 4 , uniquely specified by

/ T ppga(dr) 1 p q q q
z—x Z—z2—G—Z—Q—2—Q—Z—Q— "

(7.9)

—0o0
In other words, py, 4o is characterized by a Jacobi parameter ({p,q,q,...},{0,a,a,...}).
Note that p, 4. has mean zero and variance p. We call the probability measure i, 4., the
free Meizner law with parameter (p, ¢, a) after Bozejko—Bryc [5]. The density function is
known, see Section B. In particular, the density function of p4 32 shown in Figure 2 is
obtained from the spidernet S(4, 6, 3).

REMARK 7.2. The free Meixner laws of Bozejko—Bryc [5] are parametrized by a € R and
b > —1. Their free Meixner law with parameter (a,b) is normalized to have variance
one and coincides with p; p11,, in our definition, see also Bozejko—Wysoczanski [6] for a
particular subclass of free Meixner laws.

With this notation we claim the following
THEOREM 7.3. Let A= A, be the adjacency matric of a spidernet S(a,b,c). Then

—+oo
<Am> = / xm,ua,c,b—l—c(d'r)? m = 172a"'7

where fgcp—1—c s the free Meizner law with parameter (a,c,b—1—c).
Proof. The Jacobi parameter of p in (7.8) is given by (7.6) and (7.7). Hence p is the free

Meixner law with parameter (a,c,b—1—c¢). m

REMARK 7.4. For k > 2 the spidernet S(k, k, k — 1) is a homogeneous tree of degree k.
Let A, be its adjacency matrix. As a direct consequence of Theorem 7.3 we have

400
(A7) = / " U r—1,0(dz), m=1,2,....

— 0o
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The probability measure i, .—1,0 appearing in the right hand side was first obtained by
Kesten [21] with a different method. A free Meixner law i, 40 coincides with the Kesten
measure with parameter (p, q), where p > 0 and ¢ > 0.

8. Quantum central limit theorem for spidernets. We next consider a growing
family of spidernets S(a,b,c) as a — oo. Since (A) = 0 and (A?) = a, the proper
normalization of the adjacency matrix is A/+/a. In view of Proposition 7.1 we obtain

At At c
Py =9 P, =4/
va P a \/;

n+1,
A~ A~ A~ c
2 9y=0, o, -0 2 o, =/ ®, 1, n=23, ...
\/a 0 ) 1 05 \/a \/; 1 n
A° A° b—1-c
0 =0, A TS
Va Va

Then, with no difficulty we come to the following

THEOREM 8.1. Let A = Ay .. be the adjacency matriz of a spidernet S(a,b,c). Let ¢ > 0
and r > 0 be real numbers. Let (T,{¥,}, BT, B™) be an interacting Fock space with Jacobi
sequence

wi=1 wy=wzg=--=g,
and B° a diagonal operator defined by B°V,, = a1V, with
a1 =0, ag=ag=---=m.
Then in the limit as a — oo with
c b—c

(81) a -9, \/a -,

we have
€

A
lim —%%¢ = B¢ ee {+,—, o},
L !
in the stochastic sense.
The next statement is an answer to our main question for the spidernets.

THEOREM 8.2. Let A = Ay .. be the adjacency matriz of a spidernet S(a,b,c). Let ¢ > 0
and r > 0 be real numbers. Then in the limit as a — oo with (8.1) we have

li <<Aa,b,c>m> /+°° m (dz) 1,2
im —= = " p1,gr(dr), m=12 ...,
Va o !

where 1 4 s the free Meizner law with parameter (1,q,r).

REMARK 8.3. This is a continuation of Remark 7.4. Consider a growing family of ho-
mogeneous trees {S(k, K,k — 1)} as kK — oo. It then follows directly from Theorem 8.2
that

A\ too
(8.2) nli»n;o<<ﬁ) >:/ ™ ur10(dz), m=1,2....
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As is well known, the probability measure ji1,1 9 is the Wigner semicircle law:

1

—/4—22 |z| <2,
2m

0, otherwise.

p1,1,0(dz) = p(z)dz, p(z) =

In fact, (8.2) is viewed as a prototype of the free central limit theorem of Voiculescu
(see [28] and references cited therein) because the adjacency matrix is decomposed into
a sum of free independent random variables. Use of various concepts of independence in
quantum probability theory is a new promising direction in asymptotic spectral analysis,

see Accardi Ben Ghorbal Obata [1], Obata [22].

9. Approximation by trees. The argument in Section 7 suggests a direction of gen-
eralizing the free Meixner laws from the viewpoint of spectral analysis on graphs.

THEOREM 9.1. Let u be a Borel probability measure on R and ({wn}, {an}) its Jacobi
parameter. Assume that w, is an integer for all n and o, = 0. Then there exists a tree
G = (V, E) with an origin o € V such that

oo
(9.1) (A™) :/ 2" p(dx), m=1,2,....

— 00

Proof. We shall construct a tree having the desired property. Let Vg, V1, Vo, ... be disjoint
sets such that

(9.2) Vol =1, |Va|l=wn...wowi, m=1,2,....

When w,, > 0 for all n, we obtain an infinite sequence of non-empty sets. When w,, =0
occurs for some n (then, by definition w,41 = 0), we just obtain a finite sequence of
non-empty sets. In any case we set

(9.3) V= D Vo,
n=0

which is the set of vertices. We introduce a graph structure in V as follows. First the
vertex o € V| is combined with each vertex in Vi by an edge. Suppose n > 1 and edges
in VgUVL U---UV, are defined. If V,,11 = (), no more edges are defined. We assume
that Vi, 11 # 0. Since |Vi11] = wpi1|Va|, the set V4 is partitioned into a |V,| disjoint
subsets consisting of w,, ;1 vertices:

[Val

Vn+1 == U Si, |Si‘ = Wn+1-
i=1

We connect each vertex in .S; with the i-th vertex in V,, by an edge. The graph G obtained
in this way is a tree of which the stratification is given by (9.3). The action of A on I'(G)
is easily obtained: First we note that

(9.4) ARy =Y 0y = /w1 ®y.

zeWV;
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Forn=1,2,... we have
VIVl AR, = > A, = Y 6,+ > wid.
zeV, YEVini1 2€Vp_1
= VIVat1| @rt1 + wnV/|[Va1| Pn1.
Hence in view of (9.2) we come to
(9.5) A, = Jwpi1 Ppy1 + Vwn P, n=12....
We then see from (9.4) and (9.5) that
AT®, = Jwni Py, n=0,1,2,...,
A"®y =0, A0, = Jw, P,_1, n=12,....
Namely, (I'(G), AT, A7) is an interacting Fock space with Jacobi parameter {w,} and
hence (9.1) holds. =

Theorem 9.1 suggests that from the viewpoint of spectral analysis a large graph with
few edges lying in a stratum is approximated by trees. For example, a large odd graph
Oy, is approximated by a tree with {w,} = {k, k, 2k, 2k, 3k, 3k, ... } being the parameter
in Theorem 9.1. We expect that a spidernet plays a similar role for a more general p with
non-vanishing {a,, }.

A. Proof of Proposition 4.1. As is easily verified from the definition (4.1), we have
{Io,Ih,...,Ix—1} ={0,1,...,k — 1}. In other words, regarded as a map [ is a bijection
from {0,1,...,k — 1} onto itself. We set
E,={(z,y) €V xV;lzny|l= I},
Fp={(z,y) € VxV;0(z,y) = n}.
It is sufficient to prove that F, = F,, for all n. For n = 0 we have Iy = k — 1 so that
Ey={(z,y) e VxV;lzny[=k-1}
={(z,y) eV xViz=y}
={(z,y) €V xV; d(z,y) =0} = F.
For n =1 we have I; = 0 so that
Er={(z,y) €V xV;|zny| =0}
={(z,y) eV xViz~y}
={(z,y) €V xV;d(z,y) =1} = F1.
Thus the assertion is true for n = 0,1. Assuming that the assertion is true up to n,
1 <n <k —2, we only need to prove that F,11 = F,41.
We shall first prove that E,, 1 C Fj,41. Take (z,y) € E,,11, which satisfies |z Ny| = L, 41.
For simplicity we put I = I,,1. Note that [ # Iy, I;,ie., 1 <I <k —2. We set
T = {017"'aal7ﬂ1a"'76J}7 y= {alv"'7a17’71a"'77J}7
{ﬁla"wﬁ.]} N {717"’7’\/]} = (Z)a
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where [+ J =k—1,1 > 1and J > 1. Inview of |Q— (2Uy)| = 2k—-1)—(I+2J) =IT+1
we set

Q- (@Uy) ={wr,...,wr1}.

Suppose first that n is even. Then I = I,,1; = n/2. Consider

z={wi,...,wr, f1,..., 05}

Since z Ny = () we have d(z,y) = 1. On the other hand, |[zNz|=J=k—-1-n/2=1,
so that d(z, 2z) = n by assumption of induction. Hence
(A.1) O(z,y) < Oz, 2)+0(z,y) =n+ 1.
Suppose next that n is odd. Then I = I,y = k—1—(n+1)/2 and J = (n+1)/2.
Consider

w = {wla'"7w17w1+17ﬁ17"'7ﬁJ71}~
Obviously, w Ny = () and hence 9(w,y) = 1. On the other hand, since |z Nw|=J — 1=
(n—1)/2 = I, we have 9(z, z) = n by assumption of induction and
(A.2) A(z,y) < Iz, w) + I (w,y) =n+ 1.

Combining (A.1) and (A.2), we come to d(z,y) < n + 1 independent of the parity of n.
However, d(z,y) < n does not happen. In fact, if it happens, by assumption of induc-
tion we have (x,y) € Fy(y,) = Eo(s,y) Which contradicts (z,y) € Ej, 1. Consequently,
O(z,y)=n+1and E,y1 C Frq1.

We prove the converse inclusion. Let (z,y) € F11, i.e., d(z,y) = n + 1. Then there
exists z € V such that 9(x, z) = n and 9d(z,y) = 1. By assumption of induction we may
set

:E:{al,...,ap,ﬂl,...,ﬁ]/}, z:{al,...,ajf,fyl,...,’yJ/},
{ﬁl7"'7ﬁJ'}0{717"'77J/}:®7
where I' =1,, I' +J =k —1,I' >0and J > 1. Set

Q_Z = {517'")ﬂJ/7w17"'7wI’+1}-

Since y is adjacent to z, it is obtained from 2 — z by eliminating one element. Namely, y
is one of the following types:

Y = {ﬂla e 'aﬂJ’;wla . 'awl’—i-l} - {61}3
Y2 ={B1,.., By w1, ,wrp1} — {wi}
As for yp, by simple calculation based on definition we have

I, 1 ifniseven
Ny =J —1=k-2—-1,= """ ’
I,+1 if nis odd.
Similarly,
I,+1 if nis even,

xNyp|l=J =k—-1-1, =
| bel " {In_l if n is odd.
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In any case | Ny| = I,+1. But by assumption of induction we see that [z Ny| = I,,_1 is
equivalent to d(x,y) = n — 1, which contradicts d(x,y) = n + 1. Hence |x Ny| = I41,
which implies that Fj,4; C E,,41. n

PROPOSITION A.1. The distance on the odd graph Oy is given by
(A.3) d(z,y) = min{2(k — 1 — [z Nyl), 2lzNy|+ 1}, z,y e V.

In other words,

k—2
2z Nyl + 1, if 0<|znyl< ——,

(A1) Oy - o
2k—1—1|zNnyl), o — <lzny|<k-1

Proof. We regard I,, defined in (4.1) as a bijective map from {0,1,...,k — 1} onto itself.
To find the inverse function, we consider the equation i = I,,. By definition we obtain

(A.5) L J2(k=1—i), ifniseven,
2i+1, if  is odd,

By an elementary observation we see that 2(k —1—i) <k—-1<k<2i+1lor2i+1<
k—1<k <2(k—1-1) happens. In order that 0 < n < k — 1 is fulfilled, we need to
choose the smaller one in (A.5). Thus, the inverse map of I is given by

(A.6) I7'(i) = min{2(k — 1 — i), 2i + 1}.

Since |z Ny| = Iy, by Proposition 4.1, applying the inverse map (A.6) we ob-
tain (A.3). =

B. Density functions of the free meixner laws. The density function of the free
Meixner law iy 44 (p > 0, ¢ > 0, a € R) was computed in Cohen Trenholme [8] and
Saitoh Yoshida [24]. Recall that their parametrization is different from ours (and their
papers contain small misprints).

The free Meixner law i, 4, is uniquely specified by its Stieltjes transform given by
the convergent continued fraction:

1
G(z) = — P d d d , Imz #0.

Z—2z2—G—2—Q0—Z—aQ—2—G—"-"
The right hand side is easily computed:

2q — — —a)?2—4
(B.1) Gz) = (2¢ — p)z +pa —p\/(z —a)? — 4dq
2(q — p)2? + 2paz + 2p?
where the analytic square root is a holomorphic function on C — [a — 2\/6, a+ 2\/5] and

the branch is chosen in such a way that 1/(z — )2 —4¢ > 0 for z € R with z > a+ 2\/6.
The absolutely continuous part of py, 4 (dz), denoted by pp q.q(z), is obtained by the

)

Stieltjes inversion formula:

P 4g — (z —a)?
B.2 o(x) = — , —al <2/q.
( ) pp,q, (.’17) 27T (q*p)x2+pa:£+p2 ‘JJ a‘ — \/5

We note that pp, 4 _o(z) = pp.q,a(—2). For simplicity, we set

9(2) = (¢ — p)z* + paz + p?,
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which appears in the denominator of (B.2). Note that the possible real zeroes of g(z) lies
outside the open interval (—2\/6, —|—2\/a). We consider the following five cases.
(Case 1) ¢ =p > 0 and a = 0. Then the density function becomes

1
Pppo(®) = o—VAp —a?,  [z[ <2,

- 27

which is the Wigner semicircle law with variance p. There is no atom and

Ip,p,0(d2) = pppo(z)da.
(Case 2) ¢ = p > 0 and a # 0. The density function becomes

1 Vip—(z—a)?
_M’ Iz —a| < 2/p.

Pp,p,a(T) = om ot +p

Moreover, p,,, may possess one atom at the zero of g(z), i.e., at x = A\g = —p/a. The
weight is obtained from the residue of G(z). For example, if @ > 0, noting the signature

of /(z —a)2 —4q for z = \g < a — 2,/p, we have

1
lim (2 — Ao)G(2) = — <a S N P
a
which is 1 — p/a? for a® > p, and 0 for a® < p. After similar computation for a < 0 we

a— =
a

z— Ao 2a

obtain
Pp.p.al(x)de for a® < p,

o(dx) =
Hp.pa(dr) Pppa(®)da + (1 - %>5p/a for a* > p.

In fact, the above result covers (Case 1). We see that py, ,, o is an affine transformation of
the free Poisson law with parameter p/a? (see e.g., Hiai-Petz [12, Section 3.3]).

We now come to the case where ¢ # p, that is g(z) is a quadratic function. Set
D=a*~4(¢—p)

and consider the following three cases according to the signature of D.
(Case 3) D < 0, that is, 0 < a? < 4(q — p). Then g(z) has no real zeroes so that

(B.3) Upg.a(dx) = pp.g.a(T)de.

(Case 4) D = 0, that is, 0 < a® = 4(¢ — p). Then g(z) has a real multiple zero outside
l[a — 2,/q,a + 2,/q], nevertheless ji, 4 , has no atom and (B.3) holds.
(Case 5) D > 0, that is, 4(¢ — p) < a®. Then g(z) has two real zeroes:

v
=g =YD

and iy, 4o is of the form:
(B.4) Pp,g,a(dT) = ppga(z)dr +widy, +w_0x_.

To describe w4 we define

on e (2) (R
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(Case 5-1) 0 < 4(¢ — p) < a®. Then A_ < A; and both lie in the same half line
(—00,a —2,/q] or [a + 2,/q,+00). The weights are given as follows:

y :{0, a<-2/q—p, 2y/q—p<a<(29—p)/\Va
i ve, a>(29-p)/\4
:{—l/, a<—(2¢—p)/Va,
0, ~2¢-p)/\Va<a<-2/qg—p, 2/g—-p<a.

(Case 5-2) 0 < ¢ < 2¢ < p. Note that A| < a—2+/p and A_ > a +2+/p. The weights
w4 are given as follows:

W — {O, aS*(p*2Q)/\/§, W — {V—; aﬁ(l’*%{)/\/@
+ = _ =
ve, a>—(p—29)/4, 0, a=(p-29)/\q
(Case 5-3) 0 < ¢ < p < 2¢. The situation is similar to (Case 5-2) and the weights are
given as follows:

W — 07 a < (2q_p)/\/aﬂ w. — -V, a < _(2q_p)/\/(_17
+ = _ =
V+7 GZ (2q_p)/\/§5 Oa CLZ _(2q_p)/\/a
In fact, (Case 5-2) and (Case 5-3) can be unified:
1 1
wy = (el +vy), wo = _(jv-[ —v-).
2 2
0.6 0.6
0.4 0.4
0.2 0.2
0 L L L ! 0
-4 -2 0 2 4 -4 -2 0 2 4 6

Fig. 2. Two-sided Rayleigh distribution and free Meixner distribution f4,3,4

Note added in proof. Another Carleman’s moment test [25, Sect. 2.17] verifies that Proposi-
tion 3.3 remains valid without assuming any condition on {«ay}.
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