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Abstract. We study a certain class of von Neumann algebras generated by selfadjoint elements
w; = a; + a;r, where a;, azr satisfy the general commutation relations:

aia;-r = Zt;g afas + 8i;1d.
S8

We assume that the operator T' for which the constants t;-g are matrix coefficients satisfies the
braid relation. Such algebras were investigated in [BSp] and [K| where the positivity of the Fock
representation and factoriality in the case of infinite dimensional underlying space were shown.
In this paper we prove that under certain conditions on the number of generators our algebra is
a factor. The result was obtained for g-commutation relations by P. Sniady [Snia] and recently
by E. Ricard [R]. The latter proved factoriality without restriction on the dimension, but it
cannot be easily generalized to the general commutation relation case. We generalize the result
of Sniady and present a simpler proof. Qur estimate for the number of generators in case ¢ > 0
is better than in [Snia].

0. Introduction. Let Hgr be a real Hilbert space and H = Hgr + iHgr be its com-
plexification. Denote by H the complex conjugate of H. Let T : H® H — H @ H be
linear.

Consider the algebra of all tensors over H and H plus Id with tensor multiplication
as a product denoted by Y(H,H). Define the Wick algebra as the following quotient
algebra:

(%) W(T) ~Y(H,H)/(f®g-T(f®g)—(9If)1d).
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For f,g € H we set a(f) = f, at(g) = g, where the action of the operators a(f) and
at(g) is given by multiplication by f and g, respectively. We are interested in positive
representations of W(T), that is, the representations of the a(f)’s as operators on a
Hilbert space such that a™(f) is the restriction of the operator adjoint to a(f).

In this paper we will deal with the Fock representation. It is constructed from a cyclic
vector Q) with the property a(f)Q = 0 for all f € H. Such a representation is unique
(up to isomorphism) and carries a unique hermitian form. There are various criteria
implying that this form is positive definite. Most of them are written in the language of
the properties of the operator T € L(H®H) defined as (T'(f®g)|h@w) = (T(ha f)|w®7).
It was proved (see [BSp|) that if T is a selfadjoint contraction and satisfies the braid
relation (or Yang-Baxter relation)

(BR) (1eT)(Te(1eT)=(Tel)(1eT)(T®1)] omHIHH

then the form is positive definite. In such a case the completion of the Fock space

Fin(H) = cQ o PHE"
n=1

with scalar product denoted by (-|-)r is a Hilbert space.

We study the von Neumann algebra I'r(H) generated by the operators
w(f) = a(f) +a*(f), f € Hr.

The choice of the relations (x) was made since several examples of such structures
were investigated in the literature. The case T(f ® g) = (¢ ® f) is known as the canonical
commutation relations (CCR). The case T(f ® g) = —(¢g ® f) is known as the canonical
anti-commutation relations (CAR). More generally for T(f ® g) = q(g ® f), where g €
[-1,1] we use the name g¢-canonical commutation relations (¢-CCR). The case T = 0
plays a fundamental role. In |Vo| Voiculescu proved that T'o(H) = VN(Fy), where Fy
denotes the free group with N = dim’H generators. Other examples as well as those
mentioned above were studied in a series of papers (see e.g. [JSW], [BSp|, [BKSp|, [PW]
and references therein).

For our needs we will use the following assumptions:

LT=T*|T|=q<1,
II. T satisfies the braid relation,
I11. Under the identification Hp ~ Hp we have T =T on Hpg.

If we choose {e;} to be an orthonormal basis of Hp and define matrix coefficients of T
by the formula (T'(e, ® ep)| €. ® eq) = S then the relations (x) have the form
aia;' = Zt;g CL:'_CES + 5”1d

and the equation 7'=T on Hp can be rewritten as t;; =1t;5.

Under assumptions I, II, III the algebra I'p(H) can be continuously embedded into
the representation space. The map D: I'r(H) — Fr(H) defined as D(X) = X gives the
embedding. The operator ¥ (f1 ® ... ® f,) which corresponds to a vector f1 ® ... ® f,
is called the Wick product of the operators w(f1),...,w(fn). Such an element of I'r(H)
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exists and is unique. In [K]| an explicit formula for the Wick product was given. It provides
a useful tool for studying I'r(H) (see [K] and [Nu]).

In [K] we proved that if the number of generators is infinite then for 7' such that
IT|| = ¢ < 1 the algebra I'y(H) is a type II factor. In this paper we show that the
result remains true if dimH is greater than some finite natural number N(g). Recently
E. Ricard [R] proved factoriality without restriction on the dimension. We generalize and
present another method of the proof of the result of Sniady.

1. Notations and known theorems. This section is based on [BSp|] and [Bo]. Unless
otherwise stated we assume that 7' € B(Hpr ® Hpg) is a selfadjoint, strict contraction
(IT]] = ¢ < 1) which satisfies the braid relation.

DEFINITION 1. For fixed m define a function ¢ : S,,, — B(F(H)) by quasi multiplicative
extension of
ple)=1, om) =T, i<m-1,
where
Ti(fi®..0f)=(®..0fin®T(fi ® fit1)®...® fs.

This means that for a reduced word o = m;, - - - m;, we put p(o) =T;, -+ T;, .
DEFINITION 2. Fix the operator T and define P(") = > oes, PO).

According to the main theorem in [BSp] P(™ is nonnegative for every n (even strictly
positive in case || T'|| < 1) and therefore we can introduce a new scalar product on H®"

(& [z = (P™e [ n).
The T-Fock space Fr(H) is the completion of the Fock space F/"(H) = CQa -, H®"

with respect to the scalar product mentioned above.

DEFINITION 3. For f € Hp we define the left and right creation operators a;" (f), a,(f)
as

o (NHe.. . @fi=fehe.. . @fi and af(NAG.. . Ofi=h®.. . 0fLf
and the right and left annihilation operators a;(f), a,-(f) as their adjoints on the T-Fock

space.

By |K] the operators a;" (f) and a; (f) are bounded and their adjoints are well defined.
Explicit formulas for annihilation operators on H®" are the following

a()=L(HA+T1+ThTa+...+TWT5--Th1)
and
ar(f) =LA+ Th1+Tn-1Tn—o2+...+ Tn1Tn—o---T1),
where {; . (f)2 =0,

W@ .0 fn)=(il 1f2©...Q fa,
L@ . @f)={lNHi®. . & fui
DEFINITION 4. Let I'r(H) be the von Neumann algebra generated by the selfadjoint

operators w;(f) = a;(f) + a?_(f)a f € Hg on Fr(H).
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The vector  is separating and cyclic for I'r(H). Moreover the functional 77(X) =
(XQ|Q)r is a faithful normal trace. The map D: Ir(H) — F(H) defined as D(X) =
X (Q) is a continuous embedding of T'r(H) into Fr(H).

NoTaTION 5. For £ € F(H) we denote by ¢(£) the unique element of I'y(H) such that
PN =¢.

2. The result. Let ey, e3,... be an orthonormal basis of Hy. Let

wi(f) = ai(f) +a (f) and we(f) = ar(f) + @ (f).
Notice that w,(e;) € (I'r(H))'. Take
d

M = Z(wl(ei) - wr(ei))Z’

i=1
where d is a natural number with d < dimH. This operator is positive and selfadjoint.
We will show that
Ker(M) = CQ.
THEOREM 6. There exists dy such that for d > dy operator M is strictly positive on
Fr(H)\CQ.
To prove the theorem we need some estimates.

LEMMA 7. Fiz f € HE"™.
a) [ Lni1 (T - TeT) Di(Pllr < ¢"|[ flI7,

b) [ (ToTs -+ Toy ) Dy ()l < ¢ f I,
where Dj(f) =¢; @ f®ej, Lny1(f1 @+ @ farz) = (fasilfot2) 1 ® ... ® fr and
Li(f1®- - ® fag2) = (fil2) s ® fa® - & [y
Proof. Notice that for arbitrary o € S,, we have

L1 (Tp - ToTy)Dyp(0) = Lsro(p x Id)o(Id x o x Id)D;

= Lypt1(p(p) ® 1d)(p(1d x o) @ 1d) Dy,

where p = 7, - - - 1. Further one can verify that Inv(p) + Inv(Id x o) = Inv(p(Id x 0)).
Furthermore p(Id x 0) = (o x Id)p and also Inv(o x Id) + Inv(p) = Inv((c x Id)p). This
implies that ¢(p)p(Id x o) = p(p(Id x 0)) = ¢((o x Id)p) = (o x Id)¢(p) and finally

gives
Loir (T T D3(0) = L (olo x 1d) © Id)(o(p) © Id)D,
= ¢@(0)Ln+1(p(p) ® 1d) D,
= (o) Lyt 1 (T - 'T2T1)Dj'
This implies that operator Ly, 1 (T, - - - T5T1) D; commutes with P =3 (o) and there-

fore its norm is the same as on H®" with the usual scalar product.
The operator L, q: HOMHD) ej — H®™ is a contraction, Dj is an isometry and

(T T < ¢" m
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LEMMA 8. The following estimations hold for f € Fr(H):

(a)

(b)

(c)

(d)

(f)

(9)

(h)

< dC3|f1%

d 2
; €@ f@e
d 2 d 2
S aear(eds] = || areatens| < aczisi,
i=1 i=1
d 2
Y ewae)s|, <dcifis,
=1

d

> alef el < 3R

d
S aedaed | < 2113,
i=1

M=

2
ar(ei)ar(ei)fHT <dCZ|fI%,
i1

d 2
> ai(edaled | < dCfIB,
i=1

d
ZZtlkekQQal e fH <dq202||f||:r

=1 k,s
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Proof. Let f =" fn, where f, € H®". Observe that ¢; ® f,, ® e; € H®""2. Therefore
for fixed i we have

(i ® fn®ei|e® fn ®es)r =0if n #m.

It is known from [BSp| that there exists some constant Cy (it can be explicitly calculated)
such that for arbitrary k < m

P < ¢, (PP @ PR,

This yields

d 2
Hzei®f®ei
i=1 T

iHZe&@fn@ez

i=1 i=1

p%g

n=0

i<ZPn+2) e fn®e;) |Zel®fn®ez>

d d
CH{YUoPP oD (o fioe) e hoe).
1=1 i=1

Since ((I ® Pq(qn) RD)(e;® fn®e;)|e; @ fr,®e;) =0 for i # j the last expression is equal
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to

co d
SN CHUIOP @I)(ei® fo®ei) e ® fo Des)

n=0 i=1
0

Z 2 fo | ) _dCQZanHT A

This gives (a).
For (b) define B;f = a,(e;)a;(e;) f. By taking the adjoints on both sides we obtain
By f = a] (e;)a)} (e;) f. Further

d d d
(Y arlenaen) £ =Y af el (e)f = eiw foe.
i=1 i=1 i=1
From (a) we have that || 2?21 af (ei)a; (€;)||so < VdCy, which implies
d
H Zal(ei)ar(ei) . < \/EC’q.
To prove (c), as in (a) we W:tle

d 5 (%) d 2
H;eimr(ei)fHT - Z Hzeimr(e»fn .
—Z<Z-Pn) €2®CLT€7, fn Zez@a’f‘el fn>

n=0 =1

d

d
< Zcq< 1 I®P(" 2 )(e: ® ar(es) fr) | Zlez ®ar(ez)fn>

1=

8

3
8

o
SH

=3 ClT @ PV (e @ an(en) fu) L ei © an(e) fu)

n=0 i=1
oo d
=Cq 3 D AP anen) ) lar(en) fa)
n=0 i=1
[e%S) oo d
=Cy )Y llar(efallz < Cq YY" Collfuld = Cidl fll7-
n=0 i=1 n=0 i=1

In the last inequality we used an estimate of the norm of a,(e;), i.e. [|ar(e;)|loc < 1/Cq.

For (d) it is obvious that e;®a,(e;) f = a; (e;)ar(e;) f. Also aj(e;) f®e; = ajf (e;)ai(e;) f
= (a; (e;)ar(e;))* f. Now (d) can be derived from (c). Analogously we can prove (e), (f),
(g). Finally for (h) and for f =" f,, where f, € H®" we have

sup HZZ%Qk@al s fH = sup sztlkek®al e fH
k,s k,s i=

IflI=1 IflI=1
= o S| S 3 b caten ], <0 e 3T T Y dtaton;

Il Fll=1 kys i=1 [l fll=1
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NI IEIS

d
— Y| Y e
k s i=1

2
_CZH%TPZHZZ““&@@ <0222‘2t Iz
1 =0 k,s i=1
d0 2 d 2
= C’gZ‘Zti’s" = Cg T(Zei ®ei) ‘ < dqQCg.
ks i=1 i=1
Now we can pass to the proof of our main theorem.
Proof of Theorem 6. We have
d d
D (wiles) —we(e)® =D alena(e:) + af (en)a;f (e0) + af (ei)aies) + anlei)a; (e:)
i=1 i=1
d
+ ) ar(edar(es) + af (e)a) (e:) + af (ei)ar(es) + ar(es)af (e:)
i=1
d
= alei)ar(es) + af (ei)a) (i) + a;f (e5)ar(es) + ar(es)a; (e:)
i=1
d
_ Z ar(er)ai(e;) + af (er)a) (e;) + af (e;)ai(e;) + ar(e;)a; (e;).
i=1

By the definition of a,(e;) and a;(e;) we have for f € H®"
ai(es)af (e f = ai(e)) f @ e; + Li(ToTs -+ Ti1) D (f),
ar(e)a) (e)f =€ ® az(ei)f + Ly1 (T - - ToT1) Dy (f),

ai(e;)a) () f = f+22t”“ek®al (es)f,

=1 k,s

( ) elf f+zzt aresf®ek

i=1 k,s
From Lemma 7, for f € Fr\CS2
[Ln1 (T - - TT)D; ()l < gl fllr and  [[Lo(T2Ts - - Toga) D () < al| flz-
Therefore M = 2dId + My — My + Ms, where
IM| < 2VdCyq, |[Ma]l < 2qd, ||Ms]| < 14C,Vd.
This implies
M > 2d(1 — q) — 2VdqC, — 14VdC,,.

It is easy to see that there exists dy such that the last expression is positive for arbitrary
d > dp.

THEOREM 9. Let dy be the constant from Theorem 6. If dimH > dy then the algebra
I'r(H) is a factor.
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Proof. Notice that if X € I'r(H) NT'r(H)’ then X commutes with w,(e;) and w;(e;) for
arbitrary i. Therefore XQ) € Ker(M). From Theorem 6 we derive that Ker(M) = CQ,
hence X = ald and I'r(H) is a factor.

REMARK 10. The result can be generalized to the case of g-Araki-Woods algebras ([H]).
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