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Abstract. This paper consists of two parts. The first part is devoted to the study of continuous
diagrams and their connections with the boolean convolution. In the second part we investigate
the rectangular Young diagrams and respective discrete measures. We recall the definition of
Kerov’s a-transformation of diagrams, define the a-transformation of finitely supported discrete
measures and generalize the notion of the a-transformation.

1. Introduction. In the paper [K1] Kerov proved that there a exists 1-1 correspondence
between compactly supported probability measures on the real line and a generalization
of Young diagrams, called continuous diagrams. He also studied Young graphs and consid-
ered the asymptotics of random growth of Young diagrams and related Markov process.
In another paper [K3] Kerov defined a new transformation of Young diagrams, connected
with a special dilation on R2. Because of the 1-1 correspondence between finitely sup-
ported discrete probability measures on the real line and rectangular Young diagrams,
see [K1], we are able to define a corresponding transformation of such measures. We will
call it the a-transformation.

In Section 2 we recall the necessary notions of rectangular and continuous diagrams
along with the definitions of transition and co-transition measures.

In Section 3 we deal with the boolean convolution. The main subject of this section is
the study of a correspondence between the boolean convolution and Young diagrams. We
define the co-transition measure for continuous diagrams and show that the boolean con-
volution of compactly supported probability measures coincides with addition of centers
of diagrams and addition of co-transition measures.
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In Section 4 we calculate the explicit formulae for the interlacing sequences associated
with the a-transformed rectangular diagram. Namely, we obtain the following formulae

k—1
xk(a)=049«"k+(1—04)2(yj—%“j)Jr(l—Oé)C,

k
Yk (o) = ayg + ( 1—aZ yi —xzj)+(1—a)c,
j=1

where ¢ = S0 a — S0 v
In Section 5 we extend the definition of the a-transformation to discrete finitely sup-
ported measures and show that the a-transformation commutes with dilation of measures.
In Section 6 we define a generalization of the a-transformation, called the 3,a-
transformation, and obtain similar results for that new transformation.

2. Interlacing sequences and Young diagrams. We will consider sequences y1, . ..
<y Yn—1 and x1,x2, ..., T,. Recall that two sequences are called interlacing if

1 <Yy <x2<...<Yp—1 < Ty

and the number
n n—1
c=D T
k=1 =1
is called the center of interlacing sequences. With every pair of interlacing sequences

we can uniquely associate a piecewise linear continuous function w, called a rectangular
Young diagram.

DEFINITION 1. A piecewise linear continuous function w = w(y, 4,) is called a rectangular
diagram connected with the interlacing sequences y1,...,y,—1 and x1,..., T, if

, +1 farp<u<y, k=1,2,....n
W' (u) = .
-1 ifyy<u<zpy, k=12,...,n—1,
wu)=|u—c| ifu<xoru>x,.
The number
A=) (=) (2= yp)
1<J
is called the area of the diagram connected with these sequences. We denote the set of

such diagrams by Dy.
Definition 1 implies that

k—1 n—1

w@e) =D (i —2:) + Y (Tig1 — vs),
1=1 i=k
k n—1

w(yr) = Z(yz —zi)+ ) (Tit1 —vi),

=1 %

Il
>
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see [K1, K3] for proof. The above relations could be rewritten as

k—1
w (z) ZC—xk+2Z(yj — ),
(1) %
w (Y) ZC—yk+QZ(yj—9€j)~
j=1
A true Young diagram A = (A1, Aa,...,Ay), which corresponds to some irreducible

representation of the symmetric group S;, with ¢ = A\ + ... A, is uniquely determined
by the following conditions:

1. ¢=0,
2. xp€Zand yy € Zfork=1,2,...,nand [ =1,2,...,n— 1.

We also consider a discrete probability measure
I1; (zx —y;)
Hj;ék (xk — ;)

which is called the transition measure of the rectangular diagram w(,, ,.) connected with

w= Zuk&c“ where iy =

the interlacing sequences y1,...,Y,—1 and z1,...,Ty,.

Let G, (z) be the Cauchy transform of the measure f,

_ Mk _Hj(z_yj)
) Gu () = z—ap (2= 25)

and M, (z) be the moment generating function of y,

o0
M, (z) = Zmu(j)z], where m,,(j) = in k-
=0
Then we have

3 Gu (=2, (1),

z z

Another distribution associated with a pair of interlacing sequences, called the co-
transition distribution, arises from the decomposition

1 _(z—xl)(z—mg)...(z—xn)_Z_C_n_l Vi
W S R Fr B ey R e

where ¢ = ¢(w,) is equal to the center of the diagram w and ) v, = A equals the area
of this diagram [K1]. Moreover

L (e — i)
V= ——F
[Tizr (Ye — wi)
and

<N <T2<...<Tp1 <Yp1<Typ, & Vi,...,Vp_1>0.

We are going to consider the following generalization of rectangular diagrams:
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DEFINITION 2. A continuous diagram is any function w : R — R such that
|w(u1) —w(ug)| < fur — ug|
and for some ¢ € R and sufficiently large |u]
w(u) = |u—c|.

The number c is called the center of a diagram w, and the area A of such a diagram is
defined as

A —/ (@) — [u — ¢]) du.
2 Jr
We denote the set of such diagrams by D.

To every diagram w € D we associate a probability distribution p = p,, which we call
the transition distribution of w. The measure u is defined by the identity [K1, K2, K3]

1exp1/Rd(w($)—|’£|) :/Rdu(x) — Gu(2),

z 2 T —z z—
where G, (2) = [ dzHT(i) is the Cauchy transform of the measure p.

Kerov proved the following theorem:

THEOREM 1 ([K1]). For any diagram w € D its transition measure ezxists and is unique
and compactly supported. The measure p, is finitely supported if and only if the diagram
w s rectangular.

We will also use the following lemma, see [K2] for proof.

LEMMA 2. Let u be the transition measure associated with the diagram w. Let c be the
center of w and A its area. Then

c=mu(l),  A=my(2) - (mu(1)>.

This means that the center of diagram w is equal to the mean of its transition measure p
and the area equals the variance of this measure.

Because the transition measure of continuous diagrams is a generalization of the
transition measure of rectangular diagrams, see [K1]|, we are going to extend the notion
of co-transition measure (4) to continuous diagrams. First we recall a lemma proved
by Maassen ([Maal, see also [Ak]) which characterizes the reciprocals of the Cauchy
transforms of measures with finite variance:

LEMMA 3. A holomorphic function F : CT™ — C7T is the reciprocal of the Cauchy trans-
form of a measure p with finite second moment if and only if there exists a positive finite

F(z):z—ozo—/de—(x)

)
z—X

measure p on R such that

where ag € R is the first moment of the measure p.

Using the above lemma, let us define the co-transition measure of continuous diagrams.
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DEFINITION 3. The co-transition measure v of continuous diagram w is defined by the
requirement

r dv(x)
© o

where c is a center of w, p is the transition measure of w and G,(z) is its Cauchy

transform. The co-transition measure of the diagram is positive but not necessarily a
probability measure.

3. Boolean convolution. For compactly supported probability measures p,v their
boolean convolution p W v is defined by the requirement

Ry, (2) = R (2) + R} (2)

ey
where
1

(6) m:z—Rij),

see [SW]. The function RF(z) is called the boolean cumulant transform and it can be
written as

Rf(z) = Z Rf(n)z"‘l.
n=1

The coefficients Rf (n) are called the boolean cumulants. On the level of Cauchy trans-
forms the boolean convolution is equivalent to the formula

1 1 . 1 .
(7) Guw (2) Gu(z)  Gu(z)
Guew (2) = G (2) Gy (2)

Gu(2) + Gy (2) = 2G (2) Gy (2)
EXAMPLE 1. We are going to calculate the rectangular diagram w corresponding to the
symmetric two-point measure
1

= 5(5—a+5a)~
We get the following diagram
—x if x < —a,
T+ 2a if —a<x<0,
Wy (z) = .
—r+2a if0<z<a,
T ifa<uz.

Let v be also a symmetric two point measure v = % (6_p + dp). Because

Gu(z) =

Crot-a “Y=timeoy

for u W v we have

1 1 1
Guu (2) = = + .
o (2) 2 (z—\/a2+b2 z+\/a2+b2)
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This means that for the boolean convolution p W v we get the following diagram
—z if 2 < —VaZ + 12,
r+2Va2+02  if —Va2 +b2<z<0,
—r+2VaZ+ 02 if0 <z < Va2t 02,

T if Va2 + 02 < z.

Wy (T) =

) -2 2 4

Fig. 1. Diagram corresponding to the % (b_1+01)W % (6—2 + d2)

Let us also note that the first boolean cumulant Rf(l) equals the first moment of the
measure /4 and the second cumulant RE(Z) is equal to the variance of this measure. This
means that from Lemma 2 we get the following corollaries:

COROLLARY 1. The diagram connected with the boolean convolution p W v of measures
1, v has center at the point which is equal to the sum of the centers of the diagrams related
to the measures p and v.

COROLLARY 2. The area of the diagram associated with the measure pWv is equal to the
sum of the areas of the diagrams connected with the measures u and v.

Let u, p be compactly supported measures. By definition of the co-transition measure
(5) we obtain

r (1) === (sm - [ D) 4 [ 202,

or, in the discrete case

n—1

1 — Vi
RB<—>¢:+ .

This means that

B(,) —m, d’/u(x)
RE(2) u<1>+/R |

Using the definition of the boolean convolution (6) we obtain

dv,(x dv,(z

wap(z) zRf(z)—l—RPB(z) :mM(l)—l—/]Ri“—(x)—i—mp(l)—i—/]R iﬂ(x)
—-m m dvy () + dv,(x) — e e dvy(x) 4 dv,(x)
=m,(1)+ ,,(1)+/]R I, ut p+/R I, .
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In terms of the Cauchy transform the above formula is equivalent to
1 d (vu(z) + vp(2))

-~ =z— (¢, +¢,) — .

Gp,LJer(Z) ( 12 P) /]R s —

Thus we have the following

THEOREM 4. Let i, p be compactly supported probability measures and let their diagrams
have centers at c,,c, and co-transition measures v,,,v,. Then the diagram related to the
measure u W p has its center at c, + c, and it is uniquely determined by the co-transition
measure vy, + V.

4. The a-transformation of diagrams. In this section we will only consider the rect-
angular diagrams.

DEFINITION 4. Let w be a rectangular diagram connected with the interlacing sequences

Y1,Y2, - -, Yn—1 and xq1,xs,...,2T,. The a-transformation 7, of the diagram w is the
diagram w® which is equal to w scaled by « along lines which are parallel to the line
y = —z. The diagram w® is connected with the sequences y; («),...,yn—1 (o) and
x1 (@), ...z, (a), its center is equal to the center of w and its area equals o A, where A

is the area of w.

REMARK 1. That transformation for true Young diagrams was considered by Kerov in
[K3]. He gave formulae for the dimension of A%, called the a-hook formula, and showed
connections with Jack polynomials and symmetric functions, see [Mac].

First we are going to reformulate the above definition more formally.

LEMMA 5. Letw be a rectangular diagram connected with the interlacing sequences y1, . . .,

Yn—1 and T1,...,x, and center in c. Then for (x,y) such that y = w(x) we obtain
7 (* _1/A+a)z+(1-a)(y+c)
“\y) 2\(0-a)@-o+1+a)y)’
Proof. The a-transformation can be obtained as the superposition of the rotation of w
about the center ¢ by the angle —7, the dilation D, for oo > 0 defined as follows

Dq (u,v) = (u,av), (u,v) € RQ,

s
1

T (* 1/1-1\(10 11 T n —c n c
“\y/ 2\ 1 0a/ \-11 Y 0 0
l1/1+al—a)\ (z—c c 1/(l+a)z+(1—-a)(y+co)
i + == . m
2\l-al+a y 0 2\1l-a)(z—c)+(1+a)y
REMARK 2. Let w be as in the previous lemma. To calculate the interlacing sequences

y1(a),...,yn—1(a) and z1 (), ..., z,(a) connected with w® let us take (m) = ( Tk )
y) \w(zx)

and the rotation on the center ¢ by the angle 7. Hence we get

Then by Lemma 5 we obtain

(M+a)azy + (1 - a) (w(zx) +¢))

xp (o) = %
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and for ($> = ( Yi > we get
y w (yr)

1
ye (@) = 5 (L4 @)y + (1= @) (w(ye) +0)) .

By the above remark we have a formula for calculating y; («),...,yn—1 (@) and
z1 (@), ..., 2, (o) which uses the coordinates (x,w(xk)), (yj,w(y;)). We would like to
have also the rule of calculating y; («),...,yn—1 (@) and z1 (@), ..., =, () only in terms
of y1,...,Yn—1 and x1,...,x,. The following lemma gives the desired formulae:

LEMMA 6. Let w be a rectangular diagram connected with the interlacing sequences yu, . . .

Yn—1 and T1,...,T, and center at c. Then
k—1
zp (@) =azp+(1—a) ) (y—z;)+(1-a)c
j=1
and
k
yi () = ayy + l—az yi—x;)+(1—a)c
j=1

Proof. By Remark 2 we get

l(karw(ack)Jra(:rkfw(ack))Jr(lfa)c)

x (o) = 5

and because of (1) we obtain

k—1
xp +w (xg) =c—|—22(yj —Z;),
j=1
k—1
T — w (Tk) =2$k—0—22(yj —z;),
j=1

which implies

xy (« ) 2<C+22 +a(2xk—c—22 ) (1—a)c)

k—1

:aa:kJr(lfa)Z(yjfmj)Jr(lfa)c.

Jj=1

The calculation of y, («) is similar. m

LEMMA 7. For a > 0 the transformation 1, is a multiplicative group:

T.T5 = Tap.
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B) (y + C)>)
(1+3)y
W)

a )iyiﬂ?) =Tar @ -

r+(1-
(x—c)+

l+al—« 1
Groiio) G
1+aB)z+ (1 -

1
2
1/

2((1—aﬂ)( c) +

Hence we obtain

COROLLARY 3. For a >0, 7, and 71, are inverses of each other.

5. The a-transformation of measures. In this section we will only consider finitely

supported discrete probability measures.

By the theorem of Kerov, see Theorem 1, we can extend the notion of 7, -transforma-

tion to a transformation of discrete, finitely supported measures on R.

DEFINITION 5. Let i be a finitely supported probability measure and let w be the diagram
such that the transition measure of w is equal to u. By the a-transformation of the
measure (i we mean the transition measure 7, p associated with the diagram w®.

EXAMPLE 2. For a one point measure ¢, we have

To 0g = 0q.

EXAMPLE 3. We compute the a-transformation of a probability measure which is sup-

ported in two points. Let

Then we have

Hence

and therefore

where

Thus we obtain

M:p5a+q5ba a<b7 p7q207 p+q:1

r1=a, Yy1=qa+pb, z92=0>b, c=pa+qbd

21 (@) =aa+ (1 —a)c,
yi(a)=ga+pb—(1-a)(a—c),

z9 (@) =,
To pt = 16z, (a) t H202,(a)s
_ 21 () =y (o) _ %2 (@) —y1 (@)
o= 71 () — 29 ()’ Hz 7o (@) — 71 (@)
p(b—a) gb—a)+(a—c)(1—a)

0p.

Top=

b—aa—(1—«

) _
)c aa+(1-a)e aa+(1—a)e—1b
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In general, let pu be a discrete probability measure supported on x1,xo, ..., T,, that
is

k=1

THEOREM 8. The a-transformation of measure p is a measure u® such that its Cauchy
transform is equal to

= ici (2= (@)
G ) = I =)

where xy, belongs to the support of the measure p and yy, are zeros of the Cauchy transform

of u and
k—1
rp (@) = axp+(1—a) ) (y; —25)+(1—0a)c,
=1
]k
k(@) = agr+(1—a) Y (y; —z;) + (1 —a)c
=1
for

n n—1
c= E Tg — E Yk -
k=1 k=1

Moreover, we can prove the following lemma connecting the a-transformation and the
dilation of measures.

LEMMA 9. Dilation of measures commutes with the a-transformation:
D\7,, n= 7. Dy K-

Proof. Let us denote the interlacing sequences associated with the measure 7, Dyu by

2k (o) and g, () and sequences connected with the measure D)7, u by z (o) and yi, ().
Because

Dyp(A) = p(A714)

for A > 0 we obtain

GDW(Z):/Oo L (D) (2) = -1 (;)ZEQ(

>
~—

= -G, .
e 2T a—dve A AP (%)

This means that dilation changes the sequences x1,...,x, and y1,...,yp_1 int0 Z1,..., 2T,

and 91,...,Yn_1, where

(8) Tk = Avg, Ok = Ay,

and

CDyu = ACpy-
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Therefore after the a-transformation we obtain

k—1

Zr () :oz)\xk—l—(l—a))\Z(yj —zj)+ (1 —a)cp,,
j=1
k—1

:a)\:ck+(1fa))\2(yj —z;))+ A1 —a)c, = Ay,

j=1
k

k(@) = Xy + (1—a)AY (y; — z;) + (1 = a)cp,,

j=1

k
:a)\yk+(1—a))\2(yj—mj)—|—/\(1—a)cuz)\yk

and
LTIy (2= Bk ()
O 2 ) = I G e a)
On the other hand
g lo 2y HES Gom(@) Lo (= e (o)
Gourn () = 307 () = S (= (@) ~ I (o= A )

which means that
Yo (@) = Ayp (@), ax (o) = Azp (@)

so dilations and a-transformations commute. m

6. Generalization of the a-transformation. The a-transformation of diagrams de-
fined in Section 4 consists in scaling the diagram by a along lines which are parallel to
the line y = —x. We generalize this transformation and introduce a new transformation,
which consists in scaling the diagram by « along lines which are parallel to the line
y = —z and scaling by 3 along lines which are parallel to the line y = z.

DEFINITION 6. Let w be a rectangular diagram connected with the interlacing sequences
Y1y Yn—1 and 1, ..., &,. The §, a-transformation Ig o of the diagram w is the diagram
w?® which is equal to w scaled by a along lines which are parallel to the line y = —z and
is scaled by ( along lines which are parallel to the line y = x. The sequences associated
with the diagram w®® will be denoted by 71,9, . .., n_1 and &1, Zs, ..., Z,. The center
of the diagram w”® is equal to the center of w and its area equals o 3 A, where A is the
area of w.

It is possible to find the numbers g1, %9s,...,9n,—1 and T1,T2,...,T, explicitly. First
we are going to prove the following

LEMMA 10. Let w be a rectangular diagram connected with the interlacing sequences
Y1y oy Yn—1 and T1,..., T, and center in c. Then for (z,y) = (z,w(x)) we have

()35
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Proof. The (3, a-transformation can be obtained as the superposition of the rotation of
diagram w about the center c by the angle —%, the dilation Dg ,, where for a, 8 > 0

Dg o (u,v) = (Bu,av), (u,v) € R2,

and the rotation about the center ¢ by the angle 7. Hence we get
T 1/1-1\ /80 11 x —c c
T3 .0 = -
() =200 02) G (6)+(0)) ()
_1(f+tapf-a)\lfz-c n c
T 2\fB-afB+a y 0

1<(B+a)(x—0)+(ﬁ—a)y+20>' ]

2\ B-a)@-o+(B+a)y
LEMMA 11. For the diagram w which is connected with the interlacing sequences yi, ...,
Yn_1 and T1,T2,...,T, and has center at ¢ we obtain
k—1

:Ek:axk—i—(ﬁ—a)Z(yj—xj)—i—(l—a)c,

<
—

k
gk =ay+(B—a)d (g —z)+(1—-a)ec
j=1

Proof. By Remark 3 we get

i = 3 (3 o+ 1))+ (on — w0 (o0) + (2= a = 5)

and because of (1) we get

N

—1

Ty = ;(ﬂ(0+2]§(ijj)) +a(2xk—c—2 (yjf:cj)) +(2fo<—ﬂ)c)

1

<.
Il

k—1
—azp+(B—a)) (y—a;)+(1-a)e
j=1
In a similar way we obtain the explicit formula for 7. m
REMARK 3. Let w be as in the previous lemma. For the specific choice of (w(m)) by

Lemma 10 we obtain

Tr==(B+a)(zx—c)+ (8 —a)w(zr)) + ¢,

N = DN =

((B+a)(yr—c) +(B—a)w(y)) +e
LEMMA 12. For B,a >0, 13 o is a multiplicative group:

Uk =

7—51,041 (7'527042 )= %1ﬁz,a1a2 .
Proof. The calculations are similar to the a-transformation case. m
COROLLARY 4. For o, 3 >0, Tg.o and Ty/51/, are inverses of each other.

We can also define the 73, -transformation of discrete, finitely supported measures

on R.
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DEFINITION 7. Let p be a finitely supported probability measure and let w be the diagram
such that the transition measure of w is equal to u. By the 3, a-transformation of the
measure (1 we mean the transition measure 7, it associated with the diagram whe,

EXAMPLE 4. For a one point measure ¢, we have
73,060 = 0q.

EXAMPLE 5. We compute the 3, a-transformation of a probability measure which is sup-
ported on two points. Let

w=7pdg+qdp, a<b, pg>0, p+qg=1
Then we have
r1=a, Y =qa+pb, 2x9=0>b c=pa+qb.
Hence
1 =aa+ (1 —a)e,

j1=P(qa+pb)+ (f-a)at(1-a)c

To =0,
which means that
13,0 b = 103, + [205,,
where
1 — U1 Ty — Y1
1= =———, 2 = =
xr1 — T2 Ty — 1

and we obtain

2ca — Bqa — Bpb — af b— Bga — Bpb — aB + aa + ca — ¢

or = 6 _ Op-
pra i b—aa—(1—a)c oot@ oe + b—aa—(1—a)c b
For a discrete probability y measure supported on z1,...,T,, namely u = 22:1 10z,
we have

THEOREM 13. The 3, a-transformation of discrete measure |1 is a measure [ o with the
Cauchy transform equal to
n—1 ~
—(z—r)
GH a (Z) = k_l—~a
. [Tzt (2 — 1)
where xy, belongs to the support of the measure p, yi are zeros of the Cauchy transform

of u and

e
|
—

Ir=axp+ (—a) (yj —z;) +(1—a)c,

<.
Il
—

-

gk =ays+(B—a)) (yj—z;)+(1-a)c

~
Il
-

fore=>ar — > y.

Moreover we can prove a result similar to Lemma 9:
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LEMMA 14. Dilations of measures commute with Tg o :

DA%,Q H= %,a D)\/J,

Proof. Similar to the a-transformation case. m
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