
QUANTUM PROBABILITY

BANACH CENTER PUBLICATIONS, VOLUME 73

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2006

QUANTUM STOCHASTIC CONVOLUTION COCYCLES�ALGEBRAIC AND C∗-ALGEBRAICJ. MARTIN LINDSAY and ADAM G. SKALSKIDepartment of Mathemati
s and Statisti
s, Lan
aster UniversityLan
aster LA1 4YF, U.K.E-mail: j.m.lindsay�lan
aster.a
.uk, a.skalski�lan
aster.a
.uk
Abstra
t. We summarise re
ent results 
on
erning quantum sto
hasti
 
onvolution 
o
y
les intwo 
ontexts�purely algebrai
 and C

∗-algebrai
. In ea
h 
ase the 
lass of 
o
y
les arising asthe solution of a quantum sto
hasti
 di�erential equation is 
hara
terised and the form takenby the sto
hasti
 generator of a *-homomorphi
 
o
y
le is des
ribed. Throughout the paper a
ommon viewpoint on the algebrai
 and C
∗-algebrai
 situations is emphasised; the �nal se
tiontreats the unifying example of 
onvolution 
o
y
les on full 
ompa
t quantum groups.Introdu
tion. Sto
hasti
 
o
y
les on operator algebras are basi
 obje
ts of interest inquantum sto
hasti
 analysis ([L℄) and in the study of more general non
ommutative whitenoise ([HKK℄); their importan
e in quantum probability was �rst re
ognised in [A

℄.There is a well developed theory of quantum Lévy pro
esses ([ASW℄, [Fra℄, [S
h℄), thatis, stationary, independent in
rement, *-homomorphi
 pro
esses on *-bialgebras. Closeexamination of these two areas naturally leads to the notion of quantum sto
hasti
 
on-volution 
o
y
le on a quantum group (or, more generally, on a 
oalgebra), as introdu
edin [LS1℄. There it is shown that, as with `standard' quantum sto
hasti
 
o
y
les ([LW1℄),quantum sto
hasti
 
onvolution 
o
y
les arise as solutions of non
ommutative sto
hasti
di�erential equations. Indeed, all su�
iently regular 
onvolution 
o
y
les arise in thisway. Although the results of [LS1℄ are formulated in a purely algebrai
 
ontext, theymay be extended to the 
ase of 
ompa
t quantum groups, and many of them to oper-ator spa
e 
oalgebras (see [LS3℄). For this some te
hni
al results 
on
erning quantumsto
hasti
 di�erential equations with nontrivial initial 
onditions are required ([LS2℄).2000 Mathemati
s Subje
t Classi�
ation: Primary 81S25; Se
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hasti
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314 J. M. LINDSAY AND A. G. SKALSKIOur aim here is to give a �avour of these re
ent results. No attempt is made to formu-late theorems in the greatest possible generality; proofs will appear elsewhere. Quantumsto
hasti
 
onvolution 
o
y
les may be 
onsidered in two di�erent 
ategories, namely al-gebrai
 and operator-spa
e theoreti
. Although the available te
hniques are di�erent inea
h 
ase, we seek to show that these 
onvolution 
o
y
les may fruitfully be 
onsideredfrom a 
ommon viewpoint. This has in�uen
ed the plan of the paper. The �rst se
tionsets out our notation, and re
alls some quantum sto
hasti
 lore. In the se
ond se
tion a�exible de�nition of su
h 
o
y
les is given, together with their basi
 properties, 
overingboth the algebrai
 and the C∗-algebrai
 
ases. This se
tion also shows how 
onvolution
o
y
les may be obtained by solving 
oalgebrai
 quantum sto
hasti
 di�erential equa-tions, moreover the form taken by the sto
hasti
 generator of a unital *-homomorphi

o
y
le (due to S
hürmann) is re
alled. Results for the algebrai
 
ase are given in thethird se
tion; those for the C∗-algebrai
 
ases in the fourth. In the �nal se
tion we brie�ypresent the 
ase where both algebrai
 and C∗-algebrai
 
onvolution 
o
y
les 
oexist onthe same underlying spa
e, namely the 
ase of full 
ompa
t quantum groups.In view of spa
e limitations, we do not dis
uss generalisations to 
ompa
t quantumhypergroups, the stru
ture of generators of 
ompletely positive, 
ontra
tive 
onvolution
o
y
les, or dilations of su
h 
o
y
les on a C∗-bialgebra to quantum Lévy pro
esses ([S℄).Currently the main remaining 
hallenge in these developments is the extension of theresults to the 
ontext of lo
ally 
ompa
t quantum groups ([KuV℄, [Kus℄). This presentsserious te
hni
al di�
ulties. At the root of these is an insu�
ient understanding of theinterplay between operator spa
e theory on the one hand, and multiplier algebras withtheir stri
t topology on the other.1. Preliminaries. In this se
tion we set out our notation and re
all some quantumsto
hasti
 theory ([Hud℄, [Mey℄, [Par℄; we follow [L℄). �Quantum sto
hasti
� will usuallybe abbreviated to QS.General notations. All ve
tor spa
es in this note are 
omplex and inner produ
ts arelinear in their se
ond argument. Let h be a Hilbert spa
e. For a fun
tion f : R+ → h andsubinterval I of R+, fI denotes the fun
tion R+ → h whi
h agrees with f on I and iszero outside I (
f. standard indi
ator-fun
tion notation). This 
onvention also applies tove
tors, by viewing them as 
onstant fun
tions�for example
ξ[s,t[, for ξ ∈ h and 0 ≤ s < t.Now let E be a dense subspa
e of h. The following notation will be employed:

Ê := Lin{ξ̂ : ξ ∈ E}, where ξ̂ :=

(
1

ξ

)
∈ ĥ := C ⊕ h,and

|E〉 := {|ξ〉 : ξ ∈ E}, where |ξ〉 : C → h is the map λ 7→ λξ.Thus Ê is a dense subspa
e of ĥ and |E〉 is a dense subspa
e of B(C; h). Next let O(E)denote the ve
tor spa
e of operators on h with domain E and de�ne subspa
es of O(E)



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 315as follows:
O‡(E) := {T ∈ O(E) : DomT ∗ ⊃ E},

Oinv(E) := {T ∈ O(E) : RanT ⊂ E} and(1)
O∗(E) := {T ∈ O‡(E) : T, T † ∈ Oinv(E)}.Here �inv� stands for invariant, and the dagger notation is(2) T † := T ∗|Efor T ∈ O‡(E). Thus O‡(E) is an involutive ve
tor spa
e, with involution given by (2),and O∗(E) is a unital *-algebra; the former following from the in
lusion Dom(S+λT )∗ ⊃

DomS∗ ∩ DomT ∗. Operator 
omposition O‡(E) ×Oinv(E) → O(E) extends to orderedpairs (S, T ) in O‡(E) ×O(E) for whi
h Dom(S†)∗ ⊃ RanT , as follows:(3) S · T := (S†)∗T.This partially de�ned produ
t is bilinear in an obvious sense.For ve
tors ζ ∈ h, η ∈ E and ve
tor spa
e V de�ne a map Ωζη : V ⊗O(E) → V by(4) Ωζη(x⊗ T ) = 〈ζ, Tη〉x(x ∈ V, T ∈ O(E)), extended linearly. For an operator spa
e V and ve
tors ζ, η ∈ h, thesame notation is used for the 
ompletely bounded map from the spatial tensor produ
t
V ⊗ B(H) to V, given by 
ontinuous linear extension of the pres
ription (4). Finally,ampliations are denoted

ιh : B(H) → B(H ⊗ h), T 7→ T ⊗ Ih,Fo
k spa
e notations. Let k be a �xed Hilbert spa
e, 
alled the noise dimension spa
e.The Hilbert spa
e L2(R+; k) is denoted K, F denotes the symmetri
 Fo
k spa
e over Kand her exponential ve
tors are written ε(f) (f ∈ K). Also write FJ when R+ is repla
edby a subinterval J . For a subset D of k and subinterval J of R+, de�ne SD,J := {f ∈ S :

f is D-valued and vanishes outside J}, where
S := Lin{d[0,s[ : d ∈ k, s ∈ R+}.Also de�ne a 
orresponding subspa
e of FJ :
ED,J := Lin{ε(f) : f ∈ SD,J},dropping subs
ripts when D = k, respe
tively J = R+. If D is total in k and 
ontains 0then the subspa
e ED is dense in F . For us D will be a dense subspa
e of k. It is often
onvenient to suppress ampliations by exploiting the exponential property of Fo
k spa
e.Thus, for example, O(ED,[a,b[) may be viewed as a subspa
e of O(ED) through the map

T 7→ I ⊗ T ⊗ I, where the identity operators are on F[0,a[ and F[b,∞[ respe
tively. TheCCR �ow of index k, de�ned in terms of the se
ond quantisation of the shift on K, isdenoted σ = (σt)t≥0. These extend to maps of unbounded operators. Thus, suppressingampliations, σs(O(ED,J)) = O(ED,J+s).QS pro
esses. Let D be a dense subspa
e of the noise dimension spa
e k. Elements of
ED will play the role of test fun
tions. By an operator pro
ess we understand a family
X = (Xt)t≥0 of operators on F , ea
h having the (dense) domain ED, being weak-operator



316 J. M. LINDSAY AND A. G. SKALSKImeasurable in t and adapted to the natural Fo
k-spa
e operator-�ltration. Thus X :

R+ → O(ED), t 7→ Xtξ is weakly measurable for all ξ ∈ ED and, for ea
h t ≥ 0,
Xt ∈ O(ED,[0,t[)⊗ I where the identity is on F[t,∞[. The linear spa
e of all su
h pro
essesis denoted P(ED). For a dense subspa
e E of a Hilbert spa
e h, P(E ⊗ ED) is de�nedsimilarly and we speak of h-pro
esses. The 
olle
tion of pro
esses X ∈ P(E ⊗ED) havinga 
onjugate pro
ess in P(E⊗ED) (i.e. a pro
ess X† ∈ P(E⊗ED) for whi
h DomX∗

t ⊃ X
†
t(t ∈ R+)) is denoted P‡(E ⊗ ED). Finally let V be a ve
tor spa
e. Linear maps from Vto P(ED) are 
alled pro
esses on V with domain ED and the set of all su
h pro
esses on

V is written P(V, ED).QS di�erential equations with fun
tional as initial 
ondition. For linear maps κ : V → Cand φ : V → V ⊗O(D̂) (or V → V ⊗B(k̂) with spatial tensor produ
t, if V is an operatorspa
e), 
onsider the quantum sto
hasti
 di�erential equation(5) dkt = k̂t ◦ φ dΛt, k0 = ιF ◦ κ.By a weak solution of this equation (with domain ED) we understand a pro
ess k ∈

P(V, ED) su
h that
〈ε(f), (kt(x) − κ(x)1F)ε(g)〉 =

∫ t

0

〈ε(f), (ks ◦ Ω
f̂(s)
ĝ(s) ◦ φ)(x)ε(g)〉ds(t ≥ 0, x ∈ V, f, g ∈ SD). If there is a quantum sto
hasti
ally integrable k̂-pro
ess K on V ,with domain D̂ ⊗ ED, satisfying

Ω
ζ⊗ε(f)
η⊗ε(g) ◦Kt = Ω

ε(f)
ε(g) ◦ kt ◦ Ωζη(ζ, η ∈ D̂, f, g ∈ SD, t ≥ 0), then k is 
alled a strong solution.2. Quantum sto
hasti
 
onvolution 
o
y
les. For this se
tion `spa
e', `map' and ⊗mean respe
tively spa
e, map and tensor produ
t of the appropriate 
ategory. Thus inthe algebrai
 
ase these are respe
tively ve
tor spa
es, linear maps, and algebrai
 tensorprodu
ts, whereas in the C∗-algebrai
 
ase they are operator spa
es, 
ompletely boundedmaps and spatial tensor produ
ts.*-Bialgebras. The idea of 
onsidering quantum sto
hasti
 
onvolution 
o
y
les originatesin the theory of quantum Lévy pro
esses, the non
ommutative 
ounterpart of 
lassi
alLévy pro
esses on groups. As usual in non
ommutative mathemati
s, in order to `quan-tise' one fo
uses on the appropriate 
lass of fun
tions on the underlying set of the 
lassi
alstru
ture. Then we see that quantum sto
hasti
 
onvolution 
o
y
les should `a
t on' ageneralisation of the algebra of 
omplex-valued fun
tions on a group (or, to be more pre-
ise, semigroup with identity), namely on a *-bialgebra. By this we understand a unital*-algebra (respe
tively C∗-algebra) A, equipped with 
ompatible 
oalgebrai
 stru
ture,that is, unital *-homomorphisms

∆ : A → A⊗A and ǫ : A → C,
alled 
omultipli
ation and 
ounit respe
tively, satisfying(6) (∆ ⊗ idA) ◦ ∆ = (idA ⊗ ∆) ◦ ∆ and(7) (ǫ⊗ idA) ◦ ∆ = (idA ⊗ ǫ) ◦ ∆ = idA.



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 317Coalgebrai
 stru
ture entails a 
onvolution on maps, as follows. Let U , V and W bespa
es for whi
h there is a natural mapM : U⊗V →W , for example V = C andW = U .Then maps ψ : A → U and χ : A → V determine a map
ψ ⋆ χ := M ◦ (ψ ⊗ χ) ◦ ∆ : A →WAs an example of this notation observe that equations (6) and (7) may be expressed asfollows:

∆ ⋆ idA = idA ⋆∆, respe
tively ǫ ⋆ idA = idA ⋆ ǫ = idA.In these 
ases the natural maps are the following obvious maps: (A⊗A)⊗A → A⊗A⊗A,A⊗ (A⊗A) → A⊗A⊗A, C ⊗A → A and A⊗ C → A respe
tively.Definition. A family {µt : t ≥ 0} of maps A → C is 
alled a 
onvolution semigroup offun
tionals if
µ0 = ǫ and µs+t = µs ⋆ µt for all s, t ≥ 0.The 
oalgebrai
 stru
ture of A fa
ilitates another algebrai
 operation on maps, de�nedas follows. For any spa
e V and map ψ : A → V de�ne a map

Rψ : A → A⊗ Vby the formula:
Rψ = (idA ⊗ ψ) ◦ ∆ = idA ⋆ ψ.Su
h maps are known as 
onvolution operators. The R-map itself has a left inverse:

(ǫ⊗ idV ) ◦Rψ = ψ.Spe
ialising again to maps A → C, it is easily seen that the R-map intertwines 
onvolutionand 
omposition: for maps λ, µ : A → C,(8) Rλ ◦Rµ = Rλ⋆µ.Remark. Readers may re
ognise, in the above, generalisations of standard notions andoperations from the theory of 
lassi
al probability on algebrai
 stru
tures ([Gre℄, [Hey℄).For example Rλ 
orresponds to the so-
alled probability operator of a probability measureon a group.QS 
onvolution 
o
y
les. Let (A,∆, ǫ) be a *-bialgebra and let D be a �xed dense sub-spa
e of the noise dimension spa
e k.Definition. A quantum sto
hasti
 
onvolution 
o
y
le (on A with domain ED) is apro
ess l ∈ P(A, ED) su
h that, for s, t ≥ 0,
ls+t = ls ⋆ (σs ◦ lt) and l0 = ιF ◦ ǫ.The �rst of these 
onditions is referred to as the 
onvolution in
rement property. Thenatural produ
t in the de�nition of the 
onvolution here is given by the identi�
ation

O(ED,[0,s[) ⊗ O(ED,[s,s+t[) = O(ED,[0,s+t[) in the algebrai
 
ase, and by the in
lusion
B(F[0,s[) ⊗B(F[s,s+t[) ⊂ B(F[0,s+t[) in the C∗-algebrai
 
ase.With ea
h QS 
onvolution 
o
y
le l one may asso
iate a family of 
onvolution semi-groups in the following way: for ea
h c, d ∈ D de�ne(9) λ

c,d
t (a) = 〈ε(c[0,t[), lt(a)ε(d[0,t[)〉e

−t〈c,d〉



318 J. M. LINDSAY AND A. G. SKALSKI(a ∈ A, t ≥ 0). It is easily 
he
ked that {λc,dt : t ≥ 0} is a 
onvolution semigroup offun
tionals. Moreover the 
onvolution 
o
y
le l is determined by this family, whi
h werefer to as its asso
iated 
onvolution semigroups (of fun
tionals). This is a 
onsequen
e ofthe following fa
t, whi
h uses the 
onvention that step fun
tions in S are right-
ontinuous.For any f, g ∈ SD, a ∈ A and t ≥ 0,(10) 〈ε(f[0,t[), lt(a)ε(g[0,t[)〉 = (λc0,d0t1−t0
⊗ · · · ⊗ λ

cn−1,dn−1

tn−tn−1
)(∆n−1(a))e

〈f[0,t[,g[0,t[〉,where 0 = t0 ≤ t1 < . . . ≤ tn = t 
ontains all the dis
ontinuities of f and g in [0, t],
c0 = f(t0), d0 = g(t0), . . . , cn−1 = f(tn−1) and dn−1 = g(tn−1). Here ∆n : A → A⊗(n+1)is de�ned re
ursively by

∆0 := idA, ∆1 := ∆, ∆i+1 := ∆i ⋆ idA for i ≥ 1.Exa
tly as was the 
ase for 
onvolution semigroups of fun
tionals (see equation (8)),the 
onvolution operator/R-map transforms QS 
onvolution 
o
y
les into QS 
o
y
les.To be more pre
ise, for a given QS 
onvolution 
o
y
le l, de�ne kt = Rlt for ea
h t ≥ 0.Then, for s, t ≥ 0,
ks+t = k̂s ◦ (σs ◦ kt), k0 = ιF ,where k̂s is a 
ertain extension of ks, de�ned pre
isely in [LW1℄. This 
orresponden
eremains valid at the level of asso
iated semigroups; due to this many results of [LW1℄have 
ounterparts in the 
onvolution 
ontext. The 
orresponden
e is also 
ru
ial for theproofs of the theorems in Se
tion 4.The above de�nition of a QS 
onvolution 
o
y
le generalises naturally by repla
ingthe 
ounit in the initial 
ondition by an idempotent fun
tional. By this we mean a linearfun
tional χ : A → C satisfying

χ ⋆ χ = χ.This is relevant, for example, in the 
ontext of Lévy pro
esses on quantum hypergroups([FrS℄).Coalgebrai
 QS di�erential equations, Quantum sto
hasti
 
onvolution 
o
y
les on A are
onstru
ted by solving QS di�erential equations of the following kind(11) dlt = lt ⋆τ dΛϕ(t), l0 = ιF ◦ ǫ(τ indi
ating the tensor �ip reversing the order of the spa
es k̂ and F), for a map ϕ : A →

O(D̂) (or A → B(k̂)). A pro
ess l ∈ P(A, ED) being a weak solution of this equation (withdomain ED) is equivalent to l weakly satisfying the `standard' QS di�erential equation (5)in whi
h
φ = Rϕ and κ = ǫ.Remark. In the algebrai
 
ase, this reads

〈ε(f), (lt(a) − ǫ(a)IF)ε(g)〉 =

∫ t

0

〈ε(f), ls(a(1))ε(g)〉〈f̂(s), ϕ(a(2))ĝ(s)〉 ds,in whi
h the Sweedler notation a(1) ⊗ a(2) is used for ∆a ([Swe℄).



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 319An important observation here is that if l satis�es su
h a QS di�erential equation, thenthe generators of the asso
iated 
onvolution semigroups of l, de�ned (for ea
h c, d ∈ D)by
γc,d(a) = lim

t→0+

1

t
(λc,dt (a) − ǫ(a)), a ∈ A,satisfy(12) γc,d(a) = 〈ĉ, ϕ(a)d̂〉.This fa
t is key for determining 
lasses of 
o
y
les arising in this way. Spe
i�
 
onditions,assuring the existen
e of a solution, or for 
hara
terising the type of sto
hasti
ally gen-erated 
o
y
les, will be given in the following se
tions�separately for the algebrai
 and

C∗-algebrai
 
ases.*-Homomorphi
 
onvolution 
o
y
les. It was S
hürmann who observed that the sto
hasti
generators of quantum Lévy pro
esses a
ting on a Fo
k spa
e (i.e. unital *-homomorphi
QS 
onvolution 
o
y
les, in the terminology of this note) are given by triples of mapssatisfying 
ertain stru
ture relations.Definition. Following Meyer, a triple (γ, δ, ρ) 
onsisting of a unital *-homomorphism
ρ : A → O∗(D) (or A → B(k)), a ρ-ǫ-derivation, that is, a map δ : A → |D〉 (or A → |k〉),satisfying

δ(ab) = δ(a)ǫ(b) + ρ(a)δ(b),and a map γ : A → C satis�ng
γ(a∗b) = γ(a)∗ǫ(b) + ǫ(a)∗γ(b) + δ(a)∗δ(b),is 
alled a S
hürmann triple on A.For a map ϕ : A → O∗(D̂) (or A → B(k̂)) the following are equivalent:(i) ϕ has blo
k matrix form [

γ δ†

δ ρ− ιk ◦ ǫ

]
,where (γ, δ, ρ) forms a S
hürmann triple;(ii) ϕ satis�es(13) ϕ(1) = 0 and, for a, b ∈ A, ϕ(a∗b) = ϕ(a)∗ǫ(b) + ǫ(a)∗ϕ(b) + ϕ(a)∗∆QSϕ(b).Here ∆QS ∈ B(k̂) denotes the orthogonal proje
tion with range {0}⊕ k, not a 
oprodu
t!In the algebrai
 
ase S
hürmann showed that, under these 
onditions, the QS di�erentialequation (11) has a unique *-homomorphi
 and unital solution. The fun
tional γ is real,vanishes at 1A and is 
onditionally positive, that is, positive on the positive part of thekernel of the 
ounit. These 
onditions 
hara
terise generators γ of abstra
t quantum Lévypro
esses and, for any su
h fun
tional, a GNS-type 
onstru
tion yields a pre-Hilbert spa
e

D′ and map ϕ′ ∈ O∗(D̂′) satisfying (13). This leads to the S
hürmann Re
onstru
tionTheorem�every quantum Lévy pro
ess may be re
onstru
ted (up to equivalen
e) fromits generator ([S
h℄).The following remark 
onne
ts our approa
h to S
hürmann's (see Theorem 3.3 below).



320 J. M. LINDSAY AND A. G. SKALSKIRemark. The invarian
e 
ondition on ϕ and ρ may be dropped: if ϕ : A → O‡(D̂),respe
tively ρ : A → O‡(D), then the above equivalen
e endures with ρ being real andweakly multipli
ative (that is, *-homomorphi
 with respe
t to the involution and produ
tde�ned in (2) and (3)).3. Algebrai
 
ase. In this se
tion `spa
es' and `maps' are ve
tor spa
es and linear maps,tensor produ
ts are algebrai
 and A is a *-bialgebra. The following existen
e theorem isproved with the help of the Fundamental Theorem on Coalgebras.Theorem 3.1. Let ϕ ∈ L(A;O(D̂)). Then the equation
dlt = lt ⋆τ dΛϕ(t), l0 = ιF ◦ ǫ,has a unique weak solution in P(A, ED), it is a quantum sto
hasti
 
onvolution 
o
y
leand is a
tually a strong solution; we denote it lϕ.The following notation is useful for 
apturing ne
essary and su�
ient 
onditions foran algebrai
 QS 
onvolution 
o
y
le to be `sto
hasti
ally generated'.

PHc(ED) := {X ∈ P(ED) : ∀ξ∈ED
t 7→ Xtξ is lo
ally Hölder-
ontinuous with exponent 1

2},

P
‡
Hc(ED) := {X ∈ P

‡(ED) : X,X† ∈ PHc(ED)},

PHc(A, ED) := L(A; PHc(ED)) and P
‡
Hc(A, ED) := L(A; P‡

Hc(ED)).We refer to pro
esses in PHc(A, ED) as Hölder-
ontinuous pro
esses. Continuous pro
essesare de�ned analogously. Re
all the operator notation introdu
ed in (1).Theorem 3.2. Let k ∈ P(A, ED). Then the following are equivalent:(i) k is a quantum sto
hasti
 
onvolution 
o
y
le in P
‡
Hc(A, ED);(ii) k = lϕ for some ϕ ∈ L(A;O‡(D̂)).The sto
hasti
 generators of *-homomorphi
 
o
y
les are 
hara
terised next.Theorem 3.3. Let l = lϕ where ϕ ∈ L(A;O‡(D̂)). Then the following are equivalent:(i) l is real, weakly multipli
ative and unital;(ii) ϕ satis�es the stru
ture relations (13).4. C∗-Algebrai
 
ase. In this se
tion `spa
es' and `maps' are operator spa
es and
ompletely bounded maps; tensor produ
ts are spatial; and A is a C∗-bialgebra, thatis a C∗-algebra with (topologi
al) *-bialgebra stru
ture. Being *-homomorphisms, the
omultipli
ation and 
ounit are automati
ally 
ompletely bounded. As the sto
hasti
generators we 
onsider are everywhere de�ned, we take D = k. However, sin
e solutionsof QS di�erential equations need not be bounded, we need a further de�nition. Re
allthat E abbreviates Ek.Definition. A pro
ess l ∈ P(A, E) is 
alled a weak quantum sto
hasti
 
onvolution 
o-
y
le if ea
h fun
tional de�ned by (9) is 
ontinuous and the identities (10) hold.For the te
hni
al de�nitions and 
orresponding results for `standard' 
o
y
les and QSdi�erential equations see [LW1−3℄, or [L℄. The basi
 existen
e theorem for solutions of QSdi�erential equations in our 
ontext is the following.



QUANTUM STOCHASTIC CONVOLUTION COCYCLES 321Theorem 4.1. Let φ : A → A⊗B(k̂) and κ : A → C be 
ompletely bounded linear maps.Then the QS di�erential equation (5) has a unique weakly regular weak solution on E ; itis a
tually a 
b-strongly regular strong solution.Remark. Complete boundedness for κ is equivalent to boundedness.Theorem 4.2. Let ϕ ∈ CB(A;B(k̂)). The QS di�erential equation
dlt = lt ⋆τ dΛϕ(t), l0 = ιF ◦ ǫ,has a unique weakly regular weak solution, again denoted lϕ; it is a weak QS 
onvolution
o
y
le.As the 
oe�
ients of the QS di�erential equations 
onsidered above are 
ompletelybounded, identity (12) implies that the generators of ea
h asso
iated 
onvolution semi-group of the 
o
y
le lϕ must be norm bounded; in turn this implies norm 
ontinuity forthese semigroups and naturally leads to the next de�nition.Definition. A 
ompletely bounded QS 
onvolution 
o
y
le is Markov-regular if its as-so
iated 
onvolution semigroup of fun
tionals {λ0,0

t : t ≥ 0} is norm 
ontinuous.Remark. For a 
ompletely 
ontra
tive QS 
onvolution 
o
y
le, all its asso
iated 
onvo-lution semigroups are norm 
ontinuous if one of them is (
f. `standard' 
o
y
les - [LW1℄).Theorem 4.3. Let l ∈ P(A, E) be a 
ompletely positive, 
ontra
tive and Markov-regularQS 
onvolution 
o
y
le. Then there is a unique map ϕ ∈ CB(A;B(k̂)) su
h that l = lϕ.The form of `sto
hasti
 generator' of a *-homomorphi
 
onvolution 
o
y
le is nowexa
tly the same as before�algebrai
 
onditions implying analyti
 ones.Theorem 4.4. Let ϕ ∈ L(A;B(k̂)). Then the following are equivalent:(i) ϕ is 
ompletely bounded and lϕ is *-homomorphi
 and unital;(ii) ϕ satis�es the stru
ture relations (13).5. Co
y
les on full 
ompa
t quantum groups. A 
on
ept of 
ompa
t quantumgroups was introdu
ed by Woronowi
z, in [Wor1℄. For our purposes it is most 
onvenientto adopt the following de�nition. Tensor produ
ts here are spatial/minimal.Definition ([Wor2℄). A 
ompa
t quantum group is a pair (A,∆), where A is a unital
C∗-algebra and ∆ : A → A ⊗ A is a unital *-homomorphi
 map whi
h is 
oasso
iativeand satis�es the quantum 
an
ellation properties:

Lin(1A ⊗ A)∆(A) = Lin(A ⊗ 1A)∆(A) = A ⊗ A.For the 
on
ept of Hopf *-algebras and their unitary 
orepresentations, as well asunitary 
orepresentations of 
ompa
t quantum groups, we refer the reader to [KlS℄. Forour purposes it is su�
ient to note the fa
ts 
ontained in the following theorem.Theorem 5.1 ([Wor1℄). Let A be a 
ompa
t quantum group and let A denote the linearspan of the matrix 
oe�
ients of irredu
ible unitary 
orepresentations of A. Then A is adense *-subalgebra of A, the 
oprodu
t of A restri
ts to an algebrai
 
oprodu
t ∆0 on Aand there is a natural 
ounit ǫ and 
oinverse S on A whi
h makes it a Hopf *-algebra.



322 J. M. LINDSAY AND A. G. SKALSKIRemark ([BMT℄). In the above theorem (A,∆0, ǫ,S) is the unique dense Hopf *-sub-algebra of A, in the following sense: if (A′,∆′
0, ǫ

′,S ′) is a Hopf *-algebra in whi
h A′ isa dense *-subalgebra of A and the 
oprodu
t of A restri
ts to an algebrai
 
oprodu
t ∆′
0on A′, then (A′,∆′

0, ǫ
′,S ′) equals (A,∆0, ǫ,S).The Hopf *-algebra arising here is 
alled the asso
iated Hopf *-algebra of (A,∆).Dijkhuizen and Koornwinder observed that the Hopf *-algebras arising in this way haveintrinsi
 algebrai
 stru
ture.Definition. A Hopf *-algebra A is 
alled a CQG algebra if it is the linear span of allmatrix elements of its �nite dimensional unitary 
orepresentations.Theorem 5.2 ([DiK℄). Ea
h Hopf *-algebra asso
iated with a 
ompa
t quantum group isa CQG algebra. Conversely, if A is a CQG algebra then(14) ‖a‖ := sup{‖π(a)‖ : π is a *-representation of A on a Hilbert spa
e}de�nes a C∗-norm on A and the 
ompletion of A with respe
t to this norm is a 
ompa
tquantum group with 
omultipli
ation extending that of A.The 
ompa
t quantum group obtained in this theorem is 
alled the universal 
ompa
tquantum group of A and is denoted Au.Definition. A 
ompa
t quantum group (A,∆) is 
alled a full 
ompa
t quantum groupif the C∗-norm it indu
es on its asso
iated CQG algebra A 
oin
ides with its 
anoni
alnorm de�ned in (14) (equivalently, if A is *-isomorphi
 to Au).The notion of full 
ompa
t quantum groups was introdu
ed in [BaS℄ and [BMT℄ (in thelatter they were 
alled universal 
ompa
t quantum groups). The fundamental examplesof 
ommutative and 
o
ommutative C∗-bialgebras, namely C(G) for a 
ompa
t group Gand universal C∗-algebra C∗(Γ) for a dis
rete group Γ, are full 
ompa
t quantum groups.Moreover most of the genuinely quantum (i.e. neither 
ommutative nor 
o
ommutative)
ompa
t quantum groups 
onsidered in the literature also fall into this 
ategory, in
ludingthe queen of examples, SUq(2).Before formulating the main results of this se
tion we need one more proposition. The�rst part was proved in [BMT℄; the se
ond is a rather straightforward appli
ation of ideasof [DiK℄ (see also [KlS℄).Proposition 5.3. Ea
h full 
ompa
t quantum group A is a C∗-bialgebra, whose 
ounitis the 
ontinuous extension of the 
ounit of its asso
iated CQG algebra A. There is abije
tive 
orresponden
e between unital *-homomorphi
 QS 
onvolution 
o
y
les on Aand unital, real and weakly multipli
ative QS 
onvolution 
o
y
les on A.The above fa
ts, together with the theorems of the previous two se
tions, imply thefollowing 
hara
terisation of sto
hasti
ally generated QS 
onvolution 
o
y
les on full
ompa
t quantum groups.Theorem 5.4. Let A be a full 
ompa
t quantum group and let k ∈ P(A, E) be a 
ompletelybounded pro
ess. Then the following are equivalent :(i) k and k† are Hölder-
ontinuous QS 
onvolution 
o
y
les;(ii) k|A = lϕ for some map ϕ ∈ L(A;B(k̂)).
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ting to *-homomorphi
 
o
y
les yields the following mu
h stronger result.Theorem 5.5. Let k ∈ P(A, ED), where A is a full 
ompa
t quantum group and D is adense subspa
e of a Hilbert spa
e k. Then the following are equivalent:(i) k is a Hölder-
ontinuous, unital and *-homomorphi
 QS 
onvolution 
o
y
le;(ii) k is bounded and k|A = lϕ for some map ϕ ∈ L(A;O‡(D̂)) satisfying the stru
turerelations (13).Remark. One of the 
onsequen
es of the last two theorems is that ea
h map ϕ de�ned ona CQG algebra A with values in O‡(D̂) satisfying (13) must be bounded-operator-valued.However, ϕ need not be 
ontinuous as an operator A → B(k̂) (see [S
S℄ for examples),and therefore need not extend to A. If it is 
ontinuous then it is ne
essarily 
ompletelybounded.A
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