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Abstract. We define the speed of the curved Brownian bridge as a white noise distribution

operating on stochastic Chen integrals.

1. Introduction. Let us consider the Brownian motion over R: s → Bs. It is only

continuous. Nevertheless, there are a lot of reasons to consider it as a Gaussian measure

on the set of maps γ : [0, 1] → R

(1.1) dµ =
1

Z
exp

[

−
∫ 1

0

|d/dsγ(s)|2ds

]

dD(γ)

where dD(γ) is the formal Lebesgue measure on the set of paths.

This shows that it is interesting to define the speed of the Brownian path d/dsB(s).

There are several approaches to defining the speed of the Brownian motion:

• The first one is Hida Calculus. The speed of the flat Brownian path is defined as a

distribution on the space of Hida functionals ([Hi], [H.K.P.S], [O]). The symmetric Fock

space plays a big role in this theory.

• The stochastic Chen-Souriau Calculus is the second one. Léandre has replaced the

Brownian motion by the free loop space endowed with the B-H-K measure ([H-K], [Bi1]).

Léandre ([L5], [L6]) has defined the canonical Killing vector field generating the canonical

circle action on the continuous free loop space by using Chen-Souriau Calculus.

Our goal in this note is to define the speed d/dsγ(s) of the Brownian bridge on a

Riemannian compact manifold of dimension d, in the framework of Hida Calculus. We

use the idea of Getzler ([Ge]) to do a current theory on the loop space by using Chen

forms. By replacing Wiener chaos by Chen forms, Léandre ([L7], [L8])) has defined a

Feynman path integral on a manifold and has, in part, given a rigorous interpretation of

2000 Mathematics Subject Classification: Primary 58J65; Secondary 60H40.

Key words and phrases: speed of the curved Brownian bridge.

The paper is in final form and no version of it will be published elsewhere.

[299]



300 R. LÉANDRE

the considerations of Atiyah-Witten-Bismut about the relation between the structure of

the loop space and index theory ([At], [Bi1], [Bi2], [Bi3]).

We consider as in [L7] a Fock space associated to smooth 1-forms on the manifold,

the only difference with [L7] is that we consider the interacting Fock space of Accardi-

Bożejko (See [A.B]). We consider the stochastic Chen iterated integrals map of Jones-

Léandre ([J.L]), which associate to some Fock space a set of functionals F over the based

Brownian bridge dense in Lp, 1 ≤ p < ∞. If G is a functional on the Brownian bridge,

we can assimilate G to the map

(1.2) F → E[FG].

We consider a 1-form on ω on M and the functional Gt =
∫ t

0
〈ω(γ(s)), dγ(s)〉 on the

Brownian bridge (we consider a Stratonovitch integral). Our two main results are:

Theorem A. µt : F → E[FGt] defines an Hida distribution.

Theorem B. d/dtµt is an Hida distribution.

This explains that 〈ω(γ(t)), d/dtγ(t)〉 is a Hida distribution on the Brownian bridge.

In order to show Theorem B, we use shuffle products on Chen forms as well as some small

time asymptotics on the Brownian bridge. For that, we use Malliavin Calculus technics.

We refer to the surveys of Léandre ([L1]), Kusuoka ([Ku]) and Watanabe ([Wa]) about

this topic.

2. Fock space and stochastic Chen forms. Let M be a compact Riemannian man-

ifold with generic element x. Let Ω be the space of continuous functions from [0, 1] equal

to 0 at 0 and at 1 into the space of 1-forms on M . Let us denote such a form by ωt.

We consider on Ω variable Hilbert structures. Let dd∗ + d∗d = ∆ be the Laplacian

acting on ωt, t being frozen. And let ∇2
t be the square of the covariant derivatives in t.

Let ∆tot = −∇2
t + ∆. We define:

(2.1) ‖ω|2k =

∫ 1

0

dt

∫

M

〈(∆tot + 2)kω(t), ω(t)〉dmM

where dmM is the Riemannian measure on M . We get a Hilbert-Sobolev Hk space con-

veniently complexified. We consider the interacting Fock space of Accardi-Bożejko Λk,C

of Hk (See [A.B]). It is the space of

(2.2) σ̃ =
∑

σ̃n

where σ̃n ∈ (Hk)⊗n where we take the Hilbert norm:

(2.3) ‖σ̃‖2
k,C =

∑

Cn‖σ̃n‖2
H⊗n

k

n!.

Definition 2.1. The space S∞− of white noise functionals is ∩Λk,C . Its dual S−∞ is

called the space of Hida distributions.

An example of an element of the space of Hida functionals is a coherent vector:

(2.4) exp[ω] =
∑ ωn

n!
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where ω is smooth on [0, 1 × M . Let σn = ω1⊗ω2···⊗ωn

n! . We consider

(2.5) F (σn) =

∫

0<s1<···<sn<1

〈ω(s1, γ(s1)), dγ(s1)〉 · · · 〈ω(sn, γ(sn)), dγ(sn)〉

where s → γ(s) is the Brownian bridge starting from x and arriving at x time s = 1.

dγ(s) is the Stratonovitch differential.

If we consider the heat kernel pt(x, y) associated to the Laplace-Beltrami operator

on M , the law of the Brownian bridge dP is the unique measure on the continuous

loop space satisfying the following requirement: let 0 ≤ s1 < s2 < · · · < sn ≤ 1 and

γ → F (γ(s1), . . . , γ(sn)) be a cylindrical functional (F is smooth from Mn into R). We

have:

(2.6) E[F (γ(s1), . . . , γ(sn))] =
1

p1(x, x)

·
∫

Mn

ps1
(x, y1)ps2−s1

(y1, y2) . . . p1,sn
(yn, x)F (y1, . . . , yn)dmM (y1) · · · dmM (yn).

Moreover, s → γ(s) is a semi-martingale. We refer to [El], [I.W] and [Ma2] for material

about diffusion processes on manifolds.

By using Sobolev’s imbedding theorem, let us recall the following fact ([J.L], [L2])

called by Jones-Léandre Schwartz’s lemma ([Sc]):

(2.7) E[|F (σn)|p]1/p ≤ Cn

√
n!

∏

‖ωi‖k

for some big k. As a matter of fact, Jones-Léandre used another space: they consider the

Levi-Civita connection on S1 × M ∇. If ω(s, y) is considered as a 1-form on S1 × M ,

Jones-Léandre consider:

(2.8) ‖ω‖k,∞ = ‖ω‖ + ‖∇ω‖∞ + · · · + ‖∇kω‖∞
and show the estimate:

(2.9) E[|F (σn)|p]1/p ≤ Cn

√
n!

∏

‖ωi‖k,∞

But we have ([Gi]):

(2.10) ‖ω‖k,∞ ≤ C‖ω‖k′

Let ωj be an orthonormal basis common to each Hk. The ωj are of L2 norm 1. Let

J = (i1, . . . , i|J|) and let

(2.11) ωJ =
ωi1 ⊗ · · · ⊗ ωi|J|

|J |!
We write:

(2.12) ‖ωJ‖2
k =

∏

‖ωij
‖2

k

If σ̃ =
∑

λJωJ , we get by (2.7)

(2.13) E[|F (σ̃)|p]1/p ≤
∑

|λJ |
C |J|

√

|J |!
‖ωJ‖k
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ωj is associated to the eigenvalue λj of ∆tot + 2. We use the Cauchy-Schwarz inequality

in order to get:

(2.14) E[|F (σ̃)|p]1/p ≤ C‖σ̃‖k′,C′

(

∑

J

C
|J|
1

∏

ij∈J

(λ−k1

ij
)
)1/2

for some big k′, some big C ′ and some small C1 and some big k1. We arrange the λj ’s in

increasing order. Let us recall (see [Gi]) that λj ∼ Cjr for some r > 0. We deduce that

the constant in the right hand side of (2.13) is finite because it is equal to:

(2.15)
∑

n

Cn
1

(

∑

λ−k1

i

)n

< ∞

if k1 is big enough and C1 small enough. We deduce:

Theorem 2.1. The Chen iterated integral map F maps continuously S∞− into Lp.

Moreover:

Theorem 2.2. F (S∞−) is dense in Lp.

Proof. If g is a smooth function on M then

(2.16) g(γ(t)) − g(γ(0)) =

∫ t

0

〈dg(γ(s)), dγ(s)〉.

This yields the result.

Remark 2.1. If the forms ω in the definition of the stochastic Chen form don’t depend

on t, Theorem 2.2 is not true (but in cohomology, the result remains true: see [L4] for a

stochastic version of this classical result of Adams in algebraic topology [Ch]).

Our basic idea for the following is to identify a random variable (G)in L2 to the map

defined on S∞−

(2.17) σ̃ → E[GF (σ̃)] = µ(G)(σ̃).

By Theorem 2.2, this identification is consistent.

3. Shuffle product and theorem A

Theorem A. µ(G) the linear map which associates E[GF (σ̃)] to σ̃ belonging to S∞−

defines a white noise distribution.

Proof. We have by Hölder inequality for some p:

(3.1) µ(G)(σ̃) ≤ CE[F p(σ̃)]1/p ≤ C‖σ̃‖k,C

for some k and C. This gives the result.

If Gt =
∫ t

0
〈ω(γ(s)), dγ(s)〉, we can express µ(Gt) by using the coproduct on Chen

forms ([Ch]) and shuffle product. Let us consider ωJ as in the previous part, the normaliz-

ing factorial being excluded. We associate
∑

I F 1
t,I(ωJ )F 2

t,I(ωJ) where I = {i1, i2, . . . , i|I|}
and Ic = {i|I|+1, . . . , i|J|}. Moreover,

(3.2) F 1
t,I(ωJ) =

∫ t

0

〈ωi1(s1, γ(s1)), dγ(s1)〉 · · · 〈ωi|I|(s|I|, γ(s|I|)), dγ(s|I|)〉
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and

(3.3) F 2
t,I(ωJ ) =

∫

t<s|I|+1<···<s|J|<1

〈ωi|I|+1
(s|I|+1, γ(s|I|+1)), dγ(s|I|+1)〉 · · · 〈ωi|J|

, γ(s|J|), dγ(s|J|)〉.
It is the habitual coproduct for Chen iterated integrals ([Ch]): we use Stratonovitch

integrals. Let us recall that we have used integrals on the simplex, because we did not

divide by |J |! as in (2.8). F 1
t,I(ωJ ) is an integral on the simplex 0 < s1 < · · · < s|I| < t. We

consider the product GtF
1
t,I(ωJ ) as a sum over all segments I1 = {i1, i2, . . . , iI1

} included

in I of the iterated integrals

(3.4)

∫

0<s1<s2<···<s|I1|<s<s|I1|+1<···<s|I|<t

〈ωi1(s1, γ(s1)), dγ(s1)〉 · · ·

· 〈ωi|I1|
(s|I1|, γ(s|I1|)), dγ(s|I1|)〉 · · ·

· 〈ω(γ(s)), dγ(s)〉〈ωi|I1|+1
(s|I1|+1, γ(s|I1|+1)), dγ(s|I1|+1)〉

· · · 〈ωi|I|(s|I|), γ(s|I|)), dγ(s|I|)〉 = Gt,I1,I(ωJ ).

It is the traditional shuffle product of Chen iterated integrals ([Ch]). We get formally:

Lemma 3.1. We have the following decomposition formula:

(3.5) GtF (ωJ ) =
∑

I1⊆I⊆J

Gt,I1,I(ωJ )F 2
t,I(ωJ ).

4. Malliavin Calculus and theorem B. By Lemma 3.1,

(4.1) µt(F (σ̃) =
∑

J

λJ

∑

I1⊆I⊆J

E[Gt,I1,I(ωJ )F 2
t,I(ωJ)].

Let us suppose that t ∈ ]0, 1[. We gave the following lemma got by Malliavin Calculus.

Lemma 4.1. ∂
∂tE[Gt,I1,I(ωJ)F 2

t,I(ωJ )] is smaller than C|J|

(|I|!(|J|−|I|)!)1/2

∏

ij∈J ‖ωiJ
‖k for

some k and some C.

Proof. We condition in E[Gt,I1,I(ωJ )F 2
t,I(ωJ )] by γ(t). Let qt(y) be the density of the law

of γ(t): it depends smoothly from t ∈ ]0, 1[ and y. Let Ps,y,z be the law of the Brownian

bridge starting from y and arriving at time s at z. By proceeding as in [J.L], we get:

(4.2) E[Gt,I1,I(ωJ )F 2
t,I(ωJ )] =

∫

M

qt(y)dmM (y)Et,x,y[Gt,I1,I(ωJ)]E1−t,y,x[F 2
t,I(ωJ )].

We have to estimate ∂
∂tEt,x,y[Gt,I1,I(ωJ)] and ∂

∂tE1−t,y,x[F 2
t,I(ωJ )]. Since t ∈ ]0, 1[, the

considerations leading to the estimate of each term are very similar. Let us do the first

one.

We put t = ǫ2 following Molchanov ([Mo]) and we consider the Brownian motion γ(t)

between 0 and t as the Brownian motion γ(s)(ǫ) between 0 and 1, where γ(s)(ǫ) is given

by the Eells-Elworthy-Malliavin equation:

(4.3) dγ(s)(ǫ) = ǫτ (s)(ǫ)dB(s)

where τ (s)(ǫ)is the parallel transport along the path u → γ(u)(ǫ) for the Levi-Civita
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connection on the Riemannian manifold M and B(s) is a Brownian motion in the tangent

space at x of the Riemannian manifold (see [Bi1] and [L1] for this statement).

Gt,I1,I(ωJ ) is transformed into ǫ → Gǫ,I1,I(ωJ ) and is almost surely smooth in ǫ.

Moreover dr

dǫr Gǫ,I1,I(ωJ ) is bounded in all the Sobolev spaces of Malliavin Calculus. We

consider the measure νǫ:

(4.4) f → E[Gǫ,I1,I(ωJ )f(γ(1)(ǫ))].

It has a density smooth in ǫ > 0, by using Malliavin Calculus technics (see the surveys

[L1], [Ku] and [Wa]). Moreover the derivative in ǫ > 0 of the density of νǫ is smaller than
C|I|√
|I|!

∏

ij∈I ‖ωij
‖k for some k (see [L1], (L2]). But this density is nothing else than

(4.5) E[Gǫ,I1,I(ωJ )|γ(1)(ǫ) = y]pǫ2(x, y)

and pǫ2(x, y) has bounded derivatives in ǫ > 0.

Theorem B.1. If t ∈ ]0, 1[, ∂
∂tµt is a white noise distribution.

Proof. We have:

(4.6)
∂

∂t
µt(F (σ̃)) =

∑

J

λJ

∑

I1⊆I⊆J

∂

∂t
E[Gt,I1,I(ωJ )F 2

t,I(ωJ )].

In absolute value, it is smaller than:

(4.7)
∑

J

|λJ |
C |J|

√

|I|!
∏

ij∈J

‖ωij
‖k.

We conclude as in Theorem 2.1.

We would like to show that Theorem B is still true for t = 0 (or equivalently in t = 1).

We remark that E[|Gt,I1,I |] = o(t) when t → 0 if I has a length larger than 2. So

it is enough to consider the case where I is reduced to a singleton or to the empty set.

Moreover, if y and x are not close, we have in short time pt(x, y) ≤ exp[−C/t] for some

C > 0. Let us do the asymptotic expansion of the density of the measure νǫ when ǫ → 0.

By the previous considerations, we can work in normal coordinates around x. We do the

following rescaling in normal coordinates, γ(1)(ǫ) → γ(1)(ǫ)−x
ǫ which tends when ǫ → 0

in all the Sobolev spaces of Malliavin Calculus to a non-degenerate Gaussian variable

on Tx(M). But we are interested in the asymptotic expansion for y 6= x. In order to

simplify the exposition, we consider the Brownian motion written in Schwartz form in a

neighborhood of x

(4.8) dγ(s)(ǫ) = ǫ
d

∑

i=1

Xi(γ(s)(ǫ))dBi
s + ǫ2X0(γ(s)(ǫ))ds

for some smooth vector fields in the neighborhood of x. We consider, if x and y are close,

the equation of the unique geodesic joining x to y

(4.9) dγ(s)(0, h) =

d
∑

i=1

Xi(γ(s)(0, h))hi
sds

We do the translation ǫdB → ǫdB + dh for the previous h (x and y are close).
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Gǫ,I1,I(ωJ )is replaced by G̃I1,I(ωJ )(ǫdB+dh) and we get a Cameron-Martin-Girsanov-

Martin term in exp[−d2(x, y)/2ǫ2] exp[−〈h1, B1〉/ǫ]. γ(1)(ǫ) is replaced by γ(1)(ǫ, h) such

that γ(1)(0, h) = y and such that ∂
∂ǫγ(1)(0, h) = 0 implies

∫ 1

0
〈hs, dBs〉 = 0 ([L1]). After

rescaling γ(1)(ǫ, h) by γ(ǫ,h)−y
ǫ , we get an asymptotic expansion of the density of νǫ where

only even powers of ǫ remain, because the expectation of an odd expression for a Gaussian

measure of average 0 is equal to 0.

More precisely, if I = i0, we get the asymptotic expansion of the density of νǫ in

(4.10) ǫ−d(B0(y) + ǫ2B1(y) + O(ǫ4)) exp

[

−d2(x, y)

2ǫ2

]

where d2(x, y) is the Riemannian distance between x and y, d the dimension of the

manifold and B0(y) = G̃I1,I(ωJ)(dh) is a quadratic expression when y → x. If we replace

ǫ2 by t, we get an asymptotic expansion

(4.11) ct(x, y) = t−d/2(B0(y) + tB1(y) + O(t2)) exp

[

−d2(x, y)

2t

]

.

The integral of the term in B0(y) tends to 0 when t → 0, because B0(y) is quadratic and

behaves in tC(x) after doing the rescaling in the Gaussian integral of y in
√

ty, and we

deduce that the time derivative in t = 0 is given by B1(x) + C(x).

If I = ∅, we do the asymptotic expansion of B0(y). The boring term, which cannot

be handled by the previous consideration, is 〈ω(x), y〉. We have to compute the time

derivative in t = 0 of

(4.12)

∫

B

〈ω(x), y〉 exp

[

−|y|2
2t

]

dy

for a compact neighborhood of 0 in Tx(M), because d(x, y) = |y| in normal coordinates

(x is assimilated to 0 in normal coordinates). But this time the derivative is trivially 0.

This shows us that:

(4.13)

∣

∣

∣

∣

∂

∂t
E[Gt,I1,I(ωJ )F 2

t,I(ωJ)]|t=0

∣

∣

∣

∣

≤ C |I|

√

|I|!
∏

ij∈J

‖ωij
‖k.

We conclude as before that:

Theorem B.2. ∂
∂tµt is a white noise distribution at t = 0 and t = 1.

Remark 4.1. We could replace Gt by
∫ t

0
〈ω(s, γ(s)), dγ(s)〉. This leads to some consis-

tency problem. If ω(t, .) = 0 in t, the time derivative in t of µs is equal to 0. Namely, in

such a case, we have for all p > 1

(4.14) |E[(Gt+∆t − Gt)F (σ̃)]| ≤ (∆t)3/2‖F (σ̃)‖Lp .

This yields the result.
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[L2] R. Léandre, Cohomologie de Bismut-Nualart-Pardoux et cohomologie de Hochschild

entière, in: Séminaire de Probabilités XXX in honour of P. A. Meyer and J. Neveu,

J. Azéma et al. (eds.), Lect. Notes. Math. 1626, Springer, Heidelberg, 1996, 68–100.
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