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Abstract. We summarise recent results concerning quantum stochastic convolution cocycles in
two contexts purely algebraic and C*-algebraic. In each case the class of cocycles arising as
the solution of a quantum stochastic differential equation is characterised and the form taken
by the stochastic generator of a *-homomorphic cocycle is described. Throughout the paper a
common viewpoint on the algebraic and C*-algebraic situations is emphasised; the final section
treats the unifying example of convolution cocycles on full compact quantum groups.

Introduction. Stochastic cocycles on operator algebras are basic objects of interest in
quantum stochastic analysis ([L]) and in the study of more general noncommutative white
noise ([HKK]); their importance in quantum probability was first recognised in [Acc].
There is a well developed theory of quantum Lévy processes (JASW], [Fra], [Sch]), that
is, stationary, independent increment, *-homomorphic processes on *-bialgebras. Close
examination of these two areas naturally leads to the notion of quantum stochastic con-
volution cocycle on a quantum group (or, more generally, on a coalgebra), as introduced
in [LS;]. There it is shown that, as with ‘standard’ quantum stochastic cocycles (J[LW,]),
quantum stochastic convolution cocycles arise as solutions of noncommutative stochastic
differential equations. Indeed, all sufficiently regular convolution cocycles arise in this
way. Although the results of [LS;| are formulated in a purely algebraic context, they
may be extended to the case of compact quantum groups, and many of them to oper-
ator space coalgebras (see [LS3]). For this some technical results concerning quantum
stochastic differential equations with nontrivial initial conditions are required (|LSs]).
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Our aim here is to give a flavour of these recent results. No attempt is made to formu-
late theorems in the greatest possible generality; proofs will appear elsewhere. Quantum
stochastic convolution cocycles may be considered in two different categories, namely al-
gebraic and operator-space theoretic. Although the available techniques are different in
each case, we seek to show that these convolution cocycles may fruitfully be considered
from a common viewpoint. This has influenced the plan of the paper. The first section
sets out our notation, and recalls some quantum stochastic lore. In the second section a
flexible definition of such cocycles is given, together with their basic properties, covering
both the algebraic and the C'*-algebraic cases. This section also shows how convolution
cocycles may be obtained by solving coalgebraic quantum stochastic differential equa-
tions, moreover the form taken by the stochastic generator of a unital *-homomorphic
cocycle (due to Schiirmann) is recalled. Results for the algebraic case are given in the
third section; those for the C*-algebraic cases in the fourth. In the final section we briefly
present the case where both algebraic and C*-algebraic convolution cocycles coexist on
the same underlying space, namely the case of full compact quantum groups.

In view of space limitations, we do not discuss generalisations to compact quantum
hypergroups, the structure of generators of completely positive, contractive convolution
cocycles, or dilations of such cocycles on a C*-bialgebra to quantum Lévy processes (|9]).
Currently the main remaining challenge in these developments is the extension of the
results to the context of locally compact quantum groups ([KuV], [Kus]). This presents
serious technical difficulties. At the root of these is an insufficient understanding of the
interplay between operator space theory on the one hand, and multiplier algebras with
their strict topology on the other.

1. Preliminaries. In this section we set out our notation and recall some quantum
stochastic theory ([Hud], [Mey], [Par]; we follow [L]). “Quantum stochastic” will usually
be abbreviated to QS.

General notations. All vector spaces in this note are complex and inner products are
linear in their second argument. Let h be a Hilbert space. For a function f: R; — h and
subinterval I of Ry, f; denotes the function R} — h which agrees with f on I and is
zero outside I (cf. standard indicator-function notation). This convention also applies to
vectors, by viewing them as constant functions—for example

f[s,t[, for£ €ehand 0 < s < t.

Now let E be a dense subspace of h. The following notation will be employed:

E :=Lin{¢: ¢ € E}, where ¢ := (1

ch:=Cah,
)

and
|EY :={|¢) : £ € E}, where |£) : C — h is the map A — A&.

Thus E is a dense subspace of h and |E) is a dense subspace of B(C;h). Next let O(E)
denote the vector space of operators on h with domain E and define subspaces of O(FE)
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as follows:
OYE):={T € O(E) : DomT* > E},
(1) O™ (E):={T € O(E) :RanT C E} and
O*(E) :={T € OYE) : T,T" € O™ (E)}.
Here “inv” stands for invariant, and the dagger notation is
(2) Th:=T"g
for T € O}(E). Thus O*(E) is an involutive vector space, with involution given by (2),
and O*(FE) is a unital *-algebra; the former following from the inclusion Dom(S+AT)* D

Dom S* N Dom T*. Operator composition O(E) x O™ (E) — O(FE) extends to ordered
pairs (S,T) in O}(E) x O(E) for which Dom(ST)* > RanT, as follows:

(3) ST :=(SH*T.

This partially defined product is bilinear in an obvious sense.
For vectors ¢ € h;n € E and vector space V define a map Q% :VeO(E)—V by

(4) Q(z e T) = (¢, Tn)z

(x € V,T € O(E)), extended linearly. For an operator space V and vectors {,n € h, the
same notation is used for the completely bounded map from the spatial tensor product
V ® B(H) to V, given by continuous linear extension of the prescription (4). Finally,
ampliations are denoted

th: BH) = BH®h), T—T® I,

Fock space notations. Let k be a fixed Hilbert space, called the noise dimension space.
The Hilbert space L?(Ry;k) is denoted K, F denotes the symmetric Fock space over K
and her exponential vectors are written e(f) (f € K). Also write F; when R is replaced
by a subinterval J. For a subset D of k and subinterval J of Ry, define Sp ; :={f € S:
f is D-valued and vanishes outside J}, where

S:= Lin{d[o7s[ o d S k, s € RJ’_}
Also define a corresponding subspace of F;:

€D7J = Lln{E(f) : f c SD’J},

dropping subscripts when D = k, respectively J = R,.. If D is total in k and contains 0
then the subspace £p is dense in F. For us D will be a dense subspace of k. It is often
convenient to suppress ampliations by exploiting the exponential property of Fock space.
Thus, for example, O(Ep jq,[) may be viewed as a subspace of O(Ep) through the map
T+— I ®T ® I, where the identity operators are on Fg o[ and F o[ Tespectively. The
CCR flow of index k, defined in terms of the second quantisation of the shift on K, is
denoted ¢ = (0y);>0. These extend to maps of unbounded operators. Thus, suppressing
ampliations, 05(O(Ep,s)) = O(Ep,y+s)-

QS processes. Let D be a dense subspace of the noise dimension space k. Elements of
Ep will play the role of test functions. By an operator process we understand a family
X = (X¢)¢>0 of operators on F, each having the (dense) domain £p, being weak-operator
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measurable in ¢t and adapted to the natural Fock-space operator-filtration. Thus X :
Ry — O(&p), t — X is weakly measurable for all £ € £p and, for each ¢t > 0,
Xt € O(Ep, o) ® I where the identity is on F; o[- The linear space of all such processes
is denoted P(Ep). For a dense subspace E of a Hilbert space h, P(E ® Ep) is defined
similarly and we speak of h-processes. The collection of processes X € P(E ® £p) having
a conjugate process in P(E®Ep) (i.e. a process X1 € P(E® &Ep) for which DomX; > X/
(t € R})) is denoted P*(E ® €p). Finally let V be a vector space. Linear maps from V
to P(Ep) are called processes on V with domain Ep and the set of all such processes on

V is written P(V, Ep).

QS differential equations with functional as initial condition. For linear maps k: V — C
and ¢: V - V®O(D) (or V — V® B(k) with spatial tensor product, if V is an operator
space), consider the quantum stochastic differential equation

(5) dky = ko pdhy, ko= Lr o k.

By a weak solution of this equation (with domain £p) we understand a process k €
P(V,Ep) such that

(1), ala) = W(@1R)e(a)) = [ (el (o 2 0 ) a)e())ds

(t>0,2€V,f,g€Sp).If there is a quantum stochastically integrable /k\—process KonV,
with domain D ® £p, satisfying

¢®e(f) _ 0clh) <
Q77®6(g) o K¢ = QE(!J) o ke oy

(¢,ne lA), f,g €Sp,t > 0), then k is called a strong solution.

2. Quantum stochastic convolution cocycles. For this section ‘space’, ‘map’ and ®
mean respectively space, map and tensor product of the appropriate category. Thus in
the algebraic case these are respectively vector spaces, linear maps, and algebraic tensor
products, whereas in the C*-algebraic case they are operator spaces, completely bounded
maps and spatial tensor products.

*_Bialgebras. The idea of considering quantum stochastic convolution cocycles originates
in the theory of quantum Lévy processes, the noncommutative counterpart of classical
Lévy processes on groups. As usual in noncommutative mathematics, in order to ‘quan-
tise’ one focuses on the appropriate class of functions on the underlying set of the classical
structure. Then we see that quantum stochastic convolution cocycles should ‘act on’ a
generalisation of the algebra of complex-valued functions on a group (or, to be more pre-
cise, semigroup with identity), namely on a *-bialgebra. By this we understand a unital
*-algebra (respectively C*-algebra) A, equipped with compatible coalgebraic structure,
that is, unital *-homomorphisms

A:A—-A®Aande: A —C,
called comultiplication and counit respectively, satisfying
(6) (A®idp) o A = (ida ® A) o A and
(7) (e®ida) o A = (ida ® €) 0o A = ida.
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Coalgebraic structure entails a convolution on maps, as follows. Let U, V and W be
spaces for which there is a natural map M : URQV — W, for example V =C and W = U.
Then maps ¥ : A — U and x : A — V determine a map

Yrx =Mo(Wp®@x)ocA:A—-W
As an example of this notation observe that equations (6) and (7) may be expressed as
follows:
A xidp =ida x A, respectively e xidy = ida x € = ida.
In these cases the natural maps are the following obvious maps: (A®A)RA — AQARA,
AR(ARA) - ARARA, C®A — A and A®C — A respectively.

DEFINITION. A family {u; : t > 0} of maps A — C is called a convolution semigroup of
functionals if
o = € and psyy = ps * py for all s,¢ > 0.

The coalgebraic structure of A facilitates another algebraic operation on maps, defined
as follows. For any space V and map ¥ : A — V define a map

Ry:A—=A®V

by the formula:
Ry = (ida @ ) o A =ida * 9.
Such maps are known as convolution operators. The R-map itself has a left inverse:
(e®idy) o Ry = 1.

Specialising again to maps A — C, it is easily seen that the R-map intertwines convolution
and composition: for maps A\, pu: A — C,
(8) RyoR, = Ryu-

REMARK. Readers may recognise, in the above, generalisations of standard notions and
operations from the theory of classical probability on algebraic structures ([Gre], [Hey]).
For example R), corresponds to the so-called probability operator of a probability measure
on a group.

QS convolution cocycles. Let (A, A, €) be a *-bialgebra and let D be a fixed dense sub-
space of the noise dimension space k.

DEFINITION. A quantum stochastic convolution cocycle (on A with domain £p) is a
process | € P(A,Ep) such that, for s,¢ > 0,
lst =lsx(0s0ly) and lp = troe.

The first of these conditions is referred to as the convolution increment property. The
natural product in the definition of the convolution here is given by the identification
O(Ep,0,5]) ® O(Ep,[s,s+t)) = O(Ep,j0,s+¢[) in the algebraic case, and by the inclusion
B(Fio,s)) @ B(Fis,s+1[) C B(Fjo,s4¢[) in the C*-algebraic case.

With each QS convolution cocycle [ one may associate a family of convolution semi-
groups in the following way: for each ¢,d € D define

(9) Af’d(a) = <€(C[07t[)7 lt(a)g(d[o,t[»e*t(c,d)
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(a € A,t > 0). It is easily checked that {)\g’d : t > 0} is a convolution semigroup of
functionals. Moreover the convolution cocycle [ is determined by this family, which we
refer to as its associated convolution semigroups (of functionals). This is a consequence of
the following fact, which uses the convention that step functions in S are right-continuous.
For any f,g € Sp,a € A and t > 0,

(10)  {e(fou)s b(@e(go)) = AE%, ® -+ @ AT ZH 7 ) (Ap—a (@) etfiosto),

where 0 = tg < t; < ... < t, = t contains all the discontinuities of f and g in [0,¢],
Co = f(tO)a do = g(tO)a ey Cp—1 = f(tn—l) and d,,—1 = g(tn—1)~ Here A,, : A — A®(n+1)
is defined recursively by

AO = idA7 Al = A, Ai+l = Ai*idA for 4 > 1.

Exactly as was the case for convolution semigroups of functionals (see equation (8)),
the convolution operator/R-map transforms QS convolution cocycles into QS cocycles.
To be more precise, for a given QS convolution cocycle [, define k; = R;, for each ¢ > 0.
Then, for s,t > 0,

kert =kso (Us © kt), ko = tr,

where 79\3 is a certain extension of kg, defined precisely in [LW;]|. This correspondence
remains valid at the level of associated semigroups; due to this many results of [LW]
have counterparts in the convolution context. The correspondence is also crucial for the
proofs of the theorems in Section 4.

The above definition of a QS convolution cocycle generalises naturally by replacing
the counit in the initial condition by an idempotent functional. By this we mean a linear
functional x : A — C satisfying

X*X =X
This is relevant, for example, in the context of Lévy processes on quantum hypergroups

([FrS)).

Coalgebraic QS differential equations, Quantum stochastic convolution cocycles on A are
constructed by solving QS differential equations of the following kind

(11) dly =l xr dA,(t), lo=troe€

(7 indicating the tensor flip reversing the order of the spaces k and F), foramap ¢ : A —

-~

(’)(B) (or A — B(k)). A process | € P(A, Ep) being a weak solution of this equation (with
domain £p) is equivalent to | weakly satisfying the ‘standard’ QS differential equation (5)
in which

¢=R,and kK =¢.
REMARK. In the algebraic case, this reads
(e(f), (e(a) — e(a)IF)e(g)) = /O (e(f):Ls(aqy)e(9)(f(s), plac)g(s)) ds,

in which the Sweedler notation a1y ® a(9) is used for Aa ([Swe]).
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An important observation here is that if [ satisfies such a QS differential equation, then
the generators of the associated convolution semigroups of I, defined (for each ¢,d € D)

by

Yeala) = Tim 2 (5%(a) ~ ela)), a € A,
satisfy
(12) Ye,d(a) = (&, p(a)d).

This fact is key for determining classes of cocycles arising in this way. Specific conditions,
assuring the existence of a solution, or for characterising the type of stochastically gen-
erated cocycles, will be given in the following sections—separately for the algebraic and
C*-algebraic cases.

*_Homomorphic convolution cocycles. It was Schiirmann who observed that the stochastic
generators of quantum Lévy processes acting on a Fock space (i.e. unital *-homomorphic
QS convolution cocycles, in the terminology of this note) are given by triples of maps
satisfying certain structure relations.

DEFINITION. Following Meyer, a triple (7,4, p) consisting of a unital *-homomorphism
p:A— O*D) (or A — B(k)), a p-e-derivation, that is, a map 6 : A — |D) (or A — |k))
satisfying

6(ab) = 6(a)e(b) + p(a)d(b),
and a map v : A — C satisfing
Y(a”b) = ~v(a)"e(b) + €(a)™v(b) + d(a)"d(b),
is called a Schiirmann triple on A.

For a map ¢ : A — (’)*(B) (or A — B(/k\)) the following are equivalent:

vy o4
d p—oe|’

where (7,0, p) forms a Schiirmann triple;
(ii) ¢ satisfies

(i) ¢ has block matrix form

(13) ©(1) = 0 and, for a,b € A, p(a*b) = p(a)*e(d) + e(a)*p(b) + go(a)*AQSgp(b).

Here A?S € B(E) denotes the orthogonal projection with range {0} @k, not a coproduct!
In the algebraic case Schiirmann showed that, under these conditions, the QS differential
equation (11) has a unique *-homomorphic and unital solution. The functional v is real,
vanishes at 15 and is conditionally positive, that is, positive on the positive part of the
kernel of the counit. These conditions characterise generators « of abstract quantum Lévy
processes and, for any such functional, a GNS-type construction yields a pre-Hilbert space
D’ and map ¢’ € (’)*(/D\’) satisfying (13). This leads to the Schiirmann Reconstruction
Theorem—every quantum Lévy process may be reconstructed (up to equivalence) from
its generator ([Sch]).

The following remark connects our approach to Schiirmann’s (see Theorem 3.3 below).
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REMARK. The invariance condition on ¢ and p may be dropped: if ¢ : A — Oi(ﬁ).,
respectively p : A — O¥(D), then the above equivalence endures with p being real and
weakly multiplicative (that is, *~homomorphic with respect to the involution and product

defined in (2) and (3)).

3. Algebraic case. In thissection ‘spaces’ and ‘maps’ are vector spaces and linear maps,
tensor products are algebraic and A is a *-bialgebra. The following existence theorem is
proved with the help of the Fundamental Theorem on Coalgebras.

THEOREM 3.1. Let ¢ € L(A;O(ﬁ)). Then the equation

dly =l % dA,(t), lo=tFroe,
has a unique weak solution in P(A,Ep), it is a quantum stochastic convolution cocycle
and is actually a strong solution; we denote it [¥.

The following notation is useful for capturing necessary and sufficient conditions for
an algebraic QS convolution cocycle to be ‘stochastically generated’.

Puc(Ep) :={X € P(€p) : Veeey, t — Xi€ is locally Holder-continuous with exponent 3},
P (Ep) == {X € PH(&p) : X, XT € Puc(ép)},
Puc(A, Ep) i= L(A; Puc(€p)) and P (A, Ep) i= L(A; Pl (Ep)).
We refer to processes in Py (A, Ep) as Hoélder-continuous processes. Continuous processes
are defined analogously. Recall the operator notation introduced in (1).
THEOREM 3.2. Let k € P(A,Ep). Then the following are equivalent:

(i) k is a quantum stochastic convolution cocycle in IP’%IC(A, Ep);

(ii) k = 1% for some ¢ € L(A; O(D)).

The stochastic generators of *-homomorphic cocycles are characterised next.
THEOREM 3.3. Let | = 1% where ¢ € L(A; Oi(ﬁ)) Then the following are equivalent:

(i) 1 is real, weakly multiplicative and unital;
(il) ¢ satisfies the structure relations (13).

4. C*-Algebraic case. In this section ‘spaces’ and ‘maps’ are operator spaces and
completely bounded maps; tensor products are spatial; and A is a C'*-bialgebra, that
is a C*-algebra with (topological) *-bialgebra structure. Being *-homomorphisms, the
comultiplication and counit are automatically completely bounded. As the stochastic
generators we consider are everywhere defined, we take D = k. However, since solutions
of QS differential equations need not be bounded, we need a further definition. Recall
that £ abbreviates &.

DEFINITION. A process [ € P(A,E) is called a weak quantum stochastic convolution co-
cycle if each functional defined by (9) is continuous and the identities (10) hold.

For the technical definitions and corresponding results for ‘standard’ cocycles and QS
differential equations see [LW;_3], or [L]. The basic existence theorem for solutions of QS
differential equations in our context is the following.
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THEOREM 4.1. Let ¢ : A - A® B(/k\) and K : A — C be completely bounded linear maps.
Then the QS differential equation (5) has a unique weakly regular weak solution on &; it
is actually a cb-strongly reqular strong solution.

REMARK. Complete boundedness for x is equivalent to boundedness.

-~

THEOREM 4.2. Let ¢ € CB(A; B(k)). The QS differential equation
dlt = Zt *r dAga(t)a lo = LF OE€,

has a unique weakly reqular weak solution, again denoted I¥; it is a weak QS convolution
cocycle.

As the coefficients of the QS differential equations considered above are completely
bounded, identity (12) implies that the generators of each associated convolution semi-
group of the cocycle [¥ must be norm bounded; in turn this implies norm continuity for
these semigroups and naturally leads to the next definition.

DEFINITION. A completely bounded QS convolution cocycle is Markov-reqular if its as-
sociated convolution semigroup of functionals {)\(t),o :t > 0} is norm continuous.

REMARK. For a completely contractive QS convolution cocycle, all its associated convo-
lution semigroups are norm continuous if one of them is (cf. ‘standard’ cocycles - [LW1]).

THEOREM 4.3. Let | € P(A,E) be a completely positive, contractive and Markov-regular

QS convolution cocycle. Then there is a unique map ¢ € CB(A; B(/k\)) such that | = 1%.
The form of ‘stochastic generator’ of a *-homomorphic convolution cocycle is now
exactly the same as before—algebraic conditions implying analytic ones.

THEOREM 4.4. Let ¢ € L(A;B(/k\)). Then the following are equivalent:
(i) ¢ is completely bounded and 1% is *-homomorphic and unital;
(ii) @ satisfies the structure relations (13).

5. Cocycles on full compact quantum groups. A concept of compact quantum
groups was introduced by Woronowicz, in [Wor;]. For our purposes it is most convenient
to adopt the following definition. Tensor products here are spatial /minimal.

DEFINITION ([Wors]). A compact quantum group is a pair (A, A), where A is a unital
C*-algebra and A : A — A ® A is a unital *-homomorphic map which is coassociative
and satisfies the quantum cancellation properties:

Lin(1a ® A)A(A) = Lin(A ® 1a)A(A) = A® A.

For the concept of Hopf *-algebras and their unitary corepresentations, as well as
unitary corepresentations of compact quantum groups, we refer the reader to [KIS|. For
our purposes it is sufficient to note the facts contained in the following theorem.

THEOREM 5.1 (|[Wory]). Let A be a compact quantum group and let A denote the linear
span of the matriz coefficients of irreducible unitary corepresentations of A. Then A is a
dense *-subalgebra of A, the coproduct of A restricts to an algebraic coproduct Ag on A
and there is a natural counit € and coinverse S on A which makes it a Hopf *-algebra.
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REMARK ([BMT]). In the above theorem (A, Ag,€,S) is the unique dense Hopf *-sub-
algebra of A, in the following sense: if (A’, Af,€',S’) is a Hopf *-algebra in which A’ is
a dense *-subalgebra of A and the coproduct of A restricts to an algebraic coproduct Aj

on A, then (A’ Aj,€',S’) equals (A, Ag, €, S).

The Hopf *-algebra arising here is called the associated Hopf *-algebra of (A, A).
Dijkhuizen and Koornwinder observed that the Hopf *-algebras arising in this way have
intrinsic algebraic structure.

DEFINITION. A Hopf *-algebra A is called a CQG algebra if it is the linear span of all
matrix elements of its finite dimensional unitary corepresentations.

THEOREM 5.2 ([DiK]). Fach Hopf *-algebra associated with a compact quantum group is
a CQG algebra. Conversely, if A is a CQG algebra then

(14) lla|| := sup{||m(a)|| : 7 is a *-representation of A on a Hilbert space}

defines a C*-norm on A and the completion of A with respect to this norm is a compact
quantum group with comultiplication extending that of A.

The compact quantum group obtained in this theorem is called the universal compact
quantum group of A and is denoted A,.

DEFINITION. A compact quantum group (A, A) is called a full compact quantum group
if the C*-norm it induces on its associated CQG algebra A coincides with its canonical
norm defined in (14) (equivalently, if A is *-isomorphic to A,).

The notion of full compact quantum groups was introduced in [BaS| and [BMT] (in the
latter they were called universal compact quantum groups). The fundamental examples
of commutative and cocommutative C*-bialgebras, namely C(G) for a compact group G
and universal C*-algebra C*(I") for a discrete group I, are full compact quantum groups.
Moreover most of the genuinely quantum (i.e. neither commutative nor cocommutative)
compact quantum groups considered in the literature also fall into this category, including
the queen of examples, SU,(2).

Before formulating the main results of this section we need one more proposition. The
first part was proved in [BMT]; the second is a rather straightforward application of ideas
of [DiK] (see also [KI1S]).

PROPOSITION 5.3. Fach full compact quantum group A is a C*-bialgebra, whose counit
is the continuous extension of the counit of its associated CQG algebra A. There is a
bijective correspondence between unital *-homomorphic QS convolution cocycles on A
and unital, real and weakly multiplicative QS convolution cocycles on A.

The above facts, together with the theorems of the previous two sections, imply the
following characterisation of stochastically generated QS convolution cocycles on full
compact quantum groups.

THEOREM 5.4. Let A be a full compact quantum group and let k € P(A,E) be a completely
bounded process. Then the following are equivalent:

(i) k and k' are Hélder-continuous QS convolution cocycles;

(ii) k|4 =19 for some map ¢ € L(A; B(K)).
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Restricting to *-homomorphic cocycles yields the following much stronger result.

THEOREM 5.5. Let k € P(A,Ep), where A is a full compact quantum group and D is a
dense subspace of a Hilbert space k. Then the following are equivalent:

(i) k is a Holder-continuous, unital and *-homomorphic QS convolution cocycle;
(ii) k is bounded and k|4 = 1% for some map ¢ € L(A; O¥(D)) satisfying the structure
relations (13).

REMARK. One of the consequences of the last two theorems is that each map ¢ defined on
a CQG algebra A with values in O%(D) satisfying (13) must be bounded-operator-valued.
However, ¢ need not be continuous as an operator A — B(k) (see [ScS] for examples),
and therefore need not extend to A. If it is continuous then it is necessarily completely

bounded.
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